
Mach Learn (2014) 97:259–293
DOI 10.1007/s10994-013-5433-9

Detecting concept change in dynamic data streams
A sequential approach based on reservoir sampling

Russel Pears · Sripirakas Sakthithasan · Yun Sing Koh

Received: 8 February 2013 / Accepted: 24 December 2013 / Published online: 11 January 2014
© The Author(s) 2014

Abstract In this research we present a novel approach to the concept change detection
problem. Change detection is a fundamental issue with data stream mining as classification
models generated need to be updated when significant changes in the underlying data dis-
tribution occur. A number of change detection approaches have been proposed but they all
suffer from limitations with respect to one or more key performance factors such as high
computational complexity, poor sensitivity to gradual change, or the opposite problem of
high false positive rate. Our approach uses reservoir sampling to build a sequential change
detection model that offers statistically sound guarantees on false positive and false negative
rates but has much smaller computational complexity than the ADWIN concept drift detec-
tor. Extensive experimentation on a wide variety of datasets reveals that the scheme also has
a smaller false detection rate while maintaining a competitive true detection rate to ADWIN.

Keywords Concept drift detection · Data stream mining · Sequential hypothesis testing ·
Reservoir sampling

1 Introduction

Data stream mining has been the subject of extensive research over the last decade or so. The
well known CVFDT (Hulten et al. 2001) algorithm is a good example of an early algorithm

Editor: Joao Gama.

R. Pears · S. Sakthithasan
School of Computing and Mathematical Sciences, AUT University, Auckland, New Zealand

R. Pears
e-mail: rpears@aut.ac.nz

S. Sakthithasan
e-mail: ssakthit@aut.ac.nz

Y.S. Koh (B)
Department of Computer Science, University of Auckland, Auckland, New Zealand
e-mail: ykoh@cs.auckland.ac.nz

mailto:rpears@aut.ac.nz
mailto:ssakthit@aut.ac.nz
mailto:ykoh@cs.auckland.ac.nz

260 Mach Learn (2014) 97:259–293

that proposed an incremental approach to building and maintaining a decision tree in the
face of changes or concept drift that occur in a data stream environment. Since then there
has a multitude of refinements to CVFDT, CBDT (Hoeglinger and Pears 2007; Hoeglinger
et al. 2009) and to other methods (Widiputra et al. 2011) that perform other types of mining
such as a clustering and prediction on data streams. The fundamental issue with data stream
mining is to manage the sheer volume of data which grows continuously over time. A closely
connected problem is adaptation of models to changes that take place in the stream. In this
respect concept change detection is a crucial issue as it enables models to replace outdated
concepts with current concepts.

Concept change detection has been studied extensively by both the statistical and ma-
chine learning communities. The main incentive within the statistical community has been
in the manufacturing and process control applications, whereby changes in equipment due to
wear and tear over time can cause changes in the quality of products. The machine learning
community has a different interest: whether models induced from historical data perform
equally well on newly arriving data or whether performance has degraded due to changes in
the underlying data distribution. In a data stream environment, data arrives on a continuous
basis and concept drift causes changes in patterns, thus requiring models to be changed on
an ongoing basis and hence a need arises for the automation of the concept change detec-
tion process. The methods proposed for concept change detection all tend to suffer from
limitations with respect to one or more key performance factors such as high computational
complexity, poor sensitivity to gradual change or drift, or the opposite problem of high false
positive rate. In this research we propose a novel sequential approach to change detection.
We present two versions of our change detector, SeqDrift1 and SeqDrift2. The SeqDrift1
detector is fully documented in Sakthithasan et al. (2013). The work reported in this paper
is an extended version of the work reported in Sakthithasan et al. (2013) and uses a more
sensitive detection threshold with a reservoir sampling approach to managing data in the
detection window that renders the new version much more sensitive to detecting changes.

1.1 Research contributions

We make the following major contributions in this research:

1. We propose two change detectors, SeqDrift1 and SeqDrift2 that have significantly better
false positive rates than the Page Hinkley (Page 1954), EWMA (Ross et al. 2012) and
ADWIN (Bifet and Gavaldà 2007) change detectors while maintaining processing times
that are competitive with the Page Hinkley detector.

2. We make use of the Bernstein bound (Bernstein 1946) for detecting changes within the
change detection window. Although the Bernstein bound has been used before in AD-
WIN, we use a different formulation of the change detection problem to compute a de-
tection threshold for SeqDrift2 that gives it competitive detection delay times with the
Page Hinkley and ADWIN change detectors.

3. We study the effects of reservoir sampling on implementing the change detection win-
dow. We show empirically that the reservoir approach significantly improves detection
sensitivity for slowly varying data. Furthermore, instead of using a fixed size reservoir
we dynamically vary the size of the reservoir according to the rate of change in the data
stream.

4. We show that our change detectors have strict theoretical guarantees on false positive and
false negative rates.

5. We propose a new scheme for compensating for false positive error arising out of re-
peated hypothesis testing which we used instead of the overly conservative Bonferroni
correction.

Mach Learn (2014) 97:259–293 261

6. We conduct an enhanced empirical study that subjected the two SeqDrift detectors and
ADWIN to varying levels of noise and abrupt concept shifts in order to assess their
robustness with respect to the false positive rate.

1.2 Paper structure

The rest of the paper is as follows. Section 2 reviews the major research relating to concept
change detection. In Sect. 3 we give a formal definition for the change detection problem,
while in Sect. 4 we describe the core algorithms used in our change detectors. In Sect. 5
we present time, space and detection delay expectations for the change detectors that we
experimented with. Our empirical results are presented in Sect. 6 and we conclude in Sect. 7
with a summary of the research achievements and some thoughts on further work in the area
of concept change detection.

2 Related work

The concept change detection problem has a classic statistical interpretation: given a sample
of data, does this sample represent a single homogeneous distribution or is there some point
in the data (i.e the concept change point) at which the data distribution has undergone a
significant shift from a statistical point of view? All concept change detection approaches in
the literature formulate the problem from this viewpoint but the models and the algorithmics
used to solve this problem differ greatly in their detail.

Basseville and Nikiforov (1993) present extensive coverage of methods for detection
of abrupt changes. They categorized change detection into four classes of methods: Con-
trol Charts, Filtered Derivative Algorithms, CUSUM based methods and finally methods
based on Bayesian inference. All four classes of methods use sliding windowing schemes
to compute test statistics that are expressed in terms of a log likelihood ratio that computes
the probability of change. The first three classes of methods differ mainly in the choice of
threshold used for detection, with the Filtered Derivative and CUSUM approaches using
adaptive thresholds. In addition, the Bayesian approaches assume a certain a priori distribu-
tion which is used in conjunction with Bayes theorem to compute a posteriori probability
of change. The approach proposed in this research is similar in spirit to that of the Filtered
Derivative and CUSUM approaches in that it also uses an adaptive threshold for detection
but differs in the method used to compute the threshold.

Sebastiao and Gama (2009) present a concise survey on change detection methods. They
point out that methods used fall into four basic categories: Statistical Process Control (SPC),
Adaptive Windowing, Fixed Cumulative Windowing Schemes and finally other classic sta-
tistical change detection methods such as the Page Hinkley test (Page 1954), Martingale
frameworks (Ho 2005), kernel density methods (Aggarwal et al. 2003) and support vector
machines (Klinkenberg and Joachims 2000).

Gama et al. (2004) adapt SPC methods to the change detection and formulate an algo-
rithm in a data stream context. They use two thresholds for this purpose: when the clas-
sification error rate exceeds the lower of the two thresholds an alarm is activated and the
system stores a time stamp tw at which the alarm was generated. If the error rate in the sub-
sequent instances decreases then the warning is canceled, else if the error rate exceeds the
upper threshold value at time td then a change is declared. Gama’s method performs well
for abrupt changes but is poor at detecting gradual changes (Jose et al. 2006).

A subsequent approach, called Early Drift Detection Method or EDDM (Jose et al. 2006)
was formulated by Baena-Garcia et al. to address this problem. EDDM tracks the mean

262 Mach Learn (2014) 97:259–293

distance and mean standard deviation between errors. EDDM was shown to outperform
Gama’s SPC based method proposed in Gama et al. (2004) on certain datasets but did not
show significant improvement in detecting gradual changes on some of the other datasets.

Kifer et al. (2004) proposed an implementation of the fixed cumulative windowing
scheme. They used two sliding windows, a reference window which was used as a base-
line to detect changes and a current window to gather samples. The Kolmogorov Smirnoff
(KS) test statistic computed through the use of a KS Tree was used to determine whether the
samples arrived from the same distribution. The major issue is the high computational cost
of maintaining a balanced form of the KS tree.

Nishida and Yamauchi (2007) and Kuncheva (2013) also used the two window approach
for change detection. In Kuncheva (2013) a semi-parametric log-likelihood change detector
is proposed based on Kullback-Leibler statistics. The authors show that change detection
through K-L distance and Hotelling t2 test can be accommodated in a log likelihood frame-
work. Since the objective was not to propose an optimal detection threshold evaluation the
area under the curve was used in place of standard measures such as the true and false
positive rates, detection delay and processing time.

Bifet and Gavaldà (2007) proposed an adaptive windowing scheme called ADWIN that is
based on the use of the Hoeffding bound to detect concept change. The ADWIN algorithm
was shown to outperform the SPC approach and has the attractive property of providing
rigorous guarantees on false positive and false negative rates. The initial version, called
ADWIN0, maintains a window (W) of instances at a given time and compares the mean dif-
ference of any two sub windows (W0 of older instances and W1 of recent instances) from W .
If the mean difference is statistically significant, then ADWIN0 removes all instances of W0

considered to represent the old concept and only carries W1 forward to the next test.
However as mentioned in Bifet and Gavaldà (2009) ADWIN0 suffers from the use of

Hoeffding Bound which greatly over estimates the probability of large deviations for distri-
butions of small variance. As such, a much tighter Bernstein Bound was used in a follow up
method, titled ADWIN (Bifet and Gavaldà 2007). ADWIN0 also suffers from high computa-
tional cost due to (n − 1) hypothesis tests that need to be conducted in a window containing
n elements in W .

ADWIN was proposed which used a variation of exponential histograms and a memory
parameter to limit the number of hypothesis tests done on a given window. ADWIN was
shown to be superior to Gama’s method and fixed size window with flushing (Kifer et al.
2004) on almost all performance measures such as the false positive rate, false negative rate
and sensitivity to slow gradual changes (Bifet and Gavaldà 2007). Despite the improvements
made in ADWIN, some issues remain namely, the fact that multiple passes on data are
made in the current window and an improvement in the false positive rate for noisy data
environments.

Ross et al. (2012) propose a method for drift detection based on the use of exponentially
weighted moving average (EWMA) chart that uses Monte Carlo simulation to find a key
control limit parameter L that determines the extent of change in the mean before a con-
cept drift is flagged. Ross et al did not conduct a study on the false positive rate, and so
the difference between the actual false positive rate and the theoretical false positive rate
(as determined by the L parameter) is unclear. Apart from this, the other limitation is that
the method’s applicability is limited to a small set of alternative formulations for L in the
look-up table; a change will require the use of Monte Carlo simulation, thus increasing
computational overhead.

Recently a method was proposed in Sakthithasan et al. (2013) that uses a sequential
hypothesis testing strategy and avoids re-examining previous cuts unlike ADWIN, resulting

Mach Learn (2014) 97:259–293 263

in greatly improved processing times over the latter. This method (henceforth referred to as
SeqDrift1 in this paper) maintained a sliding window as its buffer mechanism to ensure that
its memory usage remained within reasonable bounds. The fact that it never re-examined
previous cut points enabling it to achieve a better false positive rate than ADWIN.

3 Problem definition

3.1 Change detection problem definition

Let S1 = (x1, x2, . . . , xm) and S2 = (xm+1, . . . , xn) with 0 < m < n represent two samples
of instances from a stream with population means μ1 and μ2 respectively. In practice the
underlying data distribution is unknown and a test statistic based on sample means needs
to be constructed by the change detector M. We can now define the problem formally as:
Accept a hypothesis H1 whenever Pr(|μ̂S1 − μ̂S2 | ≥ ε) > δ, where δ lies in the interval
(0,1) and is a parameter that controls the maximum allowable false positive rate, while ε

is a function of δ when test statistics based on the Hoeffding or Bernstein type bounds are
used to model the difference between the sample means.

The evaluation measures that we use are detection delay, false positive rate, false negative
rate, memory consumption and processing time. These measures taken together cover all
aspects of performance pertinent to change detection and hence have been widely used in
previous research.
Detection delay: Detection delay can be expressed as the distance between c and m, where
c is the instance at which the change occurred and m is the instance at which change is
detected.
False positive rate: The false positive rate is the probability of falsely rejecting the null
hypothesis for a given test.
False negative rate: The false negative rate is the probability of falsely accepting the null
hypothesis when it is in fact true.
Processing time: Processing time is the time taken by the change detector in performing
hypothesis testing to detect possible concept changes in the given stream segment.

