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Abstract Regression is a fundamental problem in statistical data analysis, which aims at
estimating the conditional mean of output given input. However, regression is not informative
enough if the conditional probability density is multi-modal, asymmetric, and heteroscedas-
tic. To overcome this limitation, various estimators of conditional densities themselves have
been developed, and a kernel-based approach called least-squares conditional density esti-
mation (LS-CDE) was demonstrated to be promising. However, LS-CDE still suffers from
large estimation error if input contains many irrelevant features. In this paper, we there-
fore propose an extension of LS-CDE called sparse additive CDE (SA-CDE), which allows
automatic feature selection in CDE. SA-CDE applies kernel LS-CDE to each input feature
in an additive manner and penalizes the whole solution by a group-sparse regularizer. We
also give a subgradient-based optimization method for SA-CDE training that scales well to
high-dimensional large data sets. Through experiments with benchmark and humanoid robot
transition datasets, we demonstrate the usefulness of SA-CDE in noisy CDE problems.
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1 Introduction

Estimating the statistical dependency between input x and output y plays a crucial role in
various real-world applications. For example, in robot transition estimation which is highly
useful inmodel-based reinforcement learning (Sutton andBarto 1998), input x corresponds to
the pair of the current state of a robot and an action the robot takes, and output y corresponds
to the destination state after taking the action. Another application is disease diagnosis,
in which input x corresponds to measurements of biomarkers and/or clinical images and
output y corresponds to the presence (or the progression level) of a disease. Thus, accurately
estimating the statistical dependency is an important and fundamental problem in statistical
data analysis. The most basic approach to this problem is regression, which estimates the
conditional mean of output y given input x. Regression gives the optimal estimation of
output y for additive Gaussian output noise. However, if the conditional probability density
of output y given input x, denoted by p( y|x), possessesmore complex structure such asmulti-
modality, asymmetry, and heteroscedasticity, estimating the conditional mean by regression
is not necessarily informative.

To overcome the limitation of regression, estimation of conditional densities from paired
samples {(x(n), y(n))}Nn=1 has been investigated. The most naive approach to estimating
p( y|x = x̃), the conditional density of output y at test input point x = x̃, is to use the
kernel density estimator (KDE) (Silverman 1986) with samples such that ‖x(n) − x̃‖22 ≤ ε.
However, this naive method does not work well in high-dimensional problems. Slightly more
sophisticated variants have been proposed that use weighted KDE (Fan et al. 1996; Wolff et
al. 1999), but they still share the same weakness.

Themixture density network (MDN) (Bishop 2006) uses a mixture of parametric densities
for modeling the conditional density, and the parameters are estimated by a neural network as
functions of input x. MDNwas demonstrated to work well, but its training is time-consuming
and only a local optimal solution may be found due to the non-convexity of neural network
training. A similar method based on a mixture of Gaussian processes was developed (Tresp
2001), which can be trained in a computationally more efficient way by the expectation-
maximization algorithm (Dempster et al. 1977). However, due to the non-convexity of the
optimization problem, it is difficult to find the global optimal solution.

Kernel quantile regression (KQR) (Takeuchi et al. 2006; Li et al. 2007) gives non-
parametric percentile estimates of conditional distributions through convex optimization.
KQR can be used for estimating the entire conditional cumulative distribution by solving
KQR for all percentiles. It was shown that the regularization path tracking technique (Hastie
et al. 2004) can be employed for efficiently computing the entire conditional cumulative
distribution (Takeuchi et al. 2009). However, KQR is applicable only to one-dimensional
output, which limits the range of applications significantly.

Least-squares conditional density estimation (LS-CDE) allows estimation of multiple-
input-multiple-output conditional densities by directly learning a conditional density model
with least-squares estimation (Sugiyama et al. 2010). For linear-in-parameter models such
as a linear combination of Gaussian kernels, LS-CDE is formulated as a convex optimization
problem and its solution can be obtained efficiently and analytically just by solving a system
of linear equations. Furthermore, kernel LS-CDE was proved to achieve the optimal non-
parametric convergence rate to the true conditional density in the mini-max sense, meaning
that no method can be better than LS-CDE asymptotically. Through extensive experiments,
LS-CDE was demonstrated to compare favorably with competing approaches.

However, LS-CDE still suffers from large estimation error when many irrelevant features
exist in input x. Such irrelevant features are conceivable in many real-world problems. For
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example, in gene expression analysis for diseased cells, only a small subset of biomarker
genes (input) affects the disease status (output). A standard way to cope with high input
dimensionality is to select relevant features with forward selection or backward elimination
(Guyon and Elisseeff 2003), but this often leads to a local optimal set of features.

In this paper, we propose extending LS-CDE to allow simultaneous feature selection dur-
ing conditional density estimation. More specifically, we apply kernel LS-CDE to each input
feature in an additive manner and penalize the whole solution by a group-sparse regularizer
(Yuan and Lin 2006). Our subgradient-based optimization solver allows computationally
efficient selection of relevant features that are even non-linearly correlated with output y.
Numerical experiments on noisy conditional density estimation demonstrate that our pro-
posed method, which we call sparse additive CDE (SA-CDE), compares favorably with
baseline approaches in estimation accuracy and computational efficiency.

The remainder of this paper is structured as follows. In Sect. 2, we formulate the problem
of conditional density estimation and describe our proposed SA-CDE method. We experi-
mentally evaluate the performance of SA-CDE in Sect. 3, and we summarize our contribution
in Sect. 4.

2 Conditional density estimation with sparse feature selection

In this section, we formulate the problem of conditional density estimation and describe our
proposed SA-CDE method.

