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Abstract This paper describes several collapsed Bayesian methods, which work by first
marginalizing out transition probabilities, for inferring several kinds of probabilistic finite
automata. The methods include collapsed Gibbs sampling (CGS) and collapsed variational
Bayes, as well as two new methods. Their targets range over general probabilistic finite
automata, hidden Markov models, probabilistic deterministic finite automata, and variable-
length grams. We implement and compare these algorithms over the data sets from the Prob-
abilistic Automata Learning Competition (PAutomaC), which are generated by various types
of automata. We report that the CGS-based algorithm designed to target general probabilistic
finite automata performed the best for any types of data.

Keywords Collapsed Gibbs sampling · Variational Bayesian methods · State-merging
algorithms

1 Introduction

Since Hidden Markov Models (HMMs) are implemented in many applications, many in-
ference methods for them have thus far been proposed and refined. It is difficult to find
transition probabilities that maximize the generation probability of training samples. It is
also intractable to marginalize out state transition probabilities and simultaneously sum
them with respect to hidden variables. Therefore, some approximation and/or searching-
local-optima technique is required. The Expectation Maximization (EM) algorithm, called
Baum-Welch, is the most well-known classic method that is used as a statistical method for
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the HMM learning. Recently, beyond EM, many statistical approaches have been developed
and applied for inferring HMMs, such as Collapsed Gibbs Sampling (CGS) (Goldwater and
Griffiths 2007), Variational Bayes (VB) (Beal 2003), and spectral methods (Hsu et al. 2009).
CGS is a special form of Gibbs sampling (Bishop 2006), where only hidden variables are
sampled after transition probabilities are marginalized. VB approximates all parameters,
namely, transition probabilities and probabilities of hidden states, to be independent. CGS
is considered to be one of the best choices for the HMM inference as compared empirically
to EM and VB (Gao and Johnson 2008).

The recent Bayesian methods have also been applied to various probabilistic models.
For instance, Johnson et al. (2007) applied CGS to PCFGs in the Chomsky Normal Form.
Liang et al. (2007) applied VB inference for infinite PCFGs, where an infinite number of
nonterminal symbols and rules can be modeled by assuming that their priors are represented
by a Hierarchical Dirichlet Process (HDP) (Teh et al. 2006a). Pfau et al. (2010) applied the
Metropolis-Hastings algorithm (Bishop 2006) for Probabilistic Deterministic Infinite Au-
tomata (PDIAs), where graph structures of PDFAs are generated from a variant of HDP (Teh
2006). Their algorithm can be thought of as a method that samples PDFAs by iterating merg-
ing and splitting states randomly in the Bayesian manner.

For a probabilistic topic model called Latent Dirichlet Allocation (LDA), which is used
in natural language processing, Teh et al. (2006b) proposed a method called Collapsed Vari-
ational Bayes (CVB). They used a VB approximation after integrating out transition proba-
bilities, and showed that their method yielded a more accurate result than the standard VB
method. CVB has variables, each of which represents a probability that the automaton is
in a particular state at a certain time. These variables are assumed to be independent of
each other. We update these variables so as to minimize the KL-divergence between the
approximated and the true marginal probability. However, since it is still difficult to update
variables so as to minimize the KL-divergence exactly, a further approximation is applied to
each update. While Teh et al. (2006b) used the second order Taylor approximation when up-
dating the independent approximation of the probability of each hidden variable, Asuncion
et al. (2009) found that the zeroth order Taylor approximation (called CVB0) is empirically
sufficient to achieve good accuracy for LDAs.

In this paper, our targets for learning are the class of probabilistic finite automata (PFAs)
and their special cases. We call an inference method collapsed if the transition probabilities
of the PFAs are integrated out before some approximations or sampling methods are applied.
This paper introduces and describes several collapsed inference methods for PFAs and eval-
uates them. Moreover, we compare collapsed methods that target other subclasses of PFAs,
such as HMMs, PDFAs, and variable-length grams (VGrams). We say that a PFA is fully
connected if one can move from every state to every state using any symbol. In Sects. 2.1–
2.4, we discuss how existing techniques of CGS and CVB0 can be applied to the inference
of PFAs. We describe and compare the computational cost for CGS, CVB0, and CVB2.