4 The SeqDrift2 change detector

We now present SeqDrift2, our extended version of SeqDrift1 proposed by Sakthithasan
et al. (2013) that uses the same basic sequential hypothesis testing strategy but contains a
number of important enhancements, including the use of reservoir sampling for memory
management and the use of a much tighter bound for the ε cut threshold.

4.1 Memory management within SeqDrift2

Whilst memory management in SeqDrift1 is efficient, the integrity of the sampling process
may be compromised by sliding out data instances older than the chosen window size w.
At any given time point in the progression of the stream all instances that have arrived since
the last cut point should have an equal chance of being sampled. This is not the case with
SeqDrift1 as older instances are not available, resulting in a possible loss of sensitivity in
detection of concepts that change very gradually. With slowly varying data, older instances
should be preserved as much as possible in the left repository L so as to provide the best

264 Mach Learn (2014) 97:259–293

possible contrast with newer instances that arrive in the right repository. The higher the
contrast in the means, the greater is the chance of detecting change.

In SeqDrift2 we adopt an adaptive sampling strategy based on reservoir sampling. The
reservoir sampling algorithm was proposed by Vitter (1985) and is an elegant one pass
method of obtaining a random sample of a given size from a data pool whose size is not
known in advance. Thus, this algorithm is ideally suited to a data stream environment.

In reservoir sampling a data repository of a certain size is first filled with instances that
arrive in the stream. Thereafter each subsequent instance will replace a randomly chosen
existing instance in the repository with a probability that diminishes with each new instance
that arrives. Over a period of time the repository will consist of a mix of older and newer in-
stances, with the exact mix being determined by the length of the stream segment measured
from the last cut point. Unlike with the sliding window approach adopted in SeqDrift1 there
is a non-zero probability of an instance surviving that arrived more than s instances prior
to the current instance. Thus we implement the left repository L as a reservoir and use the
reservoir sampling algorithm for its maintenance. The right repository R, as in SeqDrift1
remains as a temporary staging area to store the newly arrived block in the stream. In ad-
dition to improving sensitivity, another advantage of the reservoir sampling approach is the
computational efficiency in maintaining and sampling it against the complexity of maintain-
ing and accessing exponential histograms and this was the main reason why we adopted this
strategy of implementing the data repositories.

We next briefly review the use of the Bernstein bound in hypothesis testing before de-
scribe our strategy for determining the cut point.

4.2 Use of Bernstein Bound

Our approach relies on the well established Bernstein Bound for the difference between
population and sample means. A number of bounds exist that do not assume a particular
data distribution. Among them are the Hoeffding inequality, Chebyshev inequality, Chernoff
inequality Gama (2010), Bernstein inequality Bernstein (1946). The Hoeffding inequality
states that

Pr

(∣∣∣∣∣ 1

n

n∑
i=1

Xi − E[X]
∣∣∣∣∣ > ε

)
≤ 2 exp

(−2nε2
)

(1)

where X1, . . . ,Xn are independent random variables, E[X] is the expected value or popula-
tion mean.

The Bernstein inequality takes into account the variance and is defined as:

Pr

(∣∣∣∣∣ 1

n

n∑
i=1

Xi − E[X]
∣∣∣∣∣ > ε

)
≤ 2 exp

(−nε2

2σ 2 + 2
3ε(c − a)

)
(2)

where Xi ∈ [a, c] ∀i and σ 2 is the population variance. In the classification context,Xi ∈
[0,1] and thus a = 0, c = 1. Also, since Xi ∈ [0,1] the maximum value that the population
variance can take is 1

4 . From Eqs. (1) and (2), when σ 2 ≤ 1
4 − ε

3 is satisfied, the Bernstein
Bound is guaranteed to be tighter than the Hoeffding Bound. Therefore, for distributions of
low variance it is highly likely that the Hoeffding Bound overestimates the probability of
large deviations, given that ε is small, as mentioned in Bifet and Gavaldà (2007).

In our preliminary experimentation we contrasted the performance of the Hoeffding and
Bernstein bounds and found that the latter produced much smaller detection delays than

Mach Learn (2014) 97:259–293 265

with the Hoeffding bound, thus influencing our decision to use the Bernstein bound, just as
is done with ADWIN.

However, the use of the Bernstein bound in its pure form requires knowledge of the pop-
ulation variance which in general is unknown in a real world data stream environment. An
empirical form of the Bernstein inequality has however being used in a number of recent
studies in a machine learning context including Shivaswamy and Jebara (2010), Audib-
ert et al. (2007), Mnih et al. (2008), Maurer and Pontil (2009). In all of these studies the
Bernstein bound was expressed in terms of the observable sample variance rather than the
population variance. The empirical Bernstein inequality expressed in probabilistic form is
given by Shivaswamy and Jebara (2010):

Pr

(∣∣∣∣∣ 1

n

n∑
i=1

Xi − E[X]
∣∣∣∣∣ > ε

)
≤ 2 exp

(−nε2

2σ 2 + 7
3ε

)
(3)

Comparing expressions (3) and (2) we see that a penalty factor of 7
2 has been introduced

into the bound to compensate for the use of the sample variance. However, this penalty is in
practice extremely conservative since it was designed to be applicable for small sized data
segments. In the two concept change detectors that we propose in this research the minimum
data segment size that the variance is sampled from is 200 (this is the block size b, and there-
fore the minimum size of the reservoir). With these segment sizes the normality distribution
assumption holds well and hence a (1 − δ) confidence interval for the population variance

is given by: ((n−1)σs
2

χ2
δ
2

(n−1)
, (n−1)σs

2

χ2
1− δ

2
(n−1)

), where σs
2 is the sample variance, n is the segment size,

with χ2
δ
2
(n − 1) and χ2

1− δ
2
(n − 1) being the critical values of the chi-squared distribution

at significance levels δ
2 and 1 − δ

2 respectively. With δ = 0.1 and n = 200 the ratio between
the two limits of the interval is 1.39, giving an expected deviation from the median of 0.19.
With n = 400 the ratio is 1.26; with n = 560 it is 1.20 and with n = 800 it converges to 1.0.
Given that both our change detectors use a minimum segment size of 200, the population
variance can be approximated very well with the sample variance. The alternative would
be to use the empirical formulation of the bound but as can be seen from the confidence
interval limits this option would have been far too conservative and would have resulted in
an unnecessary lengthening of the detection delay.

4.3 Cut point thresholds for SeqDrift1 and SeqDrift2

We first define some terminology. Let μ̂l , μ̂r represent the sample means on the left and
right repositories.

Theorem 1 (False Positive Guarantee for SeqDrift1) When Pr[|μ̂l − μ̂r | ≥ ε] < δ with ε =
2

3b
{p + √

p2 + 18σ 2
s bp} where p = ln(4

δ
) the probability that SeqDrift1 makes a false cut is

at most δ.

Theorem 1 establishes that when no difference in the true means exist in the popula-
tions between the left and right sub-window, then SeqDrift1 will signal a difference with
probability at most δ, thus giving a false positive rate of at most δ.

Proof See Sakthithasan et al. (2013) for details of the proof. �

266 Mach Learn (2014) 97:259–293

Theorem 2 (False Positive Guarantee for SeqDrift2) When Pr[|μ̂l − μ̂r | ≥ ε] < δ with ε =
1

3(1−k)nr
(p + √

p2 + 18σ 2
s nrp) the probability that SeqDrift2 makes a false cut is at most

δ, where p = ln(4
δ
), k = nr

nl+nr
and nl , nr are the sizes of the left and right repositories

respectively.

Proof In the computation of the ε cut point threshold for SeqDrift1 we fixed the value of k

that weighs the relative contributions of the means from the left and right repositories to be
1
2 Sakthithasan et al. (2013). However, this value of k may not be optimal and in SeqDrift2
we present an alternative method for computing the value of k.

Applying the union bound on expression (2), we derive the following for every real num-
ber k ∈ (0,1):

Pr
[|μ̂l − μ̂r | ≥ ε

] ≤ Pr
[|μ̂l − μ| ≥ kε

] + Pr
[|μ − μ̂r | ≥ (1 − k)ε

]
(4)

Applying the Bernstein inequality on the R.H.S of expression (4), we get:

Pr
[|μ̂l − μ̂r | ≥ ε

] ≤ 2 exp

(−nlk
2ε2

2σ 2
l + 2

3 kε

)
+ 2 exp

(−nr(1 − k)2ε2

2σ 2
r + 2

3 (1 − k)ε

)
= δ′ (5)

where δ′ represents the empirical false positive rate based on an ε threshold computed;σ 2
l ,

σ 2
r represent population variances across the left and right repositories respectively. �

The optimization of the false positive rate involves finding an ε value that is larger than
the difference in means between any two randomly selected data segments from a stable
stream where no concept change occurs. From Eq. (5) we note that k, σ 2

l and σ 2
r contribute

to the value of ε for a given δ′. We also note that the contribution made by the two variance
terms is proportionately less in low variance environments, thus requiring an increase in the
relative proportion contributed by k in such environments. At the same time, in low variance
environments an underestimation in the value of ε will increase the risk, δ′, of false positives
occurring. In the limit, as variance approaches zero, the risk δ′ becomes higher unless k is
appropriately set to offset the loss in contribution from σ 2

s to the ε value. This suggests that
the determination of both k and ε should be driven by low variance environments. In the
limit as σ 2

l and σ 2
r approach zero in expression (5) we have:

δ′ = 2 exp

(−3nlεk

2

)
+ 2 exp

(−3nrε(1 − k)

2

)
(6)

Equation (6) represents an equation with two variables k and ε. Our goal is to find functions
for k and ε that optimizes δ′ for a given window configuration having sizes nl and nr . To do
this we take the partial derivatives of δ′ with respect to k and ε and set each of them to zero,
giving:

∂δ′

∂ε
= 2

(
−3nlk

2

)
exp

(−3nlεk

2

)
+ 2

(
−3nr(1 − k)

2

)
exp

(−3nrε(1 − k)

2

)
= 0 (7)

∂δ′

∂k
= 2

(
−3nlε

2

)
exp

(−3nlεk

2

)
+ 2(−1)

(
−3nrε

2

)
exp

(−3nrε(1 − k)

2

)
= 0 (8)

Equations (7) and (8) yields, k = nr

nr+nl
. In other words, k is determined by equating the two

exponent terms in expression (4). We note that this solution for k is a generalization of k = 1
2

used for SeqDrift1.

Mach Learn (2014) 97:259–293 267

Fig. 1 Minimization of the sum
of two negative exponents

An alternative way of formulating the optimization problem is to visualize a function
consisting of the sum of two exponent terms in three dimensional space. The graphic in
Fig. 1 shows clearly that the sum of two negative exponent terms, exp(−X) + exp(−Y) is
minimized when (X,Y) lie on the line segment X = Y , as shown by the highlighted line in
the Fig. 1. This provides geometrical support for the algebraic derivation of k and ε done
through expressions (4–8).

However, it should be pointed out that both formulations of the optimization problem for
determining k is based on asymptotic behavior and hence the value of k determined is an
approximate one.

Using the expression for k derived above and equating the two terms in expression (5)
yields:

nlσ
2
l = nrσ

2
r (9)

We are now in a position to formulate an expression for ε as k is determined. Equating δ′

in expression (5) to the user-assigned δ and setting the two exponent terms to be of equal
value, we have:

δ = 4 exp

(−nr(1 − k)2ε2

2σ 2
r + 2

3 (1 − k)ε

)
= 4 exp

(−nr(1 − k)2ε2

2
nlσ

2
l

nr
+ 2

3 (1 − k)ε

)
(10)

We could have equated δ to the left exponential term in (5) instead of the right to obtain
ε, but as the terms asymptotically approach each other in a low variance environment, an
equivalent expression will result which yields approximately the same numerical value.

Solving (10) above for ε and the use of expression (9) yields:

ε = 1

3(1 − k)nr

(
p +

√
p2 + 18

nlσ
2
l

nr

nrp

)
(11)

where p = ln 4
δ

and k = nr

nr+nl
.

