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Abstract Hierarchical parametric models consisting of observable and latent variables are
widely used for unsupervised learning tasks. For example, a mixture model is a represen-
tative hierarchical model for clustering. From the statistical point of view, the models can
be regular or singular due to the distribution of data. In the regular case, the models have
the identifiability; there is one-to-one relation between a probability density function for
the model expression and the parameter. The Fisher information matrix is positive definite,
and the estimation accuracy of both observable and latent variables has been studied. In the
singular case, on the other hand, the models are not identifiable and the Fisher matrix is not
positive definite. Conventional statistical analysis based on the inverse Fisher matrix is not
applicable. Recently, an algebraic geometrical analysis has been developed and is used to
elucidate theBayes estimation of observable variables. The present paper applies this analysis
to latent-variable estimation and determines its theoretical performance. Our results clarify
behavior of the convergence of the posterior distribution. It is found that the posterior of the
observable-variable estimation can be different from the one in the latent-variable estimation.
Because of the difference, the Markov chain Monte Carlo method based on the parameter
and the latent variable cannot construct the desired posterior distribution.
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1 Introduction

Hierarchical parametric models are employed for unsupervised learning inmany data-mining
and machine-learning applications. Statistical analysis of the models plays an important
role for not only revealing the theoretical properties but also the practical applications. For
example, the asymptotic forms of the generalization error and themarginal likelihood are used
for model selection in the maximum-likelihood and Bayes methods, respectively (Akaike
1974; Schwarz 1978; Rissanen 1986).

Parametric models generally fall into two cases: regular and singular. The present paper
focuses on the models, the function of which are continuous and sufficiently smooth with
respect to the parameter. In regular cases, the Fisher information matrix is positive definite,
and there is a one-to-one relation between the parameter and the expression of the model
as a probability density function. Otherwise, the model is singular, and the parameter space
includes singularities. Due to these singularities, the Fisher information matrix is not positive
definite, and so the conventional analysis methods that rely on its inverse matrix are not
applicable. In this case, an algebraic geometrical approach can be used to analyze the Bayes
method (Watanabe 2001, 2009).

Hierarchical models have both observable and latent variables. The latent variables repre-
sent the underlying structure of the model, while the observable ones correspond to the given
data. For example, unobservable labels in clustering are expressed as the latent variables in
mixture models, and the system dynamics of time-series data is a sequence of the variables
in hidden Markov models. Hierarchical models thus have two estimation targets: observable
and latent variables. The well-known generalization error measures the performance of the
prediction of a future observable variable. Combining the two model cases and the two esti-
mation targets, there are four estimation cases, which are summarized in Table 1. We will
use the abbreviations shown in the table to specify the target variable and the model case; for
example, Reg-OV estimation stands for estimation of the observable variable in the regular
case.

In the present paper, we will investigate the asymptotic performance of the Sing-LV esti-
mation. One of the main concerns in unsupervised learning is the estimation of unobservable
parts and in practical situations, the ranges of the latent variables are unknown, which cor-
responds to the singular case. The other estimation cases have already been studied; the
accuracy of the Reg-OV estimation has been clarified on the basis of the conventional analy-
sis method, and the results have been used for model selection criteria, such as AIC (Akaike
1974). The primary purpose for using the algebraic geometrical method is to analyze the
Sing-OV estimation, and the asymptotic generalization error of the Bayes method has been
derived for many models (Aoyagi and Watanabe 2005; Aoyagi 2010; Rusakov and Geiger
2005; Yamazaki and Watanabe 2003a, b, 2005a, b; Zwiernik 2011). Recently, an error func-
tion for the latent-variable estimation was formalized in a distribution-based manner, and its
asymptotic form was determined for the Reg-LV estimation of both the maximum likelihood
and Bayes methods (Yamazaki 2014). Hereinafter, the estimation method will be assumed
to be the Bayes method unless it is explicitly stated otherwise.

Table 1 Estimation classification according to the target variable and the model case

Estimation target \model case Regular case Singular case

Observable variable Reg-OV estimation Sing-OV estimation

Latent variable Reg-LV estimation Sing-LV estimation
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In theBayes estimation, parameter sampling from the posterior distribution is an important
process for practical applications. The behavior of posterior distributions has been studied in
the statistical literature. The convergence rate of the posterior distribution has been analyzed
(e.g., Ghosal et al. 2000; Le Cam 1973; Ibragimov and Has’ Minskii 1981). Specifically,
the rate based on the Wasserstein metrics is elucidated in finite and infinite mixture models
(Nguyen 2013). To avoid singularities, conditions for the identifiability guaranteeing the
positive Fisher matrix are necessary. Allman et al. (2009) use algebraic techniques to clarify
the identifiability in some hierarchical models. In the regular case, the posterior distribution
has the asymptotic normality, which means that it converges to a Gaussian distribution.
Because the variance of the distribution goes to zero when the number of data is sufficiently
large, the limit distribution is the delta distribution. Then, the sample sequence from the
posterior distribution converges to a point.On the other hand, in the singular case, the posterior
distribution does not have the asymptotic normality and the sequence converges to some area
of the parameter space (Watanabe 2001). Studies on theSing-OVestimation such asYamazaki
and Kaji (2013) have shown that the convergence area of the limit distribution depends on
a prior distribution. The behavior of the posterior distribution has not been clarified in the
Sing-LV estimation. The analysis of the present paper enables us to elucidate the relation
between the prior and the limit posterior distributions.

The main contributions of the present paper are summarized as follows:

1. The algebraic geometricalmethod for the Sing-OVestimation is applicable to the analysis
of the Sing-LV estimation.

2. The asymptotic form of the error function is obtained, and its dominant order is larger
than that of the Reg-LV estimation.

3. There is a case,where the limit posterior distribution in the Sing-LVestimation is different
from that in the Sing-OV estimation.

The third result is important for practical applications: in some priors, parameter-sampling
methods based on latent variables, such as Gibbs sampling in the Markov chain Monte Carlo
(MCMC) method, cannot construct the proper posterior distribution because the sample
sequence of the MCMC method follows the posterior of the Sing-LV estimation, which has
a different convergence area from the desired one in the Sing-OV estimation.

The rest of this paper is organized as follows. The next section formalizes the hierarchical
model and the singular case, and introduces the performance of the Reg-OV and the Sing-OV
estimations. Section 3 explains the asymptotic analysis of the free energy function and the
convergence of the posterior distribution based on the results of the Sing-OV estimation.
In Sect. 4, the latent-variable estimation and its evaluation function are formulated in a
distribution-based manner. Section 5 shows the main results: the asymptotic error function
of general hierarchical models, and the detailed error properties in mixture models. In Sect. 6,
we discuss the limit distribution of the posterior in the Sing-LV estimation and differences
from the Sing-OV estimation. Finally, Sect. 7 presents conclusions.

2 The singular case and accuracy of the observable-variable estimation

In this section, we introduce the singular case and formalize the Bayes method for the
observable-variable estimation. This section is a brief summary of the results on the Reg-OV
and the Sing-OV estimations.
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2.1 Hierarchical models and singularities

Let a learning model be defined by

p(x |w) =
K∑

y=1

p(x, y|w) =
K∑

y=1

p(y|w)p(x |y, w),

where x ∈ RM is an observable variable, y ∈ {1, . . . , K } is a latent one, and w ∈ W ⊂ Rd

is a parameter. For the discrete x such that x ∈ {1, 2, . . . , M}, all results hold by replacing∫
dx with

∑M
x=1.

Example 1 A mixture of distributions is described by

p(x |w) =
K∑

k=1

ak f (x |bk), (1)

where f is the density function associated with a mixture component, which is identifiable
for any bk ∈ Wb ⊂ Rdc . The mixing ratios have constraints ak ≥ 0 and

∑K
k=1 ak = 1. We

regard a1 as a function of the parameters a1 = 1 − ∑K
k=2 ak . The parameter w consists of

{a2, . . . , aK } and {b1, . . . , bK }, where w ∈ {[0, 1]K−1,WKdc
b }. The latent variable y is the

component label.

Assume that the number of data is n and the observable data Xn = {x1, . . . , xn} are
independent and identically distributed from the true model, which is expressed as

q(x) =
K ∗∑

y=1

q(y)q(x |y).

Note that the value range of the latent variable y described as [1, . . . , K ∗] is generally
unknown and can be different from the one in the learning model. In the example of the
mixture model, the true model is expressed as

q(x) =
K ∗∑

k=1

a∗
k f (x |b∗

k ). (2)

We also assume that the true model satisfies the minimality condition:

k �= j ∈ {1, . . . , K ∗} ⇒ q(x |y = k) �= q(x |y = j).