2.1 Problem formulation

Let

x = (x1, . . . , xDx )
T ∈ R

Dx

be an input vector and y ∈ R
Dy be an output vector, where R is the set of all real numbers,

Dx is the dimension of the input vector, and Dy is the dimension of the output vector. We are
given i.i.d. input-output paired samples of size N following the joint probability distribution
with density p(x, y):

(x(1), y(1)), . . . , (x(N ), y(N )). (1)

We assume that only some of the input features are relevant to output y. Then, such
relevant features are sufficient for predicting output y (Li 1991; Cook and Ni 2005):

p
(

y
∣

∣x
) = p

(

y
∣

∣x+), (2)

where x+ is the sub-vector of x that consists only of relevant features.
Our goal is to estimate the conditional density p( y|x) from the training samples (1) via

sufficient feature selection (2).

2.2 Sparse additive conditional density estimation

We use an additive conditional density model:

p̂( y|x) :=
Dx
∑

d=1

r̂d( y, xd), (3)
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where r̂d( y, xd) is an unnormalized estimator with the dth input feature xd . We use a linear
combination of B basis functions as r̂d( y, x):

r̂d( y, x) :=
B
∑

b=1

αd,b

{

ηb
(

y
) · ϕd,b

(

x
)

}

= αT
d

{

η
(

y
) ◦ ϕd

(

x
)

}

, d = 1, . . . , Dx , (4)

where

αd = (αd,1, . . . , αd,B)T ∈ R
B+

is a parameter vector for the dth input xd ,

η
(

y
) = (η1

(

y
)

, . . . , ηB
(

y
)

)T

is a vector of basis functions for output y,

ϕd

(

x
) = (ϕd,1

(

x
)

, . . . , ϕd,B
(

x
)

)T

is a vector of basis functions for the dth input xd , and ◦ denotes the Hadamard (or element-
wise) product. We use the following Gaussian kernels as the basis functions:

ηb
(

y
) := exp

(

−‖ y − νb‖2
2σ 2

)

, b = 1, . . . , B, (5)

ϕd,b
(

xd
) := exp

(

− (xd − μd,b)
2

2σ 2

)

, d = 1, . . . , Dx , b = 1, . . . , B, (6)

where νb and μd,b are the Gaussian centers and σ is the Gaussian width. The Gaussian
centers are fixed at the points chosen randomly from training samples. On the other hand,
the Gaussian width will be optimized by cross-validation (see Sect. 2.5). For simplicity, we
assume that input x and output y of the training samples (1) are both normalized element-
wise to have the unit variance in advance and use the common Gaussian width σ . Note that
the magnitude of parameter αd may reflect the relevance between the dth feature and output
y.

Figures 1 and 2 illustrate two examples of the additive function model (3). The first
example shown in Fig. 1 is

r (A)
1 (y, x1) = N

(

y| sin(x1), 1
4

)

and r (A)
2 (y, x2) = 0,

(a) (b) (c)

Fig. 1 Conditional density function in which output y is relevant to only input x1
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(a) (b) (c)

Fig. 2 Conditional density function in which output y is relevant to both input x1 and x2

while the second example shown in Fig. 2 is

r (B)
1 (y, x1) = 1

2
N
(

y| sin(x1), 1
4

)

and r (B)
2 (y, x2) = 1

2
N
(

y|1
4
x2,

1

4

)

.

Note that r2(y, x2) is only different in these two examples. In the density function
p(A)(y|x1, x2) shown in Fig. 1c, x2 does not affect output y. On the other hand, in density
function p(B)(y|x1, x2) shown in 2c, output y varies depending on x2. This illustrates that
the magnitude of r (B)

d (y, xd), which is controlled by αd , may reflect the relevance between
the dth feature and output y.

Our optimization parameters to be learned in model (3) are

α := (αT
1 , . . . ,αT

Dx
)T ∈ R

B·Dx .

We learn α to minimize the squared error between true conditional density p( y|x) and our
estimator p̂( y|x)

J0(α) := 1

2

∫ ∫

(

p̂( y|x) − p( y|x)
)2

p(x)d ydx. (7)

Substituting our model (3) and p( y, x) = p( y|x)p(x) into (7), we have

J0(α) = 1

2

Dx
∑

d1,d2=1

∫ ∫ ∫

r̂d1( y, xd1)r̂d2( y, xd2)p(xd1 , xd2)d ydxd1dxd2

−
Dx
∑

d=1

∫ ∫

r̂d( y, xd)p( y, xd)d ydxd + Const. (8)

Using empirical approximation and ignoring the constant term, we can approximate the
loss function as follows (the detailed derivation is described in “Appendix 1”):

Ĵ0(α) = 1

2N

Dx
∑

d1,d2=1

N
∑

n=1

∫

r̂d1
(

y, x (n)
d1

)

r̂d2
(

y, x (n)
d2

)

d y

− 1

N

Dx
∑

d=1

N
∑

n=1

r̂d
(

y(n), x (n)
d

)

(9)

= 1

2
αTHα − hTα, (10)

where H ∈ R
B·Dx×B·Dx and h ∈ R

B·Dx are given by
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H :=
⎛

⎜

⎝

H1,1 · · · H1,Dx

...
. . .

...

