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Abstract This paper is about the exploitation of Lipschitz continuity properties for Markov
Decision Processes to safely speed up policy-gradient algorithms. Starting from assumptions
about the Lipschitz continuity of the state-transition model, the reward function, and the
policies considered in the learning process, we show that both the expected return of a
policy and its gradient are Lipschitz continuous w.r.t. policy parameters. By leveraging such
properties, we define policy-parameter updates that guarantee a performance improvement
at each iteration. The proposed methods are empirically evaluated and compared to other
related approaches using different configurations of three popular control scenarios: the
linear quadratic regulator, the mass-spring-damper system and the ship-steering control.

Keywords Reinforcement learning · Markov Decision Process · Lipschitz continuity ·
Policy gradient algorithm

1 Introduction

In the last years, policy-gradient methods have emerged among the most effective
Reinforcement-Learning (RL) techniques for complex real-world control problems with
continuous, high-dimensional, and partially-observable properties, such as robotic control
systems (Peters and Schaal 2006). Given a parameterized policy space, usually designed to
incorporate domain knowledge, policy-gradient algorithms update policy parameters along
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an estimated ascent direction of the expected return. Under some mild assumptions on the
step size used to update the parameters (Moré and Thuente 1994), policy-gradient methods
are guaranteed to converge at least to a locally optimal solution.

The research in policy gradient has mainly focused on defining convenient ascent direc-
tions and low-variance, model-free estimators of the policy gradient. The oldest policy-
gradient approaches are finite-difference methods (Spall 1992), that estimate gradient direc-
tion by resolving a regression problem based on the performance evaluation of policies
associated to different small perturbations of the current parametrization. Finite-difference
methods have some advantages: they are easy to implement, do not need assumptions on the
differentiability of the policy w.r.t. the policy parameters, and are efficient in deterministic
settings. On the other hand, when used on real systems, the choice of parameter perturbations
may be difficult and critical for system safeness. Furthermore, the presence of uncertainties
may significantly slow down the convergence rate. Such drawbacks have been overcome
by likelihood ratio methods (Williams 1992; Baxter and Bartlett 2001; Sutton et al. 1999),
since they do not need to generate policy parameter variations and quickly converge even
in highly stochastic systems. Several studies have addressed the problem to find minimum
variance estimators by the computation of optimal baselines (Peters and Schaal 2008b).
To further improve the efficiency of policy-gradient methods, natural-gradient approaches
(where the steepest ascent is computed w.r.t. the Fisher information metric) have been con-
sidered (Kakade 2001; Peters and Schaal 2008a). Natural gradients still converge to locally
optimal policies, are independent from the policy parametrization, need less data to attain
good gradient estimates, and are less affected by plateaus. For recent and comprehensive
surveys on policy search and policy gradient methods we refer the reader to Grondman et al.
(2012) and Deisenroth et al. (2013).

Unfortunately, a good estimate of the policy gradient is not enough to guarantee effec-
tive learning. In fact, even when the exact policy gradient is known, the choice of the step
size strongly influences the number of iterations needed to attain a (local) maximum or,
even worse, can make convergence unfeasible (Wagner 2011). In general unconstrained pro-
gramming, the value of the step size is determined through line-search algorithms (Moré
and Thuente 1994), that require to evaluate the function to be optimized at points gener-
ated along the gradient direction by a sequence of candidate values for the step size. In the
policy-gradient framework, being policy evaluations quite expensive, line search is imprac-
tical and step-size parameters are usually kept fixed or decreased over time according to
some annealing schedule, requiring significant amounts of hand tuning. Convergence issues
can be solved by making the step-size parameter decrease according to the Robbins-Monro
conditions (Robbins andMonro 1951), but it usually turns out to showvery slow convergence.

In spite of the strong impact of the step size over the performance of policy-gradient
methods, so far little research has addressed such issue, with a few notable exceptions.
Kober and Peters (2008) and Vlassis et al. (2009) studied policy-search methods based
on expectation-maximization. Under some assumptions on the reward and policy models,
expectation-maximization algorithms have properties similar to the ones of policy gradients,
but without the need of specifying any step size. In Pirotta et al. (2013) we have directly
addressed the problem of computing a step size that guarantees a policy improvement at any
iteration. The idea is to use the data collected using the current policy to lower bound the
expected return of any policy. The step size is then chosen to maximize such lower bound
along the policy-gradient direction.

The main limitation of previous approaches is the looseness of the lower bounds to the
expected return, that usually leads to conservative policy updates. In order to mitigate this
drawback, we focus on Lipschitz-continuous MDPs, that represent a relevant subclass of
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MDPs. In fact, many real-world problems are characterized by continuous state and action
spaces (e.g., robotics, automatic control problems, natural resourcemanagement, etc.), where
it is reasonable that when similar actions are executed in similar states their effects will be
similar. That is what the Lipschitz assumptions want to capture. In this paper, we show that,
under Lipschitz continuity assumptions on the Markov Decision Process (MDP) and the
policy model (Sect. 2), the expected return of each policy and its policy-gradient components
are Lipschitz w.r.t. policy parameters (Sects. 3 and 4). As shown by Armijo (1966), the
Lipschitz continuity of the gradient can be used to select the value of the step size so as
to guarantee a performance improvement at each iteration. In particular, the smaller are
the Lipschitz constants, the larger are the step sizes and the expected improvements. We
introduce how to compute the Lipschitz constant related to each component of the gradient
and we show how such constants can be used to guarantee a performance improvement either
by automatically identifying a proper step size along the gradient direction, or by defining
new ascent directions with better guarantees (Sect. 5). Besides the theoretical contributions,
we will also provide an empirical analysis to highlight advantages and limitations of the
proposed approach (Sect. 6).

2 Preliminaries

In this section, we introduce notation and basic concepts about MDPs, Lipschitz MDPs, and
policy gradients.

2.1 Markov Decision Process

A discrete-time continuous MDP is defined as a 6-tuple 〈S,A,P,R, γ, μ〉, where S is
the continuous state space, A is the continuous action space, P is a Markovian transition
model where P(s′|s, a) defines the transition density between state s and s′ under action
a, R : S×A → [−R, R] is the reward function, such thatR(s, a) is the expected immediate
reward for the state-action pair (s, a) and R is themaximum absolute reward value, γ ∈ [0, 1)
is the discount factor for future rewards, and μ is the initial state distribution. We assume
state and action spaces to be complete, separable metric (Polish) spaces (S, dS) and (A, dA),
equipped with their σ -algebras σS , σA of Borel sets, respectively. We assume—as done
in Hinderer (2005)—that joint state-action space is endowed with the following taxicab
norm: dSA ((s, a) , (̂s, â)) = dS(s, ŝ) + dA(a, â). A stationary policy π(·|s) specifies for
each state s the density function over the Borel action space (A, dA, σA).

We consider infinite-horizon problems where the future rewards are exponentially dis-
counted with γ . For each state s, we define the utility of following a stationary policy π as:

V π (s) = E
at∼π

st∼P

[ ∞
∑

t=0

γ tR(st , at )|s0 = s

]

.

It is known that, under mild assumptions (Bertsekas and Shreve 1978), V π solves the fol-
lowing recursive (Bellman) equation:

V π (s) =
∫

A

(

R(s, a) + γ

∫

S
V π (s′)P(ds′|s, a)

)

π(da|s).
For model-free control purposes, the value function V is usually replaced by the action-value
function Q, where action value Qπ (s, a) is the expected return of taking action a in state s
and following a policy π thereafter:
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Qπ (s, a) = R(s, a) + γ

∫∫

SA
Qπ (s′, a′)π(da′|s′)P(ds′|s, a).

Policies can be ranked by their expected discounted reward starting from the state distribution
μ:

Jπ
μ =

∫

S
V π (s)μ(ds) = 1

1 − γ

∫∫

SA
R(s, a)π(da|s)δπ

μ(ds)

= 1

1 − γ
Es∼δπ

μ(·) Ea∼π(·|s) [R(s, a)] ,

where δπ
μ(s) = (1 − γ )

∑∞
t=0 γ t Pr(st = s|π,μ) is the γ -discounted future state distribution

for a starting state distributionμ (Sutton et al. 1999). It is possible to rewrite previous equation
in terms of the joint distribution ζ(δπ

μ, π) between the future state distribution δπ
μ and the

stationary policy π , that can be written as a function of only π . Let ζ(δπ
μ, π) = ζπ

μ be a
probability distribution over S × A, such that:

Jπ
μ = 1

1 − γ
E(s,a)∼ζπ

μ
[R(s, a)] .

Solving anMDPmeans finding a policyπ∗ thatmaximizes the expected long-term reward:
π∗ ∈ argmaxπ∈� Jπ

μ . For anyMDP there exists at least one deterministic stationary optimal
policy that simultaneously maximizes V π (s), ∀s ∈ S (Puterman 1994).

2.2 Lipschitz MDP

In this section, we introduce the basic concepts of Lipschitz continuity. Given twometric sets
(X, dX ) and (Y, dY ), where dX and dY denote the corresponding metric functions, a function
f : X → Y is called L f -Lipschitz continuous (L f -LC) if

∀(x1, x2) ∈ X2, dY ( f (x1), f (x2)) ≤ L f dX (x1, x2) . (1)

The smallest constant L f for which (1) holds is called the Lipschitz constant of f . Define

‖ f ‖L = supx1 =x2

{

dY ( f (x1), f (x2))
dX (x1,x2)

: x1, x2 ∈ X
}

to be the Lipschitz semi-norm over the

function space F(X, Y ). Furthermore, we call f pointwise Lipschitz continuous 1 (PLC) in
state x if there exists a constant L f (x) such that:

∀x ′ ∈ X, dY
(

f (x), f (x ′)
) ≤ L f (x)dX

(

x, x ′) where ∀x ∈ X, L f (x) ≤ L f .