For example, consider a three-component model such that q(x |y = 1) �= q(x |y = 2) =
q(x |y = 3). This model does not satisfy the minimality condition. Defining a new label, we
obtain the following two-component expression, which satisfies the condition;

q(x) = q(y = 1)q(x |y = 1) + {q(y = 2) + q(y = 3)}q(x |y = 2)

= q(y = 1)q(x |y = 1) + q(y = 2̄)q(x |y = 2̄),

where y ∈ {1, 2̄} and 2̄ = {2, 3}.
The present paper focuses on the case in which the true model is in the class of the learning

model. More formally, there is a set of parameters expressing the true model such that

Wt
X = {w∗; p(x |w∗) = q(x)} �= ∅,
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Fig. 1 The true parameter set Wt
X (the left panel), and the parameter areas W1, W2, and W3 (the right panel)

which is referred to as the true parameter set for x . This means that the latent variable range
satisfies K = K ∗ or K > K ∗. The former relation corresponds to the regular case and the
latter one to the singular case. The true parameter set Wt

X includes K ! isolated points in the
regular case due to the symmetry of the parameter space. On the other hand, it consists of an
analytic set in the singular case. We explain this structure using the following model settings.

Example 2 Assume that K = 2 and K ∗ = 1 in the mixture model. For illustrative purposes,
let the learning and the true models be defined by

p(x |w) = a f (x |b1) + (1 − a) f (x |b2),
q(x) = f (x |b∗),

respectively, where x ∈ R1 and w = {a, b1, b2} such that a ∈ [0, 1] and b1, b2 ∈ Wb ⊂ R1.
We can confirm that the true parameter set consists of the following analytic set:

Wt
X = Wt

1 ∪ Wt
2 ∪ Wt

3,

Wt
1 = {a = 1, b1 = b∗},

Wt
2 = {b1 = b2 = b∗},

Wt
3 = {a = 0, b2 = b∗}.

As shown in Fig. 1, letW1,W2, andW3 be the neighborhood ofWt
1,W

t
2, andW

t
3, respectively.

The Fisher information matrix is not positive definite in Wt
X . Moreover, the intersections of

Wt
1, W

t
2 and Wt

3 are singularities.

When K = K ∗, Wt
X is a set of points, which corresponds to the regular case;

Example 3 If both the learning and the true models have two components,

p(x |w) = a f (x |b1) + (1 − a) f (x |b2),
q(x) = a∗ f (x |b∗

1) + (1 − a∗) f (x |b∗
2)

for a∗ �= 0, 1 and b∗
1 �= b∗

2, the estimation will be in the regular case. Due to K ! = 2! = 2,
the set consists of two isolated points;

Wt
X = {(a = a∗, b1 = b∗

1, b2 = b∗
2), (a = 1 − a∗, b1 = b∗

2, b2 = b∗
1)},

where the Fisher information matrix is positive definite.
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2.2 The observable-variable estimation and its performance

In Bayesian statistics, estimation of the observable variables is defined by

p(x |Xn) =
∫

p(x |w)p(w|Xn)dw,

p(w|Xn) =
∏n

i=1 p(xi |w)ϕ(w; η)

Z(Xn)
,

where ϕ(w; η) is a prior distribution with the hyperparameter η, p(w|Xn) is the posterior
distribution of the parameter, and its normalizing factor is given by

Z(Xn) =
∫ n∏

i=1

p(xi |w)ϕ(w; η)dw.

This formulation is available for both the Reg-OV and Sing-OV estimations. In the mixture
model, the Dirichlet distribution is often used for the prior distribution of the mixing ratio;

ϕ(w; η) = ϕ(a; η1)ϕ(b; η2), (3)

ϕ(a; η1) = Γ (Kη1)

Γ (η1)K

K∏

i=k

aη1−1
k , (4)

where a = {a1, . . . , aK }, b = {b1, . . . , bK }, η = {η1, η2} ∈ R2
>0, and Γ is the gamma

function. Sinceak has the same exponential part for all k,ϕ(a; η1) is referred to as a symmetric
Dirichlet distribution.

The estimation accuracy is measured by the average Kullback–Leibler divergence:

G(n) = EX

[ ∫
q(x) ln

q(x)

p(x |Xn)
dx

]
,

where the expectation is

EX
[
f (Xn)

] =
∫

f (Xn)q(Xn)dXn .

Let us define the free energy as

F(Xn) = − ln Z(Xn),

which plays an important role in Bayes statistics as a criterion for selecting the optimal
model. In the Reg-OV estimation, the Bayesian information criterion (BIC; Schwarz 1978)
and the minimum-description-length principle (MDL; Rissanen 1986) are both based on the
asymptotic form of F(Xn). Theoretical studies often analyze the average free energy given
by

FX (n) = −nSX + EX [F(Xn)],
where the entropy function is defined by

SX = −
∫

q(x) ln q(x)dx .

The model that minimizes F(Xn) is then selected as optimal from among the candidate mod-
els. The energy function FX (n) allows us to investigate the average behavior of the selection.
Note that the entropy term does not affect the selection result because it is independent of the
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candidatemodels. According to the definitions, the average free energy and the generalization
error have the relation

G(n) = EXn

[ ∫
q(xn+1) ln

q(xn+1)

p(xn+1|Xn)
dxn+1

]

= EXn ,xn+1

[
ln

q(xn+1)

p(xn+1|Xn)

]

= EXn ,xn+1

[
ln

∏n+1
i=1 q(xi )∫ ∏n+1

i=1 p(xi |w)ϕ(w; η)dw

]

− EXn

[
ln

∏n
i=1 q(xi )∫ ∏n

i=1 p(xi |w)ϕ(w; η)dw

]

= FX (n + 1) − FX (n), (5)

which implies that the asymptotic form of F(n) also relates to that of G(n). The rest of the
paper discusses the caseWt

X �= ∅, although it is also important to consider the caseWt
X = ∅,

where the learning model cannot attain the true model.
The algebraic geometrical analysis (Watanabe 2001, 2009) is applicable to both the regular

and singular cases for deriving the asymptotic form of FX (n). Its result shows that the form
is expressed as

FX (n) = λX ln n − (mX − 1) ln ln n + O(1),

where the coefficients λX and mX are positive rational and natural, respectively. The reason
why the free energy has this form will be explained in the next section. According to the
relation Eq. (5), the asymptotic form of the generalization error is given by

G(n) = λX

n
− mX − 1

n ln n
+ o

(
1

n ln n

)
. (6)

Since the learning model can attain the true model, we can confirm that the generalization
error converges to zero for n → ∞. The coefficients are λX = d/2 and mX = 1 in the
regular case. It is proved that λX < d/2 in the singular case (Section 7, Watanabe 2009).

3 Asymptotic analysis of the free energy and posterior convergence

This section introduces the asymptotic analysis of FX (n) based on algebraic geometry and
explains how the prior distribution affects convergence of the posterior distribution. The
topics in this section have already been elucidated in the studies on the Sing-OV estimation
(e.g., Watanabe 2009).

3.1 Relation between the free energy and the zeta function

Let us define another Kullback–Leibler divergence,

HX (w) =
∫

q(x) ln
q(x)

p(x |w)
dx,

which is assumed to be analytic (Fundamental Condition I, Watanabe 2009). We consider
the prior distribution ϕ(w; η) = ψ1(w; η)ψ2(w; η), where ψ1(w; η) is a positive function
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of class C∞ and ψ2(w; η) is a nonnegative analytic function (Fundamental Condition II,
Watanabe 2009). Let the zeta function of a parametric model be given by

ζX (z) =
∫

HX (w)zϕ(w; η)dw,

where z is a complex variable. From algebraic analysis, we know that its poles are real,
negative, and rational (Atiyah 1970). Let the largest pole and its order be z = −λX and mX ,
respectively. The zeta function includes the term

ζX (z) = fc(z)

(z + λX )mX
+ · · · ,

where fc(z) is a holomorphic function. We define the state density function of t > 0 as

v(t) =
∫

δ(t − HX (w))ϕ(w; η)dw.

The zeta function is its Mellin transform:

ζX (z) = M[v(t)] =
∫ ∞

0
v(t)t zdt.

Moreover, it is known that the inverse Laplace transform of v(t) has the same asymptotic
form as FX (n);

L−1[v(t)] =
∫

v(t)entdt

=
∫

enHX (w)ϕ(w; η)dw = FX (n).

Then, there is the following relation,

FX (n)
L⇐⇒ v(t)

M⇐⇒ ζX (z).