We note that in the expression above involves the population variance σ 2
l across the reser-

voir. As noted earlier in Sect. 4.2 with the segment sizes used for the reservoir the sample
variance provides a good approximation for population variance even for the worst-case
scenario where the reservoir size is 200, while improving progressively with reservoir size.
Thus, henceforth in the paper we will use the sample variance σ 2

sl as a good approximation

268 Mach Learn (2014) 97:259–293

of the population variance σ 2
l . For simplicity of notation we will use σ 2

s in place of
nlσ

2
sl

nr
,

thus giving:

ε = 1

3(1 − k)nr

(
p +

√
p2 + 18σ 2

s nrp
)

(12)

Comparing (12) with the corresponding ε cut value for SeqDrift1 defined in Theorem 1, we
make the following observations:

– The ε cut threshold for SeqDrift2 is more flexible and accommodates a greater range of
values for k other than the single value 1

2 , which SeqDrift1 always uses.
– The ε cut threshold for SeqDrift2 is tighter than its SeqDrift counterpart, and thus can

be expected to yield better delay times for SeqDrift2. In SeqDrift2 the right repository
size is set to the block size b, so essentially the difference amounts to the factor 1

3(1−k)
in

SeqDrift2 replacing the factor 2
3 in SeqDrift1. Thus for all values of k < 0.5, SeqDrift2

would yield a tighter ε threshold value.

Theorem 3 (False Negative Guarantee for SeqDrift2) With ε defined as in Theorem 2, and
|μl − μr | > 2ε, then the probability of occurrence of a false negative with SeqDrift2 is < δ.

Proof See Appendix 1. �

4.4 Optimizing SeqDrift2 detection delay

The determination of the ε cut threshold so far has been completely determined by the
false positive rate, with no consideration given to sensitivity. We now formulate a method
whereby sensitivity is explicitly taken into account by reducing ε as long as the estimated
false positive rate remains well below the user defined permissible rate of δ.

An equally important objective of the optimization procedure is to automatically deter-
mine the size of the reservoir (left repository) to be used as concept changes occur in the
stream. In the SeqDrift detectors change point detection is activated at intervals of the block
size. Thus, if detection delay was the only consideration then block size should be set as
small as possible. If the right repository was a multiple m (>1) of the block size, then the
minimum possible detection delay would be mb, as cut point determination is only done
when a new block arrives. Thus the only choice left to minimize detection delay would be
to either make b as small as possible or m as small as possible. We opt for the latter choice
as making b too small would increase the risk that the sample mean taken from the right
repository will have higher deviations from the true population mean, especially when the
natural variance in the data is relatively high. We thus opt for m = 1, thus effectively making
the size of the right repository equal to the block size. In terms of an adequate size for b,
we opt for a value of 200. We could equally have used a smaller value such as 100, but our
experimentation showed that a slightly better false positive rate could be achieved with a
size of 200.

Having set the block and right repository sizes, the left repository size then becomes an
important parameter that affects both the false positive rate and the detection delay time.
The probability that a randomly chosen instance in the left repository being replaced by a
new instance arriving in the stream is inversely proportional to its size Vitter (1985). Thus
the smaller the size of the left repository the smaller is the capacity of the left repository to
keep an accurate record of its past; put simply its memory of the past is limited. Thus it is
clear that the size of the left repository is crucial to improving sensitivity. This suggests that

Mach Learn (2014) 97:259–293 269

an optimization procedure for reservoir sizing that takes into account the various trade-offs
between false positive rate, detection delay and memory overheads is needed. Our deter-
mination of the ε cut threshold has ensured that the false positive rate is minimized. We
now need to ensure that sensitivity is increased by increasing the size of the reservoir while
ensuring that the false positive rate does not increase above the user-defined δ threshold.

A logical starting point for the optimization procedure is to begin the process with equal
sized repositories (effectively making k = 0.5) and to progressively reduce k (and thus in-
crease nl) until the false positive rate is smaller than δ. In a real world environment, espe-
cially in a high speed data stream environment concept changes cannot be signaled exter-
nally and thus an estimate of the false positive rate is needed. This estimate is a function of
the current k value, the variance in the stream and ε.

4.4.1 Convergence of Algorithm 1

We now describe Algorithm 1 and examine its speed of convergence. The procedure runs
for each new data block and finds the optimal value of k subject to the constraint expressed
by (12). In order to ensure that memory usage remains within reasonable bounds a maximum
size Nlmax is set for the reservoir according to the system memory available, just as is done
in ADWIN. Starting with an initial configuration of nl = nr = b a value for ε is calculated
using Eq. (10) with k = 0.5 and the sample variance (line 4). The value of k is then reduced
by a factor of 3

4 and the ε value is updated (line 6). Whenever the constraint expressed
by (13) is not violated, k is decreased further and ε is updated as in the previous iteration.
When the constraint expressed by (13) is violated, the value of k is reset by undoing the
latest update to k and a function AdjustForDataRate(k, μ̂l, μ̂r) is called that further adjusts
k according to the data rate.

The rationale behind Algorithm 1 is that SeqDrift2’s sensitivity can be enhanced by de-
creasing the value of its cut point threshold ε as long as the estimated false positive rate
δ′ does not exceed the maximum user defined permissible rate δ. This is accomplished by
progressively decreasing the value of k until the constraint δ′ < δ is violated. As the starting
value of k is 0.5, the initial value of δ′ is much smaller than δ. However, with each iteration
δ′ will increase with each decrease in the value of k and will approach the value of δ. In
practice convergence based on the violation of δ′ < δ can be quite slow and so to increase
the speed of convergence we use the condition:

δ′
i−1 − δ′

i

δ′
i−1

< t (13)

instead, where t is a tolerance value, set to a small value such as 0.0001. Convergence
governed by (13) ensures that the risk estimate has stabilized at the convergence point and
while it may be possible for the δ′ value to increase by small amounts beyond the conver-
gence point, the gains in sensitivity gained by further iterations are marginal and outweighed
by the increased execution overhead. Lemma 1 establishes that (13) can be replaced by the
constraint (14) which can be enforced more conveniently.

εi−1 − εi

εi−1
< t (14)

We now state Lemma 1 and then use it to examine Algorithm 1’s convergence properties.

Lemma 1 Whenever εi−1−εi

εi−1
< t , then

δ′
i
−δ′

i−1
δ′
i−1

< t where i is the iteration number.

270 Mach Learn (2014) 97:259–293

Input: Block Size b, μ̂l , μ̂r, δ, σs, Nlmax , t
Output: optimized value for εopt

1 // μ̂l , μ̂r, represent the sample means across the reservoir and right
repository respectively, δ is the user-defined maximum false positive rate, σs is
the sample variance within the reservoir and Nlmax is the maximum permissible
memory size of the reservoir;

2 nl = b,nr = b, k1 = 0.5 // calculate ε using Eq. (12);
3 i = 2;

4 εi−1 = 1
3(1−ki−1)nr

(ln(4
δ
) +

√
p2 + 18σ2

s nr ln(4
δ
));

5 ki = 3
4 ki−1 //decrement k in small steps;

6 εi = 1
3(1−ki)nr

(ln(4
δ
) +

√
p2 + 18σ2

s nr ln(4
δ
));

7 if
εi−1−εi

εi−1
< t then

8 i = i + 1;
9 go to Step 4;

10 end
11 else
12 ki = 4

3 ki−1 //reset k as it decreased beyond the optimal value ;
13 k = AdjustForDataRate(ki , μ̂l , μ̂r) //Now adjust k according to the rate of change

in data ;

14 εopt = 1
3(1−k)nr

(ln(4
δ
) +

√
ln(4

δ
)
2 + 18σ2

s nr ln(4
δ
));

15 end
16 nl = nr ∗ 1−k

k
//Set the left reservoir size according to new k value;

17 if nl > Nlmax then
18 nl = Nlmax;
19 end
20 return εOpt;

Algorithm 1: GetOptimalEpsilon()

Input: kcurr,μ̂l, μ̂r
Output: Optimal value of k

1 rate = (|μ̂l − μ̂r |) //Determine the current rate of change;
2 k = kcurr + (−rate4 + 1) ∗ kcurr //Calculate the optimal k value based on rate of
change;

3 return k;
Algorithm 2: AdjustForDataRate()

Proof See Appendix 2. �

Theorem 4 Algorithm 1’s convergence is O(log(log(1
δ
))) and O(log(σ 2

s)).

Proof See Appendix 3. �

The optimization provided by Algorithm 1 in reducing k does not explicitly take into
account changes in the classifier error rate The value of k determined by Algorithm 1 can-
not be further decreased as this would entail a higher risk of false positives. On the other
hand, fine tuning, involving small increases to the k value can be made to improve the false
positive rate in accordance with the error rate trajectory. Smaller gradients of change require
higher increases to the k value in order to minimize the false positive rate—in the limit
when the gradient is 0, then k should receive its highest boost. By the same token higher
gradients require smaller increases to the k value as sensitivity is less of a concern in such
cases. In the limit when the gradient is 1, no increase in k value is needed from the false
positive perspective as concept change is occurring, and hence there is no need to increase
k to counter false positives. At the same time, from the sensitivity point of view detection
times will be lesser for steeper gradients of change. With the above principles and boundary
conditions established we propose the concave function defined in (13) to increment k and

Mach Learn (2014) 97:259–293 271

Fig. 2 Fine adjustment to k

based on the data rate using the
concave function

make it sensitive to the error trajectory.

Δk = (−rate4 + 1
)

(15)

where rate refers to the difference in sample means between the right and left repositories.
It can be seen that the function defined in (15) satisfies the necessary boundary conditions

that we have established. In reality, any algebraic function that decreases with increasing rate
will suffice, but we deliberately chose a concave function in preference to a linear function.
The concavity in the function introduces a bias towards false positive minimization vis-a-vis
detection delay minimization. When the rate increases from zero, a concave function will
always provide a higher boost to the k value than a linear function as shown in the graphic
in Fig. 2. Thus a linear function will introduce the opposite bias: i.e. towards detection delay
minimization as opposed to minimization of the false positive rate.

Having decided on a concave function to implement our policy of biasing the detection
process in favor of false positives, the exact composition of the function is relatively unim-
portant as long as concavity is preserved. In principle, the function in (15) can be replaced
by any other concave function that has the same shape and satisfies the boundary conditions
but will lead to very similar results.

4.4.2 Motivating example

The above mechanism has the effect of making the ε detection threshold sensitive to the
changes in the stream data rate. Consider a virus checker application running on a Web
server that processes tens of thousands of instances arriving per second. The virus checker
is implemented through a classifier that learns a set of signatures that indicates the presence
of viruses. The virus checker classifies each incoming instance (file request) as a threat
(class 1, indicating the presence of a virus) or as a non threat (class 0, no virus). The classifier
receives periodic updates of class labels from the virus checker vendor and users. In general
these periodic updates will be available at the vendor site with varying frequency, but it
is reasonable to assume that they will be distributed to client sites in average frequency
intervals of the order of minutes rather than seconds. In between updates from the central
server the classifier will use its current signature database to classify new instances that
arrive. In this type of application the two priorities are processing speed and minimization
of false positives. Processing speed is critical as the virus checker’s speed of classification
needs to match with the rate of arrival of instances. If it is below, load shedding will be forced
on the server, thus increasing the risk of infection. At the same time the false positive rate
needs to be as small as possible in order to reduce system overheads. Each instance wrongly

272 Mach Learn (2014) 97:259–293

Fig. 3 Fine adjustment to k with
variation of data rate based on a
concave function

tagged as a virus will require the generation of an alert to the user who made the file request
to desist from downloading the file concerned, thus not only generating additional system
overhead but also potentially denying the user access to a legitimate file.

In this application concept change signifies that a new strain of viruses have been intro-
duced into the stream. The longer the detection delay, the longer the time taken by the virus
checker in discovering a new strain of virus. In this type of application detection delay will
be determined primarily by the frequency of updates that arrive from the central site, which
as discussed earlier can be expected to be in the order of minutes. We have thus established
for this type of application (and there are many others like it, such as Spam detection, de-
tecting changes in behavioral patterns in social media applications, etc.) that maximization
of throughput is essential, Likewise, minimization of the false positive rate is also a priority
in such types of applications in order to minimize system overheads as well as to avoid un-
necessarily burdening users with false alerts. Apart from the above mentioned applications
the field of radio astronomy has opened up a vast opportunity for knowledge discovery on
distant galaxies through the use of data mining. Radio Astronomy data represents an ultra
high speed data stream, is highly noisy, has slow rate of concept change and has potentially
high false positive rate (Das et al. 2009; Borne 2007).

We now use the virus checker application to illustrate the need for varying the detection
threshold in order to minimize the false positive rate. Figure 3 illustrates the error rate vs time
along with the optimized cut point threshold value ε. Suppose that the AdjustForDataRate()
method increases ε to 0.07 to protect against false positives in (R,S]. Similarly, due to the
stability of the error rate, with a mean value of approximately 0.03 in (S,T], (except for
the short lived spike at U), AdjustForDataRate() increases ε to 0.08. No concept change
is triggered at U unlike at point S which also had an error rate of 0.08 due to the higher
setting of the detection threshold by AdjustForDataRate(), which will only trigger changes
at 0.11 or above. Thus coupling the detection threshold to data rate has enabled the change
detector to avoid false positives in the segment (S,T]. This example also illustrates that the
necessity of different probabilities of detection for the same magnitude of error rate change
that is registered over different segments of the data stream.