For real-valued functions (e.g., the reward function), we will use the Euclidean distance as
metric for the codomain. On the other hand, for the state-transition model and the policies we
need to introduce a distance between probability distributions. Following Hinderer (2005)
and Rachelson and Lagoudakis (2010), we will consider the Kantorovich or L1-Wasserstein
metric on probability measures p and q:

K (p, q) = sup
f

{∣

∣

∣

∣

∫

X
f d (p − q)

∣

∣

∣

∣

: ‖ f ‖L ≤ 1

}

. (2)

We decided to use this metric, instead of othermore common and easier metrics, like the Total
Variation (TV) one, because it is “less demanding”, that is,MDPs that are Lipschitz according

1 Notice that our definition of pointwise Lipschitz function differs from the traditional one.
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to TV are always Lipschitz also w.r.t. the L1-Wasserstein metric, while the vice versa is not
true. For instance, MDPs with deterministic transitions are never Lipschitz according to TV,
while they can be Lipschitz using L1-Wasserstein metric. Finally, the choice of the L1-
Wasserstein metric rather than other sophisticated distribution distances is motivated by the
fact that it has been frequently used for MDPs (Rachelson and Lagoudakis 2010; Hinderer
2005; Ferns et al. 2005).

The analysis proposed in this paper is based on the assumption that the MDP is Lipschitz
continuous. A Lipschitz MDP is a standard MDP enhanced by the information that the
transition model is LP -LC, and the reward model is LR-LC.

Assumption 1 (Lipschitz MDP) A Lipschitz MDP must satisfy the following conditions:

∀ (s, ŝ, a, â) ∈ S2 × A2, K (P (·|s, a) ,P (·|̂s, â)) ≤ LP dSA ((s, a) , (̂s, â)) ,

∀ (s, ŝ, a, â) ∈ S2 × A2, |R(s, a) − R(̂s, â)| ≤ LR dSA ((s, a) , (̂s, â)) .

If π is an Lπ -LC policy—∀(s, ŝ) ∈ S2,K (π(·|s), π(·|̂s)) ≤ Lπ dS (s, ŝ)—, under Assump-
tion 1, it is possible to prove the LC of the corresponding value functions.

Lemma 1 (Rachelson and Lagoudakis 2010, Lemma 1, Theorem 1) Given an (LP , LR)-LC
MDP and a Lπ -LC stationary policy π , if γ LP (1 + Lπ ) < 1, then the Q-function Qπ is
LQπ -LC and the V -function is LV π -LC w.r.t. the joint state-action space:

LQπ = LR
1 − γ LP (1 + Lπ )

; LV π = LQπ (1 + Lπ ) .

All these conditions are related to state and action variables2. In particular, the Lipschitz
continuity of the V - and Q-functions means that: ∀(s, ŝ, a, â) ∈ S2 × A2

∣

∣Qπ (s, a) − Qπ (̂s, â)
∣

∣ ≤ LQπ dSA ((s, a) , (̂s, â)) ;
∣

∣V π (s) − V π (̂s)
∣

∣ ≤ LV π dS (s, ŝ) .

In the following, we will consider the Lipschitz continuity related to the policy parametriza-
tion.

2.3 Policy space

We consider the problem of finding a policy that maximizes the expected discounted reward
over a class of parameterized policies �Θ = {

πθ : θ ∈ Θ ⊂ R
d
}

, where πθ is a compact
representation of πθ (a|s). Moreover, we assume that (Θ, dΘ) is a metric space. For ease of
notation, in the following we will use θ to denote the dependence on π θ where possible.

The exact gradient of the expected discounted reward J θ
μ w.r.t. the policy parameters is

(Sutton et al. 1999):

∇θ J
θ
μ = 1

1−γ

∫∫

SA
∇θ logπθ (a|s)Qθ (s, a)πθ (da|s)dθ

μ(ds)

= 1
1−γ

E(s,a)∼ζ θ
μ

[∇θ logπθ (a|s)Qθ (s, a)
]

. (3)

2 It can be noticed that the results in Lemma 1 are quite similar to the ones obtained by Hinderer (2005,
Theorem 4.1a). The main difference is due to the fact that Hinderer focuses on the Lipschitz continuity of the
optimal value function under state-dependent action spaces. In this case, the role of the Lipschitz constant Lπ

is taken by the Lipschitz constant due to state-dependent action spaces. Since we consider policy-based value
functions, the eventual differences between action spaces is implicitly coded in the policy.
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Several studies have focused on computing the value of this gradient from sample trajectories,
trying to produce estimators with low variance (Peters and Schaal 2008b). The policy para-
meters can be updated by following the direction of the gradient of the expected discounted
reward: θ ′ = θ + α∇θ J θ

μ , where α is a parameter used to control the step size.
For proving the results in the next section, we need to introduce the following assumptions

on the parameterized policy model.

Assumption 2 (Lipschitz policies) The policy model must satisfy the following conditions:

1) state-action LC: ∀(s, ŝ) ∈ S2, K (πθ (·|s), πθ (·|̂s)) ≤ Lπθ dS (s, ŝ)

2) parametric PLC: ∀s ∈ S, ∀(θ ,̂θ) ∈ Θ2, K
(

πθ (·|s) , π
̂θ (·|s)

)

≤ Lπ (θ) dΘ

(

θ ,̂θ
)

Assumption 3 (Lipschitz gradient of policy logarithm) The gradient of the policy loga-
rithm must satisfy the following conditions of:

1) uniformly bounded gradient: ∀(s, a) ∈ S × A, ∀θ ∈ Θ, ∀i = 1, . . . , d
∣

∣

∣∇θ i logπθ (a|s)
∣

∣

∣ ≤ Mi
θ

2) state-action LC: ∀(s, ŝ, a, â) ∈ S2 × A2, ∀θ ∈ Θ, ∀i = 1, . . . , d
∣

∣

∣∇θ i logπθ (a|s) − ∇θ i logπθ (̂a |̂s)
∣

∣

∣ ≤ Li
∇ logπθ dSA ((s, a), (̂s, â))

3) parametric PLC: ∀(θ ,̂θ) ∈ Θ2, ∀(s, a) ∈ S × A, ∀i = 1, . . . , d
∣

∣

∣∇θ i logπθ (a|s) − ∇θ i logπ
̂θ (a|s)

∣

∣

∣ ≤ Li∇ logπ (θ) dΘ

(

θ ,̂θ
)

Notice that some previously defined Lipschitz constants become θ -dependent when a
parametric policy model is used, i.e., Lπθ , LQθ and LV θ , whereas LP and LR are θ -
independent since they are not affected by the policy.

3 Lipschitz continuity of the expected return

In this section, we will show that under Assumptions 1, 2, and 3 the expected return J θ
μ is a

Lipschitz function w.r.t. policy parameters θ . Besides being an interesting objective by itself,
it allows us to introduce some preliminary results that will be reused in the next section to
make the proof of the Lipschitz property of the policy gradient easier.

The performance distance between two policies corresponding to parameters θ and̂θ is
measured by the absolute difference of their expected returns:

∣

∣

∣J θ
μ − J

̂θ
μ

∣

∣

∣ = 1

1 − γ

∣

∣

∣

∣

∣

E

(s,a)∼ζ θ
μ

[R(s, a)] − E

(s,a)∼ζ
̂θ
μ

[R(s, a)]

∣

∣

∣

∣

∣

.

If the Lipschitz constant of the reward functionRwere less or equal to 1 ( i.e., ‖R‖L ≤ 1), it
follows from (2) that the performance distance between policies π θ and π

̂θ would be upper
bounded by the Kantorovich distance between the distributions ζ θ

μ and ζ
̂θ
μ. On the other hand,

it can be easily shown that if R is LR-LC then
∥

∥

∥

R
LR

∥

∥

∥

L
≤ 1.

The following proposition gives an upper bound to absolute difference in performance
between policies. Proof can be founded in “Proof of Proposition 1” section of Appendix.
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Proposition 1 Given an LR-LC MDP, for any pair of stationary policies corresponding to
parameters θ and̂θ , the absolute difference between the performance of policy πθ and policy
π
̂θ can be bounded as follows:

∣

∣

∣J θ
μ − J

̂θ
μ

∣

∣

∣ ≤ LR
1 − γ

K
(

ζ θ
μ, ζ

̂θ
μ

)

.

As a consequence, to prove the Lipschitz continuity of the expected return w.r.t. θ it
suffices to show the Lipschitz continuity of the distribution ζ θ

μ w.r.t. θ . It is worth recalling

that the distribution ζ θ
μ is defined over the joint state-action space and the probability of

drawing a state-action pair (s, a) is δθ
μ(s) · πθ (a|s). As it can be noticed, the probability

distribution over actions and the one over states are not independent. This means that the
Kantorovich distance of the joint distribution cannot be simply upper bounded by the sum
of the Kantorovich distances of the γ -discounted future state distribution δμ and the policy

π . The following Lemma gives an upper bound to K
(

ζ θ
μ, ζ

̂θ
μ

)

.

Lemma 2 Given an Lπθ -LC and Lπ (θ)-PLC stationary policy πθ , the Kantorovich dis-

tance between a pair of joint distributions ζ θ
μ and ζ

̂θ
μ is bounded by:

K
(

ζ θ
μ, ζ

̂θ
μ

)

≤ Lπ (θ) dΘ

(

θ ,̂θ
)+ (

1 + Lπθ

) K
(

δθ
μ, δ

̂θ
μ

)

.

Proof The proof is divided into two parts. The first part is devoted to the analysis of the
Lipschitz continuity of a term involved in the definition of the L1-Wassersteinmetric between
the joint distributions. The second part exploits this result to prove the lemma.