HDx ,1 · · · HDx ,Dx

⎞

⎟

⎠
. (11)

[Hd1,d2 ]b1,b2 :=
(√

πσ
)Dy

N
exp

(

−‖νb1 −νb2‖2
4σ 2

)

×
N
∑

n=1

exp

(

− (x (n)
d1

−μd1,b1)
2

2σ 2 − (x (n)
d2

−μd2,b2)
2

2σ 2

)

,

d1, d2 = 1, . . . , Dx , b1, b2 = 1, . . . , B, (12)

h :=
(

hT1 , . . . , hTDx

)T
, (13)

hd,b := 1

N

N
∑

n=1

exp

(

−‖ y(n)−νb‖2
2σ 2 − (x (n)

d −μd,b)
2

2σ 2

)

,

d = 1, . . . , Dx , b = 1, . . . , B. (14)

To perform feature selection in our additive CDE model, we introduce an (�1, �2)-mixed
norm:

	(α) :=
Dx
∑

d=1

∥

∥

∥αd

∥

∥

∥

2
. (15)

In the mixed norm 	(α), the parameter vector α is grouped in the sub-vectors α1, . . . ,αDx .
Minimizing a loss function penalizedwith	(α) tends to produce a group-wise sparse solution
(Yuan and Lin 2006), which means that the penalized optimization can be useful for selecting
a relevant subset of input variables:

min
α≥0

J (α) := Ĵ0(α) + λ 	(α), (16)

where λ ≥ 0 is the regularization parameter. Note that empirical squared error Ĵ0(α) is
differentiable and convex because the Hessian matrix H is positive definite. 	(α) is also
convex but non-differentiable. Overall, (16) is a convex optimization problem andwe develop
a fast optimization algorithm below.

2.3 Optimization algorithm

We use a proximal method (Sra et al. 2012; Beck and Teboulle 2009) to solve the optimiza-
tion problem (16). More specifically, we consider a linear approximation to function Ĵ0 at
the current solution α(t), penalized by a proximal term to keep the update confined in the
neighborhood:

min
α≥0

{

Ĵ0
(

α(t)
)

+ ∇ Ĵ0
(

α(t)
)T(

α − α(t)
)

+ λ · 	(α) + L

2

∥

∥

∥α − α(t)
∥

∥

∥

2

2

}

. (17)

Here, L is the Lipchitz constant,1 which is given by the maximum eigenvalue of H in the
current setup. We can describe our update rule analytically as follows (the detailed derivation
is described in “Appendix 2”):

1 The Lipchitz constant L for f (x) satisfies ‖∇ f (x) − ∇ f ( y)‖2 ≤ L‖x − y‖2 for arbitrary x and y.
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Algorithm 1 SA-CDE

1: Initialization: t ← 0, α(0) = 0, and ε > 0.
2: Compute H and h by (11) and (13), respectively.
3: Set L to the maximum eigenvalue of H .
4: repeat

5: u ←
[

α(t) − 1
L

(

Hα(t) − h
)]

+
6: α

(t+1)
d ←

[

1 − λ
L·‖ud‖2

]

+ · ud , for d = 1 to Dx .

7: until ‖α(t+1) − α(t)‖ < ε

8: Normalize the optimized conditional density by (20).

α
(t+1)
d ←

[

1 − λ

L · ‖ud‖2
]

+
· ud , d = 1, . . . , Dx , (18)

where ud is the sub-vector of u associated with the dth feature:

u :=
[

α(t) − 1

L
∇ Ĵ0

(

α(t)
)

]

+
. (19)

The operator [·]+ rounds up negative values to zero. This update rule follows the standard
proximal method, meaning that it has the global convergence rate of O

( 1
t

)

, where t is the
number of update iterations.

2.4 Post processing

Because we did not explicitly include the normalization constraint, the optimized conditional
density estimator r̂( y, x) = ∑Dx

d=1 r̂d( y, xd) may not be integrated to one with respect to y.
Here, we renormalize the estimator after optimization as

p̂( y|x) = r̂( y, x)
∫

r̂( y′, x)d y′ . (20)

The denominator can be analytically calculated as

∫

r̂( y, x)d y =
(√

2πσ
)Dy

Dx
∑

d=1

αT
dϕd

(

xd ,μd
)

. (21)

Algorithm 2.4 summarizes our algorithm, which we call sparse additive CDE (SA-CDE).

2.5 Cross-validation for model selection

Performance of SA-CDE depends on the choice of model parameters such as the Gaussian
width σ and the regularization parameter λ. Cross-validation (CV) is available to systemat-
ically choose these model parameters. Throughout this paper, we use fivefold CV: we first
divide the samples into five subsets, then learn the parameter using four subsets, and evaluate
the test error using the held-out subset. This procedure is iterated five times with different
training-test choice and the error is averaged.

We use the negative log-likelihood (NLL) as our metric for evaluating the test error:

NLL = − 1

|T |
∑

n∈T
log p̂( y(n)|x(n)), (22)
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where T is the set of indices of test samples. The smaller the value of NLL is, the better the
performance of the conditional density estimator is. Thus, we chose the model parameters
that minimize the averaged NLL by fivefold CV.

3 Numerical experiments

In this section, we experimentally evaluate the performance of our proposed method,
SA-CDE. Throughout the experiments, the number of basis functions is fixed to B =
min(100, N ). The model parameters σ and λ were chosen from the twenty values between
10−2 and 2 at the equal interval in the logarithmic scale by fivefold CV. We use NLL (22)
for the performance measure of conditional density estimation. NLL is computed from test
samples, which are not used for learning parameters and hyper-parameters. All experiments
were implemented by Matlab 2013b and an HP DL360p Gen8 E5 v2 server with two CPUs
of Xeon E5-2650 v2 2.60GHz (8 Core) and the main memory of 96 GB.

3.1 Compared methods

We compare SA-CDE with the following methods:

– Sparse additive feature selection LSCDE (SA-LSCDE): SA-LSCDE is a variation of
the proposed SA-CDE, which first runs SA-CDE for feature selection and then estimates
the conditionally density by LS-CDE with only selected features.

– ε-neighbor kernel density estimation (eKDE): eKDE estimates a conditional density
by standard kernel density estimation using neighborhood samples in the domain of input
x, denoted by Ix,ε := {x(i) : ‖x(i) − x‖22 ≤ ε} for threshold ε. In the case of Gaussian
kernels, eKDE is given as

p̂( y|x) = 1

|Ix,ε |
∑

i∈Ix,ε

N ( y, y(i), σ 2 IDy ), (23)

where N ( y,μ,�) denotes the Gaussian density function with respect to y with mean
μ and covariance matrix �, and IDx is the identity matrix of size Dx . In experiments,
threshold ε and bandwidth σ were chosen based on fivefold CV with respect to NLL,
where the candidate values of ε are the twenty values between 10−2 and 5 at the equal
interval in the logarithmic scale.