While it could be argued that an increase in variance in sub segments of (S,T] would by
itself contribute to an increase in value of the detection threshold, in fact this will not happen
as the data in segment (S,T] as a whole is stable, and hence an external mechanism such as
AdjustForDataRate() is needed.

4.5 Driver routines for SeqDrift2

Algorithms 3, 4 and 5 show the pseudo code for the driver routines for the SeqDrift2 change
detector. Algorithm 4 is the main driver routine that starts off by inserting a new instance
into R, incrementally maintaining its (R) mean, and computing the sample variance, taken
across all instances in L and R (lines 2 to 4). At a block boundary it calls Algorithm 1

Mach Learn (2014) 97:259–293 273

Input: μ̂l,μ̂r,εDrif t

Output: Drif t || Internal || Homogeneous
1 if εDrif t ≤ |μ̂l − μ̂r | then
2 if μ̂r > μ̂l then
3 return Drif t;
4 end
5 return Internal;
6 end
7 return Homogenous;

Algorithm 3: GetDriftType()

Input: An instance (Ins), BlockSize b, Left Repository Rl, Right Repository Rr
Output: Drift / NoDrift

1 Increment the instance counter;
2 Insert Ins into R;
3 Update the mean μ̂r of R;
4 if At the block boundary then
5 εDrif t = GetOptimalEpsilon(b, μ̂l, μ̂r, δ, σ2

s , Nlmax);
6 μ̂l = Get the mean of L;
7 ChangeType = GetDriftType(μ̂l, μ̂r,εDrif t);
8 if (ChangeType is Drif t or Internal) then
9 Remove all elements from L;

10 Copy the elements from R to L;
11 Remove all elements from R;
12 if (DriftType is Drif t) then
13 return Drif t;
14 end
15 return NoDrif t;
16 end
17 UpdateUsingReservoirSampling(R,L);
18 return NoDrif t;
19 end

Algorithm 4: SeqDrift2: IsDrift()

Input: R, L
Output: void

1 CurrentSize = Get the current size of the reservoir L;
2 MaxSize = Get the maximum size of the reservoir L;
3 for Each instance Ins of R do
4 Increment the TotalInstancesSeen of L;
5 if CurrentSize is less than MaxSize then
6 Add the element to L;
7 Increment the CurrentSize of L;
8 end
9 else

10 RandomIndex = Generate a random index in 0 and TotalInstancesSeen;
11 if RandomIndex is less than MaxSize then
12 Replace the instance of L at RandomIndex by Ins //(With probability

MaxSize
T otalInstancesSeen

)
13 end
14 end
15 Remove Ins from R ;
16 update the mean μ̂l and variance σ2

s
17 end

Algorithm 5: UpdateUsingReservoirSampling()

(line 6) to optimize the values of k and ε. Having obtained the optimal ε and optimal L

value it obtains the mean across L (line 7) and then calls Algorithm 3 to determine if concept
change has occurred. Algorithm 3 performs hypothesis testing (lines 1 to 5) and returns
the drift (change) type, as appropriate. Three possible states exist: homogeneous, when no
concept change has occurred,drift when change has occurred, and finally internal when the
ε threshold is triggered but the error rate of the classifier (i.e. when μ̂r ≤ μ̂l) decreases.

If the change type returned by Algorithm 3 is of type drift or internal, then Algorithm 4
flushes L, copies R into L and then flushes R (lines 10–12). If no change has occurred

274 Mach Learn (2014) 97:259–293

then it calls Algorithm 5 to perform an update on L using the reservoir sampling algorithm
(line 18).

4.6 Time complexity for SeqDrift2

We show that the time complexity of SeqDrift2 is O(1) with respect to a stream instance.
We break down SeqDrift2’s detection strategy into 3 major steps and analyze the time com-
plexity involved in each step.

1. As each new instance is received it is buffered in the right repository and an incremental
update is made to the sample mean in the right repository. Overall, the time complexity
of this step is O(1).

2. When b instances are received (where b is the block size), Algorithms 1 and 2 are exe-
cuted to optimize the value of k. As Algorithms 1 and 2 only require already calculated
summary measures such as means and variance, no iteration over already read instances
is required, so time complexity remains at O(1).

3. The final step involves hypothesis testing and updating the reservoir with instances from
the right repository. The time complexity for the hypothesis testing operation is O(1) as
no iteration through past instances is required. If the null hypothesis H0 holds true that
no significant difference in means exist between the left and right repositories then the
instances buffered in the right repository update the reservoir in the left repository. This
update requires a single further pass through the instances in the right repository as it
involves computing a random number in the range [1..nl + 1] (line 10 in Algorithm 5),
and then determining whether an instance in the reservoir needs to be replaced (line 11).

Thus the first two steps have time complexity O(1), while the third step is also O(1) but
requires a further scan through the right repository, thus making SeqDrift2 a two pass al-
gorithm with respect to its internal buffer. The internal buffer is much more compact than
the raw data as in a classification context the buffer consists of a bit stream as each data
instance once classified will end up as a 0 for a correct classification or 1 in the case of a
miss-classification. Also, in common with SeqDrift1, it is one-pass with respect to cut point
examination, as it never reexamines previous cut points. We now state the following theorem
to establish a theoretical guarantee on the false negative rate for the SeqDrift2 detector.

4.7 Compensating for repeated hypothesis testing in SeqDrift1 and SeqDrift2

The two SeqDrift methods presented both feature repeated hypothesis testing, in common
with ADWIN and other concept change methods proposed in the literature. Repeated hy-
pothesis testing carries with it the risk of increased type 1 errors, which in the concept
change context is the increased risk of rejecting the null hypothesis H0 (that the means
across the two data repositories are equal) when it is in fact true. The commonly adopted
solution to this problem is to use the Bonferroni correction whereby the given δ value is
divided by the number of hypotheses (n) tested since the last concept change point detected.
However, the Bonferroni correction has been widely acknowledged to be too conservative
in nature, by erring on the side of caution in setting the δ value too high and thus decreasing
the sensitivity of the detection process. This is due to the fact the hypotheses tested in the
change detection problem context are not independent of each other. Our motivation is to
derive a less conservative correction factor and to give an expression for its update as each
hypothesis test is carried out.

We consider a general scenario where n + 1 blocks B1,B2, . . . ,Bn,Bn+1 (with mean
values μ1,μ2, . . . ,μn,μn+1 respectively) have arrived at time point n+1 when n hypothesis
tests have been carried out.

Mach Learn (2014) 97:259–293 275

Table 1 Complexity analysis of change detectors

Memory complexity Time complexity Best case detection delay

PHT O(1) O(1) 0

EWMA O(1) O(1) 0

SeqDrift1 and SeqDrift2 O(W) O(2) O(b)

ADWIN O(M log W
M

) O(logW) O(g)

Theorem 5 The correction factor CF(n) to be used for the nth hypothesis test is given by:

CF(n) = 1
1

CF(n−1)
+ 1

2n−1

(16)

Proof See Appendix 4 �

Thus, in our model the change significance level δ is scaled by the correction factor given
by Theorem 5 to control the false positive probability. The correction factor computed by
Theorem 5 is much less conservative than the Bonferroni correction and converges to 1

2 for
large values of n, as shown in the proof in Appendix 4.

5 Space, time and detection delay expectations

Before we undertake our empirical study on the five change detectors, namely SeqDrift1,
SeqDrift2, ADWIN, PHT and EWMA we first summarize the space, time and detection
delay complexities in Table 1. In order to provide easy reference to the methods named
parameters have been used, as proposed by the authors of the methods concerned.

As shown in Table 1 PHT and EWMA are essentially memory less methods and are
thus the most space efficient. The SeqDrift and ADWIN detectors store data instances in
the detection window of size W. The latter uses compression in the form of an exponential
histogram and is in general more space efficient than the SeqDrift detectors. The PHT, and
EWMA detectors make a singe pass through the data, the SeqDrift detectors make two
passes (one for buffering instances in the window and the other for updates), while ADWIN
in the worst case makes O(logW) passes as it checks each possible combinations of cuts
in its window. In the case of detection delay, PHT and EWMA have best case delays of 0
for the scenario that the change takes place at the first instance of the current block/grace
period, as they check for changes with the arrival of each new instance whereas the SeqDrift
detectors and ADWIN check in intervals of b (block size) and g (grace period) respectively.

On the basis of the above measures both PHT and EWMA are attractive but other mea-
sures such as false positive rate and actual processing times need to be evaluated empir-
ically before final judgments can be made on the relative effectiveness of these different
approaches.

6 Empirical study

Our Empirical study had five broad objectives. Firstly, we conducted a five-way compara-
tive study between SeqDrift1, SeqDrift2, ADWIN, PHT and EWMA on the false positive

276 Mach Learn (2014) 97:259–293

rate by recording the number of false positives made on stationary data. Secondly, we tested
the robustness of the detectors to noise by injecting data with varying amounts of noise and
recording the number of changes flagged by each of the detectors. Thirdly, we subjected the
detectors to abrupt changes and tested how far upstream changes were flagged by the detec-
tors. We then tested the sensitivity of the change detectors by subjecting them to data that
varied by different amounts over time and recorded the detection delay time and the pro-
cessing time. Finally, we were interested in assessing the impact on classification accuracy,
mining time and memory usage.

6.1 False positive rate assessment

This section elaborates the experimental procedure and the outcome in term of average false
detection rates of SeqDrift1, SeqDrift2 and ADWIN.

6.1.1 Experimental setup

Our first experiment was designed to compare the false positive rates of the two SeqDrift
detectors against ADWIN, Page Hinkley Test (PHT) and the Exponential Weighted Moving
Average (EWMA) methods. We used a stationary Bernoulli distribution of 200,000 instances
for this and tested the effect of various combinations of mean value (μ) and maximum allow-
able false positive rate (δ). For this experiment the block size for the SeqDrift detectors was
set to the default value of 200 and ADWIN’s internal grace period parameter (the equivalent
of the SeqDrift detector’s block size parameter) was also set to its default value of 32. In the
case of PHT we set its internal parameters, drift level = 10 and delta = 0.02 to achieve a
detection delay that was approximately equal to that of ADWIN and SeqDrift2 so that an as-
sessment of its performance could then be on the basis of its false positive rate. In the case of
EWMA we used a setting of its control parameters lamda = 0.2, ARL0 = 1000 and warning
level = 0.1 that resulted in the lowest possible false positive rate. With this setting it turned
out that its detection delay was similar to that of SeqDrift2, ADWIN, PHT thus enabling it to
be compared with the others as well on the false positive rate. We used the implementations
of PHT and EWMA from MOA Extensions by Paulo Mauricio Gonçalves Jr.1

We conducted a total of 100 trials for each combination of μ and δ and the average false
positive count for each combination was recorded for the three change detectors. In order
to obtain statistically reliable results a separate Bernoulli stream segment was generated for
each trial, with the statistical properties mentioned above.

6.1.2 Comparison of SeqDrift1, SeqDrift2 and ADWIN

We first report the comparison of SeqDrift with ADWIN as they both explicitly make use
of a significance level δ and so the effects of this parameter can be assessed for the two
different types of detectors. Figure 4 shows that all three detectors have good false positive
rates that are substantially lower than the user defined maximum permissible level (δ) set.
However, we observe that as the variance in the data increases with the increase in the μ

value (for a Bernoulli distribution, the variance is μ× (1−μ)) the gap between ADWIN and
the SeqDrift detectors widens. The ADWIN false positive rate increases progressively with
the increase in variance as well as the lowering of confidence (i.e higher δ values). On the

1From sites.google.com/site/moaextensions/.

http://sites.google.com/site/moaextensions/

Mach Learn (2014) 97:259–293 277

Fig. 4 Average false detections of SeqDrift1, SeqDrift2 and ADWIN

other hand the SeqDrift detectors retain a virtually zero false positive rate except when the
confidence is low at 0.7 (δ = 0.3), with SeqDrift1 and SeqDrift2 returning rates of .0028 %,
compared to the ADWIN rate of .0128 % at μ = 0.5. As the confidence becomes lower, the
ε value decreases and this results in an increase in the false positive rate for ADWIN. The
relatively higher false positive rate for ADWIN is due to the use of compression to reduce
storage size of its buffer. ADWIN uses exponential histograms to compress its buffer and
estimates true population means from the compressed version, thus introducing a degree of
imprecision in the estimation of the population mean as explained in detail in Sect. 6.1.5. As
the variance in the data increases so does the degree of imprecision in estimating the mean. In
contrast, the SeqDrift detectors do not employ compression and estimate population means
using random sampling techniques described in Sect. 4.

