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Abstract This paper presents a new non-negative matrix factorization technique which (1)
allows the decomposition of the original data on multiple latent factors accounting for the
geometrical structure of the manifold embedding the data; (2) provides an optimal repre-
sentation with a controllable level of sparsity; (3) has an overall linear complexity allowing
handling in tractable time large and high dimensional datasets. It operates by coding the
data with respect to local neighbors with non-linear weights. This locality is obtained as a
consequence of the simultaneous sparsity and convexity constraints. Our method is demon-
strated over several experiments, including a feature extraction and classification task, where
it achieves better performances than the state-of-the-art factorization methods, with a shorter
computational time.
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1 Introduction

1.1 Context

Non-negative matrix factorization (or NMF for short) has long been studied and used as a
powerful data analysis tool providing a basis for numerous processing, such as dimensionality
reduction, clustering, denoising, unmixing, etc. This article is concerned with a variant of
NMF, where one tries to decompose a given matrix X = [x1, . . . , xn](xi∈Rp) formed by a
set of n samples described with p variables (∈ R

p) as a product of two matrices F ∈ R
p×�

and G ∈ R
n×� such that ||X− FG�||2 is minimized, under the constraints that the elements

of G are positive or nil, and that its rows sum to one. In other words, G serves as a convex
surrogate description of X in the reduced embedding formed by � prototypes (the columns
of F).

This convexity property on G is desirable in a lot of applications for its relations with
the physics of the underlying observations: in this acceptation, the datapoints are usually
observations of a mixing process where the components of the mixture are not known.
Hyperspectral images are a good example, as each pixel describes a spectrum that can be
defined as a combination of pure materials spectra (trees, concrete, water, etc.); the combina-
tion occurring because of the captor spatial resolution and different scattering effects (Esser
et al. 2012; Bioucas-Dias et al. 2012). Other examples of applications are found in archetypal
analysis (Mørup and Hansen 2012), or biology (Kersting et al. 2012).

1.2 Notations

Bold capital letters, such as X or M refer to matrices. The transposition operator is denoted
·� (so that M� refers to the transpose of M). The set of m × n real matrices (respectively
real matrices with nonnegative entries) is denoted R

m×n (respectively R
m×n+ ). In is the n× n

identity matrix, and || · || refers to the Frobenius norm. For any matrix M, M•i (respectively
Mi•) corresponds to the i th column (respectively i th row) of M. However, in the particular
case of X, each column X•i corresponds to the datum xi , so that this latter more intuitive
notation is preferred. �n(M) is a (n − 1)-simplicial polytope formed by n columns of M.
The unit (n − 1)-simplex �n(In) is simply referred to as �n .

1.3 Related work

Despite appealing properties, NMF presents a number of difficulties: First, while real data
are often embedded on complex manifolds, the seminal convex NMF formulation prohibits
a large number of latent factors that would explain the data in a geometry preserving way;
Second, the level of sparsity in the final embedding (the matrix G) is rarely controllable,
and far from data analyst expectations; finally, the computational time is prohibitive when it
comes to handling very large size matrices. Even if to date, various state-of-the-art methods
already tackle one of or two of these issues, no method addresses these three issues all
together.

The convexity constraint we consider on G differs from that of what is classically referred
to as Convex NMF (Ding et al. 2010), i.e. NMF where the columns of F are convex combi-
nations of columns of X. However, our problem is also not unheard of in the literature, as,
beyond its easiness of interpretation, it provides a very appealing computational framework:
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Fig. 1 a A dataset X embedded in a U-shaped manifold; b the separability assumption assumes the dataset
is encompassed in a cone spanned by the columns of F; a datum is described in a column of G through its
non-negative coordinates in the cone; c Convex hull: the dataset is embedded in a simplex, and each datum is
described with barycentric coordinates; d Manifold hull: one uses a great enough number of reference points
to precisely characterize the manifold, while forcing the sparsity to achieve some local coding. Note that, in
order to make these imaged representations clearer, we did not represent F as a CSS of X

if G encodes convex combinations, the � columns of F are expected to characterize a hull
of X in R

p , as data points lying within are perfectly reconstructed. Based on this idea, it is
possible to separate the NMF problem into two steps, namely the computation of F (in order
to determine, or to best approximate the hull of the dataset) and of G (which corresponds
to the projection of the dataset onto the region bound by the hull). From a computational
point of view, this is really interesting, as it is now possible to decompose the NMF (which
amounts to finding two matrices with close relationship) into two simple problems, each
focused on a particular matrix: first one computes F regardless G, and second, one computes
G by projection of the columns of X onto F. With such an approach, it is possible to expect a
lower complexity than that of elder methods based on singular value decomposition (with a
o(n3) complexity), or than that of demanding procedures that iteratively alternates between
the minimization of the two matrices, such as in Ding et al. (2010).

Initially, F was first related to the convex hull of X (Cutler and Breiman 1994): Notably,
numerous works in the remote sensing and hyperspectral imaging community (see Bioucas-
Dias et al. 2012 as well as its references) have pointed out that F should be chosen so that
��(F) best encompasses X, while other investigations focused on how to find this simplicial
convex hull (Wang et al. 2010; Thurau et al. 2010; Çivril and Magdon-Ismail 2009). More
recently, a series of works (Arora et al. 2012; Kumar et al. 2013; Gillis and Vavasis 2013;
Recht et al. 2012) focused on the conical hull of X: Here, the idea is to find F so that it
spans a cone encompassing the dataset. The reason of the recent focus on the conical hull
is that it is the geometric translation of an important assumption in NMF, the separability
assumptions proposed by Donoho and Stodden (2003). This separability assumption reads
that (1) the residue X − FG� is nil, (2) columns of F are collinear to columns of X. This
second condition regarding the collinearity of the columns of F and X is interesting beyond
the separability assumption: whatever the type of hull defined by F, it is possible to assume
that the components of the mixture belong to the data, and that any datum is a convex
combination of a restricted number of particular selected datapoints (those forming F). This
approach drastically reduces the complexity of finding F as this latter is simply defined by a
column subset selection (CSS) of X.

Figure 1 illustrates a dataset lying on a non-linear manifold resulting from some hidden
factors that could be of interest, as well as its conical and convex hulls. It clearly appears
that the geometries of these hulls are not adapted to that of the dataset. So far, there has
been little interest in trying to characterize the boundary of the manifold dataset in spite of
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its non-convexity; in the sequel, we shall address this boundary with the shorter and imaged
name manifold hull, that is illustrated on Fig. 1d. Naturally, precisely characterizing such a
manifold hull would require to increase �, the number of datapoints involved in the CSS;
which stresses to a larger extend the need for an adapted control of the sparsity level that
is already sought for in numerous applications: Each point should be described as a convex
combination of a restricted number λ of prototype points among the � of the CSS.