– Least-squares conditional density estimation (LS-CDE): The original LS-CDE
method. This corresponds to a multi-dimensional non-sparse version of SA-CDE where,
instead of the group-sparse penalty and an additive model, an �2-penalty λ‖α‖22 and a
multi-dimensional linear-in-parameter model,

p̂( y|x) := r̂( y, x)

=
B
∑

b=1

αb

{

ηb
(

y
) · ϕb

(

x
)

}

, (24)

is used. We use the Gaussian kernels for both ηb(·) and ϕb(·), where the bandwidth σ

and the regularization parameter λ are chosen based on fivefold CV with respect to NLL.
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Table 1 Computational complexities of our methods and existing CDEs

Method SA-CDE SA-LSCDE LS-CDE e-KDE NW-CDE

Time O(N3D3
x ) O(N3D3

x ) O(N3) O(N2Dx ) O(N2Dx )

Space O(N2D2
x ) O(N2D2

x ) O(N2) O(N2) O(N2)

Table 2 Computational complexities of our methods and existing CDEs with forward feature selection

Method SA-CDE SA-LSCDE FW-LSCDE FW-eKDE FW-NWCDE

Time O(N3D3
x ) O(N3D3

x ) O(Dx !N3) O(Dx !N2) O(Dx !N2)

Space O(N2D2
x ) O(N2D2

x ) O(N2) O(N2) O(N2)

– Nadaraya-Watson CDE (NW-CDE): This corresponds to a simple version of LS-CDE,
which fixes weights of basis functions to 1

B :

p̂( y|x) := p̂( y, x)

p̂(x)

=
∑B

b=1 ηb
(

y
) · ϕb

(

x
)

∑B
b=1 ϕb

(

x
)

. (25)

We use the Gaussian kernels for both ηb(·) and ϕb(·), where the bandwidth σ is chosen
based on leave-one-out CV for the exact likelihood formulated in Holmes et al. (2007).
To directly employ the method in Holmes et al. (2007), we only use B samples in this
CV procedure.

– Forward feature selection + eKDE (FW-eKDE): Forward feature selection is per-
formed based on fivefold CV with respect to NLL. That is, the most useful feature that
maximally reduces the cross-validated NLL by eKDE is selected one by one until the
cross-validated NLL no longer decreases.

– Forward feature selection + LS-CDE (FW-LSCDE): Similarly, forward feature selec-
tion is performed for LS-CDE.

– Forward feature selection + NW-CDE (FW-NWCDE): Similarly, forward feature
selection is performed for NW-CDE.

Tables 1 and 2 summarize the time and space complexities of our proposed method
(SA-CDE and SA-LSCDE) and compared methods for a fixed hyper-parameter, under the
assumption of N � Dx � Dy and O(N ) = O(B). All time complexities for T candidates of
hyper-parameters are T times larger than those in Tables 1 and 2, while all space complexities
does not depend on T . The time complexities of e-KDE and NW-CDE are the smallest,
while CDEs with forward feature selections require larger computational costs. Especially,
FW-LSCDE is worst in terms of the computational complexity. Thanks to the single-shot
procedure of feature selection, SA-CDE and SA-LSCDE are computationally much more
efficient thanFW-LSCDE.The space complexities of allmethods except for SA-CDEandSA-
LSCDE are O(N 2), while those of SA-CDE and SA-LSCDE are O(N 2D2

x ), which increases
with Dx . Overall, the time complexities of SA-CDE and SA-LSCDE are much smaller than
CDEs with forward selection procedures in return for increasing the space complexity.
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Fig. 3 Training samples and estimated conditional densities
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Fig. 4 Regularized path of SA-CDE. The blue line denotes the path of the relevant feature, x1, while lines
with other colors denote paths of irrelevant features x2, . . . , x6. The vertical black dashed line indicates the
value of λ selected by fivefold CV

3.2 Illustrative examples

We first illustrate the behavior of our proposed method, SA-CDE, using toy and benchmark
datasets having one relevant feature x1 and five irrelevant features x2, . . . , x6,

– Toy data 1: x1 is independently generated following the uniform distribution on [−1, 1],
while each of x2, . . . , x6 is generated by x1 + εc where εc is a noise variable following
the normal distribution with mean 0 and standard deviation 3σ̂ , and σ̂ is the standard
deviation of x1. Output y is generated as a function of x1 as

y|x1 ∼ sinc

(

3

4
πx1

)

+ 1

8
exp

(

1 − x1
) · ε, (26)

where ε is standard normal noise. We generate N = 300 samples for estimating the
conditional density.

– Old Faithful Geyser:Abenchmark dataset with Dx = Dy = 1 that consists of durations
of N = 299 eruptions of the Old Faithful Geyser (Weisberg 1985). We add five irrelevant
features x2, . . . , x6 in a similar manner to Toy data 1.

– BoneMineral Density:Abenchmark dataset with Dx = Dy = 1 that consists of relative
spinal bone mineral density measurements on N = 485 North American adolescents
(Hastie et al. 2001). We add five irrelevant features x2, . . . , x6 in a similar manner to Toy
data 1.

Figures 3 and 4 show estimation results for these three datasets. Figure 3 shows estimated
conditional densities: the black circles denote training samples, and the red solid and green
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dashed lines denote the estimates obtained by the proposed SA-CDE and the plain LS-CDE,
respectively. Figure 3a also contains the true conditional density drawn by the blue dashed
line. Figure 4 shows the regularization paths of SA-CDE, i.e. the magnitude of each learned
parameter ‖αd‖2 as a function of the regularization parameter (Hastie et al. 2004). The blue
line denotes the path of the relevant feature, x1, while lines with other colors denote the
paths of irrelevant features x2, . . . , x6. The vertical black dashed line indicates the value of
λ selected by fivefold CV.