Based on the Laplace and the Mellin transforms, the asymptotic forms of all functions are
available if one of them is given. Following the transforms from ζX (z) to FX (n) through
v(t), we obtain the asymptotic form

FX (n) = λX ln n − (mX − 1) ln ln n + O(1).

Let us define the effective area of the parameter space, which plays an important role
in the convergence analysis of the posterior distribution. According to the results on the
Sing-OV estimation, it has been found that the largest pole exists in a restricted parameter
space. In Example 2, the parameter space is divided into W1, W2, W3 and the rest of the
support of ϕ(w; η). The first three sets are neighborhoods of the analytic sets Wt

1, W
t
2 and

Wt
3 constructing Wt

X , respectively. Assume that a pole z = −λe of the zeta function

ζe(z) =
∫

We

HX (w)zϕ(w; η)dw

is equal to the largest pole z = −λX , where We = W1 ∩ W2. In the present paper, we refer
to We as the effective area. Let the effective area be denoted by the minimum set W1 ∩ W2.
In other words, we do not call W1 the effect area even though W1 includes We. If the largest
pole of

∫
W1\W1∩W2

HX (w)zϕ(w; η)dw is also equal to z = −λX , the effective area is W1

since W1 ∩ W2 can not cover the area.
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3.2 Phase transition

A switch in the underlying function of the free energy is generally referred to as a phase
transition. When the prior of the mixing ratio parameters is the Dirichlet distribution. the
phase transition is observed in FX (n). Combining the results of Yamazaki et al. (2010) and
Yamazaki and Kaji (2013), we obtain the following lemma;

Lemma 1 Suppose that K = 2, K ∗ = 1 in the mixture model, where the true and the
learning models are given by

q(x) = f (x |b∗),
p(x |w) = a f (x |b1) + (1 − a) f (x |b2),

respectively. Let the component be expressed as

f (x = m|bk) =
(
M

m

)
bmk (1 − bk)

M−m,

where x ∈ {1, . . . , M}, M is an integer such that K < M, and (M m)� is the binomial
coefficient. We consider the case 0 < b∗ < 1. Let the prior distribution for the mixing ratio
be the symmetric Dirichlet distribution, and the one for bk be analytic and positive. Then the
largest pole of the zeta function ζX (z) is

λX =
{

1+η1
2 η1 ≤ 1/2,

3
4 η1 > 1/2,

mX =
{
2 η1 = 1/2,

1 otherwise.

Moreover, the effective area We is given by

We =

⎧
⎪⎨

⎪⎩

W1 ∪ W3 η1 < 1/2,

(W1 ∩ W2) ∪ (W3 ∩ W2) η1 = 1/2,

W2 η1 > 1/2.

The proof is in Appendix 3. Lemma 1 indicates that the free energy has the phase transition
at η1 = 1/2.

3.3 Convergence area of the posterior distribution

The asymptotic form of the free energy determines the limit structure of the posterior distri-
bution. In this subsection, we will show that the convergence area is the effective parameter
area.

The free energy F(Xn) has an asymptotic form similar to the average energy FX (n)

(Watanabe 2009, Main Formula II),

F(Xn) = nS(Xn) + λX ln n − (mX − 1) ln ln n + Op(1), (7)

where S(Xn) = 1
n

∑n
i=1 ln q(xi ). According to Z(Xn) = exp(−F(Xn)), the posterior dis-

tribution has the expression,

p
(
w|Xn) =

∏n
i=1 p(xi |w)ϕ(w; η)

exp
{−nS(Xn) − λX ln n + op(ln n)

} .
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Let us divide the neighborhood of Wt
X into We ∪ Wo, where We is the effective area. Then,

there is a pole z = −μX such that μX > λX in the other area Wo, and the posterior value of
Wo is described by

p(Wo|Xn) =
∫

Wo

p(w|Xn)dw

=
∫
Wo

∏n
i=1 p(xi |w)ϕ(w; η)dw

exp{−nS(Xn) − λX ln n + op(ln n)}
= exp{−nS(Xn) − μX ln n + op(ln n)}

exp{−nS(Xn) − λX ln n + op(ln n)}
= n−μX+λX + op(n

−μX+λX ).

The posterior asymptotically has zero value in Wo, which means that it converges to the
effective area.

According to Lemma 1, the effective area depends on the hyperparameter. Therefore,
the convergence area changes at the phase transition point η1 = 1/2. It also shows how
the learning model realizes the true one. In W1 ∪ W3, the true model is expressed by one-
component model, which means that the redundant component is eliminated. On the other
hand, all components of the learning model are used in W2.

The phase transition is observed in general mixture models;

Theorem 1 Let a learning model and the true one be expressed as Eqs. (1) and (2), respec-
tively. When the prior of the mixing ratio is the Dirichlet distribution of Eq. (4), the average
free energy FX (n) has at least two phases: the phase that eliminates all redundant compo-
nents when η1 is small, and the one that uses them when η1 is sufficiently large.

The proof is in Appendix 3.

4 Formal definition of the latent-variable estimation and its accuracy

This section formulates the Bayes latent-variable estimation and an error function that mea-
sures its accuracy.

We first consider a detailed definition of a latent variable. Let Y n = {y1, . . . , yn} be
unobservable data, which correspond to the latent parts of the observable Xn . Then, the
complete form of the data is (xi , yi ), and (Xn, Yn) and Xn are referred to as complete and
incomplete data, respectively. The true model generates the complete data (Xn, Yn), where
the range of the latent variables is yi ∈ {1, . . . , K ∗}. The learning model, on the other hand,
has the range yi ∈ {1, . . . , K }. For a unified description, we define that the true model has
probabilities q(y) = 0 and q(x, y) = 0 for y > K ∗.

We define the true parameter set for (x, y) as

Wt
XY = {w∗; p(x, y|w∗) = q(x, y)},

which is a proper subset of Wt
X . In Example 2,

Wt
XY = {a = 1, b1 = b∗} = Wt

1 ⊂ Wt
X .

The subsets W2 = {b1 = b2 = b∗} and W3 = {a = 0, b2 = b∗} in Wt
X are excluded since

Wt
XY takes account of the representation with respect to not only x but also y. Due to the
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assumptionWt
X �= ∅,Wt

XY is not empty. The setWt
XY again consists of an analytic set in the

singular case, and it is a unique point in the regular case.
While latent-variable estimation falls into various types according to the target of the

estimation, the present paper focuses on the Type-I estimation of Yamazaki (2014): the joint
probability of (y1, . . . , yn) is the target and is written as p(Yn |Xn). The Bayes estimation
has two equivalent definitions:

p(Yn |Xn) =
∫ n∏

i=1

p(xi , yi |w)

p(xi |w)
p(w|Xn)dw (8)

= Z(Xn, Yn)

Z(Xn)
, (9)

where the marginal likelihood for the complete data is given by

Z(Xn, Yn) =
∫ n∏

i=1

p(xi , yi |w)ϕ(w; η)dw.

It is easily confirmed that Z(Xn) = ∑
Yn Z(Xn, Yn).

The true probability of Yn is uniquely given by

q(Yn |Xn) = q(Xn, Yn)

q(Xn)
=

n∏

i=1

q(xi , yi )

q(xi )
. (10)

The accuracy of the estimation is measured by the difference between q(Y n |Xn) and
p(Yn |Xn). Thus, we define the error function as the average Kullback–Leibler divergence,

D(n) = 1

n
EXY

[
ln

q(Yn |Xn)

p(Yn |Xn)

]
, (11)

where the expectation is defined as

EXY
[
f (Xn, Yn)

] =
∫ K∑

y1=1

· · ·
K∑

yn=1

f (Xn, Yn)q(Xn, Yn)dXn .

5 Asymptotic analysis of the error function

In this section, we show that the algebraic geometrical analysis is applicable to the Sing-LV
estimation, and present the asymptotic form of the error function D(n).

5.1 Conditions for the analysis

Before showing the asymptotic form of the error function, we state necessary conditions.
Let us define the zeta function on the complete data (x, y) as

ζXY (z) =
∫

HXY (w)zϕ(w; η)dw,

where the Kullback–Leibler divergence HXY (w) is given by

HXY (w) =
K∑

y=1

∫
q(x, y) ln

q(x, y)

p(x, y|w)
dx .
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Let the largest pole of ζXY (z) be z = −λXY , and let its order be mXY .
We consider the following conditions:

(A1) The divergence functions HXY (w) and HX (w) are analytic.
(A2) The prior distribution has the compact support, which includesWt

X , and has the expres-
sion ϕ(w; η) = ψ1(w; η)ψ2(w; η), where ψ1(w; η) > 0 is a function of class C∞ and
ψ2(w; η) ≥ 0 is analytic on the support of ϕ(w; η).