Whatever the type of hull (convex or conical), separating F and G computations has
drastically reduced the overall NMF complexity of the state-of-the-art methods: Thurau et
al. (2010, 2012) compute F in linear time and few works (Gillis and Vavasis 2013; Recht
et al. 2012) even reach overall linear-complex NMF. However, among them, none allows
characterizing the manifold hull, and none allows controlling the solution sparsity. Even if
to date, more computationally efficient methods than adding the classical L1 penalty (Hoyer
2004; Esser et al. 2012) have been developed, such as Kim and Park (2007), Gillis (2012),
none reaches a linear complexity.

Even if the characterization of the manifold hull has never been addressed so far, it is well-
known that the kernel trick is an efficient way to provide a manifold preserving description
of a dataset. In fact, several pre-existing works applied the kernel trick to NMF (Zhang et
al. 2006; Buciu et al. 2008; Cai et al. 2011). However, the convexity constraint on G (and
consequently the notion of manifold hull) does not appear. Moreover, neither sparsity nor
any linear complexity is achieved.

1.4 Proposal

In this article, we present SAGA (Sparse And Geometry-Aware), a new NMF method
avoiding the aforementioned limits. It operates in a Reproducing Kernel Hilbert Space
(RKHS) (Schölkopf and Smola 2002), where F is defined by a CSS. Then, according to
an expected sparsity level, G, the best dataset projection onto the simplex formed by F is
computed. The advantages of our method are:

First, kernelization is interesting to several extents: (i) it makes the algorithm compli-
ant with dataset where only relationships among objects are available; (ii) its regularization
property improves robustness to noise; (iii) it allows using more latent factors than the dimen-
sions of the input data, providing an insightful tool to consider the geometric structure of the
data manifold. As both the number of latent factors and the sparsity level are increasing, it
appears that the locality of the support of G is increasing, turning the factorization problem
in a non-linear local embedding of the original data. As shown in some recent works (Yu et
al. 2009; Guillemot and Turkan 2012), this kind of embedding is powerful to describe the
non-linear structure of the data manifold, and as such serve as a very good feature extraction
framework.

Second, the CSS is defined thanks to a manifold subsampling method (Shroff et al. 2011),
which reaches a linear complexity with respect to n, the size of the dataset.

Third, the computation of G corresponds to a sparse RKHS simplex projection, which is
a non-linear optimization problem. Based on recent advances on sparse projected gradient
methods, the projection is solved with an algorithm of linear complexity (with respect to n),
while naturally embedding sparsity mechanism control.

Forth and finally, since both computations of F and G are linear, the overall complexity
of SAGA is linear. This makes this algorithm perfectly suitable for very big data.

To the best of our knowledge, no state-of-the-art method simultaneously compiles all these
advantages.
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1.5 Contributions

SAGA has been developed on the top of several state-of-the-art algorithms, thanks to several
technical extensions that are listed here. The computation of matrix F is largely inspired by
the simplex volume maximization (SiVM) approach of Thurau et al. (2012). However, the
method itself has been extended in several manners:

1. It is slightly generalized in order to operate in the Hilbert space reproducing the Gaussian
kernel, rather than in R

p .
2. Most importantly, while SiVM proposes an approximate optimization (for several sim-

plifications are made to reach a linear complexity), we propose another solution to the
simplex volume maximization which performs an exact optimization.

In spite of these two extensions, our method remains of linear complexity, so that finally,
the computation of F with SiVM is both a particular case and an approximation of the one
produced by SAGA. Then, the computation of matrix G is not inspired by any other NMF
technique, but is based on a recent sparse projected gradient strategy (Kyrillidis et al. 2013):

3. This latter is adapted to the projection over the CSS in the RKHS, and its linear complexity
is kept.

4. We provide with theoretical bounds on the convergence of the projector (linked to the
kernel bandwidth, the minimum pairwise distance between the CSS and the sparsity
level).

1.6 Outline

We solve our NMF problem by separating the computations of the CSS matrix and of the
projection matrix. This is why, Sects. 2 and 3 focus on the computations of F and G respec-
tively. More specifically, the structure of Sect. 2 is the following: First a small introductive
paragraph recalls the basics of the kernel trick, as well as why it is interesting to operate in
a RKHS to fulfill our objectives. Then, Sect. 2.1 investigates the consequences of working
in such RKHS; They lead us to a particular strategy, which is to characterize the manifold
hull of the dataset in R

p via a simplicial convex hull in the RKHS; and to define this latter
with a manifold sampling strategy. At this point, computational constraints direct us toward
SiVM-like procedures rather than toward more resource-demanding ones. Section 2.2 jointly
presents SiVM, such as defined in the literature (Thurau et al. 2012), as well as the kernel
generalization we propose, while Sect. 2.3 describes our modifications to reach exact maxi-
mal simplex volume. In a similar way, Sect. 3 is divided into two parts: the first one (Sect. 3.1)
explains how projecting the image in the RKHS of any datum xi onto the image of the CSS in
the RKHS, along with sparsity constraints; Sect. 3.2 provides with a proof that the projector
defined in Sect. 3.1 converges. As it is established in the literature (Garg and Khandekar
2009) that the Restricted Isometry Property (RIP, Candes 2008) implies the convergence,
we prove that our projector respect the RIP for some particular tuning of its parameters. At
this stage, most of the required mathematics is established. Then, in Sect. 4, one summarizes
the entire procedure made of the concatenation of the two matrices computation through an
easy to implement algorithm, completed by some theoretical assessments of the linear com-
plexity of the algorithm. Finally, Sect. 5 is devoted to experimental validations. In the first
series of experiments, one focuses on toy examples, in order to illustrate the behavior of the
manifold hull. Then, follow several experiments on simulated datasets, in order to compare
the computational efficiency and the computational precision of SAGA with respect to the
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state-of-the-art. Finally, we consider real datasets through challenging image classification
tasks.

