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Abstract We study the non-smooth optimization problems in machine learning, where both
the loss function and the regularizer are non-smooth functions. Previous studies on efficient
empirical loss minimization assume either a smooth loss function or a strongly convex reg-
ularizer, making them unsuitable for non-smooth optimization. We develop a simple yet
efficient method for a family of non-smooth optimization problems where the dual form of
the loss function is bilinear in primal and dual variables. We cast a non-smooth optimization
problem into a minimax optimization problem, and develop a primal dual prox method that
solves the minimax optimization problem at a rate of O(1/T ) assuming that the proximal
step can be efficiently solved, significantly faster than a standard subgradient descent method
that has an O(1/

√
T ) convergence rate. Our empirical studies verify the efficiency of the

proposed method for various non-smooth optimization problems that arise ubiquitously in
machine learning by comparing it to the state-of-the-art first order methods.
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1 Introduction

Formulating machine learning tasks as a regularized empirical loss minimization problem
makes an intimate connection between machine learning and mathematical optimization.
In regularized empirical loss minimization, one tries to jointly minimize an empirical loss
over training samples plus a regularization term of the model. This formulation includes
support vector machine (SVM) (Hastie et al. 2008), support vector regression (Smola and
Schölkopf 2004), Lasso (Zhu et al. 2003), logistic regression, and ridge regression (Hastie et
al. 2008) among many others. Therefore, optimization methods play a central role in solving
machine learning problems and challenges exist in machine learning applications demand
the development of new optimization algorithms.

Depending on the application at hand, various types of loss and regularization functions
have been introduced in the literature. The efficiency of different optimization algorithms cru-
cially depends on the specific structures of the loss and the regularization functions. Recently,
there have been significant interests on gradient descent based methods due to their simplicity
and scalability to large datasets. A well-known example is the Pegasos algorithm (Shalev-
Shwartz et al. 2011) which minimizes the �2

2 regularized hinge loss (i.e., SVM) and achieves
a convergence rate of O(1/T ), where T is the number of iterations, by exploiting the strong
convexity of the regularizer. Several other first order algorithms (Ji and Ye 2009; Chen et
al. 2009) are also proposed for smooth loss functions (e.g., squared loss and logistic loss)
and non-smooth regularizers (i.e., �1,∞ and group lasso). They achieve a convergence rate
of O(1/T 2) by exploiting the smoothness of the loss functions.

In this paper, we focus on a more challenging case where both the loss function and
the regularizer are non-smooth, to which we refer as non-smooth optimization. Non-smooth
optimization of regularized empirical loss has found applications in many machine learn-
ing problems. Examples of non-smooth loss functions include hinge loss (Vapnik 1998),
generalized hinge loss (Bartlett and Wegkamp 2008), absolute loss (Hastie et al. 2008),
and ε-insensitive loss (Rosasco et al. 2004); examples of non-smooth regularizers include
lasso (Zhu et al. 2003), group lasso (Yuan and Lin 2006), sparse group lasso (Yang et al.
2010), exclusive lasso (Zhou et al. 2010), �1,∞ regularizer (Quattoni et al. 2009), and trace
norm regularizer (Rennie and Srebro 2005).

Although there are already many existing studies on tackling smooth loss functions (e.g.,
square loss for regression, logistic loss for classification), or smooth regularizers (e.g.,
�2

2 norm), there are serious challenges in developing efficient algorithms for non-smooth
optimization. In particular, common tricks, such as smoothing non-smooth objective func-
tions (Nesterov 2005a, b), can not be applied to non-smooth optimization to improve conver-
gence rate. This is because they require both the loss functions and regularizers be written
in the maximization form of bilinear functions, which unfortunately are often violated, as
we will discuss later. In this work, we focus on optimization problems in machine learning
where both the loss function and the regularizer are non-smooth. Our goal is to develop an
efficient gradient based algorithm that has a convergence rate of O(1/T ) for a wide family
of non-smooth loss functions and general non-smooth regularizers.

It is noticeable that according to the information based complexity theory (Traub et al.
1988), it is impossible to derive an efficient first order algorithm that generally works for all
non-smooth objective functions. As a result, we focus on a family of non-smooth optimization
problems, where the dual form of the non-smooth loss function is bilinear in both primal and
dual variables. Additionally, we show that many non-smooth loss functions have this bilinear
dual form. We derive an efficient gradient based method, with a convergence rate of O(1/T ),
that explicitly updates both the primal and dual variables. The proposed method is referred to
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as Primal Dual Prox (Pdprox) method. Besides its capability of dealing with non-smooth
optimization, the proposed method is effective in handling the learning problems where
additional constraints are introduced for dual variables.

The rest of this paper is organized as follows. Section 2 reviews the related work on
minimizing regularized empirical loss especially the first order methods for large-scale opti-
mization. Section 3 presents some notations and definitions. Section 4 presents the proposed
primal dual prox method, its convergence analysis, and several extensions of the proposed
method. Section 5 presents the empirical studies, and Sect. 6 concludes this work.

2 Related work

Our work is closely related to the previous studies on regularized empirical loss minimization.
In the following discussion, we mostly focus on non-smooth loss functions and non-smooth
regularizers.

2.1 Non-smooth loss functions

Hinge loss is probably the most commonly used non-smooth loss function for classification.
It is closely related to the max-margin criterion. A number of algorithms have been proposed
to minimize the �2

2 regularized hinge loss (Platt 1998; Joachims 1999, 2006; Hsieh et al.
2008; Shalev-Shwartz et al. 2011), and the �1 regularized hinge loss (Cai et al. 2010; Zhu et
al. 2003; Fung and Mangasarian 2002). Besides the hinge loss, recently a generalized hinge
loss function (Bartlett and Wegkamp 2008) has been proposed for cost sensitive learning.
For regression, square loss is commonly used due to its smoothness. However, non-smooth
loss functions such as absolute loss (Hastie et al. 2008) and ε-insensitive loss (Rosasco et
al. 2004) are useful for robust regression. The Bayes optimal predictor of square loss is the
mean of the predictive distribution, while the Bayes optimal predictor of absolute loss is
the median of the predictive distribution. Therefore absolute loss is more robust for long-
tailed error distributions and outliers (Hastie et al. 2008). Rosasco et al. (2004) also proved
that the estimation error bound for absolute loss and ε-insensitive loss converges faster than
that of square loss. Non-smooth piecewise linear loss function has been used in quantile
regression (Koenker 2005; Gneiting 2008). Unlike the absolute loss, the piecewise linear
loss function can model non-symmetric error in reality.

2.2 Non-smooth regularizers

Besides the simple non-smooth regularizers such as �1, �2, and �∞ norms (Duchi and Singer
2009), many other non-smooth regularizers have been employed in machine learning tasks.
Yuan and Lin (2006) introduced group lasso for selecting important explanatory factors in
group manner. The �1,∞ norm regularizer has been used for multi-task learning (Argyriou
et al. 2008). In addition, several recent works (Hou et al. 2011; Nie et al. 2010; Liu et al.
2009) considered mixed �2,1 regularizer for feature selection. Zhou et al. (2010) introduced
exclusive lasso for multi-task feature selection to model the scenario where variables within
a single group compete with each other. Trace norm regularizer is another non-smooth reg-
ularizer, which has found applications in matrix completion (Recht et al. 2010; Candès and
Recht 2008), matrix factorization (Rennie and Srebro 2005; Srebro et al. 2005), and multi-
task learning (Argyriou et al. 2008; Ji and Ye 2009). The optimization algorithms presented
in these works are usually limited: either the convergence rate is not guaranteed (Argyriou
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et al. 2008; Recht et al. 2010; Hou et al. 2011; Nie et al. 2010; Rennie and Srebro 2005;
Srebro et al. 2005) or the loss functions are assumed to be smooth (e.g., the square loss or the
logistic loss) (Liu et al. 2009; Ji and Ye 2009). Despite the significant efforts in developing
algorithms for minimizing regularized empirical losses, it remains a challenge to design a
first order algorithm that is able to efficiently solve non-smooth optimization problems at a
rate of O(1/T ) when both the loss function and the regularizer are non-smooth.

2.3 Gradient based optimization

Our work is closely related to (sub)gradient based optimization methods. The convergence
rate of gradient based methods usually depends on the properties of the objective function
to be optimized. When the objective function is strongly convex and smooth, it is well
known that gradient descent methods can achieve a geometric convergence rate (Boyd and
Vandenberghe 2004). When the objective function is smooth but not strongly convex, the
optimal convergence rate of a gradient descent method is O(1/T 2), and is achieved by the
Nesterov’s methods (Nesterov 2007). For the objective function which is strongly convex but
not smooth, the convergence rate becomes O(1/T ) (Shalev-Shwartz et al. 2011). For general
non-smooth objective functions, the optimal rate of any first order method is O(1/

√
T ).

Although it is not improvable in general, recent studies are able to improve this rate to
O(1/T ) by exploring the special structure of the objective function (Nesterov 2005a, b).
In addition, several methods are developed for composite optimization, where the objective
function is written as a sum of a smooth and a non-smooth function (Lan 2010; Nesterov 2007;
Lin 2010). Recently, these optimization techniques have been successfully applied to various
machine learning problems, such as SVM (Zhou et al. 2010), general regularized empirical
loss minimization (Duchi and Singer 2009; Hu et al. 2009), trace norm minimization (Ji
and Ye 2009), and multi-task sparse learning (Chen et al. 2009). Despite these efforts, one
major limitation of the existing (sub)gradient based algorithms is that in order to achieve a
convergence rate better than O(1/

√
T ), they have to assume that the loss function is smooth

or the regularizer is strongly convex, making them unsuitable for non-smooth optimization.

2.4 Convex–concave optimization

The present work is also related to convex–concave minimization. Tseng (2008) and
Nemirovski (2005) developed prox methods that have a convergence rate of O(1/T ), pro-
vided the gradients are Lipschitz continuous and have been applied to machine learning prob-
lems (Sun et al. 2009). In contrast, our method achieves a rate of O(1/T ) without requiring
the whole gradient but part of the gradient to be Lipschitz continuous. Several other primal-
dual algorithms have been developed for regularized empirical loss minimization that update
both primal and dual variables. Zhu and Chan (2008) proposed a primal-dual method based
on gradient descent, which only achieves a rate of O(1/

√
T ). It was generalized in Esser et

al. (2010), which shares the similar spirit of the proposed algorithm. However, the explicit
convergence rate was not established even though the convergence is proved. Mosci et al.
(2010) presented a primal-dual algorithm for group sparse regularization, which updates the
primal variable by a prox method and the dual variable by a Newton’s method. In contrast, the
proposed algorithm is a first order method that does not require computing the Hessian matrix
as the Newton’s method does, and is therefore more scalable to large datasets. Combettes
and Pesquet (2011) and Radu loan Bot Ernö Robert Csetnek (2012) proposed primal-dual
splitting algorithms for finding zeros of maximal monotone operators of special types. Lan
et al. (2011) considered the primal-dual convex formulations for general cone programming
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and apply Nesterov’s optimal first order method (Nesterov 2007), Nesterov’s smoothing
technique (Nesterov 2005b), and Nemirovski’s prox method (Nemirovski 2005). Nesterov
(2005a) proposed a primal dual gradient method for a special class of structured non-smooth
optimization problems by exploring an excessive gap technique.