Define bθ
f (s) = Ea∼πθ f (s, a), where the function f is 1-LC w.r.t. the joint state-action

space. Given an Lπθ -LC policy model, b(s) is Lipschitz continuous:

∣

∣

∣bθ
f (s) − bθ

f (̂s)
∣

∣

∣ =
∣

∣

∣

∣

∫

A
πθ (a|s) f (s, a) − πθ (a |̂s) f (̂s, a)da

∣

∣

∣

∣

=
∣

∣

∣

∣

∫

A

(

πθ (a|s) − πθ (a |̂s)
)

f (s, a) + ( f (s, a) − f (̂s, a)) π(a |̂s)da
∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

A

(

πθ (a|s) − πθ (a |̂s)
)

f (s, a)da

∣

∣

∣

∣

+
∣

∣

∣

∣

∫

A

(

1 · dS(s, ŝ)
)

π(a |̂s)da
∣

∣

∣

∣

≤ K
(

πθ (·|s) , πθ (·|̂s)
)

+ dS(s, ŝ)

≤ (

Lπθ + 1
)

dS(s, ŝ). (4)

Recall that the function f in the definition of the L1-Wasserstein metric for the joint
distributions is 1-LC w.r.t. every pair (s, a), but as a consequence it is, at most, 1-LC for
the single variables s and a. The proof follows from the previous result and some algebraic
manipulations:

K
(

ζ θ
μ, ζ

̂θ
μ

)

= sup
f

{∣

∣

∣

∣

∫

S
δθ
μ(s)

∫

A
πθ (a|s) f (s, a)dads

−
∫

S
δ
̂θ
μ(s)

∫

A
π
̂θ (a|s) f (s, a)dads

∣

∣

∣

∣

: ‖ f ‖L ≤ 1

}

(5)

= sup
f

{∣

∣

∣

∣

∫

S

(

δθ
μ(s) − δ

̂θ
μ(s)

)

∫

A
πθ (a|s) f (s, a)dads
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+
∫

S
δ
̂θ
μ(s)

∫

A

(

πθ (a|s) − π
̂θ (a|s)

)

f (s, a)dads

∣

∣

∣

∣

: ‖ f ‖L ≤ 1

}

(6)

≤ sup
f

{∣

∣

∣

∣

∫

S

(

δθ
μ(s) − δ

̂θ
μ(s)

)

bθ
f (s)ds

∣

∣

∣

∣

: ‖ f ‖L ≤ 1

}

+ sup
f

{∣

∣

∣

∣

∫

S
δ
̂θ
μ(s)

∫

A

(

πθ (a|s) − π
̂θ (a|s)

)

f (s, a)dads

∣

∣

∣

∣

: ‖ f ‖L ≤ 1

}

(7)

= (

Lπθ + 1
)

sup
f

{∣

∣

∣

∣

∣

∫

S

(

δθ
μ(s) − δ

̂θ
μ(s)

) bθ
f (s)

(

Lπθ + 1
)ds

∣

∣

∣

∣

∣

: ‖ f ‖L ≤ 1

}

+ sup
f

{∣

∣

∣

∣

∫

S
δ
̂θ
μ(s)

∫

A

(

πθ (a|s) − π
̂θ (a|s)

)

f (s, a)dads

∣

∣

∣

∣

: ‖ f ‖L ≤ 1

}

(8)

≤ (

Lπθ + 1
)

sup
g

{∣

∣

∣

∣

∫

S

(

δθ
μ(s) − δ

̂θ
μ(s)

)

g(s)ds

∣

∣

∣

∣

: ‖g‖L ≤ 1

}

+
∫

S
δ
̂θ
μ(s) sup

f

{∣

∣

∣

∣

∫

A

(

πθ (a|s) − π
̂θ (a|s)

)

f (s, a)da

∣

∣

∣

∣

: ‖ f ‖L ≤ 1

}

ds (9)

≤ (

Lπθ + 1
) K

(

δθ
μ, δ

̂θ
μ

)

+ sup
s

K
(

πθ (·|s), π̂θ (·|s)
)

≤ (

Lπθ + 1
) K

(

δθ
μ, δ

̂θ
μ

)

+ Lπθ (θ) dΘ

(

θ ,̂θ
)

. (10)

Equality (6) is obtained by manipulation of (5) after insertion of the quantity ± ∫S δ
̂θ
μ(s)

∫

A πθ (a|s) f (s, a)dads. Eq. (8) is obtained by exploiting definition of bθ
f (s) and adding

the (identity) factor
L

πθ +1
L

πθ +1 . In (9) we rename
bθ
f (s)

L
πθ +1 to g(s) and we note that, according to

Eq. (4), ‖g(s)‖L =
∥

∥

∥

∥

bθ
f (s)

L
πθ +1

∥

∥

∥

∥

L
≤ 1. By noting that δ̂θμ is always positive, a valid upper bound

to the second term in (8) is obtained by pushing the supreme over function space into the
state integral. Finally, definition of the Kantorovich distance is used to obtain inequality (10)
together with a maximization over the state space. The proof follows from Assumption 2. ��

The first term of the upper bound derives from the bound on the Kantorovich dis-
tance between policies w.r.t. parameters θ . The second term involves the Kantorovich
distance between γ -discounted future state distributions w.r.t. parameters θ and the fac-
tor (1+ Lπθ ) accounts for the dependence between the distribution over the actions and the
one over the states: the larger is the Lπθ constant the stronger is the dependence between πθ

and δθ
μ. As expected, when the policy does not depend on the state ( i.e., Lπθ = 0), the bound

reduces to the sum of the two Kantorovich distances. The following lemma shows that under

Assumptions 1 and 2 also K
(

δθ
μ, δ

̂θ
μ

)

is Lipschitz w.r.t. θ .

Lemma 3 Given an LP -LC MDP and an (Lπθ , Lπ (θ))-LC stationary policy model, if
γ LP

(

1 + Lπθ

)

< 1, then the Kantorovich distance between a pair of γ -discounted future-
state distributions is PLC w.r.t. paramters θ : ∀(θ ,̂θ) ∈ Θ2,

K
(

δθ
μ, δ

̂θ
μ

)

≤ Lδ(θ) dΘ(θ ,̂θ), where Lδ(θ) = γ LP Lπ (θ)

1−γ LP
(

1+L
πθ

) .

Proof We start the proof with some preliminary results that will be used in the rest of the
proof. Let the function g f (s, a) = Es′∼P(·|s,a) f (s′) where ‖ f ‖L ≤ 1. Then, g f (s, a) is LC
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w.r.t. the action variable:
∣

∣g f (s, a) − g f (s, â)
∣

∣ =
∣

∣

∣

∣

∫

S

(P(s′|s, a) − P(s′|s, â)
)

f (s′)ds′
∣

∣

∣

∣

≤ K (P (·|s, a) ,P (·|s, â)) ≤ LP dA (a, â) . (11)

The second result involves the expectation of g f (s, a) w.r.t. policy πθ . Let hθ
f (s) =

Ea∼πθ (·|s) g f (s, a), we can prove that it is Lipschitz continuous:

∣

∣

∣hθ
f (s) − hθ

f (̂s)
∣

∣

∣ =
∣

∣

∣

∣

∫∫

AS
f (s′)

(

πθ (a|s)P (s′|s, a)− πθ (a |̂s)P (s′ |̂s, a)
)

ds′da
∣

∣

∣

∣

=
∣

∣

∣

∣

LP
∫

A

(

πθ (a|s) − πθ (a |̂s)
)

∫

S

P (s′|s, a)
LP

f (s′)ds′da (12)

+
∫

A
πθ (a |̂s)

∫

S
P (s′|s, a) f (s′) − P (s′ |̂s, a) f (s′)ds′da

∣

∣

∣

∣

(13)

≤ LP K(πθ (·|s), πθ (·|̂s)) + sup
a

K(P(·|s, a),P(·|̂s, a)) (14)

≤ LP
(

Lπθ + 1
)

dS (s, ŝ) , (15)

where (13) is obtained by adding and subtracting the term
∫∫

AS πθ (a |̂s)P (s′|s, a) ds′da.
Inequality (14) follows fromKantorovich distance and bound (11), that is

∥

∥

∥

Es′∈P f (s′)
LP

∥

∥

∥

L
≤ 1,

given that f is 1-LC. Then

K
(

δθ
μ, δ

̂θ
μ

)

= sup
f

{∣

∣

∣

∣

∫

S

(

δθ
μ(s) − δ

̂θ
μ(s)

)

f (s)ds

∣

∣

∣

∣

: ‖ f ‖L ≤ 1

}

= sup
f

{∣

∣

∣

∣

∫

S

(

μ(s) + γ

∫

S

∫

A
πθ (a|s′)P(s|s′, a)δθ

μ(s′)dads′)
)

f (s)

−
(

μ(s) + γ

∫

S

∫

A
π
̂θ (a|s′)P(s|s′, a)δ

̂θ
μ(s′)dads′)

)

f (s)ds

∣

∣

∣

∣

: ‖ f ‖L ≤ 1

}

(16)

= γ sup
f

{∣

∣

∣

∣

∫

S
f (s)

∫

S

∫

A
P(s|s′, a)

(

πθ (a|s′)δθ
μ(s′) − π

̂θ (a|s′)δ̂θμ(s′)
)

×dads′ds
∣

∣

∣

∣

: ‖ f ‖L ≤ 1

}

= γ sup
f

{∣

∣

∣

∣

∫

S
f (s)

∫

S

∫

A
P(s|s′, a)

(

(

πθ (a|s′) − π
̂θ (a|s′)

)

δ
̂θ
μ(s′)

+
(

δθ
μ(s′) − δ

̂θ
μ(s′)

)

πθ (a|s′)
)

dads′ds
∣

∣

∣

∣

: ‖ f ‖L ≤ 1

}

≤ γ sup
f

{∣

∣

∣

∣

∫

S
δ
̂θ
μ(s′)

∫

A

(

πθ (a|s′) − π
̂θ (a|s′)

)

×
∫

S
P(s|s′, a) f (s)dsdads′

∣

∣

∣

∣

: ‖ f ‖L ≤ 1

}

(17)

+γ sup
f

{∣

∣

∣

∣

∫

S

(

δθ
μ(s′) − δ

̂θ
μ(s′)

)

∫

A
πθ (a|s′)

×
∫

S
P(s|s′, a) f (s)dsdads′

∣

∣

∣

∣

: ‖ f ‖L ≤ 1

}

(18)
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= γ LP sup
f

{∣

∣

∣

∣

∫

S
δ
̂θ
μ(s′)

∫

A

(

πθ (a|s′) − π
̂θ (a|s′)

) g f (s′, a)

LP
dads′

∣

∣

∣

∣

: ‖ f ‖L ≤ 1

}

+γ LP
(

Lπθ + 1
)

sup
f

{∣

∣

∣

∣

∣

∫

S

(

δθ
μ(s′) − δ

̂θ
μ(s′)

) hθ
f (s

′)
LP

(

Lπθ + 1
)ds′

∣

∣

∣

∣

∣

: ‖ f ‖L ≤ 1

}

≤ γ LP
∫

S
δ
̂θ
μ(s′) sup

f

{∣

∣

∣

∣

∫

A

(

πθ (a|s′) − π
̂θ (a|s′)