They correspond to the Fundamental Conditions I and II in Watanabe (2009), respectively.
It is known that models with discrete x such as the binomial mixture satisfy (A1) (Yamazaki
et al. 2010). On the other hand, if x is continuous, there are some models, of which HX (w)

is not analytic;

Example 4 (Example 7.3 inWatanabe 2009) In theGaussianmixture, HX (w) is not analytic,
which means that the mixture model does not satisfies (A1). Let us consider a simple case;
K = 2 and K ∗ = 1, where the true model and a learning model are given by

q(x) = f (x |0),
p(x |a) = a f (x |2) + (1 − a) f (x |0),

respectively, where x ∈ R1,

f (x |b) = 1√
2π

exp

{
− (x − b)2

2

}
,

and b ∈ W 1 = R1. Then,

HX (a) =
∫

q(x) ln
q(x)

p(x |a)
dx

= −
∫

q(x) ln{1 + a(exp(2x − 2) − 1)}dx

=
∫ ∞∑

j=1

a j

j
(1 − exp(2x − 2)) j q(x)dx,

where the last expression is a formal expansion. Since its convergence radius is zero at a = 0,
HX (a) is not analytic. Based on the similar way, we can find that HX (w) is not analytic in a
general Gaussian mixture .

The following example shows a prior distribution for the mixture model satisfying (A2).

Example 5 The symmetric Dirichlet distribution satisfies the condition (A2) because Eq. (4)
is obviously analytic and non negative in its support. Choosing an analytic distribution for
ϕ(b; η2), we obtain the prior ϕ(w; η) satisfying the condition (A2).

5.2 Asymptotic form of the error function

Now, we show the main theorem on the asymptotic form of the error function:

Theorem 2 Let the true distribution of the latent variables and the estimated distribution
be defined by Eqs. (9) and (10), respectively. By assuming the conditions (A1) and (A2), the
asymptotic form of D(n) is expressed as

D(n) = (λXY − λX )
ln n

n
− (mXY − mX )

ln ln n

n
+ o

(
ln ln n

n

)
.
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The proof is in Appendix 1. The theorem indicates that the algebraic geometrical method
plays an essential role for the analysis of the Sing-LV estimation because the coefficients
consist of the information of the zeta functions such as λXY , λX , mXY and mX . The order
ln n/n has not ever appeared in the Reg-LV estimation. In the Reg-LV estimation such that
K = K ∗, the asymptotic error function has the following form (Yamazaki 2014);

D(n) = 1

n
Tr

[
IXY (w∗)IX (w∗)−1] + o

(
1

n

)
,

{IXY (w)}i j =
K∑

y=1

∫
∂ ln p(x, y|w)

∂wi

∂ ln p(x, y|w)

∂w j
p(x, y|w)dx,

{IX (w)}i j =
∫

∂ ln p(x |w)

∂wi

∂ ln p(x |w)

∂w j
p(x |w)dx,

wherew∗ is the uniquepoint consistingofWt
XY . Thedominant order is 1/n, and the coefficient

is determined by the Fisher information matrices on p(x, y|w) and p(x |w). Theorem 2
implies that the largest possible order is ln n/n in the Sing-LV estimation. This order change
is adverse for the performance because the error converges more slowly to zero. In singular
cases, the probability p(Yn |Xn) is constructed over the space Yn ∈ Kn while the true
probability q(Yn |Xn) is over Yn ∈ K ∗n . The size of the redundant space Kn − K ∗n grows
exponentially with the amount of training data. For realizing p(x, y|w∗), where w∗ ∈ Wt

XY ,
we must assign zero to the probabilities on the vast redundant space. The increased order
reflects the cost of assigning these values.

Let us compare the dominant order of D(n) with that of the generalization error. We find
that both Reg-OV and Sing-OV estimations have the same dominant order 1/n as shown in
Eq. (6) while the redundancy and the hyperparameter affect the coefficients. Thus, changing
the order is a unique phenomenon of the latent-variable estimation.

5.3 Asymptotic error in the mixture model

In Theorem 2, the possible dominant order was calculated as ln n/n. However, there is
no guarantee that this is the actual maximum order; the order can decrease to 1/n if the
coefficients are zero, where the zeta functions ζXY (z) and ζX (z) have their largest poles in
the same position and their multiple orders are also the same. The result of the following
theorem clearly shows that the dominant order is ln n/n in the mixture models.

Theorem 3 Let the learning and the true models be mixtures defined by Eqs. (1) and (2),
respectively. Assume the conditions (A1) and (A2). The Bayes estimation for the latent vari-
ables, Eq. (9), with the prior represented by Eqs. (3) and (4) has the following bound for the
asymptotic error:

D(n) ≥ (K − K ∗)η1
2

ln n

n
+ o

(
ln n

n

)
.

The proof is in Appendix 1. Due to the definition of the Dirichlet distribution, η1 is positive.
Combining this with the assumption K ∗ < K , we obtain that the coefficient of (ln n)/n is
positive, which indicates that it is the dominant order.

The Dirichlet prior distribution for the mixing ratio is qualitatively known to have a
function controlling the number of available components, the so-called automatic relevance
determination (ARD); a small hyperparameter tends to have a result with few components due
to the shape of the distribution. Theorem3 quantitatively shows an effect of theDirichlet prior.
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The lower bound in the theorem mathematically supports the ARD effect; the redundancy
K − K ∗ and the hyperparameter η1 have a linear influence on the accuracy.

Theorem 3 holds in a wider class of the mixture models since the error is evaluated as the
lower bound. The following corollary shows that the Gaussian mixture has the same bound
for the error even though it does not satisfy (A1) as shown in Example 4.

Corollary 1 Assume that in a mixture model, HXY (w) is analytic, and the prior distribution
for the mixing ratio is the symmetric Dirichlet distribution. If there is a positive constant C1

such that

HX (w) ≤ C1

∫ (
p(x |w)

q(x)
− 1

)2

dx,

the error function has the same lower bound as Theorem3. In the Gaussian mixture, compo-
nents of which are defined by

f (x |b) = 1√
2π

M
exp

{
− ||x − b||2

2

}
,

where x ∈ RM and b ∈ WM = RM, HXY (w) is analytic and the inequality holds.

The proof is in Appendix 1.

6 Discussion

Theorem 2 shows that the asymptotic error has the coefficient λXY −λX , which is the differ-
ence of the largest poles in the zeta functions. Based on the free energy of the complete data
defined as F(Xn, Yn) = − ln Z(Xn, Yn), we find that the error is determined by the different
properties between F(Xn, Yn) and F(Xn) since their asymptotic forms are expressed as

F(Xn, Yn) = nS(Xn, Yn) + λXY ln n − (mXY − 1) ln ln n + Op(1),

F(Xn) = nS(Xn) + λX ln n − (mX − 1) ln ln n + Op(1),

where S(Xn, Yn) = − 1
n

∑n
i=1 ln q(xi , yi ).

In this section, we examine the properties of F(Xn, Yn) and indicate that the difference
from those of F(Xn) affects the behavior of the Sing-LV estimation and the parameter
sampling from the posterior distribution.

6.1 Effect to eliminate redundant labels

According to Eq. (9), the MCMC sampling of the Yn’s following p(Yn |Xn) is essential for
the Bayes estimation. The following relation indicates that we do not need to calculate Z(Xn)

and that the value of Z(Xn, Yn) determines the properties of the estimation:

p(Xn, Yn) = Z(Xn, Yn) ∝ p(Yn |Xn) = Z(Xn, Yn)

Z(Xn)
. (12)

The expression of p(Xn, Yn) can be tractable with a conjugate prior, which marginalizes out
the parameter integral (Dawid and Lauritzen 1993; Heckerman 1999).

We determinewhere the estimated distribution p(Y n |Xn) has its peak.Obviously, the label
assignment Yn minimizing F(Xn, Yn) provides the peak due to the definition F(Xn, Yn) =
− ln Z(Xn, Yn) and Eq. (12). Let this assignment be described as Ȳ n ;
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Ȳ n = argmax
Yn

p(Yn |Xn) = argmin
Yn

F(Xn, Yn).