2 Geometry aware CSS procedure

Despite living in R
p , X may span a nonlinear manifold of intrinsic dimensionality lower than

p. A major problem is thus to extend to this nonlinear manifold the classical statistics that
are used to work in a vector space. To do so, an essential element is to replace the Euclidean
distances by geodesic distances. Depending on the manifold, the associated metric may be
difficult to formally define. However, it is possible to characterize it through the time-scale of
the well-studied heat diffusion process, the kernel formulation of which is well approximated
by the Gaussian kernel (Lafferty and Lebanon 2005; Lafon and Lee 2006): The geometry of
the manifold in which X lies is captured by Ki j = k(xi , x j ) = exp

(−||xi − x j ||2/2σ 2
)

with
variance σ 2. Let us call φ(·) the implicit feature map from R

p onto H, the RKHS associated
to k(·, ·). We use the shorthand notation � = φ(X) = [φ(x1), . . . , φ(xn)](φ(xi )∈H). Then,
following the notations of Ding et al. (2010), the SAGA solution amounts to finding the
indicator matrix W(�) ∈ {0, 1}n×� defining the CSS1 and the projection matrix G where
φ(F) = φ(XW(�)) = �W(�), such that ||� − �W(�)G�||2 is minimized under convexity
constraints.

2.1 CSS as a manifold sampling procedure

Let us start by a basic remark,

Remark 1 In the input space, we must have � ≤ n and � ≤ p. In the Gaussian RKHS, one
still has � ≤ n, however, � > p becomes possible, for each sample spans its own dimension.

which leads to the following property:

Property 1 (Non-Separability) Separability assumption does not hold for NMF in the
Gaussian RKHS.

Proof According to Remark 1, any datum not included in XW cannot be expressed as a
linear combination of elements of φ(XW). ��
Thus, one should not consider conical hull in the RKHS. However, Remark 1 leads to:

Corollary 1 In the Gaussian RKHS, it is possible to use more than p points in the CSS. The
latter forms a non-simplicial polytope in R

p while their image in the Gaussian RKHS is a
simplex.

In other words, the manifold hull of X can be characterized through the simplicial convex
hull ��(φ(F)). Then, it follows that:

Corollary 2 No sample lies in ��(φ(F)) and all the samples will be projected on hyperfaces
of ��(φ(F)), leading to approximate reconstructions. Yet, such an approximation comes with
the appealing property of sparsity, discussed later in the article.

1 We write W instead of W(�) when � does not matter, or is implicit regarding the context.
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At this point, finding ��(φ(F)) amounts to finding W, which turns out to subsample the
boundary of the data manifold. Most of the methods from the literature address it with the
objective of maximizing the representation of the dataset, while here, we are interested in its
boundary, which makes the sampling completely different: For instance, a kernel k-means
sampling, although very efficient to subsample a given manifold (Lafon and Lee 2006), leads
to Convex NMF of Ding et al. (2010), the aim of which is completely different of ours.

However, our problem is not completely unheard of: In Shroff et al. (2011), the authors
consider maximizing the diversity of the selected samples using a Karcher variance2 maxi-
mization criterion. Alternative formulation exists, where one seeks for the maximum volume
parallelepiped in the data matrix (Çivril and Magdon-Ismail 2009). Interestingly enough,
whatever the interpretation (diversity or volume criterion), the corresponding computation
can reduce to recursive QR decompositions of the data matrix (Gillis and Vavasis 2013;
Shroff et al. 2011). However, in the RKHS, since no explicit coordinates are available, those
methods cannot be transposed. The recent proposal of Courty and Burger (2013) regarding a
kernel rank revealing Cholesky technique is also of interest, unfortunately, it fails to scale up
to big data, because it implies a computationally demanding decomposition at each selection
step.

Finally, among all the methods available in the literature, if one discards those (1) which
do not sample the boundary, (2) which cannot be conducted in a RKHS, (3) which do not
have a linear complexity, we are aware of a single remaining method: the Simplex Volume
Maximization (SiVM) (Thurau et al. 2012).

2.2 Original simplex volume maximization

We begin with a review of the original formulation of Thurau et al. (2012) and its direct
transposition to the kernel framework. SiVM tries to maximize Vol(��(F)), the volume of
the simplex spanned by ��(F), which reads:

Vol(��(F)) =
√
−1� · cmd(F)

2�−1(�− 1)! , with cmd(F) = det

⎛

⎜⎜⎜⎜⎜
⎝

0 1 1 1 . . . 1
1 0 d2

1,2 d2
1,3 . . . d2

1,�

1 d2
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2,3 . . . d2
2,�

1 d2
3,1 d2

3,2 0 . . . d2
3,�

.
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.
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.
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.
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.
.

.

.

.

1 d2
�,1 d2

�,2 d2
�,3 . . . 0

⎞

⎟⎟⎟⎟⎟
⎠

. (1)

cmd(F) is the Cayley–Menger determinant of F (i.e. the determinant of the matrix accounting
for the pairwise distances in F) and d2

i, j is the square Euclidean distance between elements xi

and x j . This obviously transposes to the RKHS: The volume of ��(�W) can be expressed
by replacing the Cayley–Menger determinant by that of a matrix accounting for pairwise
distances in H:

Vol(��(�W)) =
√

−1�

2�−1(�− 1)! det(A) (2)

with A similar to the matrix of Eq. (1) except that ∀i, j ≤ �, d2
i, j is replaced by:

A(i+1)( j+1) = ||φ(xi )− φ(x j )||2 = k(xi , xi )+ k(x j , x j )− 2k(xi , x j )

The comparison of the volume of the simplices spanned by all the possible CSS is com-
putationally prohibitive. Thus, an approximate search in linear time of the best simplex is

2 The Karcher variance is a variance accounting for Riemannian distances over the manifold, rather than
Euclidean ones.
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proposed in Thurau et al. (2012). This is possible thanks to two tricks: The first one is a
strong result (Theorem 1 of Thurau et al. 2012), which states that if one adds an element
to the simplex, it can only make the reconstruction error smaller or equal. Thus, a simple
greedy algorithm can be used to compute W: Starting with the best 1-simplex (i.e. W has 2
columns), one adds the best third sample (according to the maximization of Eq. 1), then the
fourth, and so on until � samples are selected. Practically, this procedure can be transposed
to the RKHS: At iteration p − 1 one selects the element φ(xi ) of � such that

i = arg max
q

Vol
(
�p(�W) ∪ φ(xq)

)
. (3)

However, this procedure still requires the computation of several Cayley–Menger determi-
nants (each of them being computationally intensive).