While both SeqDrift detectors exhibit better false positive rates than ADWIN, it is clear
from Fig. 4 that SeqDrift1’s rate is better than that of SeqDrift2. This is to be expected as
SeqDrift2 was specifically optimized for detection delay through the use of Algorithm 1,
which trades off detection delay time with the false positive rate, while ensuring that the
false positive rate does not rise above the user defined permissible rate of δ.

6.1.3 Overall assessment of false positive performance

Since ADWIN and the SeqDrift detectors use an explicit significance parameter it was nec-
essary to choose a significance level for these detectors. We chose a level of 0.1 as levels
below will be in favor of these detectors while a level of 0.3 would bias against them as the
ε threshold for these detectors would then be too loose, thus increasing their false positive
rate unfairly. Table 2 shows the average number of false positives recorded across the stable
segment of the stream of length 200,000.

Table 2 shows that the false positive count for PHT and EWMA detectors is orders of
magnitude higher than for the rest of the detectors. Such a high number of false positives
would result in significant degradation of performance for classifiers using these two de-
tectors, both in terms of computational time (to adjust models) and in terms of classifier
accuracy (in wrongly restructuring existing accurate models). The results clearly show that
the default behavior of these detectors in operating on a per instance basis is not desirable.
A better performance from them can be expected when they check for drift in intervals,

278 Mach Learn (2014) 97:259–293

Table 2 Average false drift comparison across all chosen detectors

Mean 0.05 0.1 0.3 0.5

SeqDrift1 0 0 0 0

SeqDrift2 0.61 1.23 1.15 1.02

ADWIN 0.64 4.14 5.53 6.29

PHT 0 26.96 189.95 252.02

EWMA 1722.25 2727.79 549.86 16371.77

Table 3 Average false positive rates across all chosen detectors

Mean 0.05 0.1 0.3 0.5

SeqDrift1 0 0 0.00005 0

SeqDrift2 0.00061 0.00123 0.00115 0.00102

ADWIN 0.00039 0.00158 0.00266 0.00257

PHT 0 0.00983 0.07198 0.09665

EWMA 0.06501 0.05270 0.00290 0.72522

rather than individual instances. This will enable all detectors to be compared on an equal
footing.

Table 3 shows that the gap between the (PHT, EWMA) pair and the rest has narrowed but
it is clear that they have much higher false positive rates (except for PHT at mean 0.05) than
the rest. Methods such as ADWIN and the SeqDrift detectors use detection thresholds that
are specifically designed to minimize the false positive rate for a given significance level and
this is the key reason for the difference in robustness of these methods.

Interestingly, we observe that EWMA’s false positive rate for mean 0.3 is much smaller
than its rate for mean 0.05 but the rate climbs very sharply for mean 0.5. We ran several
more trials for EWMA but this trend was always observed, strongly suggesting that this is
an inherent feature of the method, possibly due to increased precision in the Monte Carlo
simulation for mean values around 0.3.

We decided to measure memory utilization across a stable stream as this represents the
worst case scenario for methods such as the SeqDrift and ADWIN which are not mem-
ory less unlike PHT and EWMA. We suppressed false positives in order to eliminate the
confounding effect of memory flushing by SeqDrift2 and ADWIN. As expected, PHT and
EWMA had trivial memory consumption with 64 bytes and 48 bytes for PHT and EWMA
respectively. For SeqDrift2 its memory consumption increased until its reservoir filled and
then remained constant at 26 k (with a reservoir of size of 50,000), while for ADWIN it
increased throughout and reached 2.8 K at the end of the 200,000 stream segment. We now
carry forward the three detectors that had the best false positive rates, that is SeqDrift1,
SeqDrift2 and ADWIN for further analysis.

6.1.4 Robustness to noisy data

This experiment was designed to test the robustness of the change detectors to noise. The
higher the tolerance to noise, the more robust is the change detector. We simulated a noisy
environment by introducing spikes in the error rate distribution that would typically arise
from a classifier operating in a noisy environment. The key challenge was to sufficiently

Mach Learn (2014) 97:259–293 279

Fig. 5 Effects of noise injection

differentiate noise from the true signal so that noise could not be interpreted as true con-
cept change. This was achieved by superimposing a distribution consisting of spikes on a
stationary Bernoulli distribution.

The noise distribution was simulated by a Bernoulli distribution, but was sufficiently dif-
ferentiated from the underlying stationary one by choosing a significantly higher population
mean. We note that for a Bernoulli distribution its mean and variance are related by the

expression σ 2 = μ(1 − μ), thus giving μ = (1−√
(1−4σ 2))

2 . Thus, by introducing a factor k

into the variance term σ 2 we were able to compute the corresponding mean value,μn value
required to generate new distributions that were sufficiently different from the stationary
(base) distribution with mean μb that corresponds to a k value of 1. Different noise distribu-
tions were generated to test the effects of different levels of noise by varying k in the range
1 to 2.5 in increments of 0.1. We used a base mean value of 0.01 for the stationary signal
(with k = 1.0) which meant that the expected value of the variance was very low at 0.0099.
For each value of k, 100 separate trials were conducted and the average false positive rate for
the three change detectors were For each value of k, instances are drawn from a Bernoulli
distribution with a mean value chosen at random between the base mean μb and μn.

As k increases, the variance of the noise signal increases and this has the effect of elon-
gating the spike duration as well as the amplitude of the noise signal, as the noise trajectory
for k = 2.5 shows in Fig. 5. On the other hand the noise trajectory for k = 1.5 is barely above
that of the baseline value (with k = 1.0), thus explaining why both ADWIN and SeqDrift
detectors did not register an increase in the false positive rate.

Values of k in the range [1.0,1.6] yielded a zero false positive rate for all three detectors
and so these entries were omitted from the results table. Table 4 shows that both SeqDrift1
and SeqDrift2 were very stable on noisy stream segments whereas ADWIN signaled a sig-
nificant number of false positives when the level of noise increased. Given that noise is
inevitable in most real world environments, this experiment clearly illustrates that both Se-
qDrift1 and SeqDrift2 are more robust to noise and hence better choices with respect to
change detection. A comparison of ADWIN’s false positive rate for values of k in the range
2.0 to 2.5 reveals a significant increase, thus exposing a fundamental weakness of ADWIN
to noisy data distributions containing spikes.

The underlying reasons for the higher tolerance of the SeqDrift detectors to noise are
basically the same as for the experimentation with a pure stationary signal that we discussed
in Sect. 6.1.2 above. The spikes in the noise signal have a much lower effect on the SeqDrift
detector’s false positive rate as the data representing such spikes is very short-lived and is
added in general to a much larger pool (the reservoir) from which it is smoothed through the
use of the averaging process.

280 Mach Learn (2014) 97:259–293

Table 4 Average drifts detected on a noisy stream

k Max mean increment SeqDrift1 SeqDrift2 ADWIN

1.7 0.007 0 0 0.03

1.8 0.008 0 0 0

1.9 0.009 0 0 0.03

2.0 0.010 0 0 0.05

2.1 0.011 0 0 0.02

2.2 0.012 0 0 0.09

2.3 0.013 0 0.02 0.11

2.4 0.014 0 0 0.21

2.5 0.015 0 0 0.27

Table 5 Comparison of the drift detectors SeqDrift1, SeqDrift2 and ADWIN on an abrupt drift of various
mean increments

Initial
mean

End
mean

SeqDrift1
drifts

Det.
point

SeqDrift2
drifts

Det.
point

ADWIN
drifts

Det. points

0.01 0.02 0 N/A 0 N/A 5 102911, 103135, 103199

103295, 103583

0.01 0.04 0 N/A 1 100399 7 100607, 100927, 100959

101311, 101343, 101439

101727

0.01 0.08 1 101199 1 100199 6 100159, 100191, 100223

100319, 100351, 100543

0.01 0.16 1 100199 1 100199 6 100095, 100127, 100159

100191, 100255, 100319

0.01 0.32 1 100199 1 100199 4 100031, 100063, 100127

100351

0.01 0.64 1 100199 1 100199 2 100031, 100063

0.01 0.83 1 100199 1 100199 2 100031, 100063

6.1.5 Flow-on effect of abrupt change on false positive rate

Abrupt changes are relatively easily detected by most change detectors in contrast to more
gradual changes. When a sudden increase in the mean error rate for a classifier occurs its
model needs to be updated to reflect such a change. However, if as a result of the sudden
change the detector falsely signals further changes, then unnecessary overhead will be in-
curred by the classifier in performing updates to its model.

In order to test the vulnerability of the detectors to the flow on effects of abrupt changes
we generated a Bernoulli stream of 100,000 instances with initial mean = 0.01 and then
another 100,000 instances were drawn from a distribution with an increased mean value.
Thus, abrupt change was injected into the stream at the 100,000th instance and the concept
changes flagged by each of the detectors were observed after processing the first 100,000
instances.

As Table 5 clearly shows ADWIN flags false changes upstream from its first detection
point. For example, when the mean changes from the baseline value of 0.01 to 0.04, ADWIN

Mach Learn (2014) 97:259–293 281

first detects the change at point 100607 and then goes to flag 6 additional points further
upstream from this point. In contrast, both SeqDrift detectors consistently report a single
change point, with the exception of the less abrupt change scenario when a modest change
was made to the mean from the 0.01 baseline to 0.02, for which no change was reported by
either of the two detectors.

As with the stationary distribution scenario the cause for false detections with ADWIN
lies with its use of exponential histograms in approximating the true data distribution. In
the case of abrupt shift, however the estimation error is much greater due to the speed of
change. ADWIN approximates the state of a window segment by maintaining at most M
buckets for a given value 2i , for integers i ranging from 0 upwards. In the case of an abrupt
increase in the mean value of the data distribution, the probability of the appearance of 1 s
is subject to rapid change due to increase in variance that accompanies an increase in the
mean value. This rapid change in the frequency of 1 s in the stream causes the most re-
cent buckets generated by ADWIN—i.e. buckets containing a single 1 to occur with widely
different buckets lengths. This in turn causes the segments encapsulated by these buckets
to have significantly different means, even when the underlying data distribution remains
stationary after the change point. ADWIN stabilizes and stops detecting false change points
only after a sufficient number of instances have been generated after the change point. When
the number of buckets with value 1 exceeds the M threshold, merging of buckets occurs and
sharp differences in mean values between buckets is smoothed due to the merging operation.
Of course, a decrease in ADWIN’s M parameter will help to alleviate this problem, but as
mentioned before this will come at a heavy price in terms of computational overheads.

Interestingly, ADWIN’s false alarms seem to disappear at the higher end of the μ range
with no false positives reported for μ values 0.16 and greater. Although higher variability
occurs in the data for such μ values, this is compensated by the increased frequency of the
merge operation which is triggered by the higher frequency of 1 s in the stream that occur
with distributions having higher mean values.

The SeqDrift detectors do not artificially slice the stream into discrete storage units but
represent the entire window segment after the last cut point as one single storage unit for
sampling and are thus in a better position to avoid errors arising from comparing units (buck-
ets) of arbitrary and insufficient length to estimate mean values accurately.

6.2 Detection delays and false negative rate

In addition to the false positive rate, detection delay is an important performance measure
as minimal delay in detecting changes will assist the classifier in responding to concept
changes quickly.

In a high speed data stream environment another crucial performance factor is the pro-
cessing speed of the change detector. A high processing time can lead to a bottleneck in the
classifier, slowing down the speed with which it can classify instances. This is due to the fact
that concept change detectors are invoked very often by the classifier (which for ADWIN
will be 32 instances and for the SeqDrift detectors, every 200 instances). Each invocation
requires the detector to compare means for one or more divisions of its buffer in its search
for potential cut points. In general, the more extensive the search, i.e. the greater the number
of candidates examined, the greater is the potential for detecting changes earlier but with a
corresponding increase in processing time. In summary, a trade-off exists between detection
delay and processing time. Given that the SeqDrift detectors and ADWIN have quite differ-
ent change detection strategies it will be interesting to examine the trade-off in environments
with different gradients of change.