)

f (s′, a)da

∣

∣

∣

∣

: ∥∥ f ∥∥L ,a ≤ 1

}

+γ LP
(

Lπθ + 1
)

sup
˜f

{∣

∣

∣

∣

∫

S

(

δθ
μ(s′) − δ

̂θ
μ(s′)

)

˜f (s′)ds′
∣

∣

∣

∣

: ∥∥˜f ∥∥L ≤ 1

}

(19)

≤ γ LP sup
s′

K
(

πθ (·|s′), π̂θ (·|s′)
)

+ γ LP
(

Lπθ + 1
)K

(

δθ
μ, δ

̂θ
μ

)

(20)

≤ γ LP
(

Lπ (θ) + (1 + Lπθ )Lδ(θ)
)

d(θ,̂θ). (21)

By replacing δθ
μ with its definition we get equality (16). By adding and subtracting the

term
∫∫∫

SSA f (s)P(s|s′, a)πθ (a|s′)δ̂θμ(s′)dads′ds and resorting to the triangle inequality,
we derive lines (17) and (18). Such terms can be simplified by noting that they contain
definition of g f (s, a) and hθ

f (s), respectively. After insertion of invariant scaling factors we

rename f (s′, a) = g f (s′,a)

LP and ˜f (s′) = hθ
f (s

′)
LP (L

πθ +1) in (19). Let ‖z(x, y)‖L ,y be the Lipschitz

semi–norm of function z w.r.t. only variable y (taking the supremum over x). Then, from
inequality (11), it is easy to see that

∥

∥ f
∥

∥

L ,a ≤ 1. Similarly, from inequality (15), we derive

that
∥

∥˜f
∥

∥

L ≤ 1. As done in the proof of Lemma 2, we push the supremum into the state
integral and we maximize the Kantorovich distance [inequality (20)].

Note that inequality (21) leads to the following fixed point equation:

Lδ(θ) = γ LP
[

Lπ (θ) + (1 + Lπθ )Lδ(θ)
]

that admits a unique feasible solution only if γ LP
(

1 + Lπθ

)

< 1. ��
As expected, the smoothness of the γ -discounted future state distribution w.r.t. to θ

strongly depends on the smoothness of the state transition model and the policy model.
In particular, a relevant role is played by LP that influences both the numerator and the
denominator of Lδ (decreasing LP decreases the value of the numerator and increases the
value of the denominator). As in the case of the Lipschitz continuity of the Q- and V -functions
(see Lemma 1), the Lipschitz continuity of the γ -discounted future state distribution can be
guarantee only when the condition γ LP

(

1 + Lπθ

)

< 1 holds. This condition emerges from
the recursive nature of the considered functions and enforces the discounted Markov kernel
underlying policy π to be a contraction w.r.t. the Kantorovich distance.

Finally, combining Proposition 1 with Lemmas 2 and 3, we can derive the Lipschitz
continuity of the joint distribution ζμ.

Lemma 4 Under Assumption 1 and 2, if γ LP
(

1 + Lπθ

)

< 1, then the joint distribution ζ θ
μ

is Lζ (θ)-PLC w.r.t. the policy parameters θ , with:

Lζ (θ) = Lπ (θ)

1 − γ LP
(

1 + Lπθ

) .

The lemma comes directly from the application of Lemma 3 to Lemma 2. Now we have
all the technicalities required to derive the main theorem.
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Theorem 1 Given an (LP , LR)-LCMDPand an (Lπθ , Lπ (θ))-LC stationary policymodel,
if γ LP

(

1 + Lπθ

)

< 1, then the performance measure J θ
μ is L J (θ)-PLC w.r.t. the policies

parameters:
∣

∣

∣J θ
μ − J

̂θ
μ

∣

∣

∣ ≤ L J (θ) dΘ

(

θ ,̂θ
)

,

with:

L J (θ) = LR Lπ (θ)

(1 − γ )
(

1 − γ LP
(

1 + Lπθ

)) .

The proof follows from the application of Lemma 4 to Proposition 1. Although L J resem-
bles the Lipschitz constant of the Q-function (actually L J = LR

1−γ
LQπ ), it is worth underline

that they define Lipschitz conditions over different spaces: the expected return is L J -PLC
w.r.t. policy parameters θ , while LQπ is a Lipschitz constant w.r.t. the state-action space.

4 Lipschitz continuity of the policy gradient

Leveraging on the results presented in the previous section, here we investigate the Lipschitz
continuity of the gradient of the expected discounted reward w.r.t. the policy parameters.
Both the expected return of a policy πθ and its gradient can be defined as expected values
w.r.t. distribution ζ θ

μ: in the former case the function to be averaged is the reward function

R(s, a), while in the latter case is ∇θ logπθ (s, a)Qθ (s, a) (see Eq. 3). For ease of notation,
we define the function η : S × A × Θ → R

d as

ηθ (s, a) = ∇θ logπθ (s, a)Qθ (s, a).

In particular, we consider the component-wise absolute difference between gradients corre-
sponding to different parameterizations:

∣

∣

∣∇θ i J
θ
μ − ∇θ i J

̂θ
μ

∣

∣

∣ = 1

1 − γ

∣

∣

∣

∣

∣

E

(s,a)∼ζ θ
μ

[

ηθ
i (s, a)

]

− E

(s,a)∼ζ
̂θ
μ

[

η
̂θ
i (s, a)

]

∣

∣

∣

∣

∣

.

It is worth nothing that, differently from the reward function in the expected-return case,
functions ηθ do depend on the policy parameters θ . This prevents to follow immediately
the same steps as done in the previous section and requires to decompose the problem by
introducing the following upper bound.

Proposition 2 For any pair of stationary policies corresponding to parameters θ and ̂θ ,
the component-wise absolute difference between the gradients of the expected return can be
upper bounded as follows:

∣

∣

∣∇θ i J
θ
μ − ∇θ i J

̂θ
μ

∣

∣

∣ ≤ 1

1 − γ

∣

∣

∣

∣

∣

E

(s,a)∼ζ θ
μ

[

ηθ
i (s, a)

]

− E

(s,a)∼ζ
̂θ
μ

[

ηθ
i (s, a)

]

∣

∣

∣

∣

∣

+ 1

1 − γ

∣

∣

∣

∣

∣

E

(s,a)∼ζ
̂θ
μ

[

ηθ
i (s, a) − η

̂θ
i (s, a)

]

∣

∣

∣

∣

∣

.

While the second term requires a further expansion (that will be presented later in the
section), the first one can be bounded following a similar argument as the one used for the
expected return.
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Upper bound to the first term. While the bound of the expected reward (Lemma 1)
follows directly from the definition of Lipschitz MDP (Assumption 1), here, we need to
prove that the function ηθ

i is Lipschitz w.r.t. the joint state-action space. Since the product of
two Lipschitz functions is Lipschitz, given Assumption 2 and Lemma 1, we can show that
ηθ is LC w.r.t. the state-action space (see “Proof of Lemma 5” section of Appendix for the
proof).

Lemma 5 Under Assumptions 1, 2 and 3, the i-th component of ηθ is Li
ηθ -LC w.r.t. the

state-action space, that is: ∀(s, ŝ, a, â) ∈ S2 × A2,
∣

∣

∣η
θ
i (s, a) − ηθ

i (̂s, â)

∣

∣

∣ ≤ Li
ηθ dSA ((s, a), (̂s, â)) ,

where Li
ηθ = R

1−γ
Li

∇ logπθ + Mi
θ LQθ .

Since ηθ
i is LC, it follows that

∣

∣

∣

∣

∣

E

(s,a)∼ζ θ
μ

[

ηθ
i (s, a)

]

− E

(s,a)∼ζ
̂θ
μ

[

ηθ
i (s, a)

]

∣

∣

∣

∣

∣

≤ Li
ηθK

(

ζ θ
μ, ζ

̂θ
μ

)

≤ Li
ηθ Lζ (θ)dΘ

(

θ ,̂θ
)

.

Upper bound to the second term. To prove its Lipschitz continuity w.r.t. policy parame-

ters, we need to introduce an upper bound to
∣

∣

∣ηθ
i − η

̂θ
i

∣

∣

∣. Refer to “Proof of Lemma 6” section

of Appendix for the proof.

Lemma 6 For any pair of stationary policies corresponding to θ and̂θ , the absolute dif-
ference of the i-th component of functions ηθ and η

̂θ is upper bounded by: ∀(s, a) ∈
S × A,∀(θ ,̂θ) ∈ Θ2,

∣

∣

∣η
θ
i (s, a) − η

̂θ
i (s, a)

∣

∣

∣ ≤ R

1 − γ

∣

∣

∣∇θ i logπθ (a|s) − ∇θ i logπ
̂θ (a|s)

∣

∣

∣

+Mi
θ

∣

∣

∣Qθ (s, a) − Q
̂θ (s, a)

∣

∣

∣ .

The first term of the bound can be upper bounded in turn by exploiting the LC assumption
on ∇ logπ w.r.t. policy parameters (see Assumption 3). For what concerns the second term,
we need to show further results about the Lipschitz continuity of the Q- and V -functions
w.r.t. the policy parameters. Here we extend the standard Lipschitz framework for MDPs to
the case in which a parametric policy model is available.

Theorem 2 Under Assumptions 1 and 2, the V -function and the Q-function are respectively
LV (θ)- and LQ(θ)-PLC w.r.t. to the policy parameters, with:

LV (θ) = Lπ (θ)LR
(1 − γ )

(

1 − γ LP
(

1 + Lπθ

)) ; LQ(θ) = γ LV (θ).

Proof We need to introduce some preliminary results that will be used to prove the main
theorem. First of all, we want to prove that the expected reward under two stationary policies
πθ and π

̂θ corresponding to different policy parameterizations is Lipschitz continuous for
any state s:

∣

∣

∣Rθ (s) − R̂θ (s)
∣

∣

∣ =
∫

a∈A

(

πθ (a|s) − π
̂θ (a|s)

)

R(s, a)da

≤ LR K
(

πθ (·|s), π̂θ (·|s)
)

≤ LR Lπ (θ) dΘ

(

θ ,̂θ
)

.