At this point shows up the second trick: If one makes the simplifying assumption that the
distances between the elements of the CSS defined in the previous iteration are constant and
noted a, and if α j,q = d2

j,q/2, then, Eq. 3 amounts to finding φ(xi ) such that

i = arg max
q

⎡

⎣
p∑

k=1

αkq ·
⎛

⎝a2 + 2
p∑

j=k+1

α jq

⎞

⎠− (p − 1) ·
p∑

k=1

α2
kq

⎤

⎦ , (4)

where d j,q refers to the distance between a point of the CSS x j and a point out of the
CSS xq which is considered for adjunction to the CSS (thus, in the RKHS, one has α j,q =
1− k(x j , xq)). Finally, the computation of Eq. 4 is sped up by considering that d2

i,q ≈ di,q

and a2 ≈ a, leading to

i = arg max
q

⎡

⎣
p∑

k=1

dkq ·
⎛

⎝a +
p∑

j=k+1

d jq

⎞

⎠− p − 1

2
·

p∑

k=1

d2
kq

⎤

⎦ . (5)

Remark 2 Naturally, the magnitude to which the constant distance assumption is violated
strongly depends on the dataset. As a consequence, the instantiation of Eq. 3 into 5 may
lead to some approximations as already noted in Gillis and Vavasis (2013), where Gillis and
Vavasis showed that SiVM can underperform on ill-conditionned datasets.

Despite this remark, the general principle advocated in Eq. 3 remains unalterably valid.
This is why, we rely on it to propose an alternative to SiVM, which provides exact volume
computation, with a similar linear complexity.

2.3 Exact simplex volume maximization

Let us consider a simplex �p of dimensionality p − 1 spanned by a subset XW(p) =
{x1, . . . , xp} of p points of X. If we add a (p+ 1)th point xi ∈ X\XW(p) to the simplex, the
new volume is given by:

Vol(�p+1) = Vol(�p)× dist(xi , XW(p))

p
(6)

where dist(xi , XW(p)) is the distance between xi and its projection onto the subspace spanned
by XW(p). According to Courty et al. (2011), in H, this distance reads:

dist(φ(xi ),�W(p)) = 1−
(

k�xi
·K−1

p · kxi

)
(7)
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where K−1
p is the inverse of the kernel matrix of the elements of the CSS, i.e.

K−1
p = (W(p)����W(p))−1, and where kxi is a vector of length p such that kxi =
[k(x j , xi )]x j∈XW(p) . Then, it is possible to use a greedy procedure similar to that of SiVM,
where Eq. 3 translates into:

i = arg max
q

Vol(�p(�W(p)))× dist(φ(xq),�W(p))

p

= arg min
q

[
k�xq
·K−1

p · kxq

]
. (8)

Remark 3 This procedure tends to add datum that most changes the geometry of the manifold
spanned by the CSS. As such, it acts as the spectral sampling procedure proposed in Öztireli
et al. (2010) for sampling a 3D mesh in a computer graphics context.

Even if K−1
p is computed a single time at each iteration (it does not depend on xq ), a

matrix inversion remains a resource demanding operation. Moreover, if � elements are to
be selected, then � inversions of matrices of increasing size are expected. Fortunately, it is
possible to bypass this inversion, by iteratively constructing K−1

p on the basis of the Schur
complement (Boyd and Vandenberghe 2004). Once i , the index of the best (p + 1)th point
to add to the CSS is defined (Eq. 8), one computes

K−1
p+1=

[
Kp kxi

k�xi
1

]−1

= K·
[(

1−k�xi
·K−1

p · kxi

)
−1 0�p

0p Kp
−1

]

·K� (9)

with K =
[−K−1

p · kxi Ip

1 0p
�
]

where Ip is the identity matrix of size p and 0p is a vector of p zeros. The computation works
as long as k�xi

·K−1
p · kxi differs from 1, which is always true in the Gaussian RKHS as long

as the data points are separated.

3 Sparse projections onto the RKHS simplex

In this section, we focus on the computation of G. We give the formulation of our sparse RKHS
simplex projector, and then we discuss its convergence. We notably show some analytical
bounds required for the convergence of the method.

3.1 Projection on the RKHS simplex

We search for the projection of any point φ(xi ) onto the simplex ��(�W), i.e. the point of
the simplex which minimizes the Euclidean distance to φ(xi ). It amounts to solving the n
independent problems of computing the rows of G:

Gi• = arg min
Gi•

||φ(xi )−�WG�i•||2 s. t.
∑

j

Gi j = 1, Gi j ≥ 0,∀ j (10)

The constraint
∑

j Gi j = 1, Gi j ≥ 0,∀ j is equivalent to have Gi• in the unit standard

simplex ��, (G encodes the barycentric coordinates of X in ��(�W)). At this point, it is
possible to force the sparsity of the projection to λ < �, without any extra computational
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cost: We only need to replace the previous constraint by Gi• ∈ �λ. Thus, Eq. (10) reads:

Gi• = arg min
Gi•

||φ(xi )−�WG�i•||2 s. t. Gi• ∈ �λ (11)

Instead of considering quadratic programming, such as in Thurau et al. (2012) or Kumar et al.
(2013), we follow some recent work on the projection on the unit standard simplex (Kyrillidis
et al. 2013), and we propose to use a simple projected gradient descent algorithm to solve
Eq. (11), which amounts to iterating through different possible solutions of

Gt+1
i• = Pλ

(
Gt

i• − εt∇(||φ(xi )−�WGt
i•
�||2)

)
(12)

t being the iteration index, εt a (possibly varying) step size, ∇(·) the gradient operator and
Pλ(·) the projector onto �λ. This kind of projected gradient descent method has recently
shown its computational efficiency and is also endowed with theoretical convergence guar-
antees (Garg and Khandekar 2009). The gradient reads (we omit the iteration index t for
clarity):

∇(||φ(xi )−�WG�i•||2) = ∇((φ(xi )−�WG�i•)�(φ(xi )−�WG�i•))
= ∇(Gi•K�G�i• − 2kxi G

�
i• + k(xi , xi )),

= 2(G�i•K� − kxi ). (13)

As for Pλ(·), we rely on the Greedy Selector and Simplex Projector (GSSP) algorithm
of Kyrillidis et al. (2013) which can be summarized as a two-step procedure: firstly the
coordinates of the vector are sorted by magnitude, and then the λ greatest values are projected
on the unit simplex �λ (while the other vector entries are set to zero).

Remark 4 Since the GSSP procedure projects Gi• on the subspace spanned by the � columns
of F, the coordinates of Gi• embeds the projection over each of the � selected elements in
the feature space, so that the sparsity support is chosen in the closest elements in the feature
space.