282 Mach Learn (2014) 97:259–293

Fig. 6 Detection delays of SeqDrift1, SeqDrift2 and ADWIN on streams with various slopes and lengths

Table 6 Processing times of SeqDrift1, SeqDrift2 and ADWIN on streams with different slopes and lengths

Slope in
(10−4)

Data length

10000 100000 10000000

1 2 3 4 1 2 3 4 1 2 3 4

SeqDrift1 3.6 3.5 3.3 3.5 42.5 44.0 45.7 43.4 460.8 455.9 454.9 454.1

SeqDrift2 1.5 1.2 1.2 1.5 16.5 16.2 15.6 14.6 174.9 175.1 164.9 165.0

ADWIN 7.3 7.5 7.5 7.5 124.7 125.8 127.4 126.4 1635.7 1638.2 1639.7 1655.7

PHT 1.5 1.4 1.4 1.3 12.4 11.0 11.4 10.3 121.7 121.9 120.5 120.5

EWMA 2.6 2.8 3.4 3.2 42.8 44.5 48.6 45.3 418.9 426.7 418.1 425.0

The first experiment to compare the delays was designed in the following manner. A sta-
tionary Bernoulli data stream of different lengths 10000, 50000, 100,000 and 1,000,000 with
mean = 0.01(initial mean) were generated in separate trials. Different data lengths were used
to ascertain the effects of history, if any.

With each data length, concept change was injected into the stream by generating the
last 2300 instances with different gradients of change corresponding to 1 × 10−4, 2 × 10−4,
3 × 10−4 and 4 × 10−4. The processing time and the delay in detecting concept change
injected were measured for each combination of data length and gradient of change. Each
combination was repeated 100 times to boost reliability. In order to remove the confound-
ing effect of reading time, the processing time measured only the actual time taken by the
respective change detectors in executing their change detection algorithms.

ADWIN was used with its default grace period of 32, SeqDrift1 and SeqDrift2 with
default block size of 200, and a significance level = 0.01 was used for all three change
detectors.

Figure 6, together with Table 6, clearly illustrates the detection delay versus processing
time trade-off. In terms of processing time the two SeqDrift detectors were far superior to
ADWIN. At the smallest data length of 10,000 ADWIN was around 3 times slower than
SeqDrift1 and around 6 times lower than SeqDrift2. The gap between ADWIN and SeqDrift
detectors widens as the data length increases: the processing speed of the SeqDrift detectors

Mach Learn (2014) 97:259–293 283

is essentially linear in data segment length while ADWIN is super-linear, as can be seen
from the growth in processing times when the segment length is increased by factors of 10
and 100. This super-linear growth in ADWIN’s processing time is only to be expected as the
number of hypotheses it tests is n (n−1)

2 , versus n − 1 for the SeqDrift detectors on a buffer
of size n. Given that the processing time for the SeqDrift detectors start off at a much lower
level than ADWIN and that the latter’s growth in time is super-linear in segment length, the
SeqDrift detectors are by far the better choice for a high speed data stream environment.

In terms of detection delay, however, it is clear from Fig. 6 that ADWIN has better mean
detection delay when compared to the SeqDrift detectors. The SeqDrift detectors only exam-
ine a single candidate cut point for concept change that corresponds to the current boundary
between the left and right repositories, whereas ADWIN examines all possible combina-
tions of points in its buffer, and as such can be expected to detect change points sooner. As
expected, the delay times reduced with increasing gradient of change, although we observe
that the SeqDrift detector’s delay reduces at a faster rate than ADWIN with the gap closing
for higher gradients of change. In terms of detection rate, all five detectors returned a value
of 100 % for all combinations of data length and gradient of change.

We also observe from Fig. 6 and Table 6 that SeqDrift2’s detection delay times are much
closer to that of ADWIN, PHT and EWMA than SeqDrift1, while maintaining a superior
processing speed advantage. The slower speed of SeqDrift1 over SeqDrift2 is due to the
fact that it requires nl

b
passes through its left repository to perform sub-sampling, as op-

posed to two passes for the latter. On the other hand, SeqDrift2 does not use sub-samples
but computes means across the two repositories in a one-pass incremental manner. In fact,
SeqDrift2’s processing times are competitive with PHT and better than EWMA throughout
the data length range. Despite the fact that EWMA is one pass, it has higher processing
times than SeqDrift2 due to the large number of floating point calculations required in the
computation of the control parameter L which is needed in flagging concept change.

Thus, from all the results examined so far we can conclude that SeqDrift2 is superior
to SeqDrift1 as it maintains a competitive false positive rate to the latter while exhibiting
superior detection delay and processing times. Henceforth in our experimentation we will
focus exclusively on the SeqDrift2 and ADWIN change detectors.

6.3 Effects of reservoir sampling

In Sect. 6.2 we observed that replacing the sliding window by a reservoir in the implemen-
tation of the reference window reduces processing by around 50 %, as shown in Table 6.
We now investigate another potential benefit of the reservoir which is improving sensitiv-
ity with respect to slowly varying data. We first generated data from a stationary Bernoulli
distribution with mean 0.01 for 200,000 instances. Thereafter we injected concept change
into the stream in two stages. In the first stage we injected change with a slope of 10−6 for
the next 10,000 instances. This was followed by injecting change at a higher rate of 10−5

for the next 70,000 instances. This experiment models a real-world scenario where data is
first in a stable state after detection of the previous concept change. Thereafter in stage 2,
due to the emergence of a new concept, data is subject to a slow rate of change, followed
by an increase in the rate of change after emergence of the new concept in stage 3. It would
be of interest to investigate the effect of memory retention of the oldest data samples from
stage 1 on detection sensitivity measures. The performance measures of interest here are the
detection rate, detection delay, stability of detection, as measured by the standard deviation
of the detection delay over the 100 trials conducted, and the memory retention capacity of
each of the two memory management schemes.

284 Mach Learn (2014) 97:259–293

Table 7 Sensitivity of reservoir over sliding window approach

Ref. window
size

Detection rate
(SW)

Detection
rate (Res)

Delay ratio
(SW/R)

Std. Dev.
ratio (SW/R)

% Replacement
res, SW

5000 10 100 3.34 12.58 0.16, 100

10000 83 100 1.84 6.9 0.3, 100

20000 100 100 1.1 1.71 0.6, 73

40000 100 100 1.05 0.96 1.19, 33.6

50000 100 100 0.99 1.39 1.5, 25.6

Table 8 Further Experimentation on SeqDrift2 and ADWIN

Table 7 shows that with reference windows of size 5,000 and 10,000 the reservoir scheme
significantly outperformed the sliding window scheme on all measures. When the window
size is less than 10,000 the sliding window approach was unable to store any samples from
the oldest (stage 1) state and its buffer consisted entirely of samples from stage 2 and stage
3 thus severely affecting its sensitivity, causing it to return an average detection delay time
which are 3.34 and 1.84 times that of the reservoir for sizes 5000 and 10,000 respectively.
Furthermore, its detection behavior is highly unstable as the corresponding standard devia-
tions of its detection times are 12.58 and 6.9 times that of the reservoir approach. However,
as the reference window size increases the sensitivity of the sliding window approach im-
proves and converges to that of the reservoir at around the 40–50,000 window size setting.
As expected, Table 7 also shows that the relative performances of the two approaches is
highly correlated to the memory retention capacity which is the percentage of data samples
retained from the original stable state (stage 1). In a real world setting the length of con-
cept formation (the sum of stage 2 and stage 3 lengths) may be much greater than memory
available in the reference window and in such situations the reservoir approach is by far the
superior choice.

6.4 Effects of detection thresholds and window management strategies

Given that SeqDrift2 had the best false positive performance and that ADWIN maintains
a good balance between detection delay and false positive rate it is of interest to examine
whether each of these two best performing methods can benefit from using features imple-
mented in each other.

Table 8 shows clearly that neither of the two change detectors benefit from using each
other’s features. When ADWIN uses SeqDrift2’s detection threshold its false positive rate
increased (measured for mean 0.3 and δ = 0.1) while only a very marginal improvement

Mach Learn (2014) 97:259–293 285

resulted for detection delay (measured for slope 1 × (10)−4). The opposite was observed
when SeqDrift2 used ADWIN’s threshold: its false positive decreased marginally but its de-
tection delay increased quite considerably, showing that SeqDrift2’s detection threshold is
more sensitive than that of ADWIN. Unlike SeqDrift2, ADWIN cannot benefit from Seq-
Drift2’s more sensitive detection threshold as it maintains multiple cut points in its window
thus contributing to an increased false positive rate. These results are not unexpected as each
of the two change detectors are optimized to work with their own detection thresholds.

The third experiment showed once again the effectiveness of the reservoir sampling strat-
egy. Replacement of the reservoir with a buffer that grows in an unbounded fashion led to
a very marginal improvement in detection delay while increasing the false positive rate. It
should be noted that an unbounded buffer may be impractical in many situations as in a
stable stream segment of large size the left repository could exceed the memory available.
Apart from that the computational cost of sampling the left repository would also increase
considerably.

The final experiment with ADWIN operating on a single cut point does not yield any clear
material benefits: although its false positive rate decreased quite considerably its detection
delay increased sharply yielding values that were much higher than SeqDrift2 Thus the
overall conclusion is that each of the two change detectors are best served by keeping them
in their default configurations with their native detection thresholds.

6.5 Integration with adaptive Hoeffding tree classifier

In a typical data stream environment, a change detector operates in conjunction with a clas-
sifier. To the extent that a change detector is able to detect concept changes efficiently in the
minimal possible time with the least number of false detections, it will support the classifier
in processing the data stream quicker and return higher classification accuracy. To investi-
gate this premise we next integrated SeqDrift2 and ADWIN with the Hoeffding Adaptive
Decision tree (Bifet and Gavaldà 2009) and conducted a series of experiments on datasets
generated with various different stream generators, sea concepts2 and the real world data
sets, airline and poker hand.3 For the synthetic data the degree of concept change was con-
trolled by specifying the number of features (f) that were subject to change. More details
of the characteristics of these data generators is available from Bifet et al. (2010).

For each experiment we track four performance measures: classification time, classi-
fication accuracy, the Kappa statistic and memory, measured in terms of tree size. These
statistics represent averages gathered at intervals of 10,000 instances.

Table 9 shows that SeqDrift2 clearly outperforms ADWIN in terms of all four measures
that we tracked. In terms of classification accuracy, SeqDrift2 was better in 10 out of 11
experiments conducted. In the experimentation with the rotating hyperplane (with 6 drifting
attributes) substantial improvements in accuracy of around 5 % or greater was achieved.
We attribute SeqDrift2’s better accuracy to its superior false positive rate. When detections
are signaled at a given node in the tree, the sub-tree rooted at that node is removed as it is
thought to represent an old or outdated concept. If the detection is false, then the removal
of the sub-tree will reduce accuracy as the concept it represents is actually current. Given
that ADWIN registers a higher false positive rate than SeqDrift2 in general, the incidence of
erroneous pruning will be proportionately higher than in SeqDrift2, thus resulting in a lower

2From www.liaad.up.pt.
3From moa.cms.waikato.ac.nz.

http://www.liaad.up.pt
http://moa.cms.waikato.ac.nz

286 Mach Learn (2014) 97:259–293

Table 9 Integration of Change Detectors with Adaptive Hoeffding Tree. A—Accuracy, T—Mining Time,
K—Kappa coefficient, N—Total number of nodes and L—Number of leaf nodes

Data generator Parameters Performance Hoeffding tree size

ADWIN SeqDrift2 ADWIN SeqDrift2

SEA concepts (A)81.76 82.23 (N)35.2 38.0

(K)79.53 80.05 (L)18.1 19.5

(T)0.28s 0.23s

Wave form generator -Drift Attr 10 a(A)80.06 80.47 (N)2438.32 2445.38

(K)70.10 70.70 (L)1219.66 1223.19

(T)241.20s 139.48s

Wave form generator -Drift Attr 20 (A)79.71 80.18 (N)2382.08 2379.06

(K)69.57 70.27 (L)1191.54 1190.03

(T)228.47s 127.96s

Wave form generator -Drift Attr 30 (A)74.28 75.15 (N)2433.38 2413.44

(K)62.23 62.72 (L)1217.19 1207.22

(T)237.05s 129.29s

LED generator -Drift Attr 5 (A)73.41 73.44 (N)487.4 467.36

(K)70.46 70.49 (L)244.2 234.18

(T)199.93s 107.50s

RBF generator -Speed Change 0.2 (A)52.91 56.34 (N)4976.28 4799.06

(K)5.83 12.68 (L)2488.64 2400.03

(T)136.54s 123.16s

Rotating hyperplane generator -Total Attr 20 (A)87.23 90.09 (N)7384.8 5319.96

-Drift Attr 2 (K)74.46 80.18 (L)3692.9 2660.48

-Mag Change 0.1 (T)97.87s 90.07s

Rotating hyperplane generator -Total Attr 20 (A)78.68 85.47 (N)6045.64 5580.76

-Drift Attr 6 (K)57.37 70.95 (L)3023.32 2790.88

-Mag Change 0.1 (T)113.16s 109.79s

Rotating hyperplane generator -Total Attr 20 (A)77.81 78.99 (N)5495.48 5682.82

-Drift Attr 10 (K)55.63 57.99 (L)2748.24 2841.91

-Mag Change 0.1 (T)156.92s 121.41s

Airline (A)57.23 58.90 (N)82555.33 48367.33

(K)13.49 15.49 (L)82206.12 48152.5

(T)17.99s 11.56s

Poker hand (A) 59.08 58.85 (N)227.18 191.05

(K) 5.63 3.82 (L)123.17 103.77

(T)5.21s 4.63s

accuracy. The learning curves given in Fig. 7 support this line of reasoning. The learning
curves in Fig. 7 were generated using the holdout evaluation method in MOA (Bifet et al.
2010) and represents 3 of the 11 datasets used. The curves for the rest follow the same trends
and have been omitted to conserve space.

