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Abstract Transposable data represents interactions among two sets of entities, and are typi-
cally represented as a matrix containing the known interaction values. Additional side infor-
mation may consist of feature vectors specific to entities corresponding to the rows and/or
columns of such a matrix. Further information may also be available in the form of interac-
tions or hierarchies among entities along the same mode (axis). We propose a novel approach
for modeling transposable data with missing interactions given additional side information.
The interactions are modeled as noisy observations from a latent noise free matrix generated
from a matrix-variate Gaussian process. The construction of row and column covariances
using side information provides a flexible mechanism for specifying a-priori knowledge of
the row and column correlations in the data. Further, the use of such a prior combined with
the side information enables predictions for new rows and columns not observed in the train-
ing data. In this work, we combine the matrix-variate Gaussian process model with low
rank constraints. The constrained Gaussian process approach is applied to the prediction of
hidden associations between genes and diseases using a small set of observed associations
as well as prior covariances induced by gene-gene interaction networks and disease ontolo-
gies. The proposed approach is also applied to recommender systems data which involves
predicting the item ratings of users using known associations as well as prior covariances
induced by social networks. We present experimental results that highlight the performance
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of constrained matrix-variate Gaussian process as compared to state of the art approaches in
each domain.

Keywords Constrained Bayesian inference - Gaussian process - Transposable data -
Nuclear norm - Low rank

1 Introduction

Transposable data describes relationships between pairs of entities. Such data can be orga-
nized as a matrix, with one set of entities as the rows, the other set of entities as the columns.
In such datasets, both the rows and column of the matrix are of interest. Transposable data
matrices are often sparse, and of primary interest is the prediction of unobserved matrix
entries representing unknown interactions. In the machine learning community, the model-
ing of transposable data is often encountered as multitask learning (Stegle et al. 2011). In
addition to the matrix, transposable datasets often include features describing each row entity
and each column entity, or graphs describing relationships between the rows and the columns.
These features and graphs can be useful for improving in-matrix prediction performance and
for extending model predictions outside of the observed matrix, thus alleviating the cold-start
problem. In this work, we combine the matrix-variate Gaussian process model with low rank
constraints for the predictive modeling of transposable data.

In recent years, the matrix variate Gaussian distribution (MV-G) has emerged as a popular
model for transposable data (Allen and Tibshirani 2010, 2012) as it compactly decomposes
correlations between the matrix entries into correlations between the rows, and correlations
between the columns. Although the MV-G has been shown to be effective for modeling
matrix data with missing entries, model predictions do not extend to rows and columns that
are unobserved in the training data. One approach to remedy this deficiency is to replace the
MV-G with the nonparametric matrix-variate Gaussian process (MV-GP) (Stegle et al. 2011).
This is achieved by replacing the row and column covariance matrices of the MV-G with
parameterized row and column covariance functions. Thus, the resulting model can provide
predictions for new rows and columns given features. The MV-GP may also be described as
an extension of the scalar valued Gaussian process (GP) (Rasmussen and Williams 2005), a
popular model for scalar functions, to vector valued responses. The MV-GP has been applied
to link analysis, transfer learning, collaborative prediction and other multitask learning prob-
lems (Yu and Chu 2008; Bonilla et al. 2008; Yan et al. 2011). Despite its wide use for
transposable data and multitask learning, the MV-GP does not capture low rank structure.

Rank constraints have become ubiquitous in matrix prediction tasks (Yu et al. 2007; Zhu et
al. 2009; Koyejo and Ghosh 2011; Zhou et al. 2012; Koyejo and Ghosh 2013a). The low rank
assumption implies that matrix-valued parameters of interest can be decomposed as the inner
product of low dimensional factors. This reduces the degrees of freedom in the matrix model
and can improve the parsimony of the results. Recent theoretical (Candeés and Recht 2009)
and empirical (Koren et al. 2009) results have provided additional motivation for the low rank
approach. The low rank assumption is also motivated by computational concerns. Consider
the computational requirements of a full matrix regression model such as a Gaussian process
regression (Rasmussen and Williams 2005). Here, the memory requirements scale quadrati-
cally with data size, and naive inference via using a matrix inverse scales cubically with data
size (Alvarez et al. 2012). In contrast, training low rank models can scale linearly with the
data size and quadratically with the underlying matrix rank (using the factor representation).
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Further, efficient optimization methods have been proposed (Koren et al. 2009; Dudik et al.
2012).

We propose a novel constrained Bayesian inference approach that combines the flexibility
and extensibility of the matrix-variate Gaussian process with the parsimony and empirical
performance of low rank models. Constrained Bayesian inference (Koyejo and Ghosh 2013a)
is a principled approach for enforcing expectation constraints on the Bayesian inference
procedure. It is a useful approach for probabilistic inference when the problem of interest
requires constraints that are difficult to capture using standard prior distributions alone.
Examples include linear inequality constraints (Gelfand et al. 1992) and margin constraints
(Zhu et al. 2012). To enforce these restrictions, constrained Bayesian inference represents the
Bayesian inference procedure as a constrained relative entropy minimization problem. The
resulting optimization problem can often be reduced to constrained parameter estimation and
solved using standard optimization theoretic techniques.

The main contributions of this paper are as follows:

— We propose a novel approach for capturing the low rank characteristics of transposable
data by combining the matrix-variate Gaussian process prior with constrained Bayesian
inference subject to nuclear norm constraints.

— We show that (i) the distribution that solves the constrained Bayesian inference problem
is a Gaussian process, (ii) its inference can be reduced to the estimation of a finite set
of parameters, and (iii) the resulting optimization problem is strongly convex in these
parameters.

— We evaluate the proposed model empirically and show that it performs as well as (or better
than) the state of the art domain specific models for disease-gene association prediction
with gene network and disease ontology side information and recommender systems with
social network side information.

We begin by discussing relevant background on the matrix-variate Gaussian process and
nuclear norm constraints for matrix-variate functions in Sect. 2. We introduce the concept
of constrained inference in Sect. 2.4 and apply it to the matrix-variate Gaussian process
to compute a low rank prediction (Sect. 4). We present the empirical performance of the
proposed model compared to state of the art domain specific models for transposable data
in the disease-gene association domain (Sect. 5.1) and the recommender systems domain
(Sect. 5.2). Finally, we conclude in Sect. 6.

2 Background

This section describes the problem statement (Sect. 2.2), and the main building blocks of our
approach (i) the matrix-variate Gaussian process (Sect. 2.3) and (ii) constrained Bayesian
inference (Sect.2.4).

2.1 Preliminaries

We denote vectors by bold lower case e.g. x and matrices by bold upper case e.g. X. Let Ip
represent the D x D identity matrix. Given a matrix A € RP*2 vec(A) € RP€ is the vector
obtained by concatenating columns of A. Given matrices A € R’*¢ and B € R” %0 the
Kronecker product of A and B is denoted as A @ B € R? xQ0' A yseful property is the
Kronecker identity: vec(AXB) = (BT ® A)vec(X), where X € R2*F "and BT represents
the transpose of B.
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Let E[ -] be the expectation operator withE, [ f(2)] = fz p(2) f(2)dz. The Kullback-
Leibler (KL) divergence between densities ¢(z) and p(z) is given by:

KL(q(2)|Ip(2)) = E, [logq(z) —log p(2) | .
Let x € R” be drawn from a multivariate Gaussian distribution. The density is given as:

exp (—%tr [(x -m) X (x— m)])
Qm)Pr21 (P2 '

A (m, X) =

where m € R” is the mean vector and ¥ € RP*? is the covariance matrix. | - | denotes the
matrix determinant and tr(-) denotes the matrix trace.