The Gaussian kernel is monotonically decreasing according to the neighboring distance;
This implies that for each datum, the sparsity support is made of the closest CSS elements
in the input space. It follows that:

Property 2 (Non-linear local coding) The sparse RKHS simplex projector describes any
element xi of X with Gi•, which interprets as its non-linear (because of the kernel non-
linearity) barycentric coordinates according to λ prototype points. These prototype points
are found in the closest elements of the CSS, thus providing a non-linear local coding for xi .

3.2 Convergence of the projector

Finally, we establish the convergence of that projector, which ensures (Kyrillidis et al. 2013)
that the final vector Gi• is the best λ-sparse solution. To do so, we rely on Garg and Khandekar
(2009), which states that for Eq. 11 to be minimized via the projected gradient approach,
�W has to satisfy λ-restricted isometry property (or λ-RIP for short), with δλ ∈ [0, 1[. This
latter reads:

Definition 1 The linear operator �W respects the λ-restricted isometry property (Candes
2008) with constant δλ if

(1− δλ)||x||22 ≤ ||�Wx||22 ≤ (1+ δλ)||x||22 (14)
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where || · ||2 refers to the L2 norm, and for every λ-sparse vector x.

Equivalently, the constant δλ can also be defined as:

δλ := max
L⊆{1,...,�},
|L|=λ

||(�W)�L(�W)L − Iλ||2 (15)

where (�W)L denotes a subset matrix of �W, with λ columns corresponding to a subset L of
cardinality λ picked up among the � indices of the CSS. Thus, (�W)�L(�W)L is simply the
related Gram matrix, noted Kλ. δλ is defined according to the subset providing a maximum
among all the possible combinations of those columns.

As a matter of fact, such convergence holds for particular values of λ and σ , such as stated
by the following proposition:

Proposition 1 If λ > 2, and if σ < dmin√
2 ln(λ−1)

, then, �W satisfies the λ-RIP with constant

δλ ∈ [0, 1[. If λ ≤ 2, there is no particular bound to σ .

Proof Let us first note that since we are working in the Gaussian RKHS, the columns of �W
have unit norms. The diagonal entries of Kλ are 1, and ∀i, j ∈ L the off-diagonal element
(i, j) is k(xi , x j ).

Let νi be an eigenvalue of a matrix A. By the Gershgorin circle theorem, we know that:

|νi − A(i, i)| <
∑

j≤λ,i �= j

|A(i, j)| (16)

Thus, for A = Kλ − Iλ, we obtain |νi | <
∑

j≤λ,i �= j k(xi , x j ). Let μ be the greatest dot
product between the elements of (�W)L, i.e. μ := max k(xi , x j ), ∀i, j ∈ L, i �= j . We can
write: ∑

j≤λ,i �= j

k(xi , x j ) ≤ (λ− 1)μ (17)

and we have a bound for every eigenvalue νi and every subset L of cardinality λ. Thus, �W
follows the λ-RIP with δλ = (λ − 1)μ (Bandeira et al. 2012). Let d2

min be the minimum
squared distance between two distinct elements of XW, i.e. d2

min = mini, j,i �= j ||xi − x j ||2.
As μ = exp

(−d2
min/2σ 2

)
, one has:

δλ < 1⇔ (λ− 1) exp

(
−d2

min

2σ 2

)

< 1⇔ σ <
dmin√

2 ln(λ− 1)
, λ > 2 (18)

��
This allows deriving conditions on σ for different convergence or approximation guarantees,
such as δ2λ < 1/3 for convergence (Garg and Khandekar 2009) (Theorem 2.1). This point
is discussed in Kyrillidis et al. (2013) (Sect. 2). We note that similar developments using
the Gershgorin circle theorem have been used for the deterministic creation of projection
matrices in the domain of compressed sensing (Bandeira et al. 2012) (Sect. 2.1).

4 Complete SAGA procedure

We give in Alg. 1 the complete SAGA matrix factorization procedure.3 We then discuss its
computational complexity.

3 The MATLAB source code is available on http://people.irisa.fr/Nicolas.Courty/SAGA.
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4.1 Algorithm

In addition to the data matrix X, the user needs to tune the following parameters: σ the
Gaussian kernel bandwidth, λ the expected sparsity level, and � the number of prototypes
in the CSS (with λ ≤ �). Additional parameters for the gradient descent can be tuned to
optimize the computation load, yet it is not mandatory. At first, one computes the CSS, then
the matrix of projections. Regarding the CSS, the procedure is initialized (Lines 1–4) as
in Thurau et al. (2012): First, one randomly selects a datum. Then, one finds the most distant
datum to that first one. Finally, the most distant datum to this second datum is selected, and is
considered as the first element of the CSS (see Lines 2 and 3 in Alg. 1). After initialization,
the iterative increment of the simplex dimensionality is implemented in the loop from Line
5–8. Regarding the projection, each datum is processed separately thanks to the loop from
Line 9–16. Within this loop, another loop deals with the gradient descent up to a stopping
criterion (loop from Line 11–16).

Algorithm 1: The SAGA Matrix Factorization algorithm
input : X = [x1, . . . , xn ](xi∈Rp) the data matrix

σ the Gaussian kernel bandwidth
λ the expected sparsity level
� the number of prototypes
E = {ε, (εt )(t∈N)} additional parameters for the gradient descent

output: W the indicator matrix
G the reduced sparse convex embedding of X

//* First step: Column Subset Selection as a manifold subsampling1

W(i=1) ← 0 //*2

[h]W (i) ∈ {0, 1}n×i3

t ← arg minq
[
k(xq , xrand[1,n])

]
4

e← arg minq
[
k(xq , xt )

]
//*5

[h]xe is the first element6

W(i=1)
et ← 17

for i ← 2 to � do8

e← arg minq

[
k�xq ·K−1

i−1 · kxq

]
9

W(i)
•i ← 0; W(i)

ei ← 110

compute K−1
i from K−1

i−1 using Eq. 911

//* Second step: Sparse Projection over the defined simplex12
for xi ∈ X do13

G(k=0)
i• ← [1/�, . . . , 1/�]14

repeat15

G(k+1)
i• ← G(k)

i• − εt (G
(k)
i•
�

K� − kxi )16

find the indices of the λ greatest values of G(k+1)
i•17

project the corresponding elements of G(k+1)
i• onto �λ (Maculan and Paula 1989)18

set the other elements to 019

until ||G(k+1)
i• −G(k)

i• ||2 < ε;20
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4.2 Computational complexity

Property 3 (Computational complexity for W–noted as First step in Alg. 1) The selection
of the CSS defining W based on the exact and incremental simplex volume maximization
has complexity of o(n�3), i.e. it has a linear complexity with respect to n.