The following discussion shows that Ȳ n does not include the redundant labels.
We have to consider the symmetry of the latent variable in order to discuss the peak. In

latent-variable models, both the latent variable and the parameter are symmetric. In Example
2, the component f (x |b∗) of the true model can be attained by the first component a1 f (x |b1)
or the second one (1 − a1) f (x |b2) of the learning model. Because the true label y = 1,
which the true model provides, is unobservable, there are two proper estimation results Y n =
{1, . . . , 1} and Yn = {2, . . . , 2} to indicate that the true model consists of one component.
This is the symmetry of the latent variable. In the parameter space, it corresponds to the
symmetric structure of W1 and W3 shown in Fig. 1. The symmetry makes it difficult to
interpret the estimation results, which is known as the label-switching problem.

For the purpose of the theoretical evaluation, the definition of the error function D(n)

selects the true assignment of the latent variable. In the above example, only Y n = {1, . . . , 1}
is accepted as the proper result. However, there is no selection of the true assignment in the
estimation process; other symmetric assignments such as Y n = {2, . . . , 2}will be the peak of
p(Yn |Xn). Then, the true parameter area Wt

XY is not sufficient to describe the peak. Taking
account of the symmetry, we define another analytic set of the parameter as

W p
XY = ∪σ∈Σ

{
w; aσ(k) = a∗

k , bσ(k) = b∗
k for 1 ≤ k ≤ K ∗} ,

Σ is the set of injective functions from {1, . . . , K ∗} to {1, . . . , K }. It is easy to confirm that
Wt

XY ⊂ W p
XY . In Example 2, Wt

XY = Wt
1 ⊂ Wt

1 ∪ Wt
3 = W p

XY . Note that the redundant
components are eliminated in p(x |w∗), where w∗ ∈ W p

XY .
Let us analyze the location of the peak. Define that

S′(Xn, Yn) = −1

n

n∑

i=1

ln p(xi , yi |w∗),

where w∗ ∈ W p
XY . Switching the label based on the symmetry, we can easily prove that

maxw∗,Yn S′(Xn, Yn) = maxYn S(Xn, Yn). Moreover, − 1
n

∑n
i=1 ln p(xi , yi |w) with w ∈

Wt
X \ W p

XY , such as w ∈ Wt
2 in Example 2, cannot realize S(Xn, Yn) according to a simple

calculation as shown in the next paragraph. Because the leading term of the asymptotic
F(Xn, Yn) is nS(Xn, Yn) and nS′(Xn, Ȳ n) realizes it, the true assignment Ȳ n follows the
parameter w∗ ∈ W p

XY . Recalling that the redundant components are eliminated when w ∈
W p

XY , we can conclude that the redundant labels are eliminated in Ȳ n . This elimination occurs
in any prior distribution if its support includes W p

XY .
Let us confirm the elimination in Example 2. We consider three parameters; w∗

1 ∈ Wt
1 =

{a = 1, b1 = b∗}, w∗
2 ∈ Wt

2 = {b1 = b2 = b∗} and w∗
3 ∈ Wt

3 = {a = 0, b2 = b∗}. The
leading term of the asymptotic F(Xn, Yn) is expressed as

nS′
j (X

n, Yn) = −
n∑

i=1

ln p(xi , yi |w∗
j )
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for j = 1, 2, 3. This is rewritten as

nS′
j (X

n, Yn) = −
n∑

i=1

δyi ,1 ln a −
n∑

i=1

δyi ,2 ln(1 − a)

−
n∑

i=1

δyi ,1 ln f (xi |b1) −
n∑

i=1

δyi ,2 ln f (xi |b2), (13)

where δi, j is the Kronecker delta. The assignment Ȳ n depends on w∗
j . For example, Ȳ n =

{1, . . . , 1} for w∗
1 and Ȳ n = {2, . . . , 2} for w∗

3 . Then, we obtain that

nS′
j (X

n, Yn) =

⎧
⎪⎨

⎪⎩

−∑n
i=1 ln f (xi |b∗) j = 1

−N1 ln a − N2 ln(1 − a) − ∑n
i=1 ln f (xi |b∗) j = 2

−∑n
i=1 ln f (xi |b∗) j = 3,

where N1 = ∑n
i=1 δyi ,1 and N2 = ∑n

i=1 δyi ,2. The cases j = 1 and j = 3 have the same
value and the case j = 2 is smaller than the others due to the first two terms in Eq. (13),
which holds for any value of 0 < a < 1 in Wt

2. This means that Wt
2 cannot make p(Yn |Xn)

maximum. In other words, the assignment Y n using both labels 1 and 2 is not the peak.

6.2 Two approaches to calculate p(Yn |Xn) and their difference

It is necessary to emphasize that the calculation of p(Y n |Xn) based on sampling from
p(w|Xn) following Eq. (8) can be inaccurate. According to Theorem 1 and Eq. (7), we con-
firm that F(Xn) has a phase transition in mixture models due to the hyperparameter of the
Dirichlet prior. This means that, when the hyperparameter η1 is large, the Monte Carlo sam-
pling are from the area, in which all the components are used such as Wt

2. In the numerical
computation, the integrand of Eq. (8) will be close to

∏n
i=1 p(xi , yi |w∗

2)/p(xi |w∗
2), where

w∗
2 ∈ Wt

2. Because w∗
2 ∈ Wt

2 ⊂ Wt
X ,

n∏

i=1

p(xi , yi |w∗
2)

p(xi |w∗
2)

= exp

{ n∑

i=1

ln p(xi , yi |w∗
2) −

n∑

i=1

ln p(xi |w∗
2)

}

= exp
{ − nS′

2(X
n, Yn) + nS(Xn)

}
.

On the other hand, based on Eq. (9), the desired value of p(Yn |Xn) is calculated as

Z(Xn, Yn)

Z(Xn)
= exp

{
F(Xn) − F(Xn, Yn)

}

= exp{−nS(Xn, Yn) + nS(Xn)} + o(exp(−n)).

Since S′
2(X

n, Yn) > S(Xn, Yn), the value of Eq. (8) is much smaller than that of Eq. (9).
Therefore, the result of the numerical integration in Eq. (8) is almost zero. The parameter
area providing non-zero value of integrand in Eq. (8) is located in the tail of the posterior
distribution when p(w|Xn) converges to Wt

X \ W p
XY .

6.3 Failure of parameter sampling from the posterior distribution

In the previous subsection, parameter sampling from the posterior distribution can make an
adverse effect on the calculation of the distribution of the latent variable. Here, in the other
way, we show that latent-variable sampling can construct an undesired posterior distribution.
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There are methods to sample a sequence of {w, Yn} from p(w, Yn |Xn). Ignoring Yn , we
obtain the sequence {w}. The Gibbs sampling in the MCMC method (Robert and Casella
2005) is one of the representative techniques.

[Gibbs Sampling for a Model with a Latent Variable]

1. Initialize the parameter;
2. Sample Yn based on p(Yn |w, Xn);
3. Sample w based on p(w|Y n, Xn);
4. Iterate by alternately updating Step 2 and Step 3.

The sequence of {w, Yn} obtained by this algorithm follows p(w, Yn |Xn). The extracted
parameter sequence {w} is assumed to be samples from the posterior because pG(w|Xn) =∑

Yn p(w, Yn |Xn) is theoretically equal to p(w|Xn). However, in the mixture models, the
practical value of pG(w|Xn) based on the Monte Carlo method can be different from that of
the original posterior p(w|Xn) when the hyperparameter for the mixing ratio η1 is large.

Let us consider the expression

− ln p(Xn, Yn, w) = − ln
n∏

i=1

K∏

k=1

a
δyi k

k f (xi |bk)δyi k − ln ϕ(w; η)

= −
K∑

k=1

δyi k ln ak −
n∑

i=1

K∑

k=1

δyi k ln f (xi |bk) − ln ϕ(w; η).