2.2 Transposable data notation and problem statement

Let M > m be the index set of rows and N 5 n be the index set of columns. The index set of
observed matrix entries is represented by L = {(m, n)} C M x N withevery ! = (m, n) € L.
We define the subset of observed rows as the set M = {m | (m,n) € L} C M with size
IM| = M, and the subset of observed columns as the set N = {n | (m,n) € L} C N with
size IN| = N so L = |L|] < M x N. Let each entry in the matrix be represented by y;. The
observed subset of the transposable matrix is represented by y = [yll . y;L]T. Our goal is
to estimate a predictive model for any unobserved entries {y; |’ ¢ L} including entries not
observed within the bounds of the training matrix i.e. {yy |’ ¢ M x N}.

2.3 Matrix-variate Gaussian process for transposable data

The matrix-variate Gaussian process is a doubly indexed stochastic process {Z,; , }meM.neN
where finitely indexed samples follow a multivariate Gaussian distribution. As with the scalar
Gaussian process (Rasmussen and Williams 2005), the MV-GP is completely specified by
its mean and covariance functions. We use the notation .Z94 %2 (¢, én, m) to denote the
MV-GP with mean function ¢ : M x N — R, row covariance function ¢y : M x M — R
and the column covariance function én : N x N — R. The covariance function of the prior
MV-GP has a Kronecker product structure (Alvarez et al. 2012). This form assumes that the
prior covariance between matrix entries can be decomposed as the product of the row and
column covariances. The joint covariance function of the MV-GP decomposes into product
formas € ((m, n), (m', n')) = Gm(m, m)6x(n, n'), or equivalently, € = N ® 1. We use
the notation 4% (¥, ¢) to denote the scalar valued Gaussian process with mean function
¥ : L — R and covariance function ¢ : L x L — R.

Let Z ~ MG P (¢, 6m, En), and define the matrix Z € RM*N with entries Zmp =
Z(m,n) form,n € M x N, vec(Z) is a distributed as a multivariate Gaussian with mean
vec(®) and covariance matrix Cy ® Cyy, i.e., vec(Z) ~ A (vec(®@), Cn ® Cyv), where
O =¢(m,n), ® € RM*N is the mean matrix, Cp; € RM*M is the row covariance matrix
and Cy € RV*V is the column covariance matrix. This definition extends to finite subsets
L € M x N that are not complete matrices. For any subset L, the vector z = [z[1 . z[L] is
distributed as z ~ .4 (@, C) where the vector | = [¢(1)...p(L)] € RE are arranged
from the entries of the mean matrix corresponding to the set/ € L, and C is the covariance
matrix evaluated only on pairs /, I’ € L x L.

The MV-GP is a popular prior distribution for transposable matrix data. Here we combine
it with a Gaussian observation noise model as follows (see Fig. 1):
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L

Fig.1 Plate diagram of the hierarchical matrix-variate Gaussian process model with i.i.d Gaussian observation
noise. Z(m, n) is the hidden noise-free matrix entry

1. Draw the function Z from a zero mean MV-GP as Z ~ .#9 <7 (0, ém, EN).
2. Draw observed response independently as y,, , ~ A (zm,,,, 02) given zy, , = Z(m, n).

The hidden matrix Z € RM*N with entries Zmn = Z(m,n) may be interpreted as the
latent noise-free matrix. The inference task is to estimate the posterior distribution Z|Z,
where 2 = {y, L}. It follows that the posterior distribution is a Gaussian process (Ras-
mussen and Williams 2005) given by Z|2 ~ 92 (¢, X), with mean and covariance
functions:

¢ (m,n) = CL(m,n)[C+ o1y (1a)
2 ((m,n), m',n")) = €((m,n), m',n)) — CL(m,n)[C + 1] "'CL(m,n)". (1b)

The covariance function C|_(m, n) corresponds to the sampled covariance matrix between the
index (m, n) and all training data indexes (m’, n") € L, C is the covariance matrix between
all pairs (m, n), (m’,n’) € L x L, and Iis the L x L identity matrix. The closed form follows
directly from the definition of a MV-GP as a scalar GP (Rasmussen and Williams 2005) with
appropriately vectorized variables. The computational complexity of applying the GP model
scales with the number of observed samples L. Storage of the covariance matrix requires
O(L?) memory, and the naive inference requires O(L3) computation.

2.4 Constrained Bayesian inference

Probabilistic inference involves estimating the distribution of latent variables given new
information such as observed data and constraints. This is often achieved via Bayes rule. Given
the prior distribution of the latent variables, Bayes rule is a simple formula for computing
the latent variable distribution conditioned on the observed data. However, Bayes rule may
be inadequate when the constraints one seeks to impose on a latent variable distribution are
computationally intractable to enforce by careful selection of the prior distribution alone. An
alternative approach is to enforce these constraints as part of the inference procedure. While
this can be achieved via rejection sampling and related techniques (Gelfand et al. 1992), such
methods are computationally intractable for high dimensional variables as a large proportion
of the samples will be discarded. Constrained Bayesian inference via variational optimization
is a useful alternative in such cases. Constrained Bayesian inference converts the probabilistic
inference into an optimization problem, thus allowing the application of standard optimization
techniques.

Let z represent the latent variables and y represent the observations. Bayes rule can be
used to compute the posterior density p(z|y) as:

p(y12)p(2)

pzly) = 20)

where the conditional density p(y|z) is known as the likelihood, p(z) is the prior density and
p(y) is the evidence. An alternative approach was proposed by Zellner (1988), who showed
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that the Bayesian posterior can be computed as the solution of the variational optimization
problem:

p(zly) = arg r;in KL(g(2)p(z)) —Eq [log p(yl2) |- 2)
qeo

where 2 = {q| [.q(z)dz = 1}.

Constrained Bayesian inference (Koyejo and Ghosh 2013a) can be used to enforce addi-
tional structure on the posterior distribution. It involves enforcing additional constraints on
the variational optimization posed in (2). This paper will focus on expectation constraints
applied to feature functions of the latent variables. Given a vector of feature functions y(z)
and a constraint set C, let Z¢c = {q¢ € Z | E, [ y(2) ] € C} represent the set of densities that
satisfy the constraint E, [y(z) ] € C. Constrained Bayesian inference requires solving one
of the following equivalent variational optimization problems (Ganchev and Ja 2010; Zhu et
al. 2012; Koyejo and Ghosh 2013a):

g+(z) = argmin KL(q(2)|Ip(2)) — Eg [log p(y12) | . (3a)
qe@c

qx(z) = argmin KL(g(2) [ p(z|y)). (3b)
qeZc

Thus, the solution is an information projection of the Bayesian posterior distribution onto
the constraint set ¢". Following Zellner, we call g, the postdata density to distinguish it from
the unconstrained Bayesian posterior density. Further discussion of constrained Bayesian
inference is provided in Appendix 7.

3 Related work

Constrained Bayesian inference is a special case of constrained relative entropy minimization
where some of the constraints are generated from observed data (Koyejo and Ghosh 2013).
Constrained relative entropy minimization and constrained entropy maximization have been
studied in several application domains including natural language processing (Berger et al.
1996) and ecology (Dudik et al. 2007). Applications in the machine learning literature include
maximum entropy discrimination (MED) (Jaakkola et al. 1999), and other models inspired
by MED have been proposed for combining nonparametric topic models with large margin
constraints for document classification (Zhu et al. 2009) and multitask classification (Zhu et
al. 2011). Constrained relative entropy models have also been applied to collaborative filter-
ing (Xu et al. 2012) and link prediction (Zhu et al. 2012) Other work using nonparametric
priors (Zhu et al. 2009, 2011) has resulted in intractable inference, requiring the applica-
tion of variational approximations with tractable assumptions made for the independence
structure and parametric families of the solution. Our work appears to be the first that uses
nonparametric prior distributions without requiring such simplifying assumptions. In addi-
tion, we consider constraints on the function space of the Gaussian process, which generalize
the evaluation based constraints proposed in prior work i.e. constraints on the entire mean
function as opposed to constraints on the mean of a set of matrix entries.