Mach Learn (2014) 97:259–293 287

Fig. 7 Variation of accuracy with training set size

As Fig. 7 shows, the learning curves for ADWIN fluctuate significantly throughout the
range of training set size. In contrast, SeqDrift2’s curves are smoother and behave closer
to the ideal scenario of smooth incremental growth in accuracy with increasing training set
size.

The improvements in classification accuracy for SeqDrift2 are closely mirrored by im-
provements in Kappa value. The Kappa statistic for a given classifier measures the degree
of improvement of the classification decisions over pure chance. SeqDrift2’s Kappa values
are consistently greater than that of ADWIN (with the exception of the Poker Hand dataset),
thus inspiring greater confidence that the decisions taken with it in operation are better than
chance.

The most significant improvements in performance for SeqDrift2, however, occur in the
area of classification time. In some cases the mining time more than halved with the use
of SeqDrift2 in place of ADWIN. The major reason for this reduction in time is due to
SeqDrift2’s efficient change detection strategy that employs a single forward sequential scan
of its memory buffer instead of repeated backward scans and checks for cut points at every
bucket boundary, as ADWIN does.

Finally, we note that SeqDrift2’s induced smaller trees than ADWIN in 8 of 11 cases
that we considered. As with accuracy the major cause for higher memory utilization with
ADWIN as the change detector is its higher false positive rate. When a sub-tree is pruned as
a result of concept change being signaled, a new alternate sub-tree is grown and maintained.

7 Discussion, conclusion and future work

In this research we have presented a novel scheme for concept change detection that employs
a sequential one pass strategy. Our results show that overall, our change detection approach
outperformed ADWIN with respect to false positive rate and processing time, while main-
taining competitive detection delay times. The gain in processing time over ADWIN was
undoubtedly due to the sequential hypothesis testing strategy used. Sequential hypothesis
testing meant that alternate cut points further downstream than the current block need never
be re-examined, thus ensuring that processing overheads were held to a minimum.

Our results also showed that our change detectors also significantly outperformed the
Page Hinkley detector with respect to false positive rate while maintaining competitive pro-

288 Mach Learn (2014) 97:259–293

cessing and detection delay times. Reservoir sampling was the key to the success of Seq-
Drift2 with respect to achieving low false positive rates and low detection times. The use of
the reservoir enabled SeqDrift2 to keep a representative sample of the data from the stream
without relying on data compression/data aggregation strategy such as used by ADWIN that
causes the latter to return higher false positive rates

Apart from the use of the reservoir to improve performance, reservoir sampling is also an
ideal solution to the load problems caused by ultra high speed data streams. Given any clas-
sifier, there will always be some environment or some data stream that produces instances
at a faster rate than it can cope with. In such cases the classifier will end up losing valu-
able data and its accuracy could be severely impacted over a period of time if the stream is
subjected to change. Reservoir sampling in this case can be used to reduce information loss
by feeding the classifier with a representative sample of the data produced by the stream.
In this context both the classifier and concept change detector could operate under a single
unified data input supply mechanism. A reservoir sample of the raw stream data would be
first presented to the classifier for training purposes and its processed binary output in terms
of classification decisions then input to a separate reservoir maintained for change detection
purposes.

Our future work in this area will consist of integrating the process of optimizing the
false positive and false negative rates. Currently our strategy is a two phased one, whereby
in Phase 1 we obtain an ε cut value that minimizes the false positive rate. In Phase 2, we
optimize for detection delay by relaxing (i.e reducing) the ε cut threshold value (Algo-
rithm 1), subject to the constraint that the estimated false positive rate is no bigger than
the user desired false positive rate, δ. Though this process helps to improve detection de-
lay time for SeqDrift2, it lacks flexibility in the sense that the user cannot prioritize false
positive rate over detection delay and vice versa. Ideally, the user should be able to guide
the change detection process by specifying weights for the false positive rate and detec-
tion delay. In order to implement this process we propose that a composite function f of
the form: wfpδ′ + wdddelayi+1 be minimized, where wfp,wdd denote the weights for the
false positive rate and detection delay time respectively; δ′ is the empirical false positive
rate as formulated in Sect. 4.3; and delayi+1 denotes the estimated detection delay when the
(i + 1)th block has been received, extrapolated via some form of regression function from
the i blocks received since the last detection point.

Appendix 1: Proof of Theorem 3

Pr
(
2|μl − μr | ≤ 2ε

) = Pr
(|μl − μ̂l + μ̂l − μr + μl − μ̂r + μ̂r − μr | ≤ 2ε

)
= Pr

(|μl − μ̂l + μ̂l − μr + μl − μ̂r + μ̂r − μr | ≤ kε + (1 − k)ε + kε + (1 − k)ε
)

= Pr
((|μl − μ̂l| ≤ kε

) + Pr
∣∣(μl − μ̂r)

∣∣ ≤ (1 − k)ε
)

+ Pr
(|μl − μ̂r | ≤ kε

) + Pr
(|μr − μ̂r |

) ≤ (1 − k)ε for some k ∈ (0,1)

From the union bound we have: Pr(|μ̂l − μ̂r | ≤ ε) ≤ Pr(|μl − μ̂l| ≤ kε) + Pr(|μl − μ̂r |) ≤
(1 − k)ε and Pr(|μ̂l − μ̂r | ≤ ε) ≤ Pr(|μl − μ̂r | ≤ kε) + Pr(|μr − μ̂r | ≤ (1 − k)ε).

But from our starting assumption, we have: Pr(|μ̂l − μ̂r | ≤ ε) > 1 − δ.

Mach Learn (2014) 97:259–293 289

Thus Pr(2|μl − μr | ≤ 2ε) > 2 Pr(|μ̂l − μ̂r | ≤ ε) > 2(1 − δ), or in other words: Pr(|μl −
μr | ≤ 2ε) > (1 − δ)which leads to a contradiction since Pr(|μl − μr | > 2ε) with probabil-
ity 1.

Thus our assumption of Pr(|μ̂l − μ̂r | ≤ ε) > 1 − δ is false and so Pr(|μ̂l − μ̂r | > ε) >

1 − δ which means that the probability of a false negative is < δ, which in turn proves the
theorem.

Appendix 2: Proof of Lemma 1

εi−1−εi

εi−1
< t can be rewritten as: εi−1

εi
< 1

1−t
.

From Eq. (12), we have:

εi−1 = αi−1

3nr(1 − ki−1)
(17)

and

εi = αi

3nr(1 − ki)
(18)

where αi−1 = (ln(4
δ′
i−1

) +
√

ln(4
δ′
i−1

)2 + 18σ 2
s nr ln(4

δ′
i−1

)) and αi = (ln(4
δ′
i
) +√

ln(4
δ′
i
)2 + 18σ 2

s nr ln(4
δ′
i
)) where δ′

i−1, δ′
i are the estimated false positive rates associated

with iterations i − 1 and i respectively.
Dividing Eq. (16) by Eq. (17) yields,

εi−1

εi

= (1 − ki)

(1 − ki−1)
∗ αi−1

αi

(19)

Rearranging Eq. (18),

αi−1

αi

= (1 − ki−1)

(1 − ki)
∗ εi−1

εi

(20)

Now (1−ki−1)

(1−ki)
< 1 as ki−1 = 1

f
ki ⇒ ki−1 > ki .

Thus from Eq. (19) and expression (14) we get, αi−1−αi

αi−1
< t which in turn means that

δ′
i
−δ′

i−1
δ′
i−1

< t , thus proving the lemma.

Appendix 3: Proof of Theorem 4

Denote ε1 as the cut threshold used at the first iteration with k = k1 = 0.5. Now ε1 is given
by: ε1 = 1

3(1−0.5)nr
(p + √

p2 + 18σ 2
s nrp) and ε2 = 1

3(1−k2)nr
(p + √

p2 + 18σ 2
s nrp). Thus

ε2 = 1
2 (1

(1−k2)
)ε1. Generalizing the derivation of ε to the (i − 1)th iteration yields:

εi = 1

2

(
1

(1 − ki)

)
ε1 (21)

From (12) we have

εi−1 = 1

3(1 − ki−1)nr

(
p +

√
p2 + 18σ 2

s nrp
)

(22)

290 Mach Learn (2014) 97:259–293

Applying the result from Lemma 1 on Eqs. (18) and (19), we obtain the following quadratic:

3ε1
2nrq

2 − 4(1 − t)ε1pq − 24(1 − t)σ 2
s p = 0 (23)

where q = (1−ki−1)

(1−ki)
and t is the tolerance factor.

Equation (22) when solved yields

q = (1 − t)(2p + √
(4p2 + 72nrσ 2

s p)

3ε1nr

(24)

We thus have:

(1 − ki−1)

(1 − ki)
= (2p + √

(4p2 + 72nrσ 2
s p)

3ε1nr

(25)

We also have ki−1 = 1
k
ki = 0.5f i−2.

Substituting for ki−1 and ki in (24) above and replacing the right hand side of (24) by q

for simplicity, gives:

1 − f 0.5i−2

1 − 0.5i−2
= q (26)

which when solved yields:

i = 2 + logf

(
2

(q − 1)

(q − f)

)
(27)

Equation (26) shows that the number of iterations i in which Algorithm 1 converges is
logarithmic (to base f) in q , and combined with Eq. (22) which expresses q as a square
root function of σ 2

s , we conclude that i is a logarithmic function (to base f) of σ 2
s . With

respect to δ, i is logarithmic (again with base f) with respect to p, which in turn is inverse
logarithmic (to base e) with respect to δ. Thus overall, with adjustment of logarithmic bases
we have i = O(log(log(1

δ
))).

With a f value of 0.75, a p value of 5.99 (corresponding to a δ value of 0.01), a σ 2
s value

of 0.2, and nr = 200, the use of (25) and (22) yields convergence at the 20th iteration which
corresponds to δ′ = 0.0099 (see Table 10) which is very close to the desired value of 0.01.
Using the same f value of 0.75, and p value of 5.99, a σ 2

s value of 0.02, and nr = 200,
convergence was signaled by (25) and (22) at the 18th iteration, corresponding to δ′ value
of 0.0099 (see Table 10) which again is very close to the desired value of 0.01.