We determine a location of a pair (w̄, Ȳ n) that minimizes this expression in the asymptotic
case n → ∞ because the relation p(Xn, Yn, w) ∝ p(w, Yn |Xn) indicates that the sequence
{w, Yn} ismainly taken from theneighborhoodof the pair. The third termof the last expression
does not have any asymptotic effect because it has the constant order on n. The first two terms
have the same expression as Eq. (13). Based on the calculation of S′

j (X
n, Yn), w̄ ∈ W p

XY and

Ȳ n = argmaxYn p(Xn, Yn, w̄). Therefore, the practical value of pG(w|Xn) is calculated by
the sequence {w} aroundW p

XY for any η1 while the convergence area of the original p(w|Xn)

depends on the phase of F(Xn) controlled by η1.
In Example 2, the posterior p(w|Xn) converges toWt

2 when η1 is large. On the other hand,
the sampled sequence based on p(Xn, Yn, w) are mainly fromW1 ∪W3 since S′

2(X
n, Ȳ n

2 ) >

S′
1(X

n, Ȳ n
1 ) = S′

3(X
n, Ȳ n

3 ), where Ȳ n
j stands for the assignment minimizing S′

j (X
n, Yn). In

order to construct the sequence {w} following p(w|Xn), we need samples (w, Yn) ∈ W2×Ȳ n
2 ,

which are located in the tail of p(w, Yn |Xn). In theory, the sequence {w} from p(w, Yn |Xn)

realizes the one from p(w|Xn). However, in practice, it is not straightforward to obtain
{w, Yn} from the tail of p(w, Yn |Xn). This property of the Gibbs sampling has been reported
in a Gaussian mixture model (Nagata and Watanabe 2009). The experimental results show
that the obtained sequence of {w} is localized in the area corresponding to W p

XY . Note that
there is no failure of the MCMC method when η1 is sufficiently small, where the peaks of
p(w|Xn) and p(w, Yn |Xn) are in the same area. Thus, to judge the reliability of the MCMC
sampling, we have to know the phase transition point such as η1 = 1/2 in Lemma 1.

7 Conclusions

The present paper clarifies the asymptotic accuracy of the Bayes latent-variable estimation.
The dominant order is at most ln n/n, and its coefficient is determined by a positional relation
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between the largest poles of the zeta functions. According to the mixture-model case, it is
suggested that the order is dominant and the coefficient is affected by the redundancy of the
learning model and the hyperparameters. The accuracy of prediction can be approximated
by methods such as the cross-validation and bootstrap methods. On the other hand, there
is no approximation for the accuracy of latent-variable estimation, which indicates that the
theoretical result plays a central role in evaluating the model and the estimation method.

Appendix 1

Here, we prove Theorems 2 and 3, and Corollary 1.

Proof of Theorem 2

Proof Let us define another average free energy as

FXY (n) = −nSXY + EXY

[
− ln Z(Xn, Yn)

]
,

where the entropy function is given by

SXY = −
K∑

y=1

∫
q(x, y) ln q(x, y)dx .

According to the definitions of the error function D(n) and the Bayes estimation method
Eq. (9), it holds that

nD(n) = EXY

[
ln

q(Xn, Yn)

Z(Xn, Yn)

]
− EX

[
ln

q(Xn)

Z(Xn)

]

= −nSXY − EXY

[
ln Z(Xn, Yn)

]
+ nSX + EX

[
ln Z(Xn)

]

= FXY (n) − FX (n).

Based on (A1), (A2), and algebraic geometrical analysis, we obtain the asymptotic forms of
FXY (n) and FX (n):

FXY (n) = λXY ln n − (mXY − 1) ln ln n + O(1),

FX (n) = λX ln n − (mX − 1) ln ln n + O(1),

which proves the theorem. ��

Outline of the calculation of a pole of the zeta function

We will show the outline of calculation to find a pole. Let us introduce some useful lemmas
for the zeta function. The proofs are omitted because they are almost obvious due to the
relation between the free energy and the zeta function.

Lemma 2 Let the largest poles of the zeta functions
∫
H1(w)zϕ(w)dw and

∫
H2(w)zϕ(w)dw

be z = −λ1 and z = −λ2, respectively. It holds that λ1 ≤ λ2 when H1(w) ≤ H2(w) on the
support of ϕ(w).
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Lemma 3 Under the same conditions as Lemma 2, it holds that λ1 = λ2 if there exist positive
constants C1 and C2 such that C1H2(w) ≤ H1(w) ≤ C2H2(w).

We define an equivalence relation H1(w) ≡ H2(w) due to λ1 = λ2 in Lemma 3.
Let us now calculate a general zeta function

∫
H(w)zϕ(w)dw. First, we focus on the

restricted area Wres , which is the neighborhood of {w : H(w) = 0} in the parameter space
because poles of the zeta function do not depend on other areas (Watanabe 2001). Next, we
need a function H alg(w), which is a polynomial of w and satisfies H(w) ≡ H alg(w). Based
on Lemma 3, the largest pole of the zeta function

∫
Wres

H alg(w)zϕ(w)dw is the same as that
of the original zeta function. According to the resolution of singularities (Hironaka 1964),
there is a mapping u = Φ(w) such that

H alg(Φ(w)) = a(u)u2α11 u2α22 . . . u2αdd , (14)

where a(u) is a non-zero analytic function in {u:H(Φ(w)) = 0}, and α1, . . . , αd are inte-
gers. Let |Φ| = |u1|β1 . . . |ud |βd be the Jacobian, and the prior distribution is described as
ϕ(Φ(w)) = uγ1

1 . . . uγd
d , where βi and γi are integers. Then, it holds that

∫

Wres

H alg(w)zϕ(w)dw =
∫

Φ(Wres )

H alg(Φ(w))zϕ(Φ(w))|Φ|du

=
∫

Φ(Wres )

a(u)

d∏

i=1

u2αi z+γi
i |ui |βi du.

Calculating the integral over ui in the last expression, we find that the zeta function has
factors (2αi z + βi + γi + 1)−1. This means that there are poles z = −(βi + γi + 1)/(2αi ).

When it is not straightforward to find the multiple form such as Eq. (14), we can consider
a partially-multiple form;

H alg(Φ(w)) = a(u)u2α11 g(u \ u1),
where the function g(u \ u1) can be a polynomial of u \ u1. The zeta function is written as

∫

Φ(w)

a(u)g(u \ u1)u2α1z+γ1
1 |u1|β1du.

Calculating the integral over u1, we obtain a pole z = −(β1 + γ1 + 1)/(2α1).
Assume that we obtain a partially-multiple form as the upper bounds such that

H alg(w) ≤ a(u)u2α11 g(u \ u1),
where the Jacobian and the prior include factors |u1|β1 and uγ1

1 , respectively. Due to Lemma
2, a pole of the zeta function with respect to the right-hand side provides the upper bounds
λ ≤ (β1 + γ1 + 1)/(2α1).

Proof of Theorem 3

The following lemma shows the calculation of λXY .

Lemma 4 The largest pole of the zeta function ζXY (z) is

λXY = K ∗ − 1 + K ∗dc
2

+ (K − K ∗)η1,

mXY = 1.
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Proof (Lemma 4)We consider a restricted parameter space W1, which is a neighborhood of
Wt

XY given by

ak = a∗
k (2 ≤ k ≤ K ∗),

ak = 0 (k > K ∗),
bk = b∗

k (1 ≤ k ≤ K ∗).

This is a generalization of W1 in Example 2. The Kullback–Leibler divergence has the
expression

HXY (w) =
K ∗∑

k=1

a∗
k

{
ln

a∗
k

ak
+

∫
f (x |b∗

k ) ln
f (x |b∗

k )

f (x |bk)dx
}

≡
(
1 −

K ∗∑

k=2

a∗
k

)
ln

1 − ∑K ∗
k=2 a

∗
k

1 − ∑K
k=2 ak

+
∫

f (x |b∗
1) ln

f (x |b∗
1)

f (x |b1)dx

+
K ∗∑

k=2

{
a∗
k ln

a∗
k

ak
+

∫
f (x |b∗

k ) ln
f (x |b∗

k )

f (x |bk)dx
}
.

Based on the shift transformation Φ1(w), such that

āk = ak − a∗
k (2 ≤ k ≤ K ∗),

āk = ak (k > K ∗),
b̄km = bkm − b∗

km (1 ≤ k ≤ K ∗, 1 ≤ m ≤ dc),

b̄km = bkm (k > K ∗, 1 ≤ m ≤ dc),

we can find an equivalent polynomial described as

HXY (Φ1(w)) ≡
K ∗∑

k=2

ā2k +
K∑

k=K ∗+1

āk +
K ∗∑

k=1

b̄2k ., (15)

where the detailed derivation is in Appendix 2. Let the right-hand side of Eq. (15) be
H alg
XY (Φ1(w)), and consider a zeta function given by

ζ1(z) =
∫

H alg
XY (Φ1(w))zϕ(Φ1(w); η)dΦ1(w).