Factor models such as principal component analysis (PCA) (Bishop 2006) and its vari-
ants are popular methods for extracting information from matrix data. The standard PCA
model can be extended to handle missing data using a Bayesian approach (Bishop 2006) that
marginalizes over the missing data. The Gaussian process latent variable model (GP-LVM)
(Lawrence and Hyvirinen 2005) was proposed to extend PCA to model non-linear relation-
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Ij‘ig. 2 Hiere}rchical low rank Cus o2 Cx
factor Gaussian process

Uur Ym,n VT
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L

ships by replacing the covariance matrix with a non-linear kernel. This kernel approach has
been applied to non-linear matrix factorization (Lawrence and Urtasun 2009). The GP-LVM
integrates out one of the factors and estimates the other. The rank of the factor model must be
pre-specified in such models, and is often fixed via expensive cross-validation. Implementa-
tions of Kernel PCA typically capture prior correlations over the rows or the columns, but
notboth!. Our proposed model is designed capture prior correlations simultaneously over the
rows and columns via the matrix-variate Gaussian process prior. Further, the nuclear norm
provides an avenue for automatic (implicit) rank selection.

The most common common approach for low rank matrix data modeling in the Gaussian
process literature is the hierarchical low rank factor model. In particular, the hierarchical low
rank factor Gaussian process (factor GP) has been proposed to capture low rank structure
(Yu et al. 2007; Zhu et al. 2009; Zhou et al. 2012). We discuss this approach in some detail
as it is used as our main baseline. Here, Gaussian processes are used as the priors for the low
dimensional factors. With a fixed model rank R, the generative model for the factor GP is as
follows (see Fig. 2):

1. For each r € {1...R)}, draw row functions: U" ~ 4.2 (0, 6m). Let u,, € RX with
entries u), = U" (m).

2. Foreach r € {1...R}, draw column functions: V" ~ @2 (0, én). Let v, € RX with
v, = V' (n).

3. Draw each matrix entry independently: y,, , ~ A~ (u;nrvn, 02) Y (m,n) € L.

where u,, is the m™ row of U = [u'...uf] € RM*R and v, is the n'" row of

V = [vl...vR] € RN*R The maximum-a-posteriori (MAP) estimates of U and V can
be computed as the solution of the following optimization problem:

argmin— > (n — ulva)® + r(UTCy'U) +wr(VICR'V) @)
v (m,n)elL

where tr(X) is the trace of the matrix X. Statistically, the factor GP may be interpreted as the
sum of rank-one factor matrices. Hence the law of large numbers can be used to show that

the distribution of Z converges to 4.2 (0, N ® %Mm) as the rank R — oo (Yu et al. 2007).
Despite its success, the factor Gaussian process approach has some deficiencies when
applied for probabilistic inference. First, posterior distributions of interest are generally
intractable. Specifically, neither the joint posterior distribution of {U, V} nor the distribu-
tion of Z = UV is Gaussian, and their posterior distributions are quite challenging to
characterize. As a result, the posterior mean is challenging to compute without sampling
and practitioners often apply the MAP approach. Second order statistics such as the poste-
rior covariance are also computationally intractable. Instead, various approximate inference
techniques have been applied. A Laplace approximation was proposed by (Yu et al. 2007)

!' The choice to capture either row or column covariances in PCA and GPLVM is not fundamental to these
models i.e. it is primarily a modeling choice.
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and (Zhu et al. 2009) utilized sampling techniques. Further, in most cases, the rank must be
fixed a-priori. More recently, Bayesian models for matrix factorization that include a non-
parametric prior for the number of latent factors have been proposed based on the Indian
buffet process (Zhu 2012; Xu et al. 2012) and multiplicative gamma process (Zhang and
Carin 2012). Inference with these models is generally intractable, and requires approxima-
tions or sampling, which may result in slow or inaccurate inference for large datasets. Further,
many of these approaches have focused on in-matrix prediction, and have not been applied
to out-of-matrix predictions.

Other related literature include Li and Yeung (2009), where the authors proposed a reg-
ularized matrix factorization model exploiting relation information. The proposed model is
identical to the Gaussian process factor model? (Zhou et al. 2012) with an appropriate choice
of kernel. Li et al. (2009b) proposed an approach for learning a kernel based on network links
that can then be applied to predictive modeling tasks. Li et al. (2009a) proposed a Bayesian
probabilistic PCA model for full matrix prediction exploiting relational data information
by constructing a covariance matrix that accounted for the relational data. An alternative
approach focusing on learning additive Gaussian process kernels was proposed by (Xu et
al. 2009), and an approach for nonparametric relational data modeling using co-clustering
(instead of matrix factorization) was proposed by Xu et al. (2006). Several works have
focused on the matrix prediction task alone without the use of side information. For example,
Sutskever et al. (2009) utilized the clustering of factors to model the latent relationships as
an alternative to designing covariance matrices.

4 Proposed approach: the nuclear norm constrained MV-GP

We propose nuclear norm constrained Bayesian inference for modeling low rank transposable
data as an alternative to the low rank factor approach. The proposed approach constrains the
model by directly regularizing the rank of the expected prediction via a constraint on its
nuclear norm. Optimization with the rank constraint is computationally intractable, and the
popular factor representation results in a nonconvex optimization problem that is susceptible
to local minima (Dudik et al. 2012). The nuclear norm constraint has been proposed as a
tractable surrogate regularization for the low rank constraint, which is in turn motivated by
parsimony of the low rank representation, and the superior empirical performance of low
rank models in many application domains. The nuclear norm of a matrix variate function is
given by the sum of its singular values (Abernethy et al. 2009), and is the tightest convex
hull of its rank. Under certain conditions, it can be shown that nuclear norm regularization
recovers the true low rank matrix (Pong et al. 2010). Further details on the nuclear norm of
matrix functions are provided in Appendix 8.

With no loss of generality, we assume a set of rows M and a set of columns N of interest
soL ¢ M x N.LetZ € RM¥*¥ pe the matrix of hidden variables, with z = vec(Z) € RM*V,
Given any finite index set of observations at indices / € L, the finite dimensional prior
distribution is a Gaussian distribution given by .4 (0, C) where C € RMNXMN We seek a
postdata density g (Z]2) that optimizes (3a) subject to the constraint |||Eq [Z ]||| =y where
Il is the nuclear norm. For any finite index set, the unconstrained Bayesian posterior
distribution is Gaussian (Sect. 2.3). Following the steps of Sect. 2.4 (see also Appendix 7), it
is straightforward to show that since the feature function y (Z) = Z is linear, the constrained
Bayes solution must also take a Gaussian form. All that remains is to solve for the mean and

2 See experiments (Sect. 5) for further discussion.
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covariance. We may apply either the prior form (3a) or the equivalent posterior form (3b) for
constrained inference. We discuss both approaches for illustrative purposes.

Let the Bayesian posterior be given by .4 (¢, X) as described in (1) where ¢ = vec(®) €
RMXN “and ¥ € RMN*MN et the postdata distribution be given by .4 (¥, S), where
¥ = vec(¥) € RM*N and § € RMVN*MN {sing the posterior form (3b), the postdata
distribution is found by minimizing the KL divergence between the Gaussian distribution
A (¥, S) and the Bayesian posterior distribution .4 (¢, X'). This is given by:

mig tr(2718) + @ — )" Z7' @ — )~ logIS| +log || s [[E, L Z1[], =

where ¥ = vec(¥). The optimization decouples between the mean term ¢ and the covariance
term S as:

min @—v)' 2@ —v) st||E 121, <n (52)

min tr(X7'S) —log [S| + log | X | (5b)

The minimum in terms of the covariance is achieved for S = ¥ and the mean optimization
is given by the solution of a constrained quadratic optimization.