The regularization paths in Fig. 4 show that, in (a) Toy data 1 and (b) Old Faithful Geyser,
the parameters corresponding to the irrelevant feature are zero and that corresponding to
the relevant feature is non-zero for the cross-validated solution, which means that SA-CDE
optimally performs feature selection. In Fig. 4c Bone Mineral Density, some of irrelevant
features are non-zero because features with the skewed distribution are strongly correlated
with the relevant feature despite additiveGaussian noise. Thus these featuresmay still contain
some information on the output value.

The estimation results in Fig. 3a show that, SA-CDE gives more accurate estimates than
the plain LS-CDE. In Fig. 3b, c, SA-CDE tends to give sharper conditional density estimates
than the plain LS-CDE. This is because relatively large Gaussian kernel widths are chosen
in LS-CDE to incorporate irrelevant noisy features. This indicates that LS-CDE with many
irrelevant features tend to produce too flat conditional densities which are not informative,
while SA-CDE can avoid this problem by automatically eliminating irrelevant features.

3.3 Comparison of performance and computation time for different numbers of samples

We compare the estimation performance and computation time of our proposedmethods with
existing CDEs for different numbers of training samples, N = 200, 500, 1,000, 2,500, 5,000.
Performance evaluation measures are NLL and MSE (Mean Squared Error) in (7), both of
which are computed from 104 test samples. The integral in MSE (7) is computed based on
the test sample average. Datasets in this experiments are

– Toy data 1: The generation procedure is the same as the one in the previous section, in
which both dimensions of relevant feature (input) and output are one.

– Toy data 2: Each irrelevant x1, x2, x4, x5, . . . , xDx−2, xDx−1 is independently generated
following the uniform distribution on [−1, 1]. Relevant features are generated by x3d =
x3d−2 + x3d−1, and the dth dimension of output y is generated as a function of x3d , d =
1, 2, . . . , Dx/3 as

yd |x3d ∼ sinc

(

3

4
πx3d

)

+ 1

8
exp

(

1 − x3d
) · ε, (27)

where ε is standard normal noise. This dataset has multi-dimensional relevant features
and outputs.

Figures 5 and 6 show NLL and MSE on Toy data 1, and Figs. 7 and 8 NLL and MSE on Toy
data 2. These figures show that CDEs with feature selection except for FW-NWCDE, i.e.
SA-CDE, SA-LSCDE, and FW-LSCDE, decrease both NLL and MSE with increasing the
number of samples. However FW-NWCDE cannot decrease estimation errors even when the
number of samples is increased. This is because NW-CDE does not optimize weight values of
basis functions, resulting in poor performance. For Toy data 1 which has only single relevant
input and output, the performance of SA-CDE and SA-LSCDE is almost the same. However,
for Toy data 2 which has multiple relevant inputs and outputs, SA-LSCDE is much better
than SA-CDE. This is because SA-LSCDE can represent more complex conditional densities
than SA-CDE which is limited to additive models.
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Fig. 5 Negative log likelihood on Toy data 1 (Dy = 1)
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Fig. 6 Mean squared error on Toy data 1 (Dy = 1)
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Fig. 7 Negative log likelihood on Toy data 2
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Fig. 8 Mean squared error on Toy data 2
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Fig. 9 Computational time on Toy data 1 (Dy = 1)
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Fig. 10 Computational time on Toy data 2

The computation time on Toy data 1 and Toy data 2, which is actual run-time including
both fivefold CV to optimize hyper-parameters and conditional density estimation for test
data, are shown in Figs. 9 and 10, respectively. These figures show that the computation
time of FW-LSCDE is much longer than others when the number of input features is larger
than 2 because of the time consuming procedure of forward feature selection. This weakness
becomes more critical when the number of training samples is increasing. These results show
that our proposed methods, SA-CDE and SA-LSCDE, are much faster than the existing
feature selection methods, and our methods tend to improve the performance by feature
selection.

3.4 Hyper-parameter selection

Our proposed methods (SA-CDE and SA-LSCDE) need to optimize hyper-parameters based
on CV, which is a time consuming procedure. Thus it is a bottleneck of their computa-
tional time. Here, we compare the performance and computation time when the number
of hyper-parameter candidates is changed. We keep choosing the hyper-parameters σ and
λ between 10−2 and 2 at the equal interval in the logarithmic scale, and we only change
the number of hyper-parameter candidates: ng = 5, 10, 20. ng = 20 is the default setting
for all other experiments. Datasets and evaluation measures we use in this experiments are
the same as Sect. 3.3. These experimental results are shown in Figs. 11, 12, 13, 14, 15 and
16. All performance results in Figs. 11, 12, 13 and 14 show that SA-CDE and SA-LSCDE
with ng = 20 are the best. On the other hand, those with ng = 5, which cannot improve
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Fig. 11 Negative log likelihood on Toy data 1 (Dy = 1)

10
2

10
3

0.04

0.06

0.08

0.1

0.12

The number of samples

M
ea

n 
sq

ua
re

d 
er

ro
r

SA−CDE(20)
SA−CDE(10)
SA−CDE(5)
SA−LSCDE(20)
SA−LSCDE(10)
SA−LSCDE(5)

10
2

10
3

0.04

0.06

0.08

0.1

0.12

0.14

The number of samples

M
ea

n 
sq

ua
re

d 
er

ro
r

SA−CDE(20)
SA−CDE(10)
SA−CDE(5)
SA−LSCDE(20)
SA−LSCDE(10)
SA−LSCDE(5)