123



Mach Learn (2015) 100:255–283 267

The following equation gives an upper bound to the maximum absolute difference of the
V -functions associated to two policy parameterizations: ∀s ∈ S
∣

∣

∣V θ (s) − V
̂θ (s)

∣

∣

∣ =
∣

∣

∣

∣

∫

A

(

R(s, a) + γ

∫

S
V θ (s′)P(ds′|s, a)

)

πθ (da|s)

−
∫

A

(

R(s, a) + γ

∫

S
V
̂θ (s′)P(ds′|s, a)

)

π
̂θ (da|s)

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

A
R(s, a)

(

πθ (a|s) − π
̂θ (a|s)

)

da

∣

∣

∣

∣

+γ

∣

∣

∣

∣

∫∫

SA
P(s′|s, a)

(

πθ (a|s)V θ (s′) − π
̂θ (a|s)V̂θ (s′)

)

dads′
∣

∣

∣

∣

≤
∣

∣

∣Rθ (s) − R̂θ (s)
∣

∣

∣+ γ

∣

∣

∣

∣

∫

A

(

πθ (a|s) − π
̂θ (a|s)

)

×
∫

S
P(s′|s, a)V θ (s′)ds′da

∣

∣

∣

∣

+γ

∣

∣

∣

∣

∫

A
π
̂θ (a|s)

∫

S
P(s′|s, a)

(

V θ (s′) − V
̂θ (s′)

)

ds′da
∣

∣

∣

∣

=
∣

∣

∣Rθ (s) − R̂θ (s)
∣

∣

∣+ γ LV LP

∣

∣

∣

∣

∫

A

(

πθ (a|s) − π
̂θ (a|s)

)

×
∫

S

P(s′|s, a)V θ (s′)
LV LP

ds′da
∣

∣

∣

∣

∣

+γ

∣

∣

∣

∣

∫

A
π
̂θ (a|s)

∫

S
P(s′|s, a)

(

V θ (s′) − V
̂θ (s′)

)

ds′da
∣

∣

∣

∣

≤
∣

∣

∣Rθ (s) − R̂θ (s)
∣

∣

∣+ γ LV LPK
(

πθ (·|s), π̂θ (·|s)
)

+ γ LV (θ) dΘ(θ ,̂θ)

≤ (LR + γ LV LP ) Lπ (θ) dΘ

(

θ ,̂θ
)+ γ LV (θ) dΘ

(

θ ,̂θ
)

≤ Lπ (θ)

1 − γ
(LR + γ LV LP ) dΘ

(

θ ,̂θ
)

.

The proof follows from the substitution of the value LV with its definition (Rachelson
and Lagoudakis 2010). The following equations provides the Lipschitz continuity of the
Q-function: ∀(s, a) ∈ S × A,

∣

∣

∣Qθ (s, a) − Q
̂θ (s, a)

∣

∣

∣ = γ

∣

∣

∣

∣

∫

S
P(s′|s, a)

(

V θ (s′) − V
̂θ (s′)

)

ds′
∣

∣

∣

∣

≤ γ

∫

S
P(s′|s, a)

∣

∣

∣V θ (s′) − V
̂θ (s′)

∣

∣

∣ ds′

≤ γ sup
s′

∣

∣

∣V θ (s′) − V
̂θ (s′)

∣

∣

∣ ≤ γ LV (θ) dΘ

(

θ,̂θ
)

.

��

Similarly as done for Lemma 5, we can observe that ηθ is the product of two functions
that are Lipschitz continuous w.r.t. parameters θ . Proof can be founded in “Proof of Lemma
7” section of Appendix.

123



268 Mach Learn (2015) 100:255–283

Lemma 7 Under Assumptions 1, 2 and 3, the i-th component of η is Li
η (θ)-PLC w.r.t. the

policy parameters, that is: ∀(s, a) ∈ S × A, ∀(θ ,̂θ) ∈ Θ2,

∣

∣

∣η
θ
i (s, a) − η

̂θ
i (s, a)

∣

∣

∣ ≤ Li
η (θ) dΘ

(

θ,̂θ
)

,

where Li
η (θ) = R

1−γ
Li∇ logπ (θ) + Mi

θ LQ(θ).

Finally, combining Lemmas 5 and 7 (see “Proof of Theorem 3” section of Appendix for
the proof), we are ready to state our main result about the Lipschitz continuity of the policy
gradient w.r.t. policy parameters θ .

Theorem 3 Under Assumptions 1, 2, and 3, the i-th component of the gradient ∇θ J of the
expected return is Li

∇ J (θ)-PLC, that is: ∀(θ,̂θ) ∈ Θ2,

∣

∣

∣∇θ i J
θ
μ − ∇θ i J

̂θ
μ

∣

∣

∣ ≤ Li
∇ J (θ) dΘ

(

θ ,̂θ
)

,

where Li
∇ J (θ) = 1

1−γ

(

Li
ηθ Lζ (θ) + Li

η (θ)
)

.

Given the vector L∇J (θ) = [L1∇ J (θ), . . . , Ld∇ J (θ)], the policy gradient ∇θ J θ
μ is L∇ J (θ)-

LC in Θ , where L∇ J (θ) = ∥

∥L∇J (θ)
∥

∥

2 when dΘ(θ ,̂θ) = ∥

∥θ −̂θ∥∥2.

5 Updating policy parameters

In this section, we will show how the Lipschitz continuity of the policy gradient discussed
in the previous section can be exploited to update the policy parameters and to guarantee
performance improvement. The following lemma exploits the Taylor expansion and the Lip-
schitz continuity of the policy gradient to derive a lower bound to the policy performance
improvement.

Lemma 8 If the policy gradient is Lipschitz continuous, the policy performance improvement
between policŷθ and policy θ can be lower bounded as follows:

J
̂θ
μ − J θ

μ ≥ ∇θ J
θ
μ

T · (̂θ − θ
)− 1

2

∥

∥̂θ − θ
∥

∥

p L∇ J (θ)T · ∣∣̂θ − θ
∣

∣ ,

where |v| denotes the component-wise absolute value when v is a vector.

Proof According to the definition of Lipschitz gradient given in Theorem 3, we have that,
for some t ∈ [0, 1]:

∣

∣

∣∇θ i J
̂θ
μ − ∇θ i J

θ
μ

∣

∣

∣ =
∥

∥

∥

∥

∫ 1

0
∇ (∇θ i Jμ

) (

t ̂θ + (1 − t)θ
)T · (̂θ − θ

)

dt

∥

∥

∥

∥

p

≤ ∥

∥̂θ − θ
∥

∥

p

∫ 1

0

∥

∥∇ (∇θ i Jμ
) (

t ̂θ + (1 − t)θ
)∥

∥

p
dt

≤ Li
∇ J (θ)

∥

∥̂θ − θ
∥

∥

p .
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If we only consider the first term of the Taylor’s expansion, we can write the following upper
bound:

J
̂θ
μ = J θ

μ +
∫ 1

0
∇θ J

t ̂θ+(1−t)θ
μ

T · (̂θ − θ
)

dt ± ∇θ J
θ
μ

T · (̂θ − θ
)

= J θ
μ + ∇θ J

θ
μ

T · (̂θ − θ
)+

∫ 1

0

(

∇θ J
t ̂θ+(1−t)θ

μ − ∇θ J
θ
μ

)T · (̂θ − θ
)

dt

= J θ
μ + ∇θ J

θ
μ

T · (̂θ − θ
)+

∑

i

∫ 1

0

(

∇θ i J
t ̂θ+(1−t)θ

μ − ∇θ i J
θ
μ

)

(

̂θ i − θ i
)

dt

≥ J θ
μ + ∇θ J

θ
μ

T · (̂θ − θ
)−

∑

i

∫ 1

0

∣

∣

∣

(

∇θ i J
t ̂θ+(1−t)θ

μ − ∇θ i J
θ
μ

)∣

∣

∣

∣

∣̂θ i − θ i
∣

∣ dt

≥ J θ
μ + ∇θ J

θ
μ

T · (̂θ − θ
)−

∫ 1

0

∥

∥t ̂θ + (1 − t)θ − θ
∥

∥

p dt
∑

i

Li
∇ J

∣

∣̂θ i − θ i
∣

∣

≥ J θ
μ + ∇θ J

θ
μ

T · (̂θ − θ
)− 1

2

∥

∥̂θ − θ
∥

∥

p

∑

i

Li∇ J

∣

∣̂θ i − θ i
∣

∣ .

��

In Sect. 2.3, we have seen that the policy parameters are updated as follows

θ t+1 = θ t + Δθ t ,

where, in the steepest ascent approaches, Δθ t = αt∇θ J
θ t
μ and αt is a parameter that deter-

mines the step-size length. Recall that the steepest ascent direction of J θ t
μ is defined as the

vector Δθ t that maximizes J θ t+Δθ t
μ under the constraint that the change in the parameters

(‖Δθ t‖p) is sufficiently small.
In the following we describe three approaches to determine the step size exploiting the

Lipschitz continuity of the policy gradient.

5.1 Single step size from single Lipschitz constant (SSS–SLC)

The scenario where a single Lipschitz constant is available for the gradient has been widely
studied in the optimization literature. As suggested by Armijo (1966), if policy gradient is
L∇ J -LC and the L2-norm is used as metric, fixing the step size to the reciprocal value of the
Lipschitz constant3:

α = 1

L∇ J
,

guarantees to improve at each iteration. Furthermore, when the function is convex, it allows to
converge to an ε-optimal solution in O( 1

ε
) iterations. It can be easily shown that similar results

hold when the Lipschitz constant is replaced with its pointwise version (αt = L∇ J (θ t )
−1),

with the advantage of inducing larger step sizes—being L∇ J = supθ L∇ J (θ)—with better
performance improvements. Such result is simply obtained by the maximization w.r.t. the
step size of the following quadratic lower bound to the performance improvement derived

3 See (Armijo 1966) for conditions under which convergence occurs and a proof of convergence.
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from Lemma 8 using the L2-norm as metric:

J θ t+1
μ − J θ t

μ ≥ ∇θ J
θ t
μ

T · Δθ t − L∇ J (θ t )

2
‖Δθ t‖22

= αt

∥

∥

∥∇θ J
θ t
μ

∥

∥

∥

2

2
− α2

t
L∇ J (θ t )

2

∥

∥

∥∇θ J
θ t
μ

∥

∥

∥

2

2
.