According to Lemma 3, the positions of the poles of ζ1(z) are the same as those of ζXY (z).
By using a blow-up Φ2 defined by

u2 = ā2,

u2uk = āk (2 < k ≤ K ∗),
u22uk = āk (k > K ∗),

u2vkm = b̄km (1 ≤ k ≤ K ∗, 1 ≤ m ≤ dc),

vkm = b̄km (k > K ∗, 1 ≤ m ≤ dc),

we obtain the following expression in the restricted area,

ζ1(z) =
∫

Φ2Φ1(W1)

f1(Φ2Φ1(w))u2z2 ϕ(Φ2Φ1(w); η)|u2|K ∗−2+K ∗dc+2(K−K ∗)dΦ2Φ1(w),
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where f1 is a function consisting of the parameters except for u2, and a factor on |u2| is derived
from the Jacobian of Φ2. Note that there is not u1 as a parameter in Φ2Φ1(w) since w1 is
already omitted on the basis of the relation a1 = 1−∑K

k=2 ak . The symmetric Dirichlet prior

has a factor
∏

k=2 a
η1−1
k in the original parameter space. According to Φ2Φ1(ak) = u22uk

for k > K ∗, it has a factor u2(K−K ∗)(η1−1)
2 in the space of Φ2Φ1(w), which indicates that

ζ1(z) has a pole at z = −(K ∗ − 1 + K ∗dc)/2 − (K − K ∗)η1. Considering the symmetry
of the parameters in H alg

XY (w), we determine that this pole is the largest and that its order is
mXY = 1, which proves Lemma 4. ��

The result for λX is shown in the following lemma.

Lemma 5 The largest pole of the zeta function ζX (z) has the bound

λX ≤ μ = K ∗ − 1 + K ∗dc
2

+ (K − K ∗)η1
2

.

Proof (Lemma 5) It is known [cf. Yamazaki et al. (2010) ; Section 7.8 of Watanabe (2009)]
that, in the restricted area W1, there are positive constants C1 and C ′

1 such that

HX (w) ≤C1

∫ {
p(x |w)

q(x)
− 1

}2

dx

≡C ′
1

∫ {
p(x |w) − q(x)

}2

dx .

Using Φ1(w), we obtain

HX (Φ1(w)) ≤C ′
1

∫ { K ∗∑

k=2

āk
(
f (x |b̄k + b∗

k ) − f (x |b̄1 + b∗
1)

)

+
K ∗∑

k=2

a∗
k

(
f (x |b̄k + b∗

k ) − f (x |b∗
k )

)

+
⎛

⎝1 −
K ∗∑

k=2

a∗
k

⎞

⎠(
f (x |b̄1 + b∗

1) − f (x |b∗
1)

)

+
K∑

k>K ∗
āk

(
f (x |b̄k) − f (x |b̄1 + b∗

1)
)}2

dx .

Because f (x |bk) is a regular model, there is a positive constant C2 such that

HX (Φ1(w)) ≤C2

{ K ∗∑

k=2

ā2k +
K ∗∑

k=2

b̄2k + b̄21 +
K∑

k>K ∗
ā2k

}
(16)

inW1, where the detailed derivation is inAppendix 2. Let the right-hand side be H
alg
X (Φ1(w)),

and consider a zeta function given by

ζ2(z) =
∫

Φ1(W1)

H alg
X (Φ1(w))zϕ(Φ1(w); η)dΦ1(w).
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According to Lemma 2, a pole z = −μ of the zeta function ζ2(z) provides bounds for the
largest pole of ζX (z), such that z = −λX ≥ −μ. By using a blow-up Φ3 defined by

u2 = ā2,

u2uk = āk (2 < k ≤ K ∗),
u2uk = āk (k > K ∗),

u2vkm = b̄km (1 ≤ k ≤ K ∗, 1 ≤ m ≤ dc),

vkm = b̄km (k > K ∗, 1 ≤ m ≤ dc),

we obtain

ζ2(z) =
∫

Φ3Φ1(W1)

f2(Φ3Φ1(w))u2z2 ϕ(Φ3Φ1(w); η)|u2|K ∗−2+K ∗dc+(K−K ∗)dΦ3Φ1(w),

where f2 is a function of the parameters except for u2, and the factor on |u2| is derived from
the Jacobian of Φ3. It is easy to confirm that the Dirichlet prior has a factor u(K−K ∗)(η1−1)

2 .
Therefore, ζ2(z) has a pole at z = −μ = −(K ∗ − 1 + K ∗dc)/2 − (K − K ∗)η1/2, which
proves Lemma 5. ��

We are now prepared to prove Theorem 3.

Proof (Theorem 3) According to Theorem 2, it holds that

D(n) = (λXY − λX )
ln n

n
+ o

(
ln n

n

)
.

Combining Lemmas 4 and 5, we obtain

D(n) ≥
{
K ∗ − 1 + K ∗dc

2
+ (K − K ∗)η1

− K ∗ − 1 + K ∗dc
2

− (K − K ∗)η1
2

}
ln n

n
+ o

(
ln n

n

)

= (K − K ∗)η1
2

ln n

n
+ o

(
ln n

n

)
,

which completes the proof. ��

Proof of Corollary 1

Proof Since HX (w) has the bound,

HX (w) ≤ C1

∫ (
p(x |w)

q(x)
− 1

)2

dx, (17)

Lemma 5 immediately holds. Due to the analytic divergence HXY (w), Lemma 4 also holds.
Combining these lemmas, we obtain the same lower bound as Theorem 3. In the Gaussian
mixture,

HXY (w) =
K ∗∑

y=1

∫
q(x, y) ln

a∗
y f (x |b∗

y)

ay f (x |by)dx

=
K ∗∑

y=1

a∗
y ln

a∗
y

ay
+

K ∗∑

y=1

a∗
y f (x |b∗

y) ln
f (x |b∗

y)

f (x |by)dx .
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Because f (x |b) is identifiable, HXY (w) is analytic. Section 7.8 in (Watanabe 2009) shows
that HX (w) has the upper bound expressed as Eq. (17) in the Gaussian mixture, which proves
the corollary. ��

Appendix 2

This section shows supplementary proofs for some equations in the proof of Theorem 3.
According to the analysis with the Newton diagram (Yamazaki et al. 2010), the following

relations hold;

w1 + {
h0(w \ w1) + w1h1(w)

}2 ≡ w1 + h0(w \ w1)
2, (18)

w2
1 + {

h0(w \ w1) + w1h1(w)
}2 ≡ w2

1 + h0(w \ w1)
2, (19)

w1 + w1h1(w) ≡ w1, (20)

w2
1 + w2

1h1(w) ≡ w2
1, (21)

wherew = {w1, w2, . . . , wd}, and h0 and h1 are polynomial. Using these relations, we prove
Eqs. (15) and (16).

Proof of Equation (15)

Recall that the Kullback–Leibler divergence has the following equivalent expression;

HXY (w) =
K ∗∑

k=1

a∗
k

{
ln

a∗
k

ak
+

∫
f (x |b∗

k ) ln
f (x |b∗

k )

f (x |bk)dx
}

≡
(
1 −

K ∗∑

k=2

a∗
k

)
ln

1 − ∑K ∗
k=2 a

∗
k

1 − ∑K
k=2 ak

+
∫

f (x |b∗
1) ln

f (x |b∗
1)

f (x |b1)dx

+
K ∗∑

k=2

{
a∗
k ln

a∗
k

ak
+

∫
f (x |b∗

k ) ln
f (x |b∗

k )

f (x |bk)dx
}
.

Based on the transformation Φ1(w) and the Taylor expansion of ln(1 + Δx) around
|Δx | = 0, we obtain

HXY (Φ1(w)) ≡ −
(
1 −

K ∗∑

k=2

a∗
k

)
ln

(
1 −

K∑

k=2

āk

1 − ∑K ∗
k=2 a

∗
k

)

+
∫

f (x |b∗
1) ln

f (x |b∗
1)

f (x |b∗
1 + b̄1)

dx

+
K ∗∑

k=2

{
− a∗

k ln

(
1 + āk

a∗
k

)
+

∫
f (x |b∗

k ) ln
f (x |b∗

k )

f (x |b∗
k + b̄k)

dx

}

≡
K∑

k=2

āk −
K ∗∑

k=2

āk

− 1

2

(
1 −

K ∗∑

k=2

a∗
k

)−1( K∑

k=2

āk

)2

+ 1

2

K ∗∑

k=1

a∗−1
k ā2k + hr (w)
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+
K ∗∑

k=1

∫
f (x |b∗

k ) ln
f (x |b∗

k )

f (x |b∗
k + b̄k)

dx,

where hr (w) includes the higher order terms on āk . By applying Eq. (19) to ā2k , it holds that

HXY (Φ1(w)) ≡
K∑

k=2

āk −
K ∗∑

k=2

āk

+ 1

2

K ∗∑

k=1

a∗−1
k ā2k + hr (w)

+
K ∗∑

k=1

∫
f (x |b∗

k ) ln
f (x |b∗

k )

f (x |b∗
k + b̄k)

dx

=
K∑

k=K ∗+1

āk + 1

2

K ∗∑

k=1

a∗−1
k ā2k + hr (w)

+
K ∗∑

k=1

∫
f (x |b∗

k ) ln
f (x |b∗

k )

f (x |b∗
k + b̄k)

dx .