10
2

10
3

0.05

0.1

0.15

The number of samples

M
ea

n 
sq

ua
re

d 
er

ro
r

SA−CDE(20)
SA−CDE(10)
SA−CDE(5)
SA−LSCDE(20)
SA−LSCDE(10)
SA−LSCDE(5)

(a) Dx = 2 (b) Dx = 3 (c) Dx = 4

Fig. 12 Mean squared error on Toy data 1 (Dy = 1)
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Fig. 13 Negative log likelihood on Toy data 2

the performance even when the number of samples increases, are the worst. On the other
hand, in terms of the computation time, Figs. 15 and 16 show that the ng = 5 is the best,
while ng = 20 is the worst. This demonstrates the tradeoff between the performance and
computation time on optimizing hyper-parameters using CV. We note that the computation
time of SA-CDE and SA-LSCDE with ng = 20 is the worst, but they are still much faster
than FW-LSCDE. Thus we keep using ng = 20 in all numerical experiments of later sec-
tions.
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Fig. 14 Mean squared error on Toy data 2
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Fig. 15 Computational time on Toy data 1 (Dy = 1)
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Fig. 16 Computational time on Toy data 2

3.5 Performance comparison for different numbers of irrelevant features

Next, we compare the performance of SA-CDE with LS-CDE, eKDE, FW-LSCDE, and
FW-eKDE for different numbers of irrelevant features. We use three datasets: (a) the
same Toy data 1 (N = 300 and Dx = 1) used in the previous experiments, (b)
the same Old Faithful Geyser benchmark dataset (N = 299 and Dx = 1), and (c)
the crabs benchmark dataset (N = 200 and Dx = 6) taken from the R package.2

2 http://www.r-project.org/.
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Fig. 17 Negative log likelihood with increasing noise dimensions
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Fig. 18 Computation time

For each dataset, we add m (= 0, 1, . . . , 10) irrelevant features by copying x1 and
adding Gaussian noise in a similar manner to the previous experiments. We randomly
choose a half of samples as training samples to estimate conditional densities and use
the rest as test samples to compute the test NLL. This procedure is repeated 100 times
and the averaged test NLL is computed. The experimental results are summarized in
Fig. 17.

In all three cases, the NLL values of LS-CDE, NW-CDE, and eKDE (without feature
selection) grow as the number of irrelevant features increases. On the other hand, the NLL
values of SA-CDE, SA-LSCDE, FW-LSCDE, FW-NWCDE, and FW-eKDE do not grow
that much when the number of irrelevant features increases. This clearly demonstrates an
advantage of performing feature selection.

The total computation time of eachmethod, i.e. run-time including fivefoldCV to optimize
hyper-parameters and conditional density estimation for test data, is plotted in Fig. 18. This
shows that all methods require more computation costs as the number of features increases.
The computation time of FW-eKDE, FW-LSCDE, and FW-NWCDE is much longer than
the plain eKDE, LS-CDE, and NW-CDE, implying that forward feature selection is highly
time-consuming. Indeed, forward feature selection involves repetitious conditional density
estimation to find the best feature to add, which is computationally highly demanding. On
the other hand, the computation time of SA-CDE and SA-LSCDE grows less sharply than
FW-LSCDE, thanks to the single-shot procedure of feature selection and conditional density
estimation.
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Table 3 NLL for benchmark datasets with five dimensional irrelevant features