Using the step size αt that maximizes the above lower bound, we are guaranteed that, at each

iteration, the policy improvement is larger than

∥

∥

∥∇θ i J
θ t
μ

∥

∥

∥

2

2
2L∇ J (θ t )

. As expected, the smaller are the
Lipschitz constants of the MDP and the policy model, the smaller is the Lipschitz constant of
the policy gradient, and the larger are the step size and the guaranteed improvement at each
iteration.

5.2 Single step size from multiple Lipschitz constants (SSS–MLC)

When a Lipschitz constant for each gradient component is available, it is convenient to exploit
such information. By maximizing the bound in Lemma 8:

J θ t+1
μ − J θ t

μ ≥ ∇θ J
θ t
μ

T · Δθ t − 1

2
‖Δθ t‖2 L∇ J (θ t )

T · |Δθ t |

= αt

∥

∥

∥∇θ J
θ t
μ

∥

∥

∥

2

2
− 1

2
α2
t

∥

∥

∥∇θ J
θ t
μ

∥

∥

∥

2
L∇ J (θ t )

T ·
∣

∣

∣∇θ J
θ t
μ

∣

∣

∣ ,

the following step size is obtained:

αt =
∥

∥

∥∇θ J
θ t
μ

∥

∥

∥

2

L∇ J (θ t )
T ·
∣

∣

∣∇θ J
θ t
μ

∣

∣

∣

.

Notice that, differently from the single Lipschitz constant case, the step size directly exploits
the information of the gradient at time t . In this case, the policy performance improves at

least by

∥

∥

∥∇θ J
θ t
μ

∥

∥

∥

3

2

2L∇ J (θ t )
T·
∣

∣

∣∇θ J
θ t
μ

∣

∣

∣

, that is never worse than the improvement that is guaranteed with

the SSS–SLC approach.

5.3 Multiple step sizes from multiple Lipschitz constants (MSS–MLC)

The two previous approaches update the parameters along the steepest ascent direction.
However, to mitigate the main drawbacks of the steepest ascent method, many gradient
approaches follow different directions (e.g. Amari and Douglas 1998). In particular, when
a Lipschitz constant for each gradient component is available, it is interesting to consider
a different step size for each parameter: Δθ it = αi

t∇θ i J
θ t
μ . As a result, the new candidate

solution θ t+1 may lie outside the policy gradient direction ∇θ J
θ t
μ . All the step sizes can be

obtained by maximizing the following concave4 function w.r.t. the step sizes [α1
t , . . . , α

d
t ]:

J θ t+1
μ − J θ t

μ ≥ ∇θ J
θ t
μ

T · At · ∇θ J
θ t
μ − 1

2

∥

∥

∥At∇θ J
θ t
μ

∥

∥

∥

p
L∇ J (θ t )

T · At ·
∣

∣

∣∇θ J
θ t
μ

∣

∣

∣ , (22)

where At = diag(α1
t , . . . , α

d
t ) and αi

t ≥ 0,∀i ∈ {1, . . . , d}.

4 The reader may refer to “Proof of Concavity of Function” section of Appendix for the proof.
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Algorithm 1MSS-MLC Algorithm
function MSS- MLC(∇θ Jμ, L∇ J )

initialize: V = 0

φ = arccos

(

L∇ J
T
∣

∣

∣∇θ Jμ

∣

∣

∣

‖L∇ J ‖2
∥

∥∇θ Jμ
∥

∥

2

)

if φ ≤ arctan(
√
1/8) then

ψ = arctan

(

1−
√
1−8 tan(φ)2

4 tan(φ)

)

V =
∥

∥

∥∇θ Jμ

∥

∥

∥

2

2
cos(ψ)2

2‖L∇ J ‖2cos(ψ+φ)

Create vector Δθ =
∣

∣

∣∇θ Jμ

∣

∣

∣ cos(ψ)

‖L∇ J ‖2cos(ψ+φ)

Rotate Δθ of angle φ around bivector L∇ J ∧
∣

∣

∣∇θ Jμ

∣

∣

∣

end if

i∗ = argmini

∣

∣

∣∇θ J
i
μ

∣

∣

∣

Li∇ J

Build ∇̃θ Jμ and L̃∇ J by removing component i∗
[Ṽ , α̃]=MSS- MLC(∇̃θ Jμ, L̃∇ J )

if Ṽ > V then
return Ṽ and [α̃1, . . . , α̃i∗−1, 0, α̃i

∗
, . . . , α̃d ]

else

return V and

⎡

⎣
Δθ1

∣

∣

∣∇θ J
i
μ

∣

∣

∣

1 , Δθ2
∣

∣

∣∇θ J
i
μ

∣

∣

∣

2 , . . . , Δθd
∣

∣

∣∇θ J
i
μ

∣

∣

∣

d

⎤

⎦

end if
end function

Being the performance-improvement bound a concave function in the step size, we could
resort to one of the standard tools in convex optimization to find the optimal learning rates.
Nonetheless, we propose a more efficient algorithm (reported in Algorithm 1) that optimizes
the performance improvement bound by taking the best among a set of d closed-form can-
didate solutions (the algorithm is presented as a recursive function for conciseness, but an
iterative implementation is straightforward). The computational complexity of MSS-MLC is
O(d3).

To explain how the algorithm works we need to rewrite the performance improvement
bound as follows:

J θ t+1
μ − J θ t

μ ≥ ∇θ J
θ t
μ

T
Δθ t − 1

2
‖Δθ t‖2 L∇ J (θ t )

T |Δθ t |

=
∥

∥

∥∇θ J
θ t
μ

∥

∥

∥

2
‖Δθ t‖2 cos(β∇ Jμ) − 1

2
‖L∇ J (θ t )‖2 ‖Δθ t‖22 cos(βL).

To compute the length of the optimal step size ‖Δθ t‖2 w.r.t. to the above bound, we can
compute the derivative and put it equal to zero:

‖Δθ t‖2 =
∥

∥

∥∇θ J
θ t
μ

∥

∥

∥

2
cos(β∇ Jμ)

‖L∇ J (θ t )‖2 cos(βL)
,
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Fig. 1 Geometrical interpretation of the MSS–MLC algorithm

that leads to the following bound:

J θ t+1
μ − J θ t

μ ≥
∥

∥

∥∇θ J
θ t
μ

∥

∥

∥

2

2
cos(β∇ Jμ)2

2 ‖L∇ J (θ t )‖2 cos(βL)
.

To maximize the performance improvement we need to choose the direction of Δθ t so that it
is as close as possible to∇θ J

θ t
μ (to maximize the value of cos(β∇ Jμ)) and as far as possible to

the vector L∇ J (θ t ) (so as to minimize cos(βL)). It can be easily shown that the combination
of these two desiderata puts Δθ t on the plane identified by the vectors ∇θ J

θ t
μ and L∇ J (θ t )

closer to vector ∇θ J
θ t
μ (refer to Fig. 1 for a geometrical interpretation of the algorithm in a

three-dimensional problem). It follows that, calling φ the angle between vector ∇θ J
θ t
μ and

L∇ J (θ t ), and renamingβ∇ Jμ asψ , we can rewrite the boundon the performance improvement
as:

J θ t+1
μ − J θ t

μ ≥
∥

∥

∥∇θ J
θ t
μ

∥

∥

∥

2

2
cos(ψ)2

2 ‖L∇ J (θ t )‖2 cos(ψ + φ)
,

fromwhichwe can compute the optimal value forψ : if φ ≤ arctan(1/8) the function presents

a local maximum at ψ = arctan

(

1−
√

1−8 tan(φ)2

4 tan(φ)

)

associated to a guaranteed performance

improvement equal to

∥

∥

∥∇θ J
θ t
μ

∥

∥

∥

2

2
cos(ψ)2

2‖L∇ J (θ t )‖2cos(ψ+φ)
, followed by a local minimum and then increasing

with ψ . Otherwise, if φ > arctan(1/8), the bound is monotonically increasing with ψ .
However, since we have the constraint that the step sizes must be positive, the angle ψ

cannot increase arbitrarily, and must stop at the intersection with the planes identified by the
Cartesian axes. So we need to explore what happens on the boundaries of the optimization
problem (i.e., when one of the step sizes is put to zero). To do this we have to identify which
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step size is the first to reach zero asψ increases, that is the parameter with the smallest

∣

∣

∣∇θ J iμ

∣

∣

∣

Li∇ J
ratio. Once identified such parameter, the guaranteed performance improvement is saved,
the parameter is removed from the vectors ∇θ J

θ t
μ and L∇ J (θ t ), and the same procedure

is repeated until the vector size is reduced to one. Finally, the optimal solution is the one
associated to the largest guaranteed performance improvement among the local maxima
found during the execution of the algorithm. Once the optimal Δθ has been identified, the

i-th step-size parameter is easily computed through the following ratio: Δθ i
∣

∣

∣∇θ J iμ

∣

∣

∣

i . Notice that,

although the resulting update may not follow the steepest ascent direction, since αi
t ≥ 0, the

algorithm has the same convergence guarantees as the standard policy gradient algorithm.

6 Numerical results

In this section, we empirically evaluate the performance of the three different strategies for
choosing the step size introduced in the previous section. The performance is compared
against a recently proposed algorithm (Pirotta et al. 2013), that we name Adaptive Gradient
Step-Size and will be denoted by AGSS. As far as we know, it is the most related algorithm
available in RL literature that investigates the choice of the step size. Pirotta et al. (2013)
determine the step size by maximizing a lower bound to the expected performance gain. In
the case of Gaussian policy model, the bound is a second-order polynomial of the step-size
parameter that can be easily maximized in both exact and approximate scenarios. In the exact
case, the optimal step size, that is, the value that maximizes a simplified version of the lower
bound, is given by:

α∗
AGSS = (1 − γ )3

√
2πσ 3

∥

∥∇θ J θ
μ

∥

∥

2
2

(

γ
√
2πσ + 2(1 − γ )|A|

)

RM2
φ

∥

∥∇θ J θ
μ

∥

∥

2
1

, (23)

whereMφ is themaximumabsolute value of the basis functions, i.e.,∀s ∈ S,∀i |φi (s)| ≤ Mφ .
This step size method ensures a monotonic policy performance improvement. Moreover,
Pirotta et al. (2013) have empirically shown that AGSS is more robust than standard step-
size selectionmechanisms (e.g., constant or time varying) to changes of theMDP parameters.
To make the comparison fair, in the following experiments we use a Gaussian policy model
as in (Pirotta et al. 2013). This choice is compatible with the Assumptions 2 and 3.