Direct optimization of (5a) requires the computation, storage and inversion of the covari-
ance matrix X'. This may become computationally infeasible for high dimensional data. In
such situations, estimation of the postdata mean using the prior form (3a) is a more compu-
tationally feasible approach. The result is the optimization problem:

Lw.S) = r;,liél[EZ[lﬂ p(Z)] = Ezlln p(y. )] . |E, [ Z1]], < n] ©)

Let P € REXMN pe a selection matrix such that S; = PSP is the postdata covariance
matrix of the subset of observed entries [ € L, and C;, = PCPT is the prior covariance of
the corresponding subset of entries. Evaluating expectations, the cost function (6) results in
the following inference cost function (omitting terms independent of ¥ and S):

. 2(%2 Zm,nEL(mel - wm»”)z + %chflw
LW,S) = min .
W IlIELZ =08 —In[S| + 555 tr(Sp) + 3tr(C'S)

First, we compute gradients with respect to S. After setting the gradients to zero, we
compute:

1 -1 1 -1
S, = (C—‘ + EPTP) =C-CpP' (CL + ;IL) PC @)

The second equality is a consequence of the matrix inversion lemma. We note that this is
the exact same result as was found by using the posterior approach (5b). Next, collecting the
terms involving the mean results in the optimization problem:

1 1 _
v/f*=arg;nmﬁ 2 Gmn =)’ + 59 CY st [Bg 120 <0 ®)

m,neL

This is a convex regularized least squares problem with a convex constraint set. Hence, (8) is
convex, and ¥, is unique. Using the Kronecker identity, we can re-write the cost function in
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parameter matrix form. We can also replace the nuclear norm constraint with the equivalent
regularizer weighed by A. This leads to the equivalent optimization problem:

.1 1 . -
VU, = argql;mn 2072 Z ()’m,n - I;me,n)z + Etr(.IlTCM].IlCNl) + )“|HE‘J [Z]H|l ®

m,nel

The final step is to define the term |||Eq [Z] ||| |- We note that since the prior distribution is
a Gaussian process, a valid postdata distribution must extend to arbitrary index sets. Hence
the postdata mean is a matrix-variate function. The parametric representation of the postdata
mean can be defined using the posterior distribution of the Gaussian process outlined by
Csato (2002) and applying the representation theorem (18). Thus, we recover the parametric
form of the mean function as ¥ = CpyACN where A € RMXN We may now solve for A
directly:

. 1 1
Av=argmin 5 5 3 (o~ (CuACK ) + 50 (ATCMACK) + 21V all1or, -

m,nel

(10)

where 14 is the mean function corresponding to the parameter A (see (18)), and |||-||l;- Sy
represents the nuclear norm in the Hilbert space .7#% (defined in Appendix 8). We also note
that the optimization problem (10) is strongly convex.

We now seek to extend the solution from the finite observed index set to the nonparametric
domain. Our approach will rely on Kolmogorov’s Extension theorem (Bauer 1996) which
provides a mechanism for describing infinite dimensional random processes via their finite
dimensional marginals (Orbanz and Teh 2010). We will apply the theorem to extend the
solution estimated by (6) using a finite index to a corresponding nonparametric Gaussian
process. This will be achieved by showing that the solution can be extended to an arbitrary
index set with a consistent functional form for the mean and the covariance.

Theorem 1 The postdata distribution .V (¥, S) is a finite dimensional representation of the
Gaussian process 42 (Y, S) sampled at indices L where the mean function v is given by
(10) and the covariance function S is given by (1b).

Sketch of proof: The requirements of Kolmogorov’s extension theorem can be reduced to a
proof that for a fixed training set 2, the postdata distribution of the superset (M x N)U (m’, n’)
has a consistent function representation®. The mean and covariance of the postdata density
are decoupled in the optimization and the postdata covariance function can be computed
in closed form. Thus, for the covariance, this follows trivially from the functional form of
(1b). The functional form of the mean follows from the finite representation (18) that solves
the optimization problem (10). Note that the solution does not change with the addition of
indices I’ = (m’, n’) ¢ L without corresponding observations y;. Uniqueness of the solution
follows from the strong convexity of (10). We refer the reader to the dissertation (Koyejo
2013) for further details. O

4.1 Alternative representation of the nuclear norm constrained inference

The mean function optimization (10) may also be represented in terms of matrix parameters
that are amenable to direct optimization. With the index set fixed, compute a basis. Gy €

3 See (Rasmussen and Williams 2005, Section 2.2) for an analogous proof applied to Gaussian process
regression.
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RM*Dm apnd Gy € RY*DN guch that Cy = GMGI\TA and CN = GNGIE. The mean function
can be re-parameterized as ¥ (m, n) = Gy (m)BGnN (n) T, where B € RPM*PN_ The nuclear
norm of ¥ can now be computed directly as the nuclear norm of the parameter matrix
(Abernethy et al. 2009, Theorem 3). The resulting optimization problem is:

1 21
B, = argmin 7~ > (0 = (GMBGL)mn) "+ SIBIZ +2IIBIL. (1D

m,nel

where B is the estimated parameter matrix, and |||- |||% and |||-]|l; represent the matrix squared
Frobenius norm and the matrix nuclear norm respectively. In this form, the mean function
can be estimated directly using standard solvers for large scale nuclear norm constrained
optimization (e.g. Dudik et al. 2012; Laue 2012).

To improve scalability, large scale nuclear norm regularized solvers generally represent
the parameter matrix in low rank form, avoiding storage of the full matrix. Further, the rank
of the parameter matrix is automatically estimated during the optimization. We provide a
short summary of the approaches in Dudik et al. (2012) and Laue (2012). Interested readers
are referred to the relevant papers for further details. The parameter matrix can be estimated
starting from a rank one solution, then the rank is increased until additional factors do not
improve the cost any further. The first step consists of determining a good descent direction,
and the second step consists of optimizing the factors given the initial direction. In the
first step, a descent direction is determined by computing the singular vectors associated
with the maximum singular value of the sparse gradient matrix.This step does not need to
be accurate and is usually achieved using a few iterations of the power method. The factor
optimization in the second step is analogous to the standard matrix factorization optimization,
so the large scale nuclear norm solvers mainly differ from standard matrix factorization in
the determination of an initial descent direction (matrix factorization is generally randomly
initialized), and in the automatic determination of the number of required factors i.e. the rank.
Thus the computational requirements of large scale nuclear norm regularized regression are
comparable to standard matrix factorization methods.

5 Experiments

We completed experiments with transposable datasets from the disease-gene association
domain and the recommender system domain. Prior covariances: All the datasets studied
consist of transposable data matrices with corresponding row and/or column graphs. We
experimented with the identity prior covariance C = I, where I is the identity matrix, and the
diffusion prior covariance (Smola and Kondor 2003) given as C = exp (—aL) + bI, where
L is the normalized graph Laplacian matrix. Let A be the adjacency matrix for the graph
and D be a diagonal matrix with entries D; ; = (A1);. The normalized Laplacian matrix

is computed as L = 1 — D 2AD" 2. We set the @ = b = 1. No further optimization was
performed, and more detailed experimental validation of covariance parameter selection is
left for future work.