Due to Eqs. (20) and (21), hr (w) is excluded;

HXY (Φ1(w)) ≡
K ∗∑

k=2

ā2k +
K∑

k=K ∗+1

āk +
K ∗∑

k=1

∫
f (x |b∗

k ) ln
f (x |b∗

k )

f (x |b∗
k + b̄k)

dx .

Because f (x |bk) is regular, it is known that
∫

f (x |b∗
k ) ln

f (x |b∗
k )

f (x |b∗
k + b̄k)

dx ≡ b̄2k ,

which proves that

HXY (Φ1(w)) ≡
K ∗∑

k=2

ā2k +
K∑

k=K ∗+1

āk +
K ∗∑

k=1

b̄2k .

��

Proof of Equation (16)

Recall that the Kullback–Leibler divergence HX (Φ1(w)) has the following bound;

HX (Φ1(w)) ≤ C ′
1

∫ { K ∗∑

k=2

āk
(
f (x |b̄k + b∗

k ) − f (x |b̄1 + b∗
1)

)

+
K ∗∑

k=2

a∗
k

(
f (x |b̄k + b∗

k ) − f (x |b∗
k )

)

+ (
1 −

K ∗∑

k=2

a∗
k

)(
f (x |b̄1 + b∗

1) − f (x |b∗
1)

)
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+
K∑

k>K ∗
āk

(
f (x |b̄k) − f (x |b̄1 + b∗

1)
)}2

dx .

In the area Φ1(W1), there is a positive constant C ′′
1 such that

HX (Φ1(w)) ≤ C ′′
1

{ K ∗∑

k=1

ā2k

∫ (
f (x |b̄k + b∗

k ) − f (x |b̄1 + b∗
1)

)2
dx

+
K ∗∑

k=1

∫ (
f (x |b̄k + b∗

k ) − f (x |b∗
k )

)2
dx +

K∑

k>K ∗
ā2k

}
. (22)

The Taylor expansion at b̄k yields

f (x |b̄k + b∗
k ) = f (x |b∗

k ) + b̄�
k

∂

∂ b̄k
f (x |b∗

k ) + · · · .

The second term of the right-hand side in Eq. (22) has the following bound,

K ∗∑

k=1

∫ (
f (x |b̄k + b∗

k ) − f (x |b∗
k )

)2

dx ≤ Cb

K ∗∑

k=1

{
b̄2k + b̄2khr (b̄k)

}
,

where Cb is a positive constant and b̄2khr (b̄k) stands for the rest of the terms. Based on
Eq. (21), the bound has the equivalent form,

K ∗∑

k=1

{
b̄2k + b̄2khr (b̄k)

}
≡

K ∗∑

k=1

b̄2k ,

which changes the first term of Eq. (22) into

ā2k

∫ (
f (x |b̄k + b∗

k ) − f (x |b̄1 + b∗
1)

)2
dx ≡ ā2k

due to Eq. (19). Then, there is a positive constant C2 such that

HX (Φ1(w)) ≤ C2

{ K ∗∑

k=2

ā2k +
K ∗∑

k=2

b̄2k + b̄21 +
K∑

k>K ∗
ā2k

}
.

��

Appendix 3

Proof of Lemma 1

Proof The calculation is based on the way of the proof of Theorem 3. Define the shift
transformation Φ4 given by

ā = 1 − a,

b̄1 = (1 − ā)(b1 − b∗) + āb̄2,

b̄2 = b2 − b∗.

This corresponds to focusing on the area W1 ∪ W2. Following the calculation of Yamazaki
et al. (2010), we obtain
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HX (Φ4(w)) ≡ b̄21 + ā2b̄42.

Let the right-hand side be H alg
X2 (w), and consider a zeta function given by

ζ3(z) =
∫

W1∪W2

H alg
X2 (Φ4(w))zϕ(Φ4(w); η)dΦ4(w).

By using a blow-up Φ5 defined by

ā = v1v2,

b̄1 = u21v1,

b̄2 = u1,

we obtain the following expression,

ζ3(z) =
∫

Φ5Φ4(W1∪W2)

f3(Φ5Φ4(w))u4z1 v2z1 ϕ(Φ5Φ4(w); η)|u1|2|v1|dΦ5Φ4(w),

where f3 is a function of the parameter v2. The prior has a factor v
η1−1
1 . Therefore, ζ3(z) has

poles at z = −3/4 and z = −(1 + η1)/2, which are calculated from the factors u1 and v1,
respectively. Considering the cases u1 = 0 and v1 = 0, we find that the effective area of the
pole z = −3/4 is W2 and that of z = −(1 + η1)/2 is W1. Due to the symmetry, the area
W2 ∪ W3 has the same poles. Then, the largest pole changes at η1 = 1/2, where the order of
the pole is mX = 2. This completes the proof. ��

Proof of Theorem 1

First, we introduce tighter upper bounds on λX .

Lemma 6 Under the same condition as in Theorem 3, it holds that

λX ≤
{

K ∗−1+K ∗dc
2 + K−K ∗

2 η1 η1 ≤ dc,
K ∗−1+K ∗dc

2 + (K−K ∗)dc
2 η1 > dc.

Proof Consider the area W2, which is the neighborhood of

ak = a∗
k (2 ≤ k ≤ K ∗)

bkm = b∗
km (1 ≤ k ≤ K ∗, 1 ≤ m ≤ dc)

bkm = b∗
1m (k > K ∗, 1 ≤ m ≤ dc).

Let us define the shift transformation Φ5 given by

āk = ak − a∗
k (2 ≤ k ≤ K ∗)

b̄km = bkm − b∗
km (1 ≤ k ≤ K ∗, 1 ≤ m ≤ dc)

b̄km = bkm − b∗
1m (k > K ∗, 1 ≤ m ≤ dc).

Based on the Taylor expansion of f (x |b̄k + b∗
k ), there is a positive constant C3 such that

HX (Φ5(w)) ≤ C3

{ K ∗∑

k=2

ā2k +
K∑

k=1

b̄2k

}
.
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Let the right-hand side be H alg
X3 (w), and consider a zeta function given by

ζ4(z) =
∫

Φ6(W21)

H alg
X3 (Φ6(w))zϕ(Φ6(w); η)dΦ6(w).

By using a blow-up Φ7 defined by

u2 = ā2,

u2uk = āk (2 ≤ k ≤ K ∗),
uk = āk (k > K ∗),

u2vkm = b̄km (1 ≤ k ≤ K , 1 ≤ m ≤ dc),

we obtain the following expression:

ζ4(z) =
∫

Φ7Φ6(W21)

f4(Φ7Φ6(w))u2z2 ϕ(Φ7Φ6(w); η)|u2|K ∗−2+KdcdΦ7Φ6(w),

where f4 is a function consisting of the parameters except for u2. Therefore, ζ4(z) has a pole
at z = −(K ∗ − 1 + Kdc)/2, which shows that

λX ≤ K ∗ − 1 + K ∗dc
2

+ (K − K ∗)dc
2

.

Compared to the result of Lemma 5, we find that the bounds are tighter when η1 > dc, which
proves the lemma. ��

Second, the following lemma shows the lower bound of λX ;

Lemma 7 Under the same condition as in Theorem 3, it holds that

λX >
K ∗ − 1 + K ∗dc

2
.

Proof We can immediately obtain the inequality based on the minimality condition of q(x)
and d > K ∗ − 1 + K ∗dc. ��

Last, using these lemmas, we prove Theorem 1. As shown in the proofs of Lemmas 5 and
6, λX is a linear function of η1 due to the factor aη1−1

k in the Dirichlet prior. The upper and
lower bounds imply that, for η1 close to zero, there exists a constant α such that

λX = αη1 + β,

where β = (K ∗ − 1 + K ∗dc)/2. Eliminated components appear in αη1 since their mixing
ratio parameters converge to zero in the effective area, and the prior factor aη1−1

k works on
the calculation of the pole of ζX (z). The phase in the upper bounds eliminates all redundant
components, and the constant term β in the above expression is the same value as that of
the bounds. This means that the redundant components are all eliminated in this phase. On
the other hand, the upper bounds also indicate that λX must be a constant function for a
sufficiently large η1. When there is no linear factor of η1 in λX , all mixing ratio parameters
converge to nonzero values; all components are used in this phase. Therefore, we have found
the two phases, as desired. ��
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