Before showing numerical results about the learning performance of the proposed algo-
rithms, we can state some considerations about computational times. While single step–size
algorithms have a very low computational complexity, MSS–MLC has a complexity that
is cubic in the number of policy parameters d . The computational gap between single and
multi–step algorithms increases as the size of the problem increases. Nonetheless the com-
plexity is dominated by the sampling procedure. In Table 1, we compare the per–iteration
times needed to compute the step size using SSS–SLC and MSS–MLC in the Mass–Spring–
Damper domain using different parameterizations. Tests are performed on a standard laptop
using a C++ implementation. We employed a state–dependent linear policy parametrization
in which we have changed the degree of the polynomial. As shown by the experiments the
complexity of MSS–MLC is higher than the one of SSS–SLC but it is dominated by the data
collection phase, which, in turn, is 4 order of magnitude less than the time that would be
required in the real-world scenario. In summary, the time spent for the computation of the
step size is negligible w.r.t. the time needed for data collection.
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Table 1 Time Complexity. Given the gradient and the Lipschitz constants, the time required by SSS–SLC
and MSS–MLC to compute the step size are reported in table. The number of policy parameters have been
changed by considering different degrees of the polynomial: 1, 5 and 10, respectively. In addition, the time
required to collect the samples is reported both in simulated and real-world scenario

Parameters SSS–SLC MSS–MLC Data collection time

Simulated Real

3 1.2 · 10−6s 9.4 · 10−5s 4.4 · 10−1s 2.5 · 103s
21 1.6 · 10−6s 2.2 · 10−3s

66 1.9 · 10−6s 2.0 · 10−2s

6.1 Linear-quadratic gaussian regulator

The first scenario is a discrete-time linear-quadratic Gaussian (LQG) regulator as described
by Peters and Schaal (2008b). The LQG problem is defined by the following dynamics:

st+1 = A(st + at ); at ∼ N (θ · st , σ 2); rt = −B(s2t + a2t ),

where st and at are scalars, and B is 0.5. The range of the state space is bounded to the interval
[−2, 2] and the initial state is drawn uniformly at random in the same interval. The scenario
is particularly instructive since it allows to easily compute all the Lipschitz constants.

The objective of this test is to show how changes in the model parameters affect the
algorithm performance. In particular, we analyze the impact of changes in the transition
model (i.e., A), discount factor, and standard deviation of the Gaussian policy. While the
values of the discount factor and of the standard deviation of the policy are exploited by all
the algorithms, the change in the transition model (that influences the Lipschitz constant LP )
is exploited only by Lipschitz approaches. Notice that, since there is a single policy parameter
(d = 1), the proposed algorithms lead to the same result. For what concerns AGSS, in this
case its step size is constant over iterations since the L2-norm equals the L1-norm for scalar
values. It is also easy to modify the Lipschitz constant LR associated to the reward model
by changing the value of B. However, any change of such value does not alter the algorithm
performance since it is associated to an equal change in the gradient magnitude.

Table 2 shows how the changes in the parameters influence the number of iterations
required to learn a near-optimal value of the policy parameter. The variability of the results
comes from the estimation of the gradient through GPOMDP algorithm. As LP decreases
the model becomes more and more smooth, so that the proposed approach has a significant
advantage w.r.t. AGSS. For what concerns the standard deviation of the policy, algorithm
performances degrade as the policy gets more deterministic. Note that the step length are
inversely related to Mi

φ that grows as the policy becomes more deterministic (see Assump-
tion 3). Lipschitz approach is less influenced by changes in the policy than AGSS (it depends
quadratically on Mφ) as shown by the increased performance gap. This is a positive effect
due to the choice of considering the Kantorovich distance instead of simpler metrics between
distributions, like the total variation one.

Although the Lipschitz approach outperforms the AGSS algorithm inmost of the settings,
it cannot be applied to domains with large values of γ and LP since the MDP needs to be a
contraction w.r.t. the Kantorovich distance (i.e., γ LP (1 + Lπθ ) < 1).
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Table 2 LQR domain. Table reports the number of iterations occurred before reaching a 0.01 approximation
of the optimal policy parameter. Results are averaged over 10 runs

σ γ LP = 0.3 LP = 0.5 LP = 0.7

L I P AGSS L I P AGSS L I P AGSS

0.50 0.5 896 ± 18 1932 ± 25 1430 ± 15 2637 ± 12 1724 ± 12 2565 ± 16

0.50 0.7 3098 ± 36 7204 ± 52 4442 ± 18 8367 ± 27 5809 ± 19 6988 ± 22

0.50 0.9 25676 ± 2853 114164 ± 207 36294 ± 68 103176 ± 119 65605 ± 86 66381 ± 50

0.75 0.5 368 ± 7 500 ± 56 515 ± 4 686 ± 7 636 ± 5 677 ± 6

0.75 0.7 1188 ± 8 2131 ± 24 1435 ± 7 2068 ± 8 1770 ± 5 1633 ± 4

0.75 0.9 9643 ± 45 33195 ± 47 9281 ± 13 23089 ± 25 14167 ± 9 13086 ± 13

1.00 0.5 171 ± 4 199 ± 4 208 ± 2 219 ± 2 296 ± 2 250 ± 2

1.00 0.7 502 ± 5 761 ± 6 529 ± 2 640 ± 2 729 ± 2 578 ± 1

1.00 0.9 3546 ± 14 11273 ± 21 2788 ± 5 6409 ± 6 4652 ± 3 4216 ± 3

Bold values are used to denote the best algorithm in each experimental setting

6.2 Mass-spring-damper

The second scenario is a simple mechanical system described by a mass, a linear spring and a
damper (Ammar and Taylor 2012). The objective is to reach a desired state sg by controlling
the external force applied to the system. The system dynamic is described by the following
equation:

mẍ + cẋ + kx = F,

where m is the mass, c is the viscous friction coefficient ( N ·s
m ), k is the spring constant ( Nm )

and F is the external force. Let ω0 =
√

k
m and ζ = c

2
√
km

be the natural frequency and the
damping ratio, respectively. Notice that, since in the following 0 < ζ < 1, the free system
(F = 0) is under-damped and will oscillate with a frequency equal to ωd = ω0

√

1 − ζ 2.
The continuous state space (S ∈ R

2) is defined by the position and velocity of the mass
(s = [x, ẋ]T) and the continuous scalar action a defines the external force applied to the
system (F = b · a). The control decision is performed every 0.1s, with the goal to bring and
keep the mass to the desired state sg = [0.5, 0]T. At every time step the agent receives a
reward that is proportional to the distance from the goal position xg and to the control action:

rt+1 = −wd |xt − xg| − wa |b · at |,
where, in all the experiments, we set b, wd , wa to 10, 1 and 1/20, respectively. Discount
factor γ is set to 0.9. Note that the Lipschitz constant associated to the reward function LR
is 1.

Since the problem is continuous we exploited a Gaussian policy model

πθ (a|s) = N (

φ(s)Tθ , σ
)

, (24)

where θ ∈ R
d and φ : S → R

d are the basis functions. The standard deviation σ

has been fixed to 0.5 in all the experiments. Three polynomial basis functions have been
used to approximate the policy mean action: φ(s) = [1, x, ẋ]T. The initial setting is
x0 = Uni f ({−1, 1}) , ẋ0 = 0 and θ0 = 0. The learning taskwas performed usingGPOMDP
with optimal baseline (Peters and Schaal 2008b), exploiting 500 episodes by 50 steps for each
gradient estimate.
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Fig. 2 Mass-Spring-Damper domain with configuration c1. a The score J θ
μ as a function of iterations. b

The step sizes over iterations. For MSS-MLC algorithm, the L2-norm of the vector α is drawn. Results are
averaged over 100 runs. For sake of readability, the graphs do not display the (very small) confidence intervals
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Fig. 3 Algorithm behaviours for the Mass-Spring-Damper domain with configuration c2. The same structure
of Fig. 2 is used here

As done before, the objective is to show how the changes in the parameters affect the
algorithm behaviour. In this scenario we concentrate the attention on the Lipschitz continuity
of the model by changing the LP constant. We defined two configurations: c1 = {m =
0.5, k = 15, c = 0.001} and c2 = {m = 0.1, k = 15, c = 5} with LP -constants equal to
0.79 and 0.91, respectively. In both the configurations the position, velocity and action were
limited in [−1, 1], [−2, 2] and [−3, 3], respectively.

Figures 2a and 3a show that the knowledge of the individual Lipschitz constants can be
successfully exploited in order to speed up the learning process. In particular, the algorithms
that exploit the individual Lipschitz constants (SSS-MLC and MSS-MLC) outperform both
SSS-SLC and AGSS algorithms in all the experiments because they are able to exploit larger
learning step for each gradient component. Notice that in the c1 configuration AGSS learns
faster than SSS-SLC, while in the c2 configuration, characterized by a smaller LP value,
the performances of the two algorithms get similar. As expected, MSS-MLC outperforms
SSS-MLC, thanks to the possibility of updating the policy parameters outside the gradient
direction. In particular, the advantage of MSS-MLC on SSS-MLC increases as the angle
between the gradient direction and the vector of the Lipschitz constants gets larger. When
such angle is zero, the two algorithms lead to the same result.
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6.3 Ship steering with water current

In this scenario we adapted a standard control problem where the task is to steer a ship,
which is cruising at constant speed, to a goal in minimum time (Rosenstein and Barto 2004).
The task is made not trivial by the presence of different water currents around the goal.
The continuous state and action spaces are described by the 2-dimensional ship position
(S ∈ R

2) and the scalar heading (A ∈ R), respectively. The following equations describes
the continuous motion of the ship:

ẋ = C (cos (ω + ω0) − y) , ẏ = C sin (ω + ω0) ω

where s = [x, y]T denotes the state, C is the ship velocity and ω is the ship heading.
Notice that the water current influences only the horizontal coordinate x , and its magnitude
is proportional to the vertical position y. We changed the problem in order to minimize the
travelled distance, by defining the immediate reward as the minimum distance from the goal
region:

rt+1 = min(gr − ∥

∥st − sg
∥

∥

2 , 0),

where sg = [0, 0]T is the goal position and gr = 0.2Km is the goal radius. The effects of a
real ship inertia and resistance to water are not modelled, i.e., there is no time lag between
changes in the desired heading and the actual one. Control decisions were taken every 25s,
with an immediate change of the ship heading. The ship starts at s0 = [2.5,−1]T.