2.5 Optimizing non-smooth functions

We note that Nesterov’s smoothing technique (Nesterov 2005b) and excessive gap tech-
nique (Nesterov 2005a) can be applied to non-smooth optimization and both achieve O(1/T )

convergence rate for a special class of non-smooth optimization problems. However, the lim-
itation of these approaches is that they require all the non-smooth terms (i.e., the loss and the
regularizer) to be written as an explicit max structure that consists of a bilinear function in
primal and dual variables, thus limits their applications to many machine learning problems.
In addition, Nesterov’s algorithms need to solve additional maximizations problem at each
iteration. In contrast, the proposed algorithm only requires mild condition on the non-smooth
loss functions (Sect. 4), and allows for any commonly used non-smooth regularizers, without
having to solve an additional optimization problem at each iteration. Compared to Nesterov’s
algorithms, the proposed algorithm is applicable to a large class of non-smooth optimization
problems, is easier to implement, its convergence analysis is much simpler, and its empirical
performance is usually comparably favorable. Finally we noticed that, as we are preparing
our manuscript, a related work (Chambolle and Pock 2011) has recently been published in
the Journal of Mathematical Imaging and Vision that shares a similar idea as this work. Both
works maintain and update the primal and dual variables for solving a non-smooth optimiza-
tion problem, and achieve the same convergence rate (i.e., O(1/T )). However, our work
distinguishes from Chambolle and Pock (2011) in the following aspects: (i) We propose and
analyze two primal dual prox methods: one gives an extra gradient updating to dual variables
and the other gives an extra gradient updating to primal variables. Depending on the nature of
applications, one method may be more efficient than the others; (ii) In Sect. 4.6, we discuss
how to efficiently solve the interim projection problems for updating both primal variable
and dual variable, a critical issue for making the proposed algorithm practically efficient. In
contrast, Chambolle and Pock (2011) simply assumes that the interim projection problems
can be solved efficiently; (iii) We focus our analysis and empirical studies on the optimization
problems that are closely related to machine learning. We demonstrate the effectiveness of the
proposed algorithm on various classification, regression, and matrix completion tasks with
non-smooth loss functions and non-smooth regularizers; (iv) We also conduct analysis and
experiments on the convergence of the proposed methods when dealing with the �1 constraint
on the dual variable, an approach that is commonly used in robust optimization, and observe
that the proposed methods converge much faster when the bound of the �1 constraint is small
and the obtained solution is more robust in terms of prediction in the presence of noise in
labels. In contrast, the study (Chambolle and Pock 2011) only considers the application in
image problems.

We also note that the proposed algorithm is closely related to proximal point algo-
rithm (Rockafellar 1976) as shown in He and Yuan (2012), and many variants including
the modified Arrow–Hurwicz method (Popov 1980), the Douglas–Rachford (DR) splitting
algorithm (Lions and Mercier 1979), the alternating method of multipliers (ADMM) (Boyd
et al. 2011), the forward–backward splitting algorithm (Bredies 2009), the FISTA algo-
rithm (Beck and Teboulle 2009). For a detailed comparison with some of these algorithms,
one can refer to Chambolle and Pock (2011).
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3 Notations and definitions

In this section we provide the basic setup, some preliminary definitions and notations used
throughout this paper.

We denote by [n] the set of integers {1, · · · , n}. We denote by (xi , yi ), i ∈ [n] the training
examples, where xi ∈ X ⊆ R

d and yi is the assigned class label, which is discrete for
classification and continuous for regression. We assume ‖xi‖2 ≤ R, ∀i ∈ [n]. We denote
by X = (x1, · · · , xn)	 and y = (y1, · · · , yn)	. Let w ∈ R

d denote the linear hypothesis,
�(w; x, y) denote a loss of prediction made by the hypothesis w on example (x, y), which is a
convex function in terms of w. Examples of convex loss function are hinge loss �(w; x, y) =
max(1 − yw	x, 0), and absolute loss �(w; x, y) = |w	x − y|. To characterize a function,
we introduce the following definitions

Definition 1 A function �(z) : Z → R is a G-Lipschitz continuous if

|�(z1) − �(z2)| ≤ G‖z1 − z2‖2,∀z1, z2 ∈ Z.

Definition 2 A function �(z) : Z → R is a ρ-smooth function if its gradient is ρ-Lipschitz
continuous

‖∇�(z1) − ∇�(z2)‖2 ≤ ρ‖z1 − z2‖2,∀z1, z2 ∈ Z.

A function is non-smooth if either its gradient is not well defined or its gradient is not
Lipschtiz continuous. Examples of smooth loss functions are logistic loss �(w; x, y) =
log(1+exp(−yw	x)), square loss �(w; x, y) = 1

2 (w	x− y)2, and examples of non-smooth
loss functions are hinge loss, and absolute loss. The difference between logistic loss and hinge
loss, square loss and absolute loss can be seen in Fig. 1. Examples of non-smooth regularizer
include R(w) = ‖w‖1, i.e. �1 norm, R(w) = ‖w‖∞, i.e. �∞ norm. More examples can be
found in Sect. 4.1.

In this paper, we aim to solve the following optimization problem, which occurs in many
machine learning problems,

min
w∈Rd

L(w) = 1

n

n∑

i=1

�(w; xi , yi ) + λR(w), (1)
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where �(w; x, y) is a non-smooth loss function, R(w) is a non-smooth regularizer on w, and
λ is a regularization parameter.

We denote by ΠQ [̂z] = arg min
z∈Q

1
2‖z − ẑ‖2

2 the projection of ẑ into domain Q, and by

ΠQ1,Q2

(
ẑ1

ẑ2

)
the joint projection of ẑ1 and ẑ2 into domains Q1 and Q2, respectively. Finally,

we use [s][0,a] to denote the projection of s into [0, a], where a > 0.

4 Pdprox: a primal dual prox method for non-smooth optimization

We first describe the non-smooth optimization problems that the proposed algorithm can be
applied to, and then present the primal dual prox method for non-smooth optimization. We
then prove the convergence rate of the proposed algorithms and discuss several extensions.
Proofs for technical lemmas are deferred to the appendix.

4.1 Non-smooth optimization

We first focus our analysis on linear classifiers and denote by w ∈ R
d a linear model. The

extension to nonlinear models is discussed in Sect. 4.7. Also, extension to a collection of
linear models W ∈ R

d×K can be done in a straightforward way. We consider the following
general non-smooth optimization problem:

min
w∈Qw

[
L(w) = max

α∈Qα

L(w,α; X, y) + λR(w)

]
. (2)

The parameters w in domain Qw and α in domain Qα are referred to as primal and dual
variables, respectively. Since it is impossible to develop an efficient first order method for
general non-smooth optimization, we focus on the family of non-smooth loss functions that
can be characterized by bilinear function L(w,α; X, y), i.e.

L(w,α; X, y) = c0(X, y) + α	a(X, y) + w	b(X, y) + w	H(X, y)α, (3)

where c0(X, y), a(X, y), b(X, y), and H(X, y) are the parameters depending on the training
examples (X, y) with consistent sizes. In the sequel, we denote by L(w,α) = L(w,α; X, y)

for simplicity, and by Gw(w,α) = ∇w L(w,α) and Gα(w,α) = ∇α L(w,α) the partial
gradients of L(w,α) in terms of w and α, respectively.

Remark 1 One direct consequence of assumption in (3) is that the partial gradient Gw(w,α)

is independent of w, and Gα(w,α) is independent of α, since L(w,α) is bilinear in w and α.
We will explicitly exploit this property in developing the efficient optimization algorithms.
We also note that no explicit assumption is made for the regularizer R(w). This is in contrast
to the smoothing techniques used in Nesterov (2005a, b).

To efficiently solve the optimization problem in (1), we need first turn it into the form (2).
To this end, we assume that the loss function can be written into a dual form, which is bilinear
in the primal and the dual variables, i.e.

�(w; xi , yi ) = max
αi ∈Δα

f (w, αi ; xi , yi ), (4)
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where f (w, α; x, y) is a bilinear function in w and α, and Δα is the domain of variable α.
Using (4), we cast problem (1) into (2) with L(w,α; X, y) given by

L(w,α; X, y) = 1

n

n∑

i=1

f (w, αi ; xi , yi ), (5)

with α = (α1, · · · , αn)	 defined in the domain Qα = {α = (α1, · · · , αn)	, αi ∈ Δα}.
Before delving into the description of the proposed algorithms and their analysis, we give

a few examples that show many non-smooth loss functions can be written in the form of (4):

– Hinge loss (Vapnik 1998):

�(w; x, y) = max(0, 1 − yw	x) = max
α∈[0,1] α(1 − yw	x).

– Generalized hinge loss (Bartlett and Wegkamp 2008):

�(w; x, y) =
⎧
⎨

⎩

1 − ayw	x if yw	x ≤ 0
1 − yw	x if 0 < yw	x < 1
0 if yw	x ≥ 1

= max
α1≥0,α2≥0
α1+α2≤1

α1(1 − ayw	x) + α2(1 − yw	x),

where a > 1.
– Absolute loss (Hastie et al. 2008):

�(w; x, y) = |w	x − y| = max
α∈[−1,1] α(w	x − y).

– ε-insensitive loss (Rosasco et al. 2004):

�(w; x, y)=max(|w	x − y| − ε, 0)= max
α1≥0,α2≥0
α1+α2≤1

[
(w	x − y)(α1 − α2) − ε(α1 + α2)

]
.

– Piecewise linear loss (Koenker 2005):

�(w; x, y) =
{

a|w	x − y| if w	x ≤ y
(1 − a)|w	x − y| if w	x ≥ y

= max
α1≥0,α2≥0
α1+α2≤1

α1a(y − w	x) + α2(1 − a)(w	x − y).

– �2 loss (Nie et al. 2010):

�(W; x, y) = ‖W	x − y‖2 = max‖α‖2≤1
α	(W	x − y),

where y ∈ R
K is multiple class label vector and W = (w1, · · · , wK ).

Besides the non-smooth loss function �(w; x, y), we also assume that the regularizer
R(w) is a non-smooth function. Many non-smooth regularizers are used in machine learning
problems. We list a few of them in the following, where W = (w1, · · · , wK ), wk ∈ R

d and
w j is the j th row of W.

– lasso: R(w) = ‖w‖1, �2 norm: R(w) = ‖w‖2, and �∞ norm: R(w) = ‖w‖∞.
– group lasso: R(w) = ∑K

g=1

√
dg‖wg‖2, where wg ∈ R

dg .

– exclusive lasso: R(W) = ∑d
j=1 ‖w j‖2

1.
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– �2,1 norm: R(W) = ∑d
j=1 ‖w j‖2.

– �1,∞ norm: R(W) = ∑d
j=1 ‖w j‖∞.

– trace norm: R(W) = ‖W‖1, the summation of singular values of W.

– other regularizers: R(W) =
(∑K

k=1 ‖wk‖2

)2
.

Note that unlike Nesterov (2005a, b), we do not further require the non-smooth regularizer
to be written into a bilinear dual form, which could be violated by many non-smooth regu-

larizers, e.g. R(W) =
(∑K

k=1 ‖wk‖2

)2
or more generally R(w) = V (‖w‖), where V (z) is

a monotonically increasing function.
We close this section by presenting a lemma showing an important property of the bilinear

function L(w,α).

Lemma 1 Let L(w,α) be bilinear in w and α as in (3). Given fixed X, y there exists c > 0
such that ‖H(X, y)‖2

2 ≤ c, then for any α1,α2 ∈ Qα , and w1, w2 ∈ Qw we have

‖Gα(w1,α1) − Gα(w2,α2)‖2
2 ≤ c‖w1 − w2‖2

2, (6)

‖Gw(w1,α1) − Gw(w2,α2)‖2
2 ≤ c‖α1 − α2‖2

2. (7)

Remark 2 The value of constant c in Lemma 1 is an input to our algorithms used to set the
step size. In Appendix 1, we show how to estimate constant c for certain loss functions. In
addition the constant c in bounds (6) and (7) do not have to be the same as shown by the the
example of generalized hinge loss in Appendix 1. It should be noticed that the inequalities in
Lemma 1 indicate L(w,α) has Liptschitz continuos gradients, however, the gradient of the
whole objective with respect to w, i.e., Gw(w,α)+λ∂ R(w) is not Lipschitz continuous due to
the general non-smooth term R(w), which prevents previous convex-concave minimization
scheme (Tseng 2008; Nemirovski 2005) not applicable.