Models: We present results for the proposed constrained MV-GP approach (Con. MV-
GP), and the special cases using only the nuclear norm (Trace GP)* and using only the
Hilbert norm (MV-GP) i.e. the standard MV-GP regression. To the best of our knowledge,
the special case of Trace GP is a novel contribution. As baselines, we implemented kernelized

4 The nuclear norm is also known as the trace norm.
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probabilistic matrix factorization (KPMF) (Zhou et al. 2012) and probabilistic matrix fac-
torization (PMF) (Mnih and Salakhutdinov 2007) using rank 5 and rank 20 factors. PMF is
identical to KPMF using an identity covariance. KPMF has been shown to outperform PMF
and and other baseline models in various domains. We note that the rank constraint ensures
that all of the proposed models except for MV-GP can be used for in-matrix predictions
even with the identity prior covariance. Out-of-matrix predictions require the use of other
covariance matrices.

We implemented Con. MV-GP using the representation outlined in Sect. 4.1. The Cholesky
decomposition of the covariance matrices was used as the basis representation. The model
hyperparameter A was selected using 5 values logarithmically spaced between 10~ and 103
and the noise hyperparameter was selected o2 using 20 values logarithmically spaced between
103 and 10? for all the models. We experimented with learning the data noise variance term
o2, but found the results worse than using parameter selection. In particular, the estimated
noise variance often approached zero - indicating overfitting. A possible solution we plan
to explore is to introduce a prior distribution for o' ( see e.g. Bayesian linear regression in
Bishop (2006, Chapter 3.3) that may help to regularize the noise term away from zero.

The standard MV-GP is often implemented as a scalar GP with the row and column prior
covariance matrices multiplied as shown in (1). We found this “direct” approach compu-
tationally intractable as the memory requirements scale quadratically with the size of the
observed transposable data matrix. Instead, we implemented the MV-GP in matrix form as a
special case of (11) with A = 0. This allowed us to scale the model to the larger datasets at the
expense of more computation. The nuclear norm regularized optimization in (11) was solved
using the large scale approach of Laue (2012). All numerical optimization was implemented
using the limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm.

Experiment design and cross validation: We performed two kinds of experiments. In
the rest of this discussion, “rows” will refer to either the disease (disease-gene prediction)
or the user (recommender system). The known rows experiment was designed to evaluate
the performance of the model for entries selected randomly over the observed values in
the matrix. In contrast, the new rows experiment was designed to evaluate the generalization
ability of the model for new rows not observed in the training set. We partitioned each dataset
into five-fold crossvalidation sets. The model was trained on 4 of the 5 sets and tested on the
held out set. The results presented are the averaged fivefold cross validation performance.
For the “known row” experiments, the cross validation sets were randomly selected over the
matrix. For the new row experiments, the cross validation was performed row-wise, i.e., we
selected training set row and test set rows. Note that the identity prior covariance cannot be
used for new row prediction, but due to the low rank constraint, it can be used for known row
prediction.

5.1 Disease-gene prediction

Genes are segments of DNA that determine specific characteristics; over 20,000 genes
have been identified in humans, which interact to regulate various functions in the body.
Researchers have identified thousands of diseases, including various cancers and respira-
tory diseases such as asthma (NCBI 1998), caused by mutations in these genes. Genetic
association studies (McCarthy et al. 2008) are the standard approach for discovering disease-
causing genes. However, these studies are often tedious and expensive to conduct. Hence,
computational methods that can reduce the search space by predicting the list of candidate
genes associated with a given disease are of significant scientific interest. The disease gene
prediction task has been the subject of a significant amount of study in recent years (Vanunu
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et al. 2010; Li and Toh 2010; Mordelet and Vert 2011; Singh-Blom et al. 2013). The task
is challenging because all the observed responses correspond to known associations, and
there are no reliable negative examples. Disease gene association shares the binary matrix
representation of the one class (also known as implicit feedback) matrix prediction studied
in the collaborative filtering literature (Pan et al. 2008; Hu et al. 2008).

Additional baseline: In addition to the matrix factorization baseline models, we compared
our proposed approach to ProDiGe (Mordelet and Vert 2011); a start-of-the-art approach that
has been shown to be superior to previous top-performing approaches, including distance-
based learning methods like Endeavour (Aerts et al. 2006) and label propagation methods
like PRINCE (Vanunu et al. 2010). ProDiGe estimates the prioritization function using a
multitask support vector machine (SVM) trained with the gene prior covariance and disease
prior covariance as kernels. Of the models implemented, ProDiGe is most similar to the
MV-GP. In fact, MV-GP and ProDiGe mainly differ in their loss functions (squared loss and
hinge loss respectively). The SVM regularization parameter for ProDiGe was selected from
{10_3, 1072, ..., 103}. We note that also PMF represents the matrix factorization baseline
often applied to similar implicit feedback datasets in the recommendation system literature
(Pan et al. 2008).

Sampling ‘“‘negative” entries: Following Mordelet and Vert (2011), we sampled the
unknown entries as “negative” observations randomly over the disease-gene association
matrix. We sampled 5 different negatively labeled item sets. All models were trained with the
positive set combined with one of the negative labeled sets. The model scores were computed
by averaging the scores over the 5 trained models. All models were trained using the same
samples.

Metrics: Experimental validation of disease-gene associations in a laboratory can be
time consuming and costly, so only a small set of the top ranked predictions are of practical
interest. Hence, we focus on metrics that capture the ranking behavior of the model at the
top of the ranked list. All the ranking metrics were computed on the test set after removing
all genes that had been observed in the training set. We computed precision (P@x) and recall
(R@k) where k = 1,...,20. Let g; denote the labels of gene [ as sorted by the predicted
scores of the trained regression model, and let G,, = >, 1[g1=1] be the total number of
relevant genes for disease m in the test data after removing relevant genes observed in the
training data. The precision at k computes the fraction of relevant genes retrieved out off all
retrieved genes at position k. The recall at k computes the fraction of relevant genes retrieved
out of all relevant genes that can be retrieved with a list of length k. These are computed as:

Pay = Zf:l 1[g1=1] Rox = Zf:l 1[g1=1]

k ’ Gm '
All metrics were computed per disease and then averaged over all the diseases in the test set.
Model selection was computed separately per metric. Higher values reflect better performance
for the P@j and R@ metrics and their maximum value is 1.0.

Datasets: We trained and evaluated our models using two sets of gene-disease association
data curated from the literature. The first, which we call the OMIM data set, is based on
the Online Mendelian Inheritance in Man (OMIM) database and is representative of the
candidate gene prediction task for monogenic or near monogenic diseases, i.e., diseases
caused by only one or at most a few genes. The data matrix contains a total of M = 3,210
diseases, N = 13,614 genes, and T = 3,636 known associations (data density of 0.0083 %).
We note that the extreme sparsity of this data set makes the prediction problem extremely
difficult. The second dataset, which we call the Medline data set, is a much larger data set
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Table 1 OMIM disease-gene

dataset Model Pe20 Ra@20
MV-GP (D) 0.000 (0.000) 0.003 (0.002)
Con. MV-GP (D) 0.008 (0.001) 0.146 (0.031)
Con. MV-GP (I) 0.010 (0.001) 0.175 (0.025)
T P (D . .001 .117 (0.021
Ave. (std) Pz and Rano race GP (D) 0.006 (0.001) 0 (0.021)
performance. (I) Identity prior Trace GP (I) 0.009 (0.001) 0.157 (0.023)
covariance (D) Diffusion prior KPMEF-5 (D) 0.010 (0.001) 0.167 (0.028)
covariance. Low precision values PME-5 (I) 0.002 (0.000) 0.034 (0.004)
in OMIM data are due to the high
class imbalance of the test data KPMEF-20 (D) 0.009 (0.002) 0.161 (0.040)
(average of 1.2 genes per disease)  PMF-20 (I) 0.002 (0.000) 0.039 (0.008)
Bold values indicate best ProDiGe 0.000 (0.000) 0.001 (0.003)

performance

and is representative of predicting candidate genes for both monogenic as well as polygenic
diseases, i.e., diseases caused by the interactions of tens or even hundreds of genes. The set
of genes in this data set is defined using the NCBI ENTREZ Gene database (Maglott et al.
2011), and the set of diseases is defined using the “Disease” branch of the NIH Medical
Subject Headings (MeSH) ontology (National Library of Medicine 2012). We extracted co-
citations of these genes and diseases from the PubMed/Medline database (National Library of
Medicine 2012) to identify positive gene-disease associations. This resulting data set contains
a total of of M = 4,496 diseases, N = 21,243 genes, and T = 250,190 known associations
(data density of 0.36 %).