The policy model is a standard Gaussian model described in Eq. (24) with fixed standard
deviation σ = 0.6. Since the optimal policies for the objectives are not linear in the state
variable, a Gaussian radial basis approximation was used:

φ(s) =
{

N (s; ci ,Σi )

}3

i=1
.

The shape and position of the Gaussian basis are defined by the following parameters:

c1 = [2.5, 0]T, Σ1 = diag (10, 5)

c2 = [1.25, 1]T, Σ2 = diag (3, 1)

c3 = [0, 0]T, Σ3 = diag (10, 5)

State and action variables are bounded: x ∈ [−2, 6], y ∈ [−2, 2] and a ∈ [−π, π]. As
done in the previous domains, we exploited GPOMDP with baseline with 500 episodes for
the gradient estimate. Due to the low discount factor (γ = 0.6), we performed only 30 steps
for each episode.

We developed two different scenarios that differ for the reference angle ω0: π/2 and 0,
respectively. Since the ship heading points to north when ω0 = π/2 and ω = 0, the learning
process is easier in the former configuration then in the latter one. Notice that the initial
policy, that is the same in both the configurations, is defined by zero-weights, that is, in the
first iteration ω ∼ N (0, 0.6). In contrast, in the second configuration the agent must learn
to steer of 90◦, moving the ship heading from east to north, but this may be critical under
Lipschitz assumptions. We will deeply discuss the second scenario later in the section.

Concerning the first configuration (ω0 = π/2), we have tested two different ship velocities
(C1 = 0.01Km/s and C2 = 0.005Km/s) that lead to LP constants of 1.13 and 1.06. The
Lipschitz constant LR is 1. As the reader may notice from the LP constants, the transition
model is no more a contraction as in the previous domains. While the overall performance
of Lipschitz algorithms does not seem to be affected by the change in the model transitions,
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Fig. 4 Score J θ
μ as a function of iterations.Error bars represent the samples standard deviation.Theunderlying

domain consists in the ship steering with reference angle ω0 = π/2 and ship speed of 0.01Km/s (a) and
0.005Km/s (b), respectively

the AGSS algorithm is no more able to mimic the performance of the best algorithms. This
is a direct consequence of the smaller gradient estimates due to slow dynamics. Moreover,
as shown in Fig. 4b, the AGSS algorithm is negatively affected by changes in the transition
model. In particular, the performance gap between the best algorithms and AGSS increases
as the model becomes smoother because the latter approach is not able to exploit such
information.

Concerning the second scenario (ω0 = 0), the AGSS algorithm reaches a better perfor-
mance than all the Lipschitz algorithms when C = 0.01Km/s, see Fig. 5a. As mentioned
before, the main issue is the high coefficient required on the first component of the basis
functions in order to move the shift heading from east to north in the initial phase of the
trial. Although the final policy is quite smooth (the change in the action value is slow and
continuous), in the initial phase of the learning process, the first component of the policy is
the term that guarantees the highest improvement, thus, it is characterized by large gradient
values and parameter steps, that lead to high rate of increase of the Lipschitz constant. As
the parameter increases, the policy becomes less Lipschitz (i.e., the Lπ increases) and the
system becomes less contractive, as shown in Fig. 5b. As a consequence, the learning step
decreases over iterations at the same rate of increase of the Lipschitz constants.

However, when the ship moves at slow speed, the Lipschitz algorithm are able to exploit
the improved smoothness of the system through larger step sizes. On the other hand, the
AGSS algorithm exhibits a surprisingly slow learning behavior. The reasons appear clear
comparing Figs. 5b, d. The improved Lipschitz continuity of themodel directly influences the
computation of the step size, leading to larger movements in the initial phase of the learning.
At the same time, the rate of increase of the Lipschitz constant of the policy is slower than in
the previous setting. Notice that, no changes are visible in the trend of the step sizes shown
by the AGSS algorithm that is almost constant over iterations.

7 Conclusions

In this paper we have studied how to automatically set the step-size parameter in policy
gradient algorithms under assumptions on the Lipschitz continuity of theMDP and the policy
model. We have shown that under such continuity assumptions both the expected return and
the policy gradient are Lipschitz in the policy-parameter space and we have derived Lipschitz
constants for each component of the gradient. On the basis of such constants, we have
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Fig. 5 Algorithm behaviors in the ship domain with ω0 = 0. While the upper figures refer to the first
configuration (C = 0.01Km/s), lower figures report the results for C = 0.005Km/s. a, c The performance
J θ
μ as function of the iterations. b, d The step sizes (L2-norm of the vector for MSS-MLC algorithm) and

changes in the Lipschitz continuity properties over iterations. In particular, the Lπ constant and the contractive
property of the system (1 − γ LP (1 + L

πθ )) are shown

proposed to update the policy parameters according to three different learning strategies that
guarantee a performance improvement at each iteration. As shown by empirical evaluations,
when theMDP has strong continuity properties (i.e., small Lipschitz constants), the proposed
approach can take advantage of this bymaking larger step sizes than the ones made by related
approaches that do not exploit such information.

The main drawback of the proposed approach is that it can be applied only when the state
transition dynamics of theMDPare a contraction (i.e.,γ LP (1+Lπθ ) < 1). Toovercome such
limitation, it would be interesting to study the effect of replacing the Kantorovich distance
with other metrics between distributions. Another way to remove the limitation consists
in combining the proposed approach with the AGSS (Pirotta et al. 2013) (e.g., by simply
taking at each iteration the step size that guarantees the largest improvement). Finally, future
research could address how to use the proposed approach in problems where the Lipschitz
constants are unknown and need to be estimated from data.

Appendices

Proof of Proposition 1

Given an LR-LC MDP, for any pair of stationary policies corresponding to parameters θ

and̂θ , the absolute difference between the performance of policy πθ and policy π
̂θ can be

bounded as follows:
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∣

∣

∣J θ
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μ

∣

∣

∣ = 1

1 − γ
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∣

∣

∣

∣

E

(s,a)∼ζ θ
μ

[R(s, a)] − E

(s,a)∼ζ
̂θ
μ

[R(s, a)]

∣

∣
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∣
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∣

∣
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SA

(

ζ θ
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∣

∣
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sup
f

{∣

∣

∣

∣

∫∫

SA
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(

ζ θ
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∣
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∣
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}
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K
(

ζ θ
μ, ζ

̂θ
μ

)

��
Proof of Lemma 5

Under Assumptions 1, 2 and 3, the i-th component of ηθ is Li
ηθ -LC w.r.t. the state-action

space, that is: ∀(s, ŝ, a, â) ∈ S2 × A2,
∣

∣

∣η
θ
i (s, a) − ηθ

i (̂s, â)

∣

∣

∣ =
∣

∣

∣∇θ i logπθ (a|s)Qθ (s, a) − ∇θ i logπθ (̂a |̂s)Qθ (̂s, â)

∣

∣

∣

=
∣

∣

∣

(

∇θ i logπθ (a|s) − ∇θ i logπθ (̂a |̂s)
)

Qθ (s, a)

+
(

Qθ (s, a) − Qθ (̂s, â)
)

∇θ i logπθ (̂a |̂s)
∣

∣

∣

≤ sup
s′,a′

∣

∣

∣Qθ (s′, a′)
∣

∣

∣

∣

∣

∣∇θ i logπθ (a|s) − ∇θ i logπθ (̂a |̂s)
∣

∣

∣

+ sup
s′,a′

∣

∣

∣∇θ i logπθ (a′|s′)
∣

∣

∣

∣

∣

∣Qθ (s, a) − Qθ (̂s, â)

∣

∣

∣

≤
(

R

1 − γ
Li

∇ logπθ + Mi
θ LQθ

)

dSA ((s, a), (̂s, â)) .
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Proof of Lemma 6

For any pair of stationary policies corresponding to θ and̂θ , the absolute difference of the
i-th component of functions ηθ and η

̂θ is upper bounded by: ∀(s, a) ∈ S×A,∀(θ ,̂θ) ∈ Θ2,
∣

∣

∣η
θ
i (s, a) − η

̂θ
i (s, a)

∣

∣

∣ =
∣

∣
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∣
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∣

=
∣

∣

∣
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Q
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+
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∣

Proof follows from the application of Assumption 3 and from the bound on the supremum
norm of the Q-function. ��
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Proof of Lemma 7

Under Assumptions 1, 2 and 3, the i-th component of η is upper–bounded by: ∀(s, a) ∈
S × A, ∀(θ ,̂θ) ∈ Θ2,

∣

∣

∣η
θ
i (s, a) − η

̂θ
i (s, a)

∣

∣

∣≤ R
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dΘ

(

θ ,̂θ
)

,

where inequalities follow from the combination of Lemma 6 with Theorem 2. ��
Proof of Theorem 3

Under Assumptions 1, 2, and 3, the i-th component of the gradient ∇θ J of the expected
return is Li

∇ J (θ)-PLC, that is: ∀(θ,̂θ) ∈ Θ2,
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The proof follows by combining Theorem 5 and Theorem 7 with Proposition 2. ��
Proof of concavity of function (22)

For sake of readability we report here Eq. (22):

ΔJ θ
μ(A) = J θ t+1

μ − J θ t
μ ≥ ∇θ J

θ t
μ

T
A∇θ J
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We need to prove that ΔJ θ
μ(A) is a concave function:
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where (25) follows from the Minkowski inequality. ��
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