Name |F | N SA-CDE SA-LSCDE LS-CDE eKDE NW-CDE

caution 2 100 1.34 ± 0.6 1.24 ± 0.4 1.38 ± 0.3 24.25 ± 3.4 1.36 ± 0.2

CobarOre 2 38 1.71 ± 0.5 1.70 ± 0.4 1.62 ± 0.2 31.81 ± 2.9 1.62 ± 0.2

snowgeese 2 45 1.80 ± 2.0 1.76 ± 1.8 1.85 ± 1.3 22.04 ± 6.1 1.59 ± 1.0

topo 2 52 1.17 ± 0.3 1.14 ± 0.3 1.22 ± 0.2 29.30 ± 3.0 1.21 ± 0.1

sniffer 4 125 0.70 ± 0.6 0.60 ± 0.7 0.85 ± 0.2 16.91 ± 3.2 0.83 ± 0.2

crabs 6 200 −0.44 ± 0.1 −0.47 ± 0.3 0.53 ± 0.1 26.03 ± 3.1 0.58 ± 0.1

UN3 6 125 1.27 ± 0.2 1.35 ± 0.4 1.57 ± 0.6 33.36 ± 1.6 1.54 ± 0.6

birthwt 7 189 1.49 ± 0.2 1.52 ± 0.1 1.51 ± 0.1 31.77 ± 1.6 1.67 ± 0.2

cpus 7 209 0.36 ± 0.6 0.80 ± 0.7 1.19 ± 0.5 22.29 ± 3.4 1.17 ± 0.6

gilgais 8 365 0.70 ± 0.2 0.89 ± 0.2 1.16 ± 0.2 27.77 ± 2.2 1.11 ± 0.2

BigMac 9 69 1.33 ± 0.8 1.37 ± 0.7 1.42 ± 0.7 35.79 ± 0.5 1.34 ± 0.5

highway 11 39 1.38 ± 0.7 1.60 ± 0.7 1.71 ± 0.8 36.04 ± 0.0 1.74 ± 0.7

Time 1.00 0.00 0.06 0.02 0.00

Name FW-LSCDE FW-eKDE FW-NWCDE

caution 1.33 ± 0.6 1.35 ± 0.6 1.30 ± 0.5

CobarOre 1.95 ± 0.6 2.45 ± 1.9 1.65 ± 0.4

snowgeese 2.09 ± 1.9 3.03 ± 2.4 1.82 ± 1.8

topo 1.19 ± 0.4 1.73 ± 1.2 1.07 ± 0.2

sniffer 0.74 ± 0.8 0.96 ± 0.8 0.96 ± 1.1

crabs −0.37 ± 0.3 0.08 ± 0.6 −0.12 ± 0.8

UN3 1.27 ± 0.3 1.60 ± 0.6 1.34 ± 0.3

birthwt 1.67 ± 0.2 1.75 ± 0.5 3.85 ± 2.1

cpus 0.70 ± 0.8 1.00 ± 0.9 0.76 ± 0.9

gilgais 0.76 ± 0.2 0.97 ± 0.3 1.20 ± 0.3

BigMac 1.45 ± 0.9 2.54 ± 1.7 1.23 ± 0.8

highway 2.06 ± 1.0 3.17 ± 1.9 2.18 ± 1.8

Time 2.73 0.54 0.01

3.6 Benchmark datasets

We further compare the performance of the proposed SA-CDE with other methods on
twelve benchmark datasets accompanied with the R package. All of these datasets have
one-dimensional output, i.e., Dy = 1. The number of features |F | and the number of sam-
ples N are listed in Table 3. For all datasets, five irrelevant features are added which are
the copy of the relevant variable or a linear combination of two relevant variables contam-
inated with Gaussian noise. The type of noise and relevant variables are chosen at random.
Gaussian noise is generated in a similar manner to the previous experiments. In this exper-
iment, we randomly choose a half of samples as training data for estimating conditional
densities, and the rest is used as test data for computing the test NLL. The experimental
results are summarized in Table 3. The values described in the table are averaged NLL values
and standard deviations over one hundred runs with different random seeds. The bold letter
means the best NLL and comparable results that could not be rejected by the two-sided paired
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t-test at significance level 5%. The bottom row shows the averaged normalized computation
time.

Table 3 shows that the performance of our methods (SA-CDE and SA-LSCDE) is best on
nine datasets. For high-dimensional datasets, especially when |F | is seven or more, SA-CDE
tends to outperform other methods with statistical significance. For low-dimensional datasets
with large N , the performance of SA-LSCDE outperforms SA-CDE because of their expres-
sive power of functions. For low-dimensional datasets with small N , FW-NWCDE performs
the best because all other methods optimizing weights of basis functions cause overfitting.
LSCDE, eKDE, NW-CDE, and FW-eKDE are computationally much more efficient than
SA-CDE and SA-LSCDE, but these methods tend to perform poorly for high-dimensional
relevant features with noisy dimensions.

3.7 Humanoid robot transition dataset

Finally, we evaluate the performance of the proposed method on humanoid robot transition
estimation with multiple inputs and multiple outputs. The dataset was generated from a
simulator of the upper-body part of the humanoid robot CB-i (Cheng et al. 2007). The robot
has 9 controllable joints: shoulder pitch, shoulder roll and elbow pitch of the right arm,
shoulder pitch, shoulder roll and elbow pitch of the left arm, wait yaw, torso roll, and torso
pitch joints.

Posture of the robot is described by 18-dimensional real-valued state vector s, which
corresponds to the angle and angular velocity of each joint in radians and radians per seconds,
respectively. We can control the robot by sending the action command a to the system. The
action command a is a 9-dimensional real-valued vector, which corresponds to the target
angle of each joint. When the robot is currently at state s and receive action a, the physical
control system of the simulator calculates the amount of torques to be applied to each joint.
These torques are calculated by the Proportional-Derivative (PD) controller as

τi = Kpi (ai − si ) − Kdi ṡi , (28)

where si , ṡi , and ai denote the current angle, the current angular velocity, and the received
target angle of the i th joint, respectively. Kpi and Kdi denote the position and velocity gains
for the i th joint, respectively. We set Kpi = 200 and Kdi = 10 for the elbow pitch joints and
Kpi = 2000 and Kdi = 100 for the other joints. After the torques are applied to the joints,
the physical system updates the state of the robot to s′. We simulate a noisy control system
by perturbing action vectors with independent bi-modal Gaussian noise. More specifically,
for each action element, we add Gaussian noise with mean 0 and standard deviation 0.052
with probability 0.6, and Gaussian noise with mean −0.087 and standard deviation 0.052
with probability 0.4.

To generate transition samples, we first generated the initial posture of the robot s(1) at
random and then simulated a trajectory with 100 steps, i.e. s(2), . . . , s(100). For each step, we
additionally generatedm irrelevant input features z(n) ∈ R

m by copying a relevant variable or
by linearly combining two relevant variables contaminated with Gaussian noise in a similar
manner to the previous experiments. By iterating these procedures, we obtained the transition
samples {(s(n), a(n), z(n), s′(n))}10000n=1 .

Our goal is to learn the system dynamics as state transition probability p(s′|s, a, z) from
these samples. Thus, as the conditional density estimation problem, the state-action pair
(sT, aT, zT)T is regarded as input variable x, while the next state s′ is regarded as output
variable y. Note that an accurate estimate of the state transition probability is highly useful
in model-based reinforcement learning (Sutton and Barto 1998).
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Fig. 19 Negative log likelihood on humanoid robot data

From the transition samples, we randomly picked up 5000 samples as training data and
used the other 5000 samples as test data to calculate NLL.We compare our proposed method
SA-CDE with LS-CDE, NW-CDE, FW-LSCDE, and FW-NWCDE, as well as parametric
conditional density estimation by the Gaussian process regression (GP-CDE) (Rasmussen
and Williams 2005). In this experiment, the candidate values of regularization parameter
λ are the twenty values between 10−3 and 10−1 at the equal interval in the logarithmic
scale, while the candidate values of other parameters are the same as the previous setting.
We consider three datasets with J = 2, 4, 9 joints, and change the number of irrelevant
features as m = 0, 5, 10, 15, 20. Thus, the input dimensionality is 3J + m, while the
output dimensionality is 2J . For each J and m, we evaluated the performance of condi-
tional density estimation methods by averaged NLL and averaged computational time over
20 runs.