Information about biological interactions among genes and known relationships among
diseases were used to improve the accuracy of our model, since similar diseases very often
have similar genetic causes. We derive gene networks from the HumanNet database (Lee et al.
2011), a genome-wide functional network of human genes constructed using multiple lines of
evidence, including gene co-expression, protein-protein interaction data, and networks from
other species. For both the OMIM and Medline data sets, our gene-gene interaction network
contains a total of 433,224 links. Our disease network is derived from the term hierarchy
established in the 2011 release of the MeSH ontology. The disease network for the Medline
data set contains a total of 13,922 links. However, because we do not have a direct mapping
of OMIM diseases to MeSH terms, we do not use a disease network for the OMIM data
set. As a result, we are unable to test our model’s ability to produce predictions for “new”
diseases, i.e., diseases with no associated genes in the training set.

The OMIM dataset contains an average of 1.2 test genes (positive items) per disease,
and the model is required to rank more than 13,000 genes per disease. Hence, the gene
prediction task is particularly challenging. This difficulty is reflected in the low precision
values observed in Table 1 and Fig. 3a. Despite this extreme sparsity, we found that the
proposed approaches (Con. MV-GP and Trace GP) performed as well or better than the
matrix factorization baselines (KMPF, PMF), and significantly outperformed the domain
specific baseline (ProdiGe). In fact, both full rank models (MV-GP and ProDiGe) performed
poorly, suggesting the importance of the low rank / nuclear norm constraint. The results in
Fig. 3a, b further highlight the performance of the proposed models at the very top of the list.

We were unable to run ProDiGe on the Medline dataset due computational issues. In
particular, the implementation of ProDiGe requires the full kernel matrix as an input. The
memory required to store the full kernel is quadratic in the transposable data size. We did
not pursue an alternative implementation with reduced memory requirements as experiments
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Fig. 3 Disease-gene prediction. Precision (left) and Recall (right) @k = 1,2, ...,20. (I): Identity prior
covariance, (D): Diffusion prior covariance. Low precision values in OMIM are due to the high class imbalance
in the test data (avg of 1.2 genes per disease). The identity prior covariance does not generalize to new
diseases. Constrained MV-GP out-performs ProDiGe (domain specific baseline), KPMF and PMF. ProDiGe
was unable to scale to the full curated dataset (see text) a OMIM precision@k b OMIM recall@k ¢ Medline
(known diseases) precision@k d Medline (known diseases) recall@k e Medline (new diseases) precision@k
f Medline (new diseases) recall@k

with OMIM and initial experiments with subsampled data indicated inferior performance. The
Medline dataset contained an average of 59.2 positive items per disease. Correspondingly, the
tested models achieved a higher precision than in the OMIM dataset. Our experimental results
(Table 2) show that the proposed models (Con. MV-GP, Trace GP) significantly outperformed
the matrix factorization baselines (PMF, KMPF) on the known diseases, and performed as
least as well as KMPF on the new diseases. The results in Fig. 3c, d show that the proposed
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Table 2 Medline disease-gene dataset

Known diseases New Diseases

Model Pa2o R@20 Pa20 R@20
MV-GP (D) 0.022 (0.000) 0.049 (0.002) 0.069 (0.020) 0.091 (0.022)
Con. MV-GP (D) 0.078 (0.001) 0.131 (0.004) 0.137 (0.029) 0.181 (0.026)
Con. MV-GP (I) 0.126 (0.001) 0.216 (0.002) - -

Trace GP (D) 0.078 (0.001) 0.131 (0.004) 0.137 (0.029) 0.181 (0.026)
Trace GP (I) 0.091 (0.001) 0.152 (0.004) - -

KPMF-5 (D) 0.085 (0.001) 0.142 (0.004) 0.136 (0.032) 0.179 (0.032)
PMEF-5 (I) 0.079 (0.002) 0.133 (0.003) - -

KPMEF-20 (D) 0.091 (0.001) 0.151 (0.004) 0.136 (0.032) 0.179 (0.032)
PMEF-20 (I) 0.078 (0.001) 0.131 (0.002) - -

Avg. (std.) P@2o and R@po performance. (I): Identity prior covariance (D): Diffusion prior covariance. The
dataset contains an average of 59.2 test genes per disease. The identity prior covariance does not generalize
to new diseases. ProDiGe was unable to scale to the full curated dataset

Bold values indicate best performance

models outperform the baselines for known diseases prediction at all levels of precision
and recall we measured. The results for new disease prediction in Fig. 3e, f show similar
performance for both approaches on the new diseases.

In summary, the presented results suggest that the low rank constraint is useful for describ-
ing the structure of disease-gene association. We also found that in all the datasets, the con-
strained Bayesian models (Con. MV-GP and Trace GP) performed the same or better than
the Bayesian factor models (KPMF and PMF) and the unconstrained Bayesian model (M V-
GP). This shows the utility of the constrained Bayesian inference approach as compared to
the Bayesian factor model approach. Constrained MV-GP with the identity kernel was the
best single performing method, matching results in the literature suggesting that the network
information is not always helpful for in-matrix predictions (Koyejo and Ghosh 2011; Zhou
et al. 2012), though it remains essential for generalization beyond the training matrix. Future
work will include further examination of these issues.

5.2 Recommender systems

The goal of a recommender system is to suggest items to users based on past feedback
and other user and item information. Recommender systems may also be used for targeted
advertising and other personalized services. The low rank matrix factorization approach
has proven to be a popular and effective model for the recommender systems data (Mnih
and Salakhutdinov 2007; Koren et al. 2009; Koyejo and Ghosh 2011). Several authors (Yu
et al. 2007; Zhu et al. 2009; Zhou et al. 2012) have studied the factor GP approach for
recommender systems, and have shown that prior covariances extracted from the social
network can improve the prediction accuracy and may be used to provide predictions with no
training ratings (Koyejo and Ghosh 2011; Zhou et al. 2012). Kernelized probabilistic matrix
factorization (KPMF) is of particular interest, as it has been shown to outperform PMF (Mnih
and Salakhutdinov 2007) and SoRec (Ma et al. 2008), strong baseline methods for predicting
user item preferences with social network side information.

Metrics The model performance was measured using a combination of regression and
ranking metrics. Recommender systems are typically most concerned with presenting the few
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items that the user is very likely to be interested in, and accurately predicting the score of the
other items is less important. Several authors (Steck 2010; Steck and Zemel 2010) have shown
that measuring the recall (R@y) of the top relevant items compared to all available items can
provide an unbiased estimate of the predicted ranking. As suggested by (Steck 2010) we
measure the ability of the model to predict relevant items (ratings greater than 4) ahead of
other entries (both missing and observed entries with rating less than or equal to 4) using
recall at 20 (R@20). Recall per user was computed on the test set after removing all items that
had been observed in the training set, and averaged over all users. For regression, we used

the root mean square error (RMSE) metric (Koren et al. 2009) given by ,/ % Z,L: 1O — $1)2

where ¥; is the prediction for index /. Lower values reflect better performance for the RMSE.