Although we used a value of 0.75 for f in Algorithm 1 (line 5), in principle other values
such as 0.8 or 0.9 can be used to produce very similar results. We experimented with dif-
ferent values of f and found that the difference in results is insignificant. Even an extreme
value for f of 0.1 yields an ε value of 0.1199 (very similar to the 0.1202 value achieved with
f = 0.75) at convergence for the high variance case, a very similar result to the one that we
achieved with f = 0.75. The same holds true for the low variance case; with f = 0.1, con-
vergence was achieved with an ε value of 0.0460 (again, very similar to the 0.0461 achieved
with f = 0.75. We can thus conclude that the optimization process is not sensitive to the
value of f used, provided that a reasonable value for f is used, say in the range [0.1,0.9].
Table 10 clearly shows the utility of the optimization process. In the high variance scenario
the ε value starts off at a high value of approximately 0.24 for an equal-sized data repository
configuration and decreases by around 0.12 at the point of convergence (we say that con-
vergence is achieved when the difference between consecutive δ′ values is less than or equal

Mach Learn (2014) 97:259–293 291

Table 10 Optimization of k value by Algorithm 1

σ 2
s = 0.2 σ 2

s = 0.02

εcurr kcurr knew δ′ εnew εcurr kcurr knew δ′ εnew

0.2398 0.500 0.375 0.00050 0.1919 0.0920 0.500 0.375 0.00086 0.0736

0.1919 0.375 0.281 0.00176 0.1668 0.0736 0.375 0.281 0.00235 0.0640

0.1668 0.281 0.211 0.00328 0.1520 0.0640 0.281 0.211 0.00392 0.0583

0.1520 0.211 0.158 0.00471 0.1424 0.0583 0.211 0.158 0.00530 0.0547

0.1424 0.158 0.119 0.00591 0.1360 0.0547 0.158 0.119 0.00641 0.0522

0.1360 0.119 0.089 0.00688 0.1316 0.0522 0.119 0.089 0.00728 0.0505

0.1316 0.089 0.067 0.00763 0.1285 0.0505 0.089 0.067 0.00794 0.0493

0.1285 0.067 0.050 0.00821 0.1262 0.0493 0.067 0.050 0.00845 0.0484

0.1262 0.050 0.038 0.00865 0.1246 0.0484 0.050 0.038 0.00883 0.0478

0.1246 0.038 0.028 0.00898 0.1234 0.0478 0.038 0.028 0.00912 0.0473

0.1234 0.028 0.021 0.00923 0.1225 0.0473 0.028 0.021 0.00934 0.0470

0.1225 0.021 0.016 0.00942 0.1218 0.0470 0.021 0.016 0.00951 0.0468

0.1218 0.016 0.012 0.00957 0.1213 0.0468 0.016 0.012 0.00963 0.0466

0.1213 0.012 0.009 0.00967 0.1210 0.0466 0.012 0.009 0.00972 0.0464

0.1210 0.009 0.007 0.00976 0.1207 0.0464 0.009 0.007 0.00979 0.0463

0.1207 0.007 0.005 0.00982 0.1205 0.0463 0.007 0.005 0.00984 0.0462

0.1205 0.005 0.004 0.00986 0.1204 0.0462 0.005 0.004 0.00988 0.0462

0.1204 0.004 0.003 0.00990 0.1202 0.0462 0.004 0.003 0.00991 0.0461

0.1202 0.003 0.002 0.00992 0.1202 0.0461 0.003 0.002 0.00993 0.0461

0.1202 0.002 0.002 0.00994 0.1201 0.0461 0.002 0.002 0.00995 0.0461

0.1201 0.002 0.001 0.00996 0.1200 0.0461 0.002 0.001 0.00996 0.0461

0.1200 0.001 0.001 0.00997 0.1200 0.0461 0.001 0.001 0.00997 0.0461

0.1200 0.001 0.001 0.00998 0.1200 0.0461 0.001 0.001 0.00998 0.0460

to 0.0001, a tolerance factor) to reach a value of 0.1202, thus greatly increasing sensitivity
while ensuring that the false positive rate is kept within user-defined bounds. A similar be-
havior is observed for the low variance case, although the reduction in the ε value at 0.045
is not so drastic in absolute terms. As expected, the ε values at convergence are very much
different from each other, as the determination of ε is dominated by the variance term, as
shown in Eq. (12).

Appendix 4: Proof of Theorem 5

In the first test (1) on |μ2 − μ1| on B1, B2 boundary, the false positive error resulting from
a cut is δ′ = δ. In the second test (2), there are three cases to consider.

Case (1) corresponds to the case when no cut was made on the B1, B2 boundary. This case
does not contribute to a false positive error rate and hence can be ignored.

Case (2) arises when a cut was made on the B1, B2 boundary and when |μ1+μ2
2 − μ3| >

|μ3 −μ2|. It can be seen that Case (2) does not contribute to the false positive rate as the cut
made on the B1, B2 boundary has ensured that a reduction in the mean difference |μ3 − μ2|

292 Mach Learn (2014) 97:259–293

between the two samples used in the second hypothesis test. This is due to the fact that
|μ1+μ2

2 − μ3| > |μ3 − μ2|.
We now consider Case (3) which corresponds to the situation where a cut was made on

the B1, B2 boundary and |μ1+μ2
2 − μ3| < |μ3 − μ2|. This case increases the false positive

rate. We now estimate the degree of increase by enumerating the fraction of all possible
scenarios possible with the arrival of 3 blocks in the stream.

With the arrival of 3 blocks there are a total of 6 possible orderings for μ1, μ2 and μ3.
These orderings are (in ascending order of value): (μ1,μ2,μ3), (μ1,μ3,μ2), (μ2,μ1,μ3),
(μ2,μ3,μ1), (μ3,μ1,μ2), (μ3,μ2,μ1). Out of these exactly half (3 out of 6) cause an
increase of |μ3 − μ2| over |μ1+μ2

2 − μ3|, and thus contribute to the increase in the false
positive rate.

With an assumption of uniformity (equal priors in the general case) of the probability
of occurrence of these 6 triples we can infer that the false positive error δ in test (1) has
contributed an amount δ

2 to the false positive error in test (2), thus giving an overall false
positive error of δ + δ

2 and a correction factor CF(1) of 2
3 to be applied.

Generalizing this situation to test (3) we have an overall false positive error at this test of

δ + δ+ δ
2

2 = δ + δ
2 + δ

4 and a correction factor CF(2) of 4
7 which is δ

1
CF(1)

+ 1
4

. Thus, in general

after n hypothesis tests the false positive error is: δ + δ
2 + δ

4 + · · · + δ

2n−1 . and the CF(t) to
be applied is:

CF(n) = 1
1

CF(n−1)
+ 1

2n−1

(28)

which proves the theorem.
We observe that the correction factor computed above is much less conservative than the

Bonferroni correction and converges to 1
2 for large values of n.

References

Aggarwal, C. C., Han, J., Wang, J., & Yu, P. S. (2003). A framework for clustering evolving data streams. In
VLDB endowment, VLDB ’03: Vol. 29. Proceedings of the 29th international conference on very large
data bases (pp. 81–92).

Audibert, J. Y., Munos, R., & Szepesvári, C. (2007). Tuning bandit algorithms in stochastic environments. In
Proceedings of the 18th international conference on algorithmic learning theory, ALT’07 (pp. 150–165).
Berlin, Heidelberg: Springer.

Basseville, M., & Nikiforov, I. V. (1993). Detection of abrupt changes: theory and application. Upper Saddle
River: Prentice-Hall.

Bernstein, S. N. (1946). The theory of probabilities. Moscow, Leningrad: Gostekhizdat.
Bifet, A., & Gavaldà, R. (2007). Learning from time-changing data with adaptive windowing. In Proceedings

of the seventh SIAM international conference on data mining. Philadelphia: SIAM.
Bifet, A., & Gavaldà, R. (2009). Adaptive learning from evolving data streams. In Lecture notes in com-

puter science: Vol. 5772. Advances in intelligent data analysis VIII (pp. 249–260). Berlin, Heidelberg:
Springer.

Bifet, A., Holmes, G., Kirkby, R., & Pfahringer, B. (2010). MOA: massive online analysis. Journal of Ma-
chine Learning Research, 11, 1601–1604.

Borne, K. D. (2007). A machine learning classification broker for petascale mining of large-scale astronomy
sky survey databases. In Next generation of data mining and cyber-enabled discovery for innovation
(NGDM07). Baltimore: National Science Foundation.

Das, K., Sug, K. B., Giannella, C., & Kargupta, H. (2009). Scalable distributed change detection from as-
tronomy data streams using local, asynchronous eigen monitoring algorithms. In SIAM international
conference on data mining (SDM’09), Nevada (pp. 156–245). Philadelphia: SIAM.

Mach Learn (2014) 97:259–293 293

Gama, J. (2010). Knowledge discovery from data streams (data mining and knowledge discovery series).
Chapman and Hall/CRC data mining and knowledge discovery series. Minneapolis: CRC Press.

Gama, J., Medas, P., Castillo, G., & Rodrigues, P. P. (2004). Learning with drift detection. In Lecture notes
in computer science: Vol. 3171. Proceedings of the 17th Brazilian symposium on artificial intelligence
(Advances in artificial intelligence—SBIA 2004) (pp. 286–295). Berlin: Springer.

Ho, S. S. (2005). A martingale framework for concept change detection in time-varying data streams. In
Proceedings of the 22nd international conference on machine learning, ICML ’05 (pp. 321–327). New
York: ACM.

Hoeglinger, S., & Pears, R. (2007). Use of Hoeffding trees in concept based data stream mining. In Third
international conference on information and automation for sustainability, ICIAFS 2007 (pp. 57–62).
New York: IEEE Press.

Hoeglinger, S., Pears, R., & Koh, Y. S. (2009). CBDT: a concept based approach to data stream mining. In
Proceedings of the 13th Pacific-Asia conference on advances in knowledge discovery and data mining,
PAKDD ’09 (pp. 1006–1012). Berlin, Heidelberg: Springer.

Hulten, G., Spencer, L., & Domingos, P. (2001). Mining time-changing data streams. In Proceedings of the
seventh ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’01,
(pp. 97–106). New York: ACM.

Jose, M. B., Campo-Ávila, J. D., Fidalgo, R., Bifet, A., Gavaldà, R., & Morales-bueno, R. (2006). Early drift
detection method. In Proceedings of the 4th ECML PKDD int. workshop on knowledge discovery from
data streams, Berlin (pp. 77–86).

Kifer, D., Ben-David, S., & Gehrke, J. (2004). Detecting change in data streams. In Proceedings of the
thirtieth international conference on very large data bases, VLDB endowment, VLDB ’04 (Vol. 30, pp.
180–191).

Klinkenberg, R., & Joachims, T. (2000). Detecting concept drift with support vector machines. In Proceed-
ings of the seventeenth international conference on machine learning, ICML ’00 (pp. 487–494). San
Francisco: Morgan Kaufmann.

Kuncheva, L. I. (2013). Change detection in streaming multivariate data using likelihood detectors. IEEE
Transactions on Knowledge and Data Engineering, 25(5), 1175–1180.

Maurer, A., & Pontil, M. (2009). Empirical Bernstein bounds and sample-variance penalization. In The 22nd
conference on learning theory, COLT 2009.

Mnih, V., Szepesvári, C., & Audibert, J. Y. (2008). Empirical Bernstein stopping. In Proceedings of the 25th
international conference on machine learning, ICML ’08 (pp. 672–679). New York: ACM.

Nishida, K., & Yamauchi, K. (2007). Detecting concept drift using statistical testing. In Proceedings of the
10th international conference on discovery science, DS’07 (pp. 264–269). Berlin, Heidelberg: Springer.

Page, E. S. (1954). Continuous inspection schemes. Biometrika, 41(1/2), 100–115.
Ross, G. J., Adams, N. M., Tasoulis, D. K., & Hand, D. J. (2012). Exponentially weighted moving average

charts for detecting concept drift. Pattern Recognition Letters, 33(2), 191–198.
Sakthithasan, S., Pears, R., & Koh, Y. S. (2013). One pass concept change detection for data streams. In

Lecture notes in computer science: Vol. 7819. Advances in knowledge discovery and data mining (pp.
461–472). Berlin, Heidelberg: Springer.

Sebastiao, R., & Gama, J. (2009). A study on change detection methods. In Proceedings of the 14th Por-
tuguese conference on artificial intelligence, EPIA 2009 (pp. 353–364). Berlin, Heidelberg: Springer.

Shivaswamy, P. K., & Jebara, T. (2010). Empirical Bernstein boosting. In JMLR.org, JMLR proceed-
ings: Vol. 9. Proceedings of the 13th international conference on artificial intelligence and statistics
(AISTATS) (pp. 733–740).

Vitter, J. S. (1985). Random sampling with a reservoir. ACM Transactions on Mathematical Software, 11(1),
37–57.

Widiputra, H., Pears, R., & Kasabov, N. (2011). Multiple time-series prediction through multiple time-series
relationships profiling and clustered recurring trends. In Lecture Notes in Computer Science: Vol. 6635.
Advances in knowledge discovery and data mining (pp. 161–172). Berlin, Heidelberg: Springer.

	Detecting concept change in dynamic data streams
	Abstract
	Introduction
	Research contributions
	Paper structure

	Related work
	Problem deﬁnition
	Change detection problem deﬁnition

	The SeqDrift2 change detector
	Memory management within SeqDrift2
	Use of Bernstein Bound
	Cut point thresholds for SeqDrift1 and SeqDrift2
	Optimizing SeqDrift2 detection delay
	Convergence of Algorithm 1
	Motivating example

	Driver routines for SeqDrift2
	Time complexity for SeqDrift2
	Compensating for repeated hypothesis testing in SeqDrift1 and SeqDrift2

	Space, time and detection delay expectations
	Empirical study
	False positive rate assessment
	Experimental setup
	Comparison of SeqDrift1, SeqDrift2 and ADWIN
	Overall assessment of false positive performance
	Robustness to noisy data
	Flow-on effect of abrupt change on false positive rate

	Detection delays and false negative rate
	Effects of reservoir sampling
	Effects of detection thresholds and window management strategies
	Integration with adaptive Hoeffding tree classiﬁer

	Discussion, conclusion and future work
	Appendix 1: Proof of Theorem 3
	Appendix 2: Proof of Lemma 1
	Appendix 3: Proof of Theorem 4
	Appendix 4: Proof of Theorem 5
	References