4.2 The proposed primal-dual prox methods

In this subsection, we present two variants of Primal Dual Prox (Pdprox) method for solv-
ing the non-smooth optimization problem in (2). The common feature shared by the two
algorithms is that they update both the primal and the dual variables at each iteration. In
contrast, most first order methods only update the primal variables. The key advantages of
the proposed algorithms is that they are able to capture the sparsity structures of both pri-
mal and dual variables, which is usually the case when both the regularizer and the loss
functions are both non-smooth. The two algorithms differ from each other in the number of
copies for the dual or the primal variables, and the specific order for updating those. Although
our analysis shows that the two algorithms share the same convergence rate; however, our
empirical studies show that the one algorithm is more preferable than the other depending
on the nature of the applications.

4.3 Pdprox-dual algorithm

Algorithm 1 shows the first primal dual prox algorithm for optimizing the problem in (2).
Compared to the other gradient based algorithms, Algorithm 1 has several interesting features:

(i) it updates both the dual variable α and the primal variable w. This is useful when
additional constraints are introduced for the dual variables, as we will discuss later.

(ii) it introduces an extra dual variable β in addition to α, and updates both α and β at each
iteration by a gradient mapping. The gradient mapping on the dual variables into a sparse
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Algorithm 1 The Pdprox-dual Algorithm for Non-Smooth Optimization
1: Input: step size γ = √

1/(2c), where c is specified in (6).
2: Initialization: w0 = 0, β0 = 0
3: for t = 1, 2, . . . do
4: αt = ΠQα

[
βt−1 + γ Gα(wt−1, βt−1)

]

5: wt = arg minw∈Qw
1
2

∥∥w − (
wt−1 − γ Gw(wt−1, αt )

)∥∥2
2 + γ λR(w)

6: βt = ΠQα

[
βt−1 + γ Gα(wt , αt )

]

7: end for
8: Output ŵT = ∑T

t=1 wt /T and α̂T = ∑T
t=1 αt /T .

Algorithm 2 The Pdprox-primal Algorithm for Non-Smooth Optimization
1: Input: step size γ = √

1/(2c), where c is specified in (7).
2: Initialization: u0 = 0, α0 = 0
3: for t = 1, 2, . . . do
4: wt = arg minw∈Qw

1
2

∥∥w − (
ut−1 − γ Gw(ut−1, αt−1)

)∥∥2
2 + γ λR(w)

5: αt = ΠQα

[
αt−1 + γ Gα(wt , αt−1)

]

6: ut = wt + γ (Gw(ut−1, αt−1) − Gw(wt , αt ))
7: end for
8: Output ŵT = ∑T

t=1 wt /T and α̂T = ∑T
t=1 αt /T .

domain allows the proposed algorithm to capture the sparsity of the dual variables (more
discussion on how the sparse constraint on the dual variable affects the convergence is
presented in Sect. 4.7). Compared to the second algorithm presented below, we refer
to Algorithm 1 as Pdprox-dual algorithm since it introduces an extra dual variable in
updating.

(iii) the primal variable w is updated by a composite gradient mapping (Nesterov 2007) in
step 5. Solving a composite gradient mapping in this step allows the proposed algorithm
to capture the sparsity of the primal variable. Similar to many other approaches for
composite optimization (Duchi and Singer 2009; Hu et al. 2009), we assume that the
mapping in step 5 can be solved efficiently. (This is the only assumption we made on the
non-smooth regularizer. The discussion in Sect. 4.6 shows that the proposed algorithm
can be applied to a large family of non-smooth regularizers).

(iv) the step size γ is fixed to
√

1/(2c), where c is the constant specified in Lemma 1. This
is in contrast to most gradient based methods where the step size depends on T and/or
λ. This feature is particularly useful in implementation as we often observe that the
performance of a gradient method is sensitive to the choice of the step size.

4.4 Pdprox-primal algorithm

In Algorithm 1, we maintain two copies of the dual variables α and β, and update them by
two gradient mappings1. We can actually save one gradient mapping on the dual variable by
first updating the primal variable wt , and then updating αt using partial gradient computed
with wt . As a tradeoff, we add an extra primal variable u, and update it by a simple calcula-
tion. The detailed steps are shown in Algorithm 2. Similar to Algorithm 1, Algorithm 2 also
needs to compute two partial gradients (except for the initial partial gradient on the primal
variable), i.e., Gw(·,αt ) and Gα(wt , ·). Different from Algorithm 1, Algorithm 2 (i) main-
tains (wt ,αt , ut ) at each iteration with O(2d + n) memory, while Algorithm 1 maintains

1 The extra gradient mapping on β can also be replaced with a simple calculation, as discussed in Sect. 4.6.
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(αt , wt ,β t ) at each iteration with O(2n+d) memory; (ii) and replaces one gradient mapping
on an extra dual variable β t with a simple update on an extra primal variable ut . Depending
on the nature of applications, one method may be more efficient than the other. For example,
if the dimension d is much larger than the number of examples n, then Algorithm 1 would
be more preferable than Algorithm 2. When the number of examples n is much larger than
the dimension d , Algorithm 2 could save the memory and the computational cost. However,
as shown by our analysis in Sect. 4.5, the convergence rate of two algorithms are the same.
Because it introduces an extra primal variable, we refer to Algorithm 2 as the Pdprox-primal
algorithm.

Remark 1 It should be noted that although Algorithm 1 uses a similar strategy for updat-
ing the dual variables α and β, but it is significantly different from the mirror prox
method (Nemirovski 2005). First, unlike the mirror prox method that introduces an aux-
iliary variable for w, Algorithm 1 introduces a composite gradient mapping for updating w.
Second, Algorithm 1 updates wt using the partial gradient computed from the updated dual
variable αt rather than β t−1. Third, Algorithm 1 does not assume that the overall objective
function has Lipschitz continuous gradients, a key assumption that limits the application of
the mirror prox method.

Remark 2 A similar algorithm with an extra primal variable is also proposed in a recent
work (Chambolle and Pock 2011). It is slightly different from Algorithm 2 in the order of
updating on the primal variable and the dual variable, and the gradients used in the updating.
We discuss the differences between the Pdprox method and the algorithm in Chambolle and
Pock (2011) with our notations in Appendix 3.

4.5 Convergence analysis

This section establishes bounds on the convergence rate of the proposed algorithms. We
begin by presenting a theorem about the convergence rate of Algorithms 1 and 2. For ease
of analysis, we first write (2) into the following equivalent minimax formulation

min
w∈Qw

max
α∈Qα

F(w,α) = L(w,α) + λR(w). (8)

Our main result is stated in the following theorem.

Theorem 1 By running Algorithm 1 or Algorithm 2 with T steps, we have

F(ŵT ,α) − F(w, α̂T ) ≤ ‖w‖2
2 + ‖α‖2

2√
(2/c)T

,

for any w ∈ Qw and α ∈ Qα . In particular,

L(ŵT ) − D(̂αT ) ≤ ‖w̃T ‖2
2 + ‖α̃T ‖2

2√
(2/c)T

where D(α) = minw∈Qw F(w,α) is the dual objective, and w̃T , α̃T are given by w̃T =
arg minw∈Qw F(w, α̂T ), α̃T = arg maxα∈Qα F(ŵT ,α).

Remark 3 It is worth mentioning that in contrast to most previous studies whose convergence
rates are derived for the optimality of either the primal objective or the dual objective, the
convergence result in Theorem 1 is on the duality gap, which can serve a certificate of the
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convergence for the proposed algorithm. It is not difficult to show that when Qw = R
d the

dual objective can be computed by

D(α) = c0(X, y) + α	a(X, y) − λR∗
(−b(X, y) − H(X, y)α

λ

)

where R∗(u) is the convex conjugate of R(w). For example, if R(w) = 1/2‖w‖2
2, R∗(u) =

1
2‖u‖2

2; if R(w) = ‖w‖p, R∗(u) = I (‖u‖q ≤ 1), where I (·) is an indicator function,
p = 1, 2,∞ and 1/p + 1/q = 1.

Before proceeding to the proof of Theorem 1, we present the following Corollary that
follows immediately from Theorem 1 and states the convergence bound for the objective
L(w) in (2).

Corollary 1 Let w∗ be the optimal solution to (2), bounded by ‖w∗‖2
2 ≤ D1, and ‖α‖2

2 ≤
D2,∀α ∈ Qα . By running Algorithm 1 or 2 with T iterations, we have

L(ŵT ) − L(w∗) ≤ D1 + D2√
(2/c)T

.

Proof Let w = w∗ = arg minw∈Qw L(w) and α̃T = arg maxα∈Qα F(ŵT ,α) in Theorem 1,
then we have

max
α∈Qα

F(ŵT ,α) − F(w∗, α̂T ) ≤ ‖w∗‖2
2 + ‖α̃T ‖2

2√
(2/c)T

,

Since L(w) = max
α∈Qα

F(w,α) ≥ F(w, α̂T ), then we have

L(ŵT ) − L(w∗) ≤ D1 + D2√
(2/c)T

.

��
In order to aid understanding, we present the proof of Theorem 1 for each algorithm

separately in the following subsections.

4.5.1 Convergence analysis of Algorithm 1

For the simplicity of analysis, we assume Qw = R
d is the whole Euclidean space. We

discuss how to generalize the analysis to a convex domain Qw in Sect. 4.7. In order to prove
Theorem 1 for Algorithm 1, we present a series of lemmas to pave the path for the proof. We
first restate the key updates in Algorithm 1 as follows:

αt = ΠQα

[
β t−1 + γ Gα(wt−1,β t−1)

]
, (9)

wt = arg min
w∈Rd

1

2
‖w − (wt−1 − γ Gw(wt−1,αt ))‖2

2 + γ λR(w), (10)

β t = ΠQα

[
β t−1 + γ Gα(wt ,αt )

]
. (11)

Lemma 2 The updates in Algorithm 1 are equivalent to the following gradient mappings,
(

αt

wt

)
= ΠQα ,Rd

(
β t−1 + γ Gα(ut−1,β t−1)

ut−1 − γ (Gw(ut−1,αt ) + λvt )

)
,
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and
(

β t
ut

)
= ΠQα,Rd

(
β t−1 + γ Gα(wt ,αt )

ut−1 − γ (Gw(wt ,αt ) + λvt )

)
,

with initialization u0 = w0, where vt ∈ ∂ R(wt ) is a partial gradient of the regularizer on
wt .

Proof First, we argue that there exists a fixed (sub)gradient vt ∈ ∂ R(wt ) such that the
composite gradient mapping (10) is equivalent to the following gradient mapping,

wt = Π
Rd

[
wt−1 − γ (Gw(wt−1,αt ) + λvt )

]
. (12)

To see this, since wt is the optimal solution to (10), by first order optimality condition,
there exists a subgradient vt = ∂ R(wt ) such that wt − wt−1 + γ Gw(wt−1,αt ) + γ λvt = 0,
i.e.

wt = wt−1 − γ Gw(wt−1,αt ) − γ λvt ,

which is equivalent to (12) since the projection Π
Rd is an identical mapping.

Second, the updates in Algorithm 1 for (α,β, w) are equivalent to the following updates
for (α,β, w, u)

αt = ΠQα

[
β t−1 + γ Gα(ut−1,β t−1)

]
,

wt = Π
Rd

[
ut−1 − γ (Gw(ut−1,αt ) + λvt )

]
, (13)

β t = ΠQα

[
β t−1 + γ Gα(wt ,αt )

]
,

ut = wt − γ (Gw(wt ,αt ) − Gw(ut−1,αt )), (14)

with initialization u0 = w0. The reason is because ut = wt , t = 1, · · · due to Gw(wt ,αt ) =
Gw(ut−1,αt ), where we use the fact that L(w,α) is linear in w.