Datasets: We trained and evaluated our models using two publicly available recom-
mender systems datasets with social network side information - Flixster and Epinions datasets.
Flixster’ is a website where users share film reviews and ratings. The users can also signify
social connections. We utilized the dataset described by (Jamali and Ester 2010) which con-
tains a ratings matrix and the social network. We selected the M = 5, 000 users with the most
friends in the network and N = 5, 000 movies with the most ratings. This resulted in a matrix
with L = 33, 182 (density = 0.001 %) ratings and 211, 702 undirected user social connec-
tions. The identity prior covariance was used for the movies. Ratings in Flixster take one
of 10 values in the set {0.5,1, 1.5, ...,5.0}. Epinions6 is an item review site where users
can also specify directed association by signifying a trust link. We utilized the extended
Epinions dataset (Massa and Avesani 2006) and converted all the directed trust links into
undirected links. We selected the M = 5, 000 users with the most trust links in the network
and N = 5, 000 movies with the most ratings. This resulted in a matrix with L = 187, 163
(density 0.007 %) ratings and 550, 298 user social connections. The identity prior covariance
was used for the items. Ratings in the Epinions dataset take one of five values in the set
{1.0,2.0,...,5.0}.

We present five fold cross validation performance for in matrix and new user predictions
on both Flixster and Epinions datasets. We found that the model that selected using RMSE
as the validation metric did not always perform best in terms of recall (and vice versa). This
matches the results by other researchers (Steck 2010; Steck and Zemel 2010). Hence, we
performed cross validation separately for RMSE and R @>¢. The results on the Flixster dataset
are shown in Table 3. For known users, we found that the tested models performed similarly in
terms of RMSE, but the proposed models (Con MV-GP, Trace GP) significantly outperformed
the matrix factorization baselines (KPMF, PMF) in terms of recall. These results are further
highlighted in the R @, performance as shown in Fig. 4a. The results were often equivalent for
new user predictions Fig. 4b. Thus our experimental results suggest that the proposed models
are more accurate in terms of ranking while retaining competitive regression performance.

The RMSE and R@>o performance on the Epinions dataset is shown in Table 4. Our
results here mirror the results on the Flixster dataset. Our experiments show similar RMSE
performance for all models, and a significant gain in performance in terms of R@20 for the
proposed constrained approach for known users. A similar trend is also highlighted in Fig. 4c.
Con. MV-GP, Trace GP and KPMF perform similarly when tested on new users as shown in
Fig. 4d with a slight performance improvement for Con. MV-GP. Comparing the Bayesian
MV-GP to its constrained variant clearly shows the utility of the nuclear norm constraint
in both recommender systems datasets. In all, our results suggest that the nuclear norm
constrained MV-GP is effective for regression and for ranking in recommender systems.

5 www.flixster.com

6 www.epinions.com
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Table 3 Flixster dataset

Known users New users

Model RMSE R@20 RMSE Ra@20
MV-GP (D) 1.066 (0.006) 0.067 (0.008) 1.066 (0.088) 0.075 (0.017)
Con. MV-GP (D) 0.989 (0.002) 0.092 (0.012) 1.066 (0.088) 0.075 (0.017)
Con. MV-GP (I) 0.982 (0.001) 0.104 (0.004) - -

Trace GP (D) 0.989 (0.002) 0.088 (0.008) 1.066 (0.088) 0.069 (0.015)
Trace GP (I) 0.982 (0.001) 0.093 (0.003) - -

KPMF-5 (D) 0.993 (0.003) 0.064 (0.012) 1.066 (0.088) 0.062 (0.014)
PME-5 (I) 0.995 (0.003) 0.052 (0.006) - -

KPMF-20 (D) 0.986 (0.001) 0.069 (0.007) 1.066 (0.088) 0.069 (0.015)
PMF-20 (I) 0.989 (0.002) 0.070 (0.003) - -

Avg. (std.) RMSE and R@y( performance comparison. Smaller RMSE indicates better performance, Larger
R@»p indicates better performance. (I): Identity prior covariance, (D): Diffusion prior covariance
Bold values indicate best performance
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Fig. 4 Performance results on recommender systems datasets. Recall @k = 1,2, ..., 20 for known users

(left) and new users (right). The prior covariances and constraints have the largest effect for very sparse data.
(I): Identity prior covariance, (D): Diffusion prior covariance. Con. MV-GP outperforms KPMF (Zhou et al.
2012), which has been shown to outperform PMF (Mnih and Salakhutdinov 2007) and SoRec (Ma et al. 2008)
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Table 4 Epinions dataset

Known users New users

Model RMSE Ra@20 RMSE R@20
MV-GP (D) 0.323 (0.007) 0.016 (0.000) 0.329 (0.020) 0.029 (0.002)
Con. MV-GP (D) 0.273 (0.005) 0.023 (0.001) 0.307 (0.022) 0.036 (0.009)
Con. MV-GP (I) 0.274 (0.006) 0.046 (0.002) - -

Trace GP (D) 0.273 (0.005) 0.022 (0.001) 0.307 (0.022) 0.035 (0.009)
Trace GP (I) 0.274 (0.006) 0.041 (0.003) - -

KPMF-5 (D) 0.274 (0.004) 0.021 (0.002) 0.305 (0.022) 0.036 (0.009)
PMEF-5 (I) 0.272 (0.004) 0.023 (0.001) - -

KPMF-20 (D) 0.275 (0.005) 0.031 (0.003) 0.306 (0.022) 0.035 (0.007)
PME-20 (I) 0.273 (0.005) 0.023 (0.001) - -

Avg. (std.) RMSE and R@»( performance comparison. Smaller RMSE indicates better performance, Larger
R@>o indicates better performance. (I): Identity prior covariance, (D): Diffusion prior covariance
Bold values indicate best performance

6 Conclusion

This paper introduces a novel approach for the predictive modeling of low rank transposable
data with the matrix-variate Gaussian process. The low rank is achieved using a nuclear norm
constrained inference; recovering a mean function of low rank. We showed that inference
for the Gaussian process with the nuclear norm constraint is convex. The proposed approach
was applied to the disease-gene association task and to the recommender system task. The
proposed model was effective for regression and for ranking with highly imbalanced data,
and performed at least as well as (and often significantly better than) state of the art domain
specific baseline models.

Recent work (Yu et al. 2013) characterizing necessary and sufficient conditions for the
existence of a representer theorem points to the potential scope of the constrained inference
approach combined with nonparametric processes. Thus, we plan to explore other constraint
sets in addition to the nuclear norm constraint explored here. We are also interested in explor-
ing covariance constraints as outlined for Gaussian distributions in Koyejo and Ghosh (2013a)
applied to nonparametric processes. We are interested in applications of nonparametric con-
strained Bayesian inference to more complicated models beyond Gaussian distributions.
Finally, we intend to explore the biological implications of these constrained disease gene
association results in collaboration with domain experts.

Acknowledgments Authors acknowledge support from NSF grant IIS 1016614. We also thank U. Martin
Blom and Edward Marcotte for providing the OMIM data set. The authors thank the anonymous reviewers
for insightful comments that helped to improve this manuscript.

7 Constrained Bayesian inference
Altun and Smola (2006) studied the constrained inference approach when the constraint set is

anormball ¢ = {c| ||c—b|| < €}. They showed that one can apply the Fenchel duality theory
to solve (3a) subject to such norm constraints and Zhu et al. (2012) extended their approach
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to more general convex constraint sets. More recently Koyejo and Ghosh (2013a) showed
that the constrained Bayesian inference problem satisfied a representer theorem in terms
of exponential family distributions under weak conditions. The discussion in this section
follows the approach of Koyejo and Ghosh (2013a).