Proof The entire CSS construction is based on Eqs. 8 and 9. At each step of the selection, the
procedure amounts to a linear scanning procedure where the volume increment is computed
for each element in the dataset (size n). For one element xi , with i ∈ [1, n], this requires
to compute the associated bilinear form k�xq

· K−1
i−1 · kxq kxq vector. with an assymptotical

computational complexity of o(p2). As p varies 1 to �, one ends up with a cubical complexity
term regarding �. ��

We note that thanks to Eq. 9, almost all the values (except the one corresponding to the
kernel evaluation with the last chosen element) have already been computed in the previous
iteration and do not need to be computed again. This makes the overall CSS computation
that efficient. However, for exceptionally large data matrices, it is possible to improve it with
the randomized approximate search of Thurau et al. (2010), that can be directly adapted.
Finally, let us remark that, in spite of being linear in terms of n, the number of elements in
the dataset, the procedure is not linear with respect to �. However, as � is classically several
order of magnitude smaller than n, so that it is seldom important. This is why, in a similar
way, SiVM is also not linear with respect to �.

The complexity of the computation of the projection matrix G is by construction linear
with respect to n as in the algorithm, it is decomposed into a succession of n independent
projections. However, the complexity of the projection with respect to � is linear:

Property 4 (Computational complexity for G—noted as Second step in Alg. 1) Each pro-
jection has a linear complexity regarding λ.

Proof Each projection is computed through a gradient descent, each iteration of which has a
complexity dominated by that of the GSSP (Eq. 12). The latter requires getting the λ greatest
values of Gt

i•. To do so, the GSSP classically relies on sorting the elements of Gt
i• (a vector of

size �), with a o(� log(�)) complexity. However, it is possible to be more efficient by achieving
this task in o(λ) thanks to the median-finding algorithm (Maculan and Paula 1989). Finally,
if q iterations are needed in the descent, then the total complexity of one projection is o(qλ).

��
Let us note here that q typically depends on the choice of the magnitude of the gradient
step εt , which can be efficiently set following the results of Garg and Khandekar (2009). In
practice, only a few tens of iterations are necessary and if one has n >> qλ, the influence of
the number of iterations is immaterial.

Finally, as both the definition of the CSS and the projection have a linear complexity with
respect to the dataset size, the overall SAGA procedure also has. This allows factorizing very
large matrices in tractable time.

5 Experiments and results

In this section, we first observe the behavior of SAGA on some toy datasets. Our goal is
to verify the behavior of our algorithm with respect to the theoretical properties given in
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Fig. 2 A ring and an S-shape datasets. a–c It is possible to have � > p elements in the CSS forming a
non-simplicial polytope (here illustrated by a 4-NN graph) which approximates well the contour of the shape.
b–d Each pixel of the image is projected in the RKHS onto the 29-simplex (b) or 49-simplex (d). Each pixel
is colored according to its reconstruction error (black for low values, white for high ones)

Fig. 3 a–b The 29-simplex on the ring shape dataset: the red point is projected in the RKHS as a 3-sparse
vector. Each vertex color accounts for the corresponding convex coordinates (from blue= 0 to red= 1). c–d
The S dataset with 5-sparse vectors (in (d), only 4 projections are non-nil)

the previous section, with a special focus on the nature of the subsampling occurring the
RKHS. Then, the volume maximization strategy is discussed, as well as its impact on the
reconstruction errors over a toy and a real dataset. We finally discuss the potential use of
SAGA in a feature extraction context for classification purpose. The performances of our
method are then compared to a selection of state-of-the-art methods performing NMF with
characteristics shared by our method (sparsity, kernels, convexity, etc.).

5.1 Experiments on toy datasets

The SAGA paradigm is first illustrated on toy datasets (Figs. 2, 3 and 4). In the first examples
we consider simulated datasets (ring and S shaped respectively) made of 600 points in R

2:
In the input space, the points of the CSS form a non-simplicial polytope which intuitively
fits with the manifold hull idea (both inner and outer contours are displayed for the ring). If
one projects points onto the corresponding CSS (� = 30 for the ring, and � = 50 for the S),
the magnitude of the reconstruction error fits with the non-linear geometry of the simplex
in the input space (Fig. 2). The sparsity and the locality of the reconstruction are displayed
on Fig. 3: It appears that for each point, the number of non-null components is smaller than
or equal to λ = 3 (ring) or λ = 5 (S). Moreover, these non-nil components are all located
in the very close neighborhood of the projected point, as expected for a non-linear local
embedding. Figure 4a shows the evolution of the reconstruction error and the locality of the
samples used for the reconstruction. This last term is measured as the radius of the minimum
volume enclosing ball (computed as a smallest enclosing ball problem Gärtner 1999). As
expected, this mean radius is decreasing as more samples are taken from the dataset.
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Fig. 4 a Reconstruction error (in red) and mean radius of smallest enclosing ball (blue) for the ring dataset.
b Normalized reconstruction error

Next, the reconstruction error of SAGA is evaluated with respect to the chosen sparsity
level and compared to the original version of SiVM (Thurau et al. 2010), yet in the Gaussian
RKHS, i.e. a simplex volume maximization of Eq. 5, followed by a projection based on
quadratic programming. We draw 2, 000 points in R

30 according to a Gaussian distribution
with covariance matrix σ = 0.5I. We measure for SiVM and SAGA the normalized recon-
struction error ||�−�WG�||2/||�||2. We remark here that this formula is correct for SiVM
if it is implemented through a kernel form with the linear kernel. Results are displayed in
Fig. 4b. When � ≤ p = 30, SAGA (with or without sparsity constraint) as well as SiVM
directly operates as a dimensionality reduction method: As the SiVM curve is below that of
SAGA λ = �, SiVM appears as more reliable, which makes sense, as the Gaussian distribu-
tion provides a rather convex dataset. However, even on such a dataset, if the reconstruction
error is considered along with sparsity, it appears that, whatever the value λ∗ chosen for
parameter λ, it is always possible to find a value �∗ for �, such that the reconstruction error
with SAGA tuned with (� = �∗, λ = λ∗) is smaller than with SiVM tuned with (� = λ∗).
This illustrates well that it is possible to reduce the reconstruction error while constraining
the solution sparsity. If one considers the case where � ≥ p = 30, SiVM fails in producing
reconstruction error which decreases when � increases: From Eq. (1), the addition of a p+ 1
vertex leads to a simplex of null volume, which is impossible to maximize, and turning SiVM
into a random projection method. Thus, the reconstruction error becomes greater than with
SAGA, the latter enhancing the reconstruction quality, despite strong sparsity constraints.