Finally, by plugging (13) for wt into the update for ut in (14), we complete the proof of
Lemma 2. ��

The reason that we translate the updates for (αt , wt ,β t ) in Algorithm 1 into the updates
for (αt , wt ,β t , ut ) in Lemma 2 is because it allows us to fit the updates for (αt , wt ,β t , ut )

into Lemma 8 as presented in Appendix 4, which leads us to a key inequality as stated in
Lemma 3 to prove Theorem 1.

Lemma 3 For all t = 1, 2, · · · , and any w ∈ R
d ,α ∈ Qα , we have

γ

(
Gw(wt ,αt ) + λvt

−Gα(wt ,αt )

)	 (wt − w
αt − α

)
≤ 1

2

∥∥∥∥

(
w − ut−1

α − β t−1

)∥∥∥∥
2

2
− 1

2

∥∥∥∥

(
w − ut

α − β t

)∥∥∥∥
2

2

+ γ 2
∥∥Gα(wt ,αt ) − Gα(ut−1,β t−1)

∥∥2
2 − 1

2
‖wt − ut−1‖2

2.

The proof of Lemma 3 is deferred to Appendix 4. We are now ready to prove the main
theorem for Algorithm 1.

Proof (of Theorem 1 for Algorithm 1) Since F(w,α) is convex in w and concave in α, we
have

F(wt ,αt ) − F(w,αt ) ≤ (Gw(wt ,αt ) + λvt )
	(wt − w),

F(wt ,α) − F(wt ,αt ) ≤ −Gα(wt ,αt )
	(αt − α),
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where vt ∈ ∂ R(wt ) is the partial gradient of R(w) on wt stated in Lemma 2. Combining the
above inequalities with Lemma 3, we have

γ (F(wt ,αt ) − F(w,αt ) + F(wt ,α) − F(wt ,αt ))

≤ 1

2

∥∥∥∥

(
w − ut−1

α − β t−1

)∥∥∥∥
2

2
− 1

2

∥∥∥∥

(
w − ut

α − β t

)∥∥∥∥
2

2
+ γ 2‖Gα(wt ,αt ) − Gα(ut−1,β t−1)‖2

2

− 1

2
‖wt − ut−1‖2

2

≤ 1

2

∥∥∥∥

(
w − ut−1

α − β t−1

)∥∥∥∥
2

2
− 1

2

∥∥∥∥

(
w − ut

α − β t

)∥∥∥∥
2

2
+ γ 2c‖wt − ut−1‖2

2 − 1

2
‖wt − ut−1‖2

2

≤ 1

2

∥∥∥∥

(
w − ut−1

α − β t−1

)∥∥∥∥
2

2
− 1

2

∥∥∥∥

(
w − ut

α − β t

)∥∥∥∥
2

2
,

where the second inequality follows the inequality (6) in Lemma 1 and the fact γ = √
1/(2c).

By adding the inequalities of all iterations and dividing both sides by T , we have

1

T

T∑

t=1

(F(wt ,α) − F(w,αt )) ≤ ‖w‖2
2 + ‖α‖2

2√
(2/c) T

. (15)

We complete the proof by using the definitions of ŵT , α̂T , and the convexity–concavity of
F(w,α) with respect to w and α, respectively. ��

4.5.2 Convergence analysis of Algorithm 2

We can prove the convergence bound for Algorithm 2 by following the same path. In the
following we present the key lemmas similar to Lemmas 2 and 3, with proofs omitted.

Lemma 4 There exists a fixed partial gradient vt ∈ ∂ R(wt ) such that the updates in Algo-
rithm 2 are equivalent to the following gradient mappings,

(
wt

αt

)
= Π

Rd ,Qα

(
ut−1 − γ (Gw(ut−1,β t−1) + λvt )

β t−1 + γ Gα(wt ,β t−1)

)

and
(

ut

β t

)
= Π

Rd ,Qα

(
ut−1 − γ (Gw(wt ,αt ) + λvt )

β t−1 + γ Gα(wt ,αt )

)
,

with initialization β0 = α0.

Lemma 5 For all t = 1, 2, · · · , and any w ∈ R
d ,α ∈ Qα , we have

γ

(
Gw(wt ,αt ) + λvt

−Gα(wt ,αt )

)	 (wt − w
αt − α

)
≤ 1

2

∥∥∥∥

(
w − ut−1

α − β t−1

)∥∥∥∥
2

2
− 1

2

∥∥∥∥

(
w − ut

α − β t

)∥∥∥∥
2

2

+ γ 2
∥∥Gw(wt ,αt ) − Gw(ut−1,β t−1)

∥∥2
2 − 1

2
‖αt − β t−1‖2

2.
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Proof (of Theorem 1 for Algorithm 2) Similar to proof of Theorem 1 for Algorithm 1, we
have

γ (F(wt ,αt ) − F(w,αt ) + F(wt ,α) − F(wt ,αt ))

≤ 1

2

∥∥∥∥

(
w − ut−1

α − β t−1

)∥∥∥∥
2

2
− 1

2

∥∥∥∥

(
w − ut

α − β t

)∥∥∥∥
2

2
+ γ 2

∥∥Gw(wt ,αt ) − Gw(ut−1,β t−1)
∥∥2

2

− 1

2
‖αt − β t−1‖2

2

≤ 1

2

∥∥∥∥

(
w − ut−1

α − β t−1

)∥∥∥∥
2

2
− 1

2

∥∥∥∥

(
w − ut

α − β t

)∥∥∥∥
2

2
+ γ 2c‖αt − β t−1‖2

2 − 1

2
‖αt − β t−1‖2

2

≤ 1

2

∥∥∥∥

(
w − ut−1

α − β t−1

)∥∥∥∥
2

2
− 1

2

∥∥∥∥

(
w − ut

α − β t

)∥∥∥∥
2

2
,

where the last step follows the inequality (7) in Lemma 1 and the fact γ = √
1/(2c). By

adding the inequalities of all iterations and dividing both sides by T , we have

1

T

T∑

t=1

(F(wt ,α) − F(w,αt )) ≤ ‖w‖2
2 + ‖α‖2

2√
(2/c) T

. (16)

We complete the proof by using the definitions of ŵT , α̂T , and the convexity–concavity of
F(w,α) with respect to w and α, respectively. ��

Comparison with Pegasos on �2
2 regularizer We compare the proposed algorithm to the

Pegasos algorithm (Shalev-Shwartz et al. 2011)2 for minimizing the �2
2 regularized hinge loss.

Although in this case both algorithms achieve a convergence rate of O(1/T ), their depen-
dence on the regularization parameter λ is very different. In particular, the convergence rate of

the proposed algorithm is O
(

(1+nλ)R√
2nλT

)
by noting that ‖w∗‖2

2 = O(1/λ), ‖α∗‖2
2 ≤ ‖α∗‖1 ≤

n, and c = R2/n, while the Pegasos algorithm has a convergence rate of Õ
(

(
√

λ+R)2

λT

)
(Corol-

lary 1 in Shalev-Shwartz et al. 2011), where Õ(·) suppresses a logarithmic term ln(T ).
According to the common assumption of learning theory (Wu and Zhou 2005; Smale and
Zhou 2003), the optimal λ is O(n−1/(τ+1)) if the probability measure can be approximated by
the closure of RKHS Hκ with exponent 0 < τ ≤ 1. As a result, the convergence rate of the pro-
posed algorithm is O(

√
n R/T ) while the convergence rate of Pegasos is O(n1/(1+τ) R2/T ).

Since τ ∈ (0, 1], the proposed algorithm could be more efficient than the Pegasos algorithm,
particularly when λ is sufficiently small. This is verified by our empirical studies in Sect. 5.7
(see Fig. 8). It is also interesting to note that the convergence rate of Pdprox has a better
dependence on R, the �2 norm bound of examples ‖x‖2 ≤ R, compared to R2 in the con-
vergence rate of Pegasos. Finally, we mention that the proposed algorithm is a deterministic
algorithm that requires a full pass of all training examples at each iteration, while Pegasos
can be purely stochastic by sampling one example for computing the sub-gradient, which
maintains the same convergence rate. It remains an interesting and open problem to extend
the Pdprox algorithm to its stochastic or randomized version with a similar convergence rate.

2 We compare to the deterministic Pegasos that computes the gradient using all examples at each iteration. It
would be criticized that it is not fair to compare with Pegasos since it is a stochastic algorithm, however, such
a comparison (both theoretically and empirically) would provide a formal evidence that solving the min–max
problem by a primal dual method with an extra-gradient may yield better convergence than solving the primal
problem.
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4.6 Implementation issues

In this subsection, we discuss some implementation issues: (1) how to efficiently solve the
optimization problems for updating the primal and dual variables in Algorithms 1 and 2; (2)
how to set a good step size; and (3) how to implement the algorithms efficiently.

Both α and β are updated by a gradient mapping that requires computing the projection
into the domain Qα . When Qα is only consisted of box constraints (e.g., hinge loss, absolute
loss, and ε-insensitive loss), the projection

∏
Qα

[̂α] can be computed by thresholding. When
Qα is comprised of both box constraints and a linear constraint (e.g., generalized hinge loss),
the following lemma gives an efficient algorithm for computing

∏
Qα

[̂α].
Lemma 6 For Qα = {α : α ∈ [0, s]n,α	v ≤ ρ}, the optimal solution α∗ to projection∏

Qα
[̂α] is computed by

α∗
i = [̂αi − ηvi ][0,s] ,∀i ∈ [n],

where η = 0 if
∑

i [̂αi ][0,s]vi ≤ ρ and otherwise is the solution to the following equation
∑

i

[̂αi − ηvi ][0,s] vi − ρ = 0. (17)

Since
∑

i [̂αi − ηvi ][0,s]vi − 1 is monotonically decreasing in η, we can solve η in (17) by a
bi-section search.

Remark 4 It is notable that when the domain is a simplex type domain, i.e.
∑

i αi ≤ ρ, Duchi
et al. (2008) has proposed more efficient algorithms for solving the projection problem.

Moreover, we can further improve the efficiency of Algorithm 1 by removing the gradient
mapping on β. The key idea is similar to the analysis provided in Sect. 4.7 for arguing that
the convergence rate presented in Theorem 1 for Algorithm 2 holds for any convex domain
Qw. Actually, the update on α is equivalent to

αt = arg min
α

1

2
‖α − (

β t−1 + γ Gα

(
wt−1,β t−1

)) ‖2
2 + γ Q(α),

which together with the first order optimality condition implies

αt = β t−1 + γ Gα(wt−1,β t−1) − γ ∂ Q(αt ),

where

Q(α) =
{

0 α ∈ Qα

+∞ otherwise
,

is the indicator function of the domain Qα . Then we can update the βt by

β t = arg min
α

1

2
‖α − (

β t−1 + γ Gα(wt ,αt ) − ∂ Q(αt )
) ‖2

2,

= β t−1 + γ Gα(wt ,αt ) − ∂ Q(αt )

which can be computed simply by

β t = αt + γ
(
Gα(wt ,αt ) − Gα(wt−1,β t−1)

)
.

The new Pdprox-dual algorithm is presented in Algorithm 3. To prove the convergence
rate of Algorithm 3, we can follow the same analysis to first prove the duality gap for
L(w,α) + λR(w) − Q(α) and then absorb Q(α) into the domain constraint of α. The
convergence result presented in Theorem 1 holds the same for Algorithm 3.
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Algorithm 3 The Pdprox-dual Algorithm for Non-Smooth Optimization
1: Input: step size γ = √

1/(2c), where c is specified in (6).
2: Initialization: w0 = 0, β0 = 0
3: for t = 1, 2, . . . do
4: αt = ΠQα

[
βt−1 + γ Gα(wt−1, βt−1)

]

5: wt = arg minw∈Qw
1
2

∥∥w − (
wt−1 − γ Gw(wt−1, αt )

)∥∥2
2 + γ λR(w)

6: βt = αt + γ (Gα(wt , αt ) − Gα(wt−1, βt−1))

7: end for
8: Output ŵT = ∑T

t=1 wt /T and α̂T = ∑T
t=1 αt /T .