Let 2 be a Banach space and 2™* be its dual space. The Legendre-Fenchel transformation
(convex conjugate) of a function f : 2"+ [—o0, +00]is f* : Z7* > [—00, +00] where

F*(x*) = sup {x "x* — f(x)}. Further details on Fenchel duality may be found in (Borwein
xe&
and Zhu 2005).

Let g(-) denote a regularization function defined to match the properties of the constraint
set C. For instance, we may define g(-) as an indicator function of set membership in C or
a soft penalty on the set membership. The following theorem characterizes the solution of
(3b) when C is convex.

Theorem 2 (Zhu et al. (2012)) Let g be a convex function and denote its Legendre-Fenchel
conjugate by g*,

min KL(@@)p@) +8(E, [7@)] (12)
= max — log / p(2)expec " y(2)dz — g*(—k) (13)

Z

and the unique solution is given by g+(z) = p(z) exp((ks) ' y(z) — Ayg,) where k. is the
solution of the finite dimensional dual optimization (13) and Ay, ensures normalization.

Solving the resulting dual optimization (13) is often challenging. An alternative primal
approach is to separate the problem into two parts. First, define the parametric form of the
optimizing postdata density, then directly optimize over that parametric family. Unlike the
dual approach, the proposed primal approach does not require convexity of the constraint set.
However, both approaches require that a solution exists i.e. the set of densities that satisfy
(3b) is not empty. For completeness, we present the details of the solution.

Denote the constraint set subject to equality constraints as & = {g € & | E, [ y (@) ] =c}.
The constrained Bayes optimization problem can be written as:

228 [52}5{} KL(q(z)Ilp(zly))] , (14)

which requires the solution of an inner optimization:

qe(z) = argmin KL(g(2) || p(z]y)). (15)

geée

Let A C C be the set of points where the minimizer of (15) is achievable. We can associate
a density function g¢(z) with every element ¢ € A. The feasible set is characterized by the
set of densities . = {g¢(z) | ¢ € A}. The following proposition is a direct consequence of
Theorem 2 and is stated without proof.

Proposition 1 (Koyejo and Ghosh 2013a) For any ¢ € A, the unique minimizer of (15) is
givenby: qc(z) = p(z]y) eXp(lccTy(z)—A,Cc) where K ¢ is the solution of the finite dimensional
dual optimization (13) with the constraint set €' = {E, [y(z)] = ¢} and Ay, ensures
normalization.
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Theorem 3 (Koyejo and Ghosh 2013a) Let . = {q | ¢ € A} denote the feasible set of (15).
The postdata density given by the minimizer of (3b) is the solution of:

g+ (z) = argmin KL(g (2)[| p(z|y))
qges
and the solution is given by q«(z) = qa(2) for the optimal a € A with q.(z) =
p(zly) exp((ka) Tk (2) — Ag,) where k4 is the solution of the finite dimensional dual opti-
mization (13) with the constraint set ¢’ = {Eq [ y(2) ] = a} and A, ensures normalization.
The solution is unique if A is convex.

The key insight from Proposition 1 is that the solution of (15) fully specifies the parametric
form of the density. In other words, all the members of the set . = {g. | ¢ € A} have the same
parametric form with g¢ = fp, (z) is determined by the choice of ¢. Note that all # € @ where
O is the constraint set of the parametric distribution family specified by f. The existence of
this parameterized family follows from Theorem 3.

Corollary 1 The postdata density given by the minimizer of (3b) is given by q.(z) = fp,(2)
where 0, is the solution of:

0, = ar;;;gin |:KL(f0(z)||p(z|y)) st.Ep[v@] € (f]

The expectation E 7, [ y(2) ] will be a fixed function of @ depending on the specific paramet-
ric family. Hence Corollary 1 becomes a finite dimensional constrained optimization over 6.
Corollary 1 suggests the following recipe for constrained Bayesian inference. First, Proposi-
tion 1 is applied to specify the parametric form of g, then Corollary 1 is applied to convert
the variational problem into a finite dimensional parametric optimization.

8 Spectral norms of compact operators

Let /%, denote the Hilbert space of functions induced by the row prior covariance éy1. Sim-
ilarly, let 7, denote the Hilbert space of functions induced by the column prior covariance
ON. Let x € g, and y € S, define (possibly infinite dimensional) feature vectors. The
mean function the MV-GP is defined by a linear map W : J#g, — %, . This is the bilinear
form on J&y = g, x Hg given by ¥ (m, n) = (X, Wy,,)%;gM.

Let £ denote the set of compact bilinear operators mapping J%g, — J%s,. A compact
operator W € & admits a spectral decomposition (Abernethy et al. 2009) with singular
values given by {&; (W)}. The nuclear norm is given by the L1 norm on the spectrum of W:

D
Il = D E(W) (16)
i=1

Another common regularizer is the induced Hilbert norm given by the L2 norm on the
spectrum of W:

D
I3 e, = D& (W) (17)
i=1
Further details may be found in (Berlinet and Thomas-Agnan 2004)
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Let L(y,y, L) represent the loss function for a finite set of training data points L € M x N
and Q(¥) be a spectral regularizer. We define the regularized risk functional:

L.y, L) +20®1)

where L > 0 is the regularization constant. A representer theorem exists, i.e., the function
Y that optimizes the regularized risk can be represented as a finite weighted sum of the
prior covariance functions evaluated on training data (Abernethy et al. 2009). Hence, the
optimizing function can be computed as:

Ym,n) = D" D" Gulm, mNEN(n, ')
m'eMn’eN

= Cpm(m)ACN(n) (18)

where A € RM* is a parameter matrix, Cp;(m) is the prior covariance matrix evaluated

between m and m’ € M, i.e., the m'" row of Cy, and Cn(n) is the prior covariance matrix
evaluated between n and all n’ € N.

9 Parameter estimation for the nuclear norm regularized MV-GP

Like other Bayesian modeling approaches, the constrained Bayesian inference procedure
provides a mechanism for parameter estimation. This is achieved by optimizing the cost
function’ (3a) with respect to the parameters. The parameters of interest include the noise
variance and the parameters of the prior row and column covariance functions. The optimiza-
tion for the noise variance parameter is given by:

. 1
U;IZH LlOgUZ + ? Z Omon — 1;//m,n)z +tr(Sg)

m,neL

This can be solved in closed form. The solution is given by:

1
02 = z Z (ym,n - 1ﬁm,n)2 + tr(SL) (19)

m,nel

Similarly, we can solve for the parameters that define the prior covariance functions. Sup-
pose the row covariance and column covariance have parametric forms Cy(p) and Cn(7)
respectively. Let C(p, ) = Cn(t) ® Cwm(p) represent the joint prior covariance. We can
select the covariance parameters by optimizing (3a) as:

1 1 1
J(p,7) =min —log|C(p, 7)| + f}ﬁTC(,O,T)_ll//-l— ftr(C(,o,r)_IS)
ot 2 2 2

The gradient with respect to p is given by:

aJ(p,T) _ E _1 dCwm(p) _1 T 71dC(p,T) -1
. 2tr(CM(p) o ) ;¥ Cl.7) “dp Clo,t)" ¥
1 —1dC(p, 1) -1
—Etr(c(l)» T) TC(P, 7) S)

7 Note that the model evidence term must be added back in order to use the posterior form of the constrained
Bayesian inference cost function (3b).
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where % =C\Q® %, and % is the element-wise gradient. This can be simpli-
fied further by collecting terms, and similar gradients can be computed with respect to 7. See
(Rasmussen and Williams 2005, Chapter 5) for more details on the closely related approach
of Gaussian process covariance parameter selection by marginal likelihood optimization.
We note that the prior covariance hyperparameters may be computationally challenging to
optimize in practice as the proposed updates require the storage and computation of large
covariance matrices.
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