5.2 Comparison on subsampling strategies

The quality of the overall matrix factorization procedure relies on two elements: the ability of
the CSS to correctly define the manifold hull, and the precision of the projection. A particular
focus is given here on the first one, as various sampling strategies are compared and discussed.

The goal of our first comparison is to confirm that, among the methods based on volume
maximization, ours is the most accurate. To this end, we compare three volume maximization
methods (operating in the RKHS, to fit the objectives of this work): The first one is very
method from Thurau et al. (2012), reported through Eq. 5, including the constant distance
assumption as well as the replacement of squared distances by simple distances. As this point
is only supported by computational considerations, we also consider the method summarized
by Eq. 4, where the constant distance assumption still holds, but where the squared distances
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Table 1 Mean ratio and variance (in %, over 30 runs) of maximum simplex volumes found by both approxi-
mations from Eqs. 4 and 5, as well as SAGA over the exact CMD approach

Uniform Ill-conditioned COIL-20

SiVM-approx-(4) 98.93 (0.07) 59.18 (1.6) 97.37 (0.12)

SiVM-approx-(5) 96.03 (0.21) 55.85 (1.5) 96.28 (0.13)

SAGA 100.13 (2× 10−3) 100.04 (6× 10−3) 100.00 (0.00)

For each dataset, the most accurate result is in bold font

are kept. These two methods are referred to as SiVM-approx-(4) and SiVM-approx-(5).
Naturally, the third one is that of SAGA, based on Eqs. 8 and 9. As a reference, we consider
the exact volume computation based on the Cayley–Menger determinant (CMD), and we
compare the ratios of the volumes derived by the three methods over the reference one. Due
to the computation cost of CMD, we have restrict the size of the CSS to � = 8.

Three types of datasets are used for this comparison. First datasets are composed of 2,000
points in R

30 according to a uniform distribution. The second type of datasets is used to test
the robustness of the methods to ill-conditioned data; so, 2,000 elements in R

50 are generated
and their singular values are transformed such as described in Gillis and Vavasis (2013).
Finally, our last dataset is obtained through a random selection of 160 images from the real
dataset COIL-20 (Columbia University Image Library). COIL-20 contains 128 × 128 gray
images of 20 objects at different view angles, for a total number of sample of 1,440 (Nene et
al. 1996). We use 30 datasets of each type and we compute the mean ratio (and variance) of
the volumes, as described above (see Table 1).

Some conclusions can be drawn from Table 1. First, the lower ratios of SiVM-approx-
(4) and -(5) for ill-conditioned datasets confirm the conclusion of Gillis and Vavasis (2013)
regarding the constant distance approximation, while SAGA is not bothered. Second, it is
possible to notice the slight decrement of the performances due to the supplemental approx-
imation in SiVM-approx-(5) where the squared distances are not considered anymore for
computational reasons. Also, for all datasets, SAGA finds the most similar simplex volumes
to the reference ones, as the ratios are the closest to 1. Oddly enough, the ratios are sometimes
even slightly greater than 1, due to the numerical imprecisions of the determinant computa-
tions which may induce different choices for the simplex vertices. In the meantime, while
volume differences between SAGA and CMD are low, their respective computational per-
formances are quite different. As an example, with COIL dataset, each CMD computation
requires≈ 10 s. whereas SAGA takes≈ 0.01 s in an unoptimized implementation. As a con-
clusion, SAGA provides a volume as large as what of CMD approach, yet in much less time.
However, the computational accuracy of SAGA is fully investigated in the next subsection.

Now that it is established that SAGA provides a better hull for the manifold than classical
methods based on a kernelization of the simplex volume maximization, let us compare it to
other manifold sampling strategies. As it is not meaningful to use the simplex volume as a
criterion, we consider the normalized reconstruction errors, such as with toy datasets. We
can also consider larger CSS values, ranging from 10 to more than 100, as the computation
of the CMD is not an issue anymore. In the comparison, we keep SiVM-approx-(5), as
it corresponds to a kernelized version of the original paper (Thurau et al. 2012). We also
consider random sampling (the NMF reducing to a random projection algorithm), kernel
k-means and kernel rank-revealing Cholesky of Courty and Burger (2013), as a surrogate for
the rank-revealing QR method of Shroff et al. (2011) which cannot be kernelized.
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Fig. 5 Comparison of the reconstruction error according to the size of the CSS: a Wine dataset; b simulated
dataset (50 dimensional Gaussian)

(a) (b)

Fig. 6 Comparison of the computational times for the CSS (a) and the projection (b) for SiVM and SAGA

Two datasets are used, namely the UCI Wine dataset (Bache and Lichman 2013) composed
of 178 instances with 13 attributes and a simulated dataset which consist of 2,000 points in
R

50 according to a Gaussian distribution. Reconstruction error curves are presented in Fig. 5
and demonstrate the best overall performances of SAGA with increasing � values. However
this general trend differs according to the considered dataset and the � values. For example if
SAGA clearly outperforms SiVM with the Wine dataset, their performances are very close
with the Gaussian one. With lowest � values, kernel k-means and kernel rank-revealing
Cholesky get better results on the Wine dataset, however, the reconstruction error remains
high whatever the strategy.

5.3 Computational complexity

First, we consider the complexity of the CSS computation. A random dataset in R
30 of

size n, with n ranging in [1,000–10,000] is considered, with � = 10, for both linear and
Gaussian kernel. Each time the experiment is repeated 20 times to stabilize the measure, and
the computation times are reported in Fig. 6a. As expected, we observe a near linear trend
with both different versions of kernel. The computational differences occurring between the
two kernels are mostly due to the evaluation of the kernel: the linear kernel results in a
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simple dot product operation, whereas evaluating the Gaussian kernel involves computations
of transcendental operators.

If we now turn to the complexity of the projection, it is useless to consider it with respect
to n as the projection is dealt datum by datum. However, it is interesting to consider the
complexity regarding �. To do so, we use the same experimental setting, yet, n is fixed and �

varies from 1 to 120. Fig. 6b clearly highlights the outperformance of our projector compared
to the quadratic programming approach used in SiVM.