Remark 5 In Appendix 3, we show that the updates on (wt ,αt ) of Algorithm 3 are essentially
the same to the Algorithm 1 in Chambolle and Pock (2011), if we remove the extra dual
variable in Algorithm 3 and the extra primal variable in Algorithm 1 in Chambolle and Pock
(2011). However, the difference is that in Algorithm 3, we maintain two dual variables and
one primal variable at each iteration, while the Algorithm 1 in Chambolle and Pock (2011)
maintains two primal variables and one dual variable at each iteration.

For the composite gradient mapping for w ∈ Qw = R
d , there is a closed form solution

for simple regularizers (e.g., �1, �2) and decomposable regularizers (e.g., �1,2). Efficient
algorithms are available for composite gradient mapping when the regularizer is the �∞ and
�1,∞, or trace norm. More details can be found in Duchi and Singer (2009) and Ji and Ye
(2009). Here we present an efficient solution to a general regularizer V (‖w‖), where ‖w‖
is either a simple regularizer (e.g., �1, �2, and �∞) or a decomposable regularizer (e.g., �1,2

and �1,∞), and V (z) is convex and monotonically increasing for z ≥ 0. An example is
V (‖w‖) = (

∑
k ‖wk‖2)

2, where w1, . . . , wK forms a partition of w.

Lemma 7 Let V∗(η) be the convex conjugate of V (z), i.e. V (z) = maxη ηz − V∗(η). Then
the solution to the composite mapping

w∗ = arg min
w∈Qw

1

2
‖w − ŵ‖2

2 + λV (‖w‖),

can be computed by

w∗ = arg min
w∈Qw

1

2
‖w − ŵ‖2

2 + λη‖w‖,

where η satisfies ‖w∗‖ − V ′∗(η) = 0. Since both ‖w∗‖ and −V ′∗(η) are non-increasing
functions in η, we can efficiently compute η by a bi-section search.

The value of the step size γ in Algorithms 2 and 3 depends on the value of c, a constant
that upper bounds the spectral norm square of the matrix H(X, y). In many machine learning
applications, by assuming a bound on the data (e.g., ‖x‖2 ≤ R), one can easily compute an
estimate of c. We present derivations of the constant c for hinge loss and generalized hinge
loss in Appendix 1. However, the computed value of c might be overestimated, thus the step
size γ is underestimated. Therefore, to improve the empirical performances, one can scale
up the estimated value of γ by a factor larger than one and choose the best factor by tuning
among a set of values. In addition, the authors in Chambolle and Pock (2011) suggested a two
step sizes scheme with τ for updating the primal variable and σ for updating the dual variable.
Depending on the nature of applications, one may observe better performances by carefully
choosing the ratio between the two step sizes provided that σ and τ satisfy στ ≤ 1/c. In
the last subsection, we observe the improved performance for solving SVM by using the two
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step sizes scheme and by carefully tuning the ratio between the two step sizes. Furthermore,
Pock and Chambolle (2011) presents a technique for computing diagonal preconditioners in
the cases when estimating the value of c is difficult for complex problems, and applies it to
general linear programing problems and some computer vision problems.

Finally, we discuss the two implementation schemes for Algorithms 2 and 3. Note that in
Algorithm 2, we maintain and update two primal variables wt , ut ∈ R

d , while in Algorithm 3
we maintain and update two dual variables αt ,β t ∈ R

n . We refer to the implementation with
two primal variables as double-primal implementation and the one with two dual variables
as double-dual implementation. In fact, we can also implement Algorithm 2 by double-
dual implementation and implement Algorithm 3 by double-primal implementation. For
Algorithm 2, in which the updates are

wt = min
w∈Qw

‖w − (ut−1 − γ Gw(αt−1))‖2
2

2
+ γ λR(w)

αt = min
α∈Qα

‖α − (αt−1 + γ Gα(wt ))‖2
2

2

ut = wt + γ (Gw(αt−1) − Gw(αt )),

we can plug the expression of ut into wt and obtain

wt = min
w∈Qw

‖w − (wt−1 + 2γ Gw(αt−2) − 2γ Gw(αt−1))‖2
2

2
+ γ λR(w)

αt = min
α∈Qα

‖α − (αt−1 + γ Gα(wt ))‖2
2

2

To implement above updates, we can only maintain one primal variable and two dual variables.
Depending on the nature of implementation, one may be better than the other. For example, if
the number of examples n is much larger than the number of dimensions d , the double-primal
implementation may be more efficient than the double-dual implementation, and vice versa.
In Sect. 5.7, we provide more examples and an experiment to demonstrate this.

4.7 Extensions and discussion

4.7.1 Nonlinear model

For a nonlinear model, the min–max formulation becomes

min
g∈Hκ

max
α∈Qα

L(g,α; X, y) + λR(g),

where Hκ is a Reproducing Kernel Hilbert Space (RKHS) endowed with a kernel function
κ(·, ·). Algorithm 1 can be applied to obtain the nonlinear model by changing the primal
variable to g. For example, step 5 in Algorithm 1 is modified to the following composite
gradient mapping

gt = arg min
g∈Hκ

1

2

∥∥g − ĝt−1
∥∥2

Hκ
+ γ λR(g), (18)

where

ĝt−1 = (
gt−1 − γ∇g L(gt−1,αt ; X, y)

)
.
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Similar changes can be made to Algorithm 2 for the extension to the nonlinear model. To end
this discussion, we make several remarks. (1) The gradient with respect to the primal variable
(i.e., the kernel predictor g ∈ Hκ ) is computed on each g(xi ) = 〈g, κ(xi , ·)〉 by κ(xi , ·). (2)
We can perform the computation by manipulating on a finite number of parameters due to
the representer theorem provided that the regularizer R(g) is a monotonic norm (Bach et al.
2011). Therefore, we only need to maintain and update the coefficients ζ = (ζ1, . . . , ζn) in
g = ∑n

i=1 ζiκ(xi , ·). (3) The primal dual prox method for optimization with nonlinear model
has been adopted in our prior work (Yang et al. 2012) for multiple kernel learning where the
regularizer is R(g1, . . . , gm) = (∑m

k=1 ‖gk‖Hk

)2. It can also be generalized to solve MKL
with more general sparsity-induced norms. (Bach et al. 2011 considers how to compute the
proximal mapping in (18) for more general sparsity induced norms.)

4.7.2 Incorporating the bias term

It is easy to learn a bias term w0 in the classifier w	x + w0 by Pdprox without too many

changes. We can use the augmented feature vector x̂i =
(

1
xi

)
and the augmented weight

vector ŵ =
(

w0

w

)
, and run Algorithms 1 or 2 with no changes except that the regularizer

R(ŵ) = R(w) does not involve w0 and the step size γ = √
1/(2c) will be a different value

due to the change in the bound of the new feature vectors by ‖̂x‖2 ≤ √
1 + R2, which would

yield a different value of c in Lemma 1 (c.f. Appendix 1).

4.7.3 Domain constraint on primal variable

Now we discuss how to generalize the convergence analysis to the case when a convex domain
Qw is imposed on w. We introduce R̂(w) = λR(w) + Q(w), where Q(w) is an indicator
function for w ∈ Qw, i.e.

Q(w) =
{

0 w ∈ Qw
+∞ otherwise

.

Then we can write the domain constrained composite gradient mapping in step 5 of Algo-
rithm 1 or step 4 of Algorithm 2 into a domain free composite gradient mapping as the
following:

wt = arg min
w∈Rd

1

2
‖w − (wt−1 − γ Gw(wt−1,αt ))‖2

2 + γ R̂(w),

wt = arg min
w∈Rd

1

2
‖w − (ut−1 − γ Gw(ut−1,αt−1))‖2

2 + γ R̂(w).

Then we have an equivalent gradient mapping,

wt = wt−1 − γ Gw(wt−1,αt ) − γ ∂ R̂(wt ),

wt = ut−1 − γ Gw(ut−1,αt−1) − γ ∂ R̂(wt ).

Then Lemmas 2 and 3, and Lemmas 4 and 5 all hold as long as we replace λvt with v̂t ∈
∂ R̂(wt ). Finally in proving Theorems 1 we can absorb Q(w) in L(w,α) + R̂(w) into the
domain constraint.
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4.7.4 Additional constraints on dual variables

One advantage of the proposed primal dual prox method is that it provides a convenient way
to handle additional constraints on the dual variables α. Several studies introduce additional
constraints on the dual variables. In Dekel and Singer (2006), the authors address a budget
SVM problem by introducing a 1−∞ interpolation norm on the empirical hinge loss, leading
to a sparsity constraint ‖α‖1 ≤ m on the dual variables, where m is the target number of
support vectors. The corresponding optimization problem is given by

min
w∈Rd

max
α∈[0,1]n ,‖α‖1≤m

1

n

n∑

i=1

αi (1 − yi w	xi ) + λR(w). (19)

In Huang et al. (2010), a similar idea is applied to learn a distance metric from noisy training
examples. We can directly apply Algorithms 1 or 2 to (19) with Qα given by Qα = {α :
α ∈ [0, 1]n, ‖α‖1 ≤ m}. The prox mapping to this domain can be efficiently computed by
Lemma 6. It is straightforward to show that the convergence rate is [D1 + m]/[√2nT ] in
this case.

5 Experiments

In this section we present empirical studies to verify the efficiency of the proposed algorithm.
We organize our experiments as follows.

– In Sects. 5.1, 5.2, and 5.3 we compare the proposed algorithm to the state-of-the-art
first order methods that directly update the primal variable at each iteration. We apply
all the algorithms to three different tasks with different non-smooth loss functions and
regularizers. The baseline first order methods used in this study include the gradient
descent algorithm (gd), the forward and backward splitting algorithm (fobos) (Duchi and
Singer 2009), the regularized dual averaging algorithm (rda) (Xiao 2009), the accelerated
gradient descent algorithm (agd) (Chen et al. 2009). Since the proposed method is a non-
stochastic method, we compare it to the non-stochastic variant of gd, fobos, and rda.
Note that gd, fobos, rda, and agd share the same convergence rate of O(1/

√
T ) for

non-smooth problems.
– In Sect. 5.4, our algorithm is compared to the state-of-the-art primal dual gradient

method (Nesterov 2005a), which employs an excessive gap technique for non-smooth
optimization, updates both the primal and dual variables at each iteration, and has a
convergence rate of O(1/T ).

– In Sect. 5.5, we test the proposed algorithm for optimizing problem in (19) with a sparsity
constraint on the dual variables.

– In Sect. 5.7, we compare the two variants of the proposed method on a data set when
n � d , and compare Pdprox to the Pegasos algorithm.

All the algorithms are implemented in Matlab (except otherwise mentioned) and run on
a 2.4 GHZ machine. Since the performance of the baseline algorithms gd, fobos and rda
depends heavily on the initial value of the stepsize, we generate 21 values for the initial
stepsize by scaling their theoretically optimal values with factors 2[−10:1:10], and report the
best convergence among the 21 possible values. The stepsize of agd is changed adaptively in
the optimization process, and we just give it an appropriate initial step size. Since in the first
four subsections we focus on comparison with baselines, we use the Pdprox-dual algorithm
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(Algorithm 1) of the proposed Pdprox method. We also use the tuning technique to select the
best scale-up factor for the step size γ of Pdprox. Finally, all algorithms are initialized with
a solution of all zeros.