Figure 19 shows the experimental results, where the solid lines denote the averaged values
and the dashed lines denote the averaged values with one standard deviation. From the plots,
we can confirm that the NLL values of LS-CDE, NW-CDE, and GP-CDE grow sharply
as the number of irrelevant features m is increased. On the other hand, the NLL values of
SA-CDE, FW-LSCDE, FW-NWCDE, and SA-LSCDE do not increase even if the number
of irrelevant features is increased. Among them, SA-CDE cannot outperform FW-LSCDE
and SA-LSCDE, because the additive-model assumption of SA-CDE caused large estimation
bias. However, feature selection by SA-CDE itself performs well and SA-LSCDE performs
comparably to FW-LSCDE.

Figure 20 plots the computation time. LS-CDE, NW-CDE, and GP-CDE are very fast
because no feature selection process is involved. NW-CDE and FW-NWCDE are also very
fast because nooptimizationofweight parameters is involved.AmongSA-CDE,FW-LSCDE,
and SA-LSCDE, SA-CDE and SA-LSCDE are much faster than FW-LSCDE.

Overall, in this challenging task of robot transition estimation, SA-LSCDE, the combina-
tion of SA-CDE and LS-CDE, was shown to be the most promising approach.

4 Conclusions

We proposed a direct estimator of conditional probability densities that is equipped with
feature selection. Our feature selection strategy is based on the �1/�2 mixed-norm, which
tends to produce a group-sparse solution. An optimization algorithm based on a proximal
method was presented that is guaranteed to possess fast convergence. The numerical experi-
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Fig. 20 Computation time on humanoid robot data

ments on benchmark and robot transition datasets demonstrated that the proposed method is
promising.

SA-CDE assumes the additive structure for feature selection. However, this causes linear
increase of the time and space complexities, resulting in high computation costs for datasets
with a large number of features. Improving the scalability issue is future work.
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Appendix 1: Derivation of Eq. (10)

Substituting (4) into (9), we can transform the term associated with d1, d2, and n in the above
equation as

∫

r̂d1
(

y, x (n)
d1

)

r̂d2
(

y, x (n)
d2

)

d y

=
∫

∏

d=d1,d2

{

B
∑

b=1

αd,b · η
(

y, νb
) · ϕd

(

x (n)
d , μd,b

)

}

d y

=
B
∑

b1=1

B
∑

b2=1

{∫

η
(

y, νb1
) · η

(

y, νb2
)

d y × ϕd1

(

x (n)
d1

, μd1,b1

) · ϕd2

(

x (n)
d2

, μd2,b2

)

}

. (29)

The integral with respect to y in the above equation can be analytically computed as

∫

η
(

y, νb1
) · η

(

y, νb2
)

d y =
∫

exp

(

−‖ y − νb1‖2 + ‖ y − νb2‖2
2σ 2

)

d y

=
(√

πσ
)Dy

exp

(

−‖νb1 − νb2‖22
4σ 2

)

. (30)

Using (5), (6) and (30), we can derive (10).
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Appendix 2: Derivation of update rule (18)

By some simple algebra, the optimization problem (17) can be transformed into

min
α≥0

{

1

2

∥

∥α − u
∥

∥

2
2 + λ

L
	(α)

}

(31)

where u is defined as (19). Because the optimization problem (31) is strongly convex, update
of α by (31) can be regarded as an operator that maps u to a unique value. This is called a
proximal operator associated with λ

L 	. Denoting the proximal operator by Prox λ
L 	(·), we

can write our update rule as

α(t+1) ← Prox λ
L 	(u)

:= argmin
α≥0

{

1

2

∥

∥α − u
∥

∥

2
2 + λ

L
	(α)

}

. (32)

Next we describe the solution of this proximal operation by transforming the operator into
the dual form. By using the Fenchel conjugate of function Ĵ0 and the dual norm of 	, the
dual problem of (31) can be obtained as

max
v

{

− sup
α

[

αT(−v) − 1

2

∥

∥α − u
∥

∥

2
2

]}

subject to ‖vd‖2 ≤ λ

L
, d = 1, . . . , Dx , (33)

where v is the dual of α and vd is the sub-vector associated with the dth feature. The objective
function can be transformed into

− sup
α

[

αT(−v) − 1

2

∥

∥α − u
∥

∥

2
2

]

= inf
α

[1

2

∥

∥α − u
∥

∥

2
2 + αTv

]

. (34)

Since the above function is quadratic with respect to α, its minimum is achieved at the point
where the derivative is zero: from this, we have α = u − v. Substituting this back into (34),
we have

inf
α

[1

2

∥

∥α − u
∥

∥

2
2 + αTv

]

= 1

2

∥

∥u − v − u
∥

∥

2
2 +(u − v)Tv

= −1

2

(

∥

∥v − u
∥

∥

2
2 − ∥

∥u
∥

∥

2
2

)

. (35)

Further substituting (35) into (33), we can express the dual of the proximal operator for
optimizing dual vector v, denoted by Proj λ

L 	, as

v(t+1) ← Proj λ
L 	(u)

:= argmin
v

[

1

2

∥

∥v − u
∥

∥

2
2

]

subject to ‖vd‖2 ≤ λ

L
, d = 1, . . . , Dx . (36)

Given that the solution for each sub-vector vd can be obtained separately, it is easy to
confirm that the solution of the above proximal operation is given by

[

Proj λ
L 	(u)

]

d
=
(

1 −
[

1 − λ

L‖ud‖2
]

+

)

ud , d = 1, . . . , Dx . (37)

Since α = u − v, we have

Prox λ
L 	(u) = u − Proj λ

L 	(u). (38)

Using the above equation, we can describe our update rule analytically as (18).
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