5.4 Application to classification on real datasets

In order to propose a more application-oriented test of SAGA, we propose to use the result of
various NMF methods as feature extraction processes in a classification problem. Experiments
are conducted on four publicly available datasets. The previously described COIL-20 dataset,
the CMU PIE dataset, the MNIST dataset and the CIFAR-10 dataset: The CMU PIE dataset
contains the 32 gray scale facial images of 68 people, any of each having 42 images at different
illumination and facial expression conditions (Sim et al. 2002). The MNIST dataset (LeCun
et al. 1998) contains the 28× 28 gray scale images of handwritten numbers (from 0 to 9). Its
total sample number is 70,000. Finally, CIFAR-10 is made of 60,000 32 × 32 color images
in 10 classes, with 6,000 images per class.

Each dataset is partitioned into two sets: one for training (one tenth of the dataset), and the
other for testing. On the training dataset Xt , a factorization is conducted and leads to derive
Ft and Gt . Ft plays the role of a visual coding dictionary, and is used to reconstruct the test
set. We note here that Ft could have been constructed with respect to the entire dataset, in a
unsupervised learning manner, but it was not the case. Gt is used to train a SVM classifier
(with Gaussian kernel), with parameters optimized by standard cross-validation. The testing
set Xs is then projected over Ft which allows deriving Gs , used for testing with the SVM
classifier. This process is repeated 10 times for each value of � ∈ {10, 20, 30, 40, 50}, and
for each �/λ ratio ∈ {1, 1.5, 2}, in order to stabilize the performances. In this setting, we
have compared the result of SAGA to other state-of-the-art algorithms: Sparse NMF (Kim
and Park 2007) (with �/λ = 2), Kernel NMF (Li and Ngom 2012), Convex NMF (Ding
et al. 2010) and Kernel Convex NMF (Ding et al. 2010) (or KC NMF for short). We have
used the same kernel variance for all kernel-based techniques, on the basis of a standard
rule of thumb (Luxburg 2007). The mean results over the 10 repetitions are displayed in
Fig. 7. It shows that SAGA produces the most accurate results on three datasets out of four.
In the case of CIFAR-10 dataset, one notices first the very low performances of all the
methods with respect to the state-of-the-art works focusing on classification performances.
The reason is that the size of the CSS remains rather low in our experimental setting: the
point of this comparison is not to exhibit the highest possible accuracies, but rather to provide
a sound experimental setting across various datasets of heterogeneous difficulty. However,
this does not explain why SAGA does not compete with Sparse NMF and Kernel NMF on
this dataset. A possible explanation stems from the complexity of the manifold hull which
cannot be described efficiently by so few elements. In this particular case, SAGA would
perform slightly worse than other state-of-the-art methods. Interestingly enough, whatever
the dataset, when λ stays the same, the SAGA classification accuracy improves with the
increasing number � of simplex vertices. However, � exerts little influence when λ is already
large. As discussed in Yu et al. (2009), we can relate the optimal value of � to the intrinsic
dimensionality of the manifold where the data live.

Table 2 summarizes the results of Fig. 7 by averaging the performances ∀� ∈
{10, 20, 30, 40, 50}, (for Sparse NMF and SAGA, with �/λ = 2): The variances which
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(a) (b)

(c) (d)

Fig. 7 Feature extraction evaluation on a COIL-20, b PIE, c MNIST and d CIFAR-10 datasets at different
reduced dimension

Table 2 Mean accuracy and variance NMF-based classification

COIL-20 PIE MNIST CIFAR-10

Sparse NMF 88.04 (0.66) 80.24 (1.25) 86.08 (1.99) 38.34 (0.56)

Kernel NMF 94.38 (1.75) 79.89 (7.25) 83.61 (2.86) 38.90 (1.87)

Convex NMF 83.46 (2.84) 54.95 (9.07) 80.66 (2.80) 31.31 (0.45)

KC NMF 85.18 (0.39) 59.80 (1.75) 81.94 (0.35) 25.76 (0.16)

SK SiVM 96.79 (1.34) 83.73 (9.32) 89.71 (3.78) 35.50 (2.20)

SAGA 97.23 (1.58) 84.44 (13.62) 89.92 (3.18) 35.59 (2.44)

t-statistics 3.2327 1.8872 2.3257 X

Confidence Level ≥99 % ≥95 % ≥97.5 % X

For each dataset, the most accurate method is in bold font. This property is assessed thanks to a paired Student’s
t test between the SAGA and the best other method (apart from SK SiVM which can be seen as a particular
case of SAGA)

are not displayed on Fig. 7 for clarity sakes are given here. SAGA variance is sometimes
important due to the strong increment of the performances when � increases. To allow for
more complete comparisons, we have also added a kernel version of the original SiVM with
our projection method, noted Sparse Kernel SiVM (SK SiVM for short), which basically
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Fig. 8 Computational performances between SAGA and the other considered NMF methods on the whole
PIE dataset

amounts to using SAGA, yet with Eq. 5 instead of Eqs. 8 and 9; it appears that it is always
less accurate than SAGA.

Finally, on the majority of the datasets, the superiority of SAGA is established. Also, it is
the fastest of all, as can be seen in Fig. 8, where the factorization performances are reported
for SAGA and the considered state-of-the-art NMF methods for the whole PIE dataset when
varying the size of the CSS. This illustrates the computational benefits of our approach.

6 Conclusion

SAGA (Sparse and Geometry Aware) is a new matrix factorization algorithm which has the
following properties: (1) it operates in the Gaussian RKHS, which accounts for potential
nonlinearity in the dataset geometry; (2) it provides sparse and convex projections onto a
reduced embedding spanned by selected typical samples, which facilitates the human inter-
pretation, and leads to a non-linear local representation of the data; (3) it has a complexity
linear with the number of data entries, which allows dealing with big data. SAGA relies
on both a manifold sampling strategy and a data projection. This latter has been proved to
converge under some conditions regarding the Gaussian kernel variance. Finally, SAGA has
been tested on toy, simulated and real datasets. The following conclusions can be drawn from
the experiments: we observed in accordance with the theory that SAGA encodes the data
as convex combinations of neighbor samples; the proposed volume maximization heuristic
leads to better subsampling of the original data with respect to the volume of the simplex
formed by the CSS; and the performances of its feature extraction have proved to outperform
the selected state-of-the-art other NMF methods on classification tasks.
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