5.1 Group lasso regularizer for grouped feature selection

In this experiment we use the group lasso for regularization, i.e., R(w) = ∑
g

√
dg‖wg‖2,

where wg corresponds to the gth group variables and dg is the number of variables in group
g. To apply Nesterov’s method, we can write R(w) = max‖ug‖2≤1

∑
g

√
dgw	

g ug . We use
the MEMset Donar dataset (Yeo and Burge 2003) as the testbed. This dataset was originally
used for splice site detection. It is divided into a training set and a test set: the training set
consists of 8,415 true and 179,438 false donor sites, and the testing set has 4,208 true and
89,717 false donor sites. Each example in this dataset was originally described by a sequence
of {A, C, G, T} of length 7. We follow Yang et al. (2010) and generate group features with up
to three-way interactions between the 7 positions, leading to 2,604 attributes in 63 groups.
We normalize the length of each example to 1. Following the experimental setup in Yang
et al. (2010), we construct a balanced training dataset consisting of all 8,415 true and 8,415
false donor sites that are randomly sampled from all 179,438 false sites.

Two non-smooth loss functions are examined in this experiment: hinge loss and absolute
loss. Figure 2 plots the values of the objective function versus running time (s), using two
different values of regularization parameter, i.e., λ = 10−3, 10−5 to produce different levels
of sparsity. We observe that (i) the proposed algorithm Pdprox clearly outperforms all the
baseline algorithms in all the cases; (ii) for the absolute loss, which has a sharp curvature
change at zero compared to hinge loss, the baseline algorithms of gd, fobos, rda, agd, espe-
cially of agd that is originally designed for smooth loss functions, deteriorate significantly
compared to the proposed algorithm Pdprox. Finally, we observe that for the hinge loss and
λ = 10−3, the classification performance of the proposed algorithm on the testing dataset is
0.6565, measured by maximum correlation coefficient (Yeo and Burge 2003). This is almost
identical to the best result reported in Yang et al. (2010) (i.e., 0.6520).

5.2 �1,∞ regularization for multi-task learning

In this experiment, we perform multi-task regression with �1,∞ regularizer (Chen et al.
2009). Let W = (w1, · · · , wk) ∈ R

d×k denote the k linear hypotheses for regression. The
�1,∞ regularizer is given by R(W) = ∑d

j=1 ‖w j‖∞, where w j is the j th row of W. To apply

Nesterov’s method, we rewrite the �1,∞ regularizer as R(W) = max‖u j ‖1≤1
∑d

j=1 u j
	w j .

We use the School data set (Argyriou et al. 2008), a common dataset for multi-task learning.
This data set contains the examination scores of 15,362 students from 139 secondary schools
corresponding to 139 tasks, one for each school. Each student in this dataset is described
by 27 attributes. We follow the setup in Argyriou et al. (2008), and generate a training data
set with 75 % of the examples from each school and a testing data set with the remaining
examples. We test the algorithms using both the absolute loss and the ε-insensitive loss with
ε = 0.01. The initial stepsize for gd, fobos, and rda are tuned similarly as that for the
experiment of group lasso. We plot the objective versus the running time in Fig. 3, from
which we observe the similar results in the group feature selection task, i.e. (i) the proposed
Pdprox algorithm outperforms the baseline algorithms, (ii) the baseline algorithm of agd
becomes even worse for ε-insensitive loss than for absolute loss. Finally, we observe that the
regression performance measured by root mean square error (RMSE) on the testing data set
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Fig. 2 Comparison of convergence speed for hinge loss (a, b) and absolute loss (c, d) with group lasso
regularizer. Note that for better visualization we plot the objective starting from 10 s in all figures. The
objective of all algorithms at 0 s is 1. The black bold dashed lines in all Figures show the optimal objective
value by running Pdprox with a large number of iterations so that the duality gap is less than 10−4

for absolute loss and ε-insensitive loss is 10.34 (optimized by Pdprox), comparable to the
performance reported in Chen et al. (2009).

5.3 Trace norm regularization for max-margin matrix factorization/ matrix completion

In this experiment, we evaluate the proposed method using trace norm regularization, a
regularizer often used in max-margin matrix factorization and matrix completion, where the
goal is to recover a full matrix X from partially observed matrix Y. The objective is composed
of a loss function measuring the difference between X and Y on the observed entries and a
trace norm regularizer on X, assuming that X is low rank. Hinge loss function is used in max-
margin matrix factorization (Rennie and Srebro 2005; Srebro et al. 2005), and absolute loss
is used instead of square loss in matrix completion. We test on 100K MovieLens data set 3

that contains 1 million ratings from 943 users on 1,682 movies. Since there are five distinct
ratings that can be assigned to each movie, we follow Rennie and Srebro (2005) and Srebro
et al. (2005) by introducing four thresholds θ1,2,3,4 to measure the hinge loss between the
predicted value Xi j and the ground truth Yi j . Because our goal is to demonstrate the efficiency

3 http://www.cs.umn.edu/Research/GroupLens/.
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Fig. 3 Comparison of convergence speed for absolute loss (a, b) and ε-insensitive loss (c, d) with �1,∞
regularizer. Note that for better visualization we plot the objective starting from 10 s in all figures. The
objective of all algorithms at 0 s is 20.52. The black bold dashed lines in all Figures show the optimal objective
value by running Pdprox with a large number of iterations so that the duality gap is less than 10−4

of the proposed algorithm for non-smooth optimization, therefore we simply set θ1,2,3,4 =
(0, 3, 6, 9). Note that we did not compare to the optimization algorithm in Rennie and Srebro
(2005) since it cast the problem into a non-convex problem by using explicit factorization
of X = UV	, which suffers a local minimum, and the optimization algorithm in Srebro et
al. (2005) since it formulated the problem into a SDP problem, which suffers from a high
computational cost. To apply Nesterov’s method, we write ‖X‖1 = max‖A‖≤1 tr(A	X), and
at each iteration we need to solve a maximization problem max‖A‖≤1 λtr(A	X) − μ

2 ‖A‖2
F ,

where ‖A‖ is the spectral norm on A. The solution of this optimization is obtained by
performing SVD decomposition of X and thresholding the singular values appropriately.
Since MovieLens data set is much larger than the data sets used in last two subsections, in
this experiment, we (i) run all the algorithms for 1,000 iterations and plot the objective versus
time; (ii) enlarge the range of tuning parameters to 2[−15:1:15]. The results are shown in Fig. 4,
from which we observe that (i) Pdprox can quickly reduce the objective in a small amount
of time, e.g., for absolute loss when setting λ = 10−3 in order to obtain a solution with an
accuracy of 10−3, Pdprox needs 103 s, while agd needs 3.2 × 104 s; (ii) for absolute loss
no matter how we tune the stepsizes for each baseline algorithm, Pdprox performs the best;
and (iii) for hinge loss when λ = 10−5, by tuning the stepsizes of baseline algorithms, gd,
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Fig. 4 Comparison of convergence speed for a, b max-margin matrix factorization with hinge loss and trace
norm regularizer, and c, d matrix completion with absolute loss and trace norm regularizer. The black bold
dashed lines in all Figures show the optimal objective value by running Pdprox with a large number of iterations
so that the duality gap is less than 10−4

fobos, and rda can achieve comparable performance to Pdprox. We note that although agd
can achieve smaller objective value than Pdprox at the end of 1,000 iterations, however, the
objective value is reduced slowly.

5.4 Comparison: Pdprox versus primal-dual method with excessive gap technique

In this section, we compare the proposed primal dual prox method to Nesterov’s primal dual
method (Nesterov 2005a), which is an improvement of his algorithm in Nesterov (2005b).
The algorithm in Nesterov (2005b) for non-smooth optimization suffers a problem of setting
the value of smoothing parameter that requires the number of iterations to be fixed in advance.
Nesterov (2005a) addresses the problem by exploring an excessive gap technique and updat-
ing both the primal and dual variables, which is similar to the proposed Pdprox method. We
refer to this baseline as Pdexg. We run both algorithms on the three tasks as in Sects. 5.1, 5.2,
and 5.3, i.e., group feature selection with hinge loss and group lasso regularizer on MEMset
Donar data set, multi-task learning with ε-insensitive loss and �1,∞ regularizer on School
data set, and matrix completion with absolute loss and trace norm regularizer on 100 K
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MovieLens data set. To implement the primal dual method with excessive gap technique,
we need to intentionally add a domain on the optimal primal variable, which can be derived
from the formulation. For example, in group feature selection problem whose objective is
1/n

∑n
i=1 �(w	xi , yi )+λ

∑
g

√
dg‖wg‖2, we can derive that the optimal primal variable w∗

lies in ‖w‖2 ≤ ∑
g ‖wg‖2 ≤ 1

λ
√

dmin
, where dmin = ming dg . Similar techniques are applied

to multi-task learning and matrix completion.
The performance of the two algorithms on the three tasks is shown in Fig. 5. Since both

algorithms are in the same category, i.e. updating both primal and dual variables at each
iteration and having a convergence rate in the order of O(1/T ), we also plot the objective
versus the number of iterations in the bottom panels of each subfigure in Fig. 5.

The results show that the proposed Pdprox method converges faster than Pdexg on MEM-
set Donar data set for group feature selection with hinge loss and group lasso regularizer,
and on 100 K MovieLens data set for matrix completion with absolute loss and trace norm
regularizer. However, Pdexg performs better on School data set for multi-task learning with
ε-insensitive loss and �1,∞ regularizer. One interesting phenomenon we can observe from
Fig. 5 is that for larger values of λ (e.g., 10−3), the improvement of Pdprox over Pdexg
is also larger. The reason is that the proposed Pdprox captures the sparsity of primal vari-
able at each iteration. This does not hold for Pdexg because it casts the non-smooth reg-
ularizer into a dual form and consequently does not explore the sparsity of the primal
variable at each iteration. Therefore the larger of λ, the sparser of the primal variable at
each iteration in Pdprox that yields to larger improvement over Pdexg. For the example
of group feature selection task with hinge loss and group lasso regularizer, when setting
λ = 10−3, the sparsity of the primal variable (i.e., the proportion of the number of group
features with zero norm) in Pdprox averaged over all iterations is 0.7886. However, by
reducing λ to 10−5 the average sparsity of the primal variable in Pdprox is reduced to
0. In both settings the average sparsity of the primal variable in Pdexg is 0. The same
argument also explains why Pdprox does not perform as well as Pdexg on School data
set when setting λ = 10−5, since in this case the primal variables in both algorithms are
not sparse. When setting λ = 10−3, the average sparsity (i.e., the proportion of the number
of features with zero norm across all tasks) of the primal variable in Pdprox and Pdexg is
0.3766 and 0, respectively. Finally, we also observe similar performance of the two algo-
rithms on the three tasks with other loss functions including absolute loss for group fea-
ture selection, absolute loss for multi-task learning, and hinge loss for max-margin matrix
factorization.

5.5 Sparsity constraint on the dual variables

In this subsection, we examine empirically the proposed algorithm for optimizing the problem
in Eq. (19), in which a sparsity constraint is introduced for the dual variables. We test the
algorithm on three large data sets from the UCI repository, namely, a9a, rcv1(binary) and
covtye4. In the experiments we use �2

2 regularizer and fix λ = 1/n. First, we run the proposed
algorithm 100 seconds on the three data sets with different values of m = 100, 200, 400 and
plot the objective versus the number of iterations. The results are shown in Fig. 6, which
verify that the convergence is faster with smaller m, which is consistent with the convergence
bound O([D + m]/[√2nλ]) of the proposed algorithm for (19).

4 http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets.
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Fig. 5 Pdprox versus Primal-Dual method with excessive gap technique. The black bold dashed lines in all
Figures show the optimal objective value by running Pdprox with a large number of iterations so that the
duality gap is less than 10−4

Second, we demonstrate that the formulation in Eq. (19) with a sparsity constraint on the
dual variables is useful in the case when labels are contaminated with noise. To generate the
noise in labels, we randomly flip the labels with a probability 0.2. We run both the proposed
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Fig. 6 Comparison of convergence with varied m

Table 1 Running time (forth column) and classification accuracy (fifth column) of Pdprox for (19) and of
Liblinear on noisily labeled training data, where noise is added to labels by random flipping with a probability
0.2. We fix λ = 1/n or C = 1 in Liblinear

Data set (n, d)/ACC(%) Alg. Running time ACC(%)

a9a (32561, 123) Pdprox(m = 200) 0.82s(0.01) 83.44(0.1)

85.01 Liblinear 1.15s(0.57) 78.90(0.4)

rcv1 (20242, 47236) Pdprox(m = 200) 1.57s(0.23) 94.05(0.2)

96.54 Liblinear 3.30s(0.74) 93.66(0.2)

covtype (571012, 54) Pdprox(m = 4000) 48s(3.34) 73.58(0.01)

75.80 Liblinear 37s(0.64) 68.66(0.001)

In the second column, we report the number of training examples (n), the number of attributes (d), and also
the accuracy by training Liblinear on the original data and evaluating it on the testing data

algorithm for (19) and Liblinear5 on the training data with noise added to the labels. The
stopping criterion for the proposed algorithm is when duality gap is less than 10−3, and for
Liblinear is when the maximal dual violation is less than 10−3. The running time and accuracy
on testing data averaged over 5 random trials are reported in Table 1, which demonstrate that
in the presence of noise in labels, by adding a sparsity constraint on the dual variables,
we are able to obtain better performance than Liblinear trained on the noisily labeled data.
Furthermore the running time of Pdprox is comparable to, if not less than, that of Liblinear.

Finally, we note that choosing a small m in Eq. (19) is different from simply training a
classifier with a small number of examples. For instance, for rcv1, we have run the experi-
ment with 200 training examples, randomly selected from the entire data set. With the same
stopping criterion, the testing performance is 0.8131(±0.05), significantly lower than that
of optimizing (19) with m = 200.

5.6 Comparison: double-primal versus double-dual implementation

From the discussion in Sect. 4.6, we have seen that both Pdprox-primal and Pdprox-dual
algorithm can be implemented either by maintaining two dual variables, to which we refer
as double-dual implementation, or by maintaining two primal variables, to which we refer as
double-primal implementation. One implementation could be more efficient than the other
implementation, depending on the nature of applications. For example, in multi-task regres-
sion with �2 loss (Nie et al. 2010), if the number of examples is much larger than the number

5 http://www.csie.ntu.edu.tw/~cjlin/liblinear.

123

http://www.csie.ntu.edu.tw/~cjlin/liblinear


396 Mach Learn (2015) 98:369–406

1 20 40 60 80 100

0.4

0.5

0.6

0.7

0.8

0.9

1

time (*50s)

ob
je

ct
iv

e
implementations of pdprox−dual

double−primal
double−dual

(a)

0 50 100 150
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

iterations (*100)

ob
je

ct
iv

e

pdprox−dual vs pdprox−primal

pdprox−dual
pdprox−primal

(b)

Fig. 7 a Comparison of double-primal implementation versus double-dual implementation of Pdprox-dual,
and b comparison of Pdprox-dual versus Pdprox-primal both with double-dual implementation, on a subset
of webspam data using trigram features. a indicates that the two implementation methods may affect its
performance. b shows that the two algorithms have almost the same performance with the same implementation
framework

of attributes, i.e., n � d , and the number of tasks K is large, then the size of dual variable
α ∈ R

n×K is much larger than the size of primal variable W ∈ R
d×K . It would be expected

that the double-primal implementation is more efficient than the double-dual implementation.
In contrast, in matrix completion with absolute loss, if the number of observed entries |Ω|
which corresponds to the size of dual variable is much less than the total number of entries
n2 which corresponds to the size of primal variable, then the double-dual implementation
would be more efficient than the double-primal implementation.

In the following experiment, we restrict our demonstration to a binary classification prob-
lem that given a set of training examples (xi , yi ), i = 1, . . . , n, where xi ∈ R

d , one aims to
learn a prediction model w ∈ R

d . We choose web spam data set 6 as the testing bed, which
contains 350000 examples, and 16609143 trigrams extracted for each example. We use hinge
loss and �2

2 regularizer with λ = 1/n, where n is the number of experimented data.
We demonstrate that when d � n, the double-dual implementation is more efficient than

double-primal implementation. For the purpose of demonstration, we randomly sample from
the whole data a subset of n = 1,000 examples, which have a total of 8287348 features, and
we solve the sub-optimization problem over the subset. It is worth noting that such kind of
problem appears commonly in distributed computing on individual nodes when the number
of attributes is huge. The objective value versus running time of the two implementations
of Pdprox-dual are plotted in Fig. 7, which shows that double-dual implementation is more
efficient than double-primal implementation is this case. As a complement, we also plot the
objective of Pdprox-dual and Pdprox-primal both with double-dual implementation, which
shows that Pdprox-primal and Pdprox-dual performs similarly.

5.7 Comparison for solving �2
2 regularized SVM

In this subsection, we compare the proposed Pdprox method with Pegasos for solving �2
2

regularized SVM when λ = O(n−1/(1+ε), ε ∈ (0, 1]. We also compare Pdprox using one step
size and two step sizes, and compare them to the accelerated version proposed in Chambolle

6 http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html.
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Fig. 8 Comparison of convergence speed of Pdprox versus Pegasos on covtype data set. The best ratio between
the step size τ for updating w and the step size σ for updating α is 0.01. The curves of Pdprox-ac(τ, σ ) are
overlapped with that of Pdprox (τ, σ )

and Pock (2011) for strongly convex functions. We implement Pdprox-dual algorithm (by
double-dual implementation) in C++ using the same data structures as coded by Shai Shalev-
Shwartz 7.

Figure 8 shows the comparison of Pdprox versus Pegasos on covtype data set with three
different levels of λ = n−0.5, n−0.8, n−1. We compute the objective value of Pdprox after
each iteration and compute the objective value of Pegasos after one effective pass of all
data (i.e., n number of iterations where n is the total number of training examples). We also
compare the one step size scheme (Pdprox (γ )) with the two step sizes scheme (Pdprox (τ, σ ))
and the accelerated version (Pdprox-ac(τ, σ )) proposed in Chambolle and Pock (2011) for
strongly convex functions. The relative ratio between the step size τ for updating the primal
variable and the step size σ for updating the dual variable is selected among a set of values
{1000, 100, 10, 1, 0.1, 0.01, 0.001}.

The results demonstrate that (1) the two step sizes scheme with careful tuning of the relative
ratio yields better convergences than the one step size scheme; (2) Pegasos still remains a
state-of-the-art algorithm for solving the �2

2 regularized SVM; but when the problem is
relatively difficult, i.e., λ is relatively small (e.g., less than 1/n), the Pdprox algorithm with
the two step sizes may converge faster in terms of running time; (3) the accelerated version
for solving SVM is almost identical the basic version.

6 Conclusions

In this paper, we study non-smooth optimization in machine learning where both the loss
function and the regularizer are non-smooth. We develop an efficient gradient based method

7 http://www.cs.huji.ac.il/~shais/code/index.html.
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for a family of non-smooth optimization problems in which the dual form of the loss function
can be expressed as a bilinear function in primal and dual variables. We show that, assuming
the proximal step can be efficiently solved, the proposed algorithm achieves a convergence
rate of O(1/T ), faster than O(1/

√
T ) suffered by many other first order methods for non-

smooth optimization. In contrast to existing studies on non-smooth optimization, our work
enjoys more simplicity in implementation and analysis, and provides a unified methodology
for a diverse set of non-smooth optimization problems. Our empirical studies demonstrate
the efficiency of the proposed algorithm in comparison with the state-of-the-art first order
methods for solving many non-smooth machine learning problems, and the effectiveness
of the proposed algorithm for optimizing the problem with a sparse constraint on the dual
variables for tackling the noise in labels. In future, we plan to adapt the proposed algorithm
for stochastic updating and for distributed computing environments.

Appendix 1: derivation of constant c for (generalized) hinge loss

As mentioned before, it is easy to derive the constant c in Eqs. (6) and (7) for the non-smooth
loss functions listed before under the assumption that ‖x‖2 ≤ R. As an example, here we
derive the constant for hinge loss and generalized hinge loss. For other non-smooth loss
functions, we can derive the value of c in a similar way. For hinge loss, L(w,α) in (5) is
given by

L(w,α; X, y) = 1

n

n∑

i=1

αi (1 − yi w	xi ),

and its partial gradients are

Gα(w,α) = 1

n
1 − 1

n
(x1 y1, · · · , xn yn)	w,

Gw(w,α) = − 1

n
X(α ◦ y),

where 1 denotes a vector of all ones, and ◦ denotes the element-wise product. Then,

‖Gα(w1,α1) − Gα(w2,α2)‖2
2 = 1

n2

n∑

i=1

(
w	

1 xi yi − w	
2 xi yi

)2 ≤ R2

n
‖w1 − w2‖2

2,

‖Gw(w1,α1) − Gw(w2,α2)‖2
2 = 1

n2

∥∥∥∥∥

n∑

i=1

(
α1

i − α2
i

)
yi xi

∥∥∥∥∥

2

2

≤ R2

n

n∑

i=1

(
α1

i − α2
i

)2 = R2

n
‖α1 − α2‖2

2,

which implies c = R2/n. For the example of generalized hinge loss, L(w,α) in (5) is

L(w,α; X, y) = 1

n

n∑

i=1

α1
i

(
1 − ayi w	xi

)
+ α2

i (1 − yi w	xi ),
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where α = [α1,α2] ∈ Qα = {α : α ∈ [0, 1]n×2,α1 + α2 ≤ 1}, and its partial gradients are

Gα(w,α) = 1

n
[1, 1] − 1

n

[
a (x1 y1, · · · , xn yn)	 w, (x1 y1, · · · , xn yn)	 w

]
,

Gw(w,α) = − 1

n
X
(
a(α1 ◦ y) + α2 ◦ y

)
,

where 1 denotes a vector of all ones, and ◦ denotes the element-wise product. Then for any
w1, w2 and α1 = (α1,1,α2,1),α2 = (α1,2,α2,2) ∈ Qα , given ‖x‖2 ≤ R, we have

‖Gα(w1,α1) − Gα (w2,α2) ‖2
F = a2 + 1

n2

n∑

i=1

(
w	

1 xi yi − w	
2 xi yi

)2

≤ (a2 + 1)R2

n
‖w1−w2‖2

2,

‖Gw(w1,α1)−Gw(w2,α2)‖2
2 = 1

n2

∥∥∥∥∥

n∑

i=1

a
(
α

1,1
i −α

1,2
i

)
yi xi +

n∑

i=1

(
α

2,1
i −α

2,2
i

)
yi xi

∥∥∥∥∥

2

2

≤ 2a2 R2

n

n∑

i=1

(
α

1,1
i − α

1,2
i

)2 + 2R2

n

n∑

i=1

(
α

2,1
i − α

2,2
i

)2

≤ 2a2 R2

n
‖α1 − α2‖2

F ,

which implies c = (a2 + 1)R2/n in Eq. (6) and c = (2a2 R2)/n in Eq. (7). We can derive
the value of c in (6) and (7) similarly for other non-smooth loss functions.

Appendix 2: proof of lemma 1

Since

Gα(w,α; X, y) = a(X, y) + H(X, y)	w,

Gw(w,α; X, y) = b(X, y) + H(X, y)α.

Then

‖Gα(w1,α1; X, y) − Gα(w2,α2; X, y)‖2
2 ≤ ‖H(X, y)	(w1 − w2)‖2

2 ≤ c‖w1 − w2‖2
2,

‖Gw(w1,α1; X, y) − Gw(w2,α2; X, y)‖2
2 ≤ ‖H(X, y)(α1 − α2)‖2

2 ≤ c‖α1 − α2‖2
2,

where we use the assumption ‖H(X, y)‖2
2 = ‖H(X, y)	‖2

2 ≤ c.

Appendix 3: the differences between Algorithm 1 in Chambolle and Pock (2011) and
Pdprox-primal algorithm (Algorithm 2) and Pdprox-dual algorithm (Algorithm 3)

We make the following correspondences between our notations (appearing the R.H.S of the
following equalities) and the notations in Chambolle and Pock (2011) (appearing the L.H.S
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of the following equalities),

x = w, y = α, x̄ = u

G(w) = λR(w) + w	b + IQw (w)

F∗(α) = −α	a + IQα (α)

K = H	

α	 H	w + w	b + α	a + c0 = L(w,α)

δ = τ = γ

θ = 1

where we suppress the dependence of a, b, H, c0 on (X, y), and IQ(x) is an indicator function

IQ(x) =
{

0, if x ∈ Q
+∞, otherwise

The problem in Chambolle and Pock (2011) is to solve

min
w

max
α

O(w,α) = α	 H	w + G(w) − F∗(α)

and the updates in Chambolle and Pock (2011) are calculated by

αt = min
α

‖α − (αt−1 + γ H	ut−1)‖2
2

2γ
+ F∗(α)

wt = min
w

‖w − (wt−1 − γ Hαt ))‖2
2

2γ
+ G(w)

ut = wt + θ(wt − wt−1)

or equivalently

αt = min
α∈Qα

‖α − (αt−1 + γ (H	ut−1 + a))‖2
2

2γ

wt = min
w∈Qw

‖w − (wt−1 − γ (Hαt + b))‖2
2

2γ
+ λR(w)

ut = wt + θ(wt − wt−1)

Note that the partial gradients of L(w,α) are Gw(w,α) = Gw(α) = Hα+b and Gα(w,α) =
Gα(w) = H	w + a8, then we can write the above updates as

αt = min
α∈Qα

‖α − (αt−1 + γ Gα(ut−1))‖2
2

2

wt = min
w∈Qw

‖w − (wt−1 − γ Gw(αt ))‖2
2

2
+ γ λR(w)

ut = wt + θ(wt − wt−1)

8 We use Gw and Gα to denote partial gradients.
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However the updates of Pdprox-primal algorithm (Algorithm 2) in our paper are

wt = min
w∈Qw

‖w − (ut−1 − γ Gw(αt−1))‖2
2

2
+ γ λR(w)

αt = min
α∈Qα

‖α − (αt−1 + γ Gα(wt ))‖2
2

2

ut = wt + γ (Gw(αt−1) − Gw(αt ))

If we remove the extra primal variable ut , we have the following updates of Algorithm 1
in Chambolle and Pock (2011):

αt = min
α∈Qα

‖α − (αt−1 + γ Gα(2wt−1 − wt−2))‖2
2

2

wt = min
w∈Qw

‖w − (wt−1 − γ Gw(αt ))‖2
2

2
+ γ λR(w) (20)

and the following updates of the Pdprox-primal algorithm:

wt = min
w∈Qw

‖w − (wt−1 − γ Gw(2αt−1 − αt−2))‖2
2

2
+ γ λR(w)

αt = min
α∈Qα

‖α − (αt−1 + γ Gα(wt ))‖2
2

2
(21)

We can clearly see the difference between our updates and the updates of Algorithm 1
in Chambolle and Pock (2011), which lies in the order of updating on the primal variable
and the dual variable, and the gradients used in the updating as well. On the other hand, if we
remove the extra dual variable in Algorithm 3, the updates are the same to that of Algorithm
in Chambolle and Pock (2011), i.e.,

αt = min
α∈Qα

‖α − (αt−1 + γ (2Gα(wt−1) − Gα(wt−2))‖2
2

2

wt = min
w∈Qw

‖w − (wt−1 − γ Gw(αt ))‖2
2

2
+ γ λR(w) (22)

by noting that Gα(w) is linear in w. It is also worth noting that Pdprox-primal can be
implemented by maintaing one primal variable and two dual variables as in (20), and similarly
Pdprox-dual can be implemented by maintaing two primal variables and one dual variable as
in (21). Depending on the nature of applications, we can choose different implementations
for Pdprox-primal or Pdprox-dual to achieve better efficiency.

Appendix 4: proof of lemma 3

In order to prove Lemma 3, we first present the following lemma with its proof.

Lemma 8 Let Z be a convex compact set, and U ⊆ Z be convex and closed, z0 ∈ Z, and
γ > 0. Considering the following points with fixed η, ξ ,

zh = arg min
z∈U

1

2
‖z − (z0 − γ ξ)‖2

2,

z1 = arg min
z∈U

1

2
‖z − (z0 − γ η)‖2

2,
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then for any z ∈ U, we have

γ η	(zh − z) ≤ 1

2
‖z − z0‖2 − 1

2
‖z − z1‖2 + γ 2‖ξ − η‖2

2 − 1

2

[
‖zh − z0‖2

2 + ‖zh − z1‖2
2

]
.

Equipped with above lemma, it is straightforward to prove Lemma 3. We note that the two
updates in Lemma 2 are the same as the two updates in Lemma 8 if we make the following
correspondences:

U = Z = R
d × Qα, z =

(
w
α

)
∈ U,

z0 =
(

ut−1

β t−1

)
, zh =

(
wt

αt

)
, z1 =

(
ut

β t

)
,

ξ =
(

Gw(ut−1,αt ) + λvt

−Gα(ut−1,β t−1)

)
, η =

(
Gw(wt ,αt ) + λvt

−Gα(wt ,αt )

)
.

Then the inequality in Lemma 3 follows immediately the inequality in Lemma 8, which is
stated explicitly again:

γ

(
Gw(wt ,αt ) + λvt

−Gα(wt ,αt )

)	 (wt − w
αt − α

)
≤ 1

2

∥∥∥∥

(
w − ut−1

α − β t−1

)∥∥∥∥
2

2
− 1

2

∥∥∥∥

(
w − ut

α − β t

)∥∥∥∥
2

2

+ γ 2
∥∥Gα(wt ,αt ) − Gα(ut−1,β t−1)

∥∥2
2

− 1

2

⎡

⎢⎣‖wt − ut−1‖2
2 + ‖αt − β t−1‖2

2 + ‖wt − ut‖2
2 + ‖αt − β t‖2

2︸ ︷︷ ︸
≥0

⎤

⎥⎦ .

Lemma 8 is a special case of Lemma 3.1 Nemirovski (2005) for Euclidean norm. A proof
is provided here for completeness.

Proof (of Lemma 8) Since

zh = arg min
z∈U

1

2
‖z − (z0 − γ ξ)‖2

2,

z1 = arg min
z∈U

1

2
‖z − (z0 − γ η)‖2

2,

by the first order optimality condition, we have

(z − zh)	(γ ξ − z0 + zh) ≥ 0,∀z ∈ U, (23)

(z − z1)
	(γ η − z0 + z1) ≥ 0,∀z ∈ U. (24)

Applying (23) with z = z1 and (24) with z = zh , we get

γ (zh − z1)
	ξ ≤ (z0 − zh)	(zh − z1),

γ (z1 − zh)	η ≤ (z0 − z1)
	(z1 − zh).

Summing up the two inequalities, we have

γ (zh − z1)
	(ξ − η) ≤ (z1 − zh)	(zh − z1) = −‖z1 − zh‖2

2.

Then

γ ‖ξ − η‖2‖zh − z1‖2 ≥ −γ (zh − z1)
	(ξ − η) ≥ ‖z1 − zh‖2

2. (25)
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We continue the proof as follows:

1

2
‖z − z0‖2

2 − 1

2
‖z − z1‖2

2

= 1

2
‖z1‖2

2 − 1

2
‖z0‖2

2 − (z1 − z0)
	z0 + (z − z1)

	(z1 − z0)

= 1

2
‖z1‖2

2 − 1

2
‖z0‖2

2 − (z1 − z0)
	z0 + (z − z1)

	(γ η + z1 − z0) − (z − z1)
	γ η

≥ 1

2
‖z1‖2

2 − 1

2
‖z0‖2

2 − (z1 − z0)
	z0 − (z − z1)

	γ η

= 1

2
‖z1‖2

2 − 1

2
‖z0‖2

2 − (z1 − z0)
	z0 − (zh − z1)

	γ η

︸ ︷︷ ︸
ε

+(zh − z)	γ η,

where the inequality follows (24).

ε = 1

2
‖z1‖2

2 − 1

2
‖z0‖2

2 − (z1 − z0)
	z0 − (zh − z1)

	γ η

= 1

2
‖z1‖2

2 − 1

2
‖z0‖2

2 − (z1 − z0)
	z0 − (zh − z1)

	γ (η − ξ) − (zh − z1)
	γ ξ

= 1

2
‖z1‖2

2 − 1

2
‖z0‖2

2 − (z1 − z0)
	z0 − (zh − z1)

	γ (η − ξ)

+ (z1 − zh)	(γ ξ − z0 + zh) − (z1 − zh)	(zh − z0)

≥ 1

2
‖z1‖2

2 − 1

2
‖z0‖2

2 − (z1 − z0)
	z0 − (zh − z1)

	γ (η − ξ) − (z1 − zh)	(zh − z0)

= 1

2
‖z1‖2

2 − 1

2
‖z0‖2

2 − (zh − z0)
	z0 − (zh − z1)

	γ (η − ξ) − (z1 − zh)	zh

=
[

1

2
‖z1‖2

2 − 1

2
‖zh‖2

2 − (z1 − zh)	zh

]
+
[

1

2
‖zh‖2

2 − 1

2
‖z0‖2

2 − (zh − z0)
	z0

]

− (zh − z1)
	γ (η − ξ)

≥ 1

2
‖zh − z1‖2

2 + 1

2
‖zh − z0‖2

2 − γ ‖zh − z1‖2‖η − ξ‖2

≥ 1

2

{‖zh − z1‖2 + ‖zh − z0‖2}− γ 2‖η − ξ‖2
2,

where the first inequality follows (23), and the last inequality follows (25). Combining the
above results, we have

γ (zh − z)	η ≤ 1

2
‖z − z0‖2

2 − 1

2
‖z − z1‖2

2 + γ 2‖η − ξ‖2
2 − 1

2
{‖zh − z1‖2

2 + ‖zh − z0‖2
2}.
��

Appendix 5: proof of lemma 6

By introducing Lagrangian multiplier for constraint
∑

i αivi ≤ ρ, we have the following
min-max problem

max
η

min
α∈[0,1]n

1

2
‖α − α̂‖2 + η

(
∑

i

αivi − ρ

)
.
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The solution to α is αi = [̂αi − η∗vi ][0,1]. By KKT condition, the optimal η∗ is equal to 0 if∑
i [̂αi ][0,1]vi < ρ, otherwise we have

∑

i

[̂αi − η∗vi ][0,1]vi − ρ = 0.

Since the left side of above equation is a monotonically decreasing function in η∗, we can
compute η∗ by efficient bi-section search.

Appendix 6: proof of lemma 7

Using the convex conjugate V∗(η) of V (z), the composite mapping can be written as

min
w

1

2
‖w − ŵ‖2

2 + λ max
η

(η‖w‖ − V∗(η)) .

The problem is equivalent to maximize the following function on η,
(

min
w

1

2
‖w − ŵ‖2

2 + λη‖w‖
)

− λV∗(η).

Let w(η) denote the solution to the minimization problem. Then the optimal solution of η

satisfies

λ‖w(η)‖ − λV ′∗(η) = 0,

i.e.

‖w(η)‖ − V ′∗(η) = 0.

It is easy to show that ‖w(η)‖ is a non-increasing function in η. Similarly, since V∗(η) is a
convex function, its negative gradient −V ′∗(η) is a non-increasing function. Therefore, we
can compute the optimal η by bi-section search.
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