In Sect. 2.5 and Sect. 3, we propose two different approaches, which are modifications
of CVB0 and CGS. In Sect. 2.5, we propose a variant of CVB0, which we call GCVB0, for
which a convergence property is guaranteed. The standard CVB0 does not have this nice
property, since it uses Taylor approximations when updating variables. We modify CVB0
to have the convergence property by defining a global function that approximates the KL-
divergence. Variables are updated using existing techniques, such as quasi-Newton methods.
In Sect. 3, we introduce a simple generative model for PFAs that are not fully connected,
for which a CGS algorithm is presented. In addition to the sequence of hidden states, graph
structures of PFAs are also sampled.
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Abe and Warmuth (1992) showed that PFAs are KL-PAC learnable from samples of size
polynomial in the number of the states and letters and the sample size using maximum-
likelihood estimation. They also showed that the actual computational cost must be pro-
hibitively expensive unless RP = NP. Kearns et al. (1994) showed that learning PDFAs
even over 2-letter alphabets is as hard as a problem for which no polynomial algorithm is
known. On the other hand, Clark and Thollard (2004) proposed an algorithm that PAC learns
PDFAs that satisfy μ-distinguishability in polynomial time from a polynomial amount of
data. Some elaborations of his algorithm have also been proposed (Castro and Gavaldà 2008;
Balle et al. 2013). On the other hand, no solid work has been done on the computational cost
of techniques generically called MCMC, including Gibbs sampling, which infer the correct
posterior distribution in the limit.

Our experimental results are presented in Sect. 4. We compare the inference methods
described in the preceding sections as well as other collapsed Bayesian methods for special
kinds of PDFAs, including HMMs, PDFAs, and VGrams. Experimental results for PAu-
tomaC data sets1 showed that CGS performed better than other methods in terms of accu-
racy. Although GCVB0 is guaranteed to converge to some local optimal point, and thus it
is clear at which point its iterations should be stopped, GCVB0 yielded results worse than
those of CVB0 and CGS.

PAutomaC data sets were generated by different types of PFAs, including HMMs. CGS-
HMM is a modification of our CGS algorithm for PFAs such that it targets HMMs. From the
comparison of CGS-PFA and CGS-HMM, it appears that CGS-PFA yields better scores than
does CGS-HMM, since CGS-HMM often fails to find appropriate emission probabilities η

and state transition probabilities θ that can factorize the transition probability ξ . We also
compared CGS-PFA with other collapsed methods for other models, which are actually
special cases of PFAs. However, CGS-PFA yields better scores than any of these methods.
Therefore, we conclude that CGS-PFA is empirically the best choice among the collapsed
methods described in this paper.

A drawback of CGS is its rather high computational cost. In Sect. 4.6, we measure em-
pirically the relation between the computational cost and accuracy of CGS and other classic
methods, including a state-merging method based on marginal probability. The computa-
tional costs of CGS and the state-merging method have a gap of one to three orders of mag-
nitude. The actual computational cost of CGS depends on the number of iterations where
variables are resampled. The sampling process should be repeated until the sampled distri-
bution converges. Our implementation set the iteration number to 20,000 for every problem,
which seems unnecessarily large for many problems. However, this number is in fact not
too large; we observed that 200 iterations, for example, are too few to make the empirical
distribution converge.

2 Collapsed Bayesian approaches for fully connected PFA

2.1 Probabilistic model for fully connected NFAs

A probabilistic finite automaton (PFA) is a nondeterministic finite automaton G in which
transition probabilities ξ are assigned. We call G the underlying automaton and the strings
accepted by G sentences. A PFA assigns a probability to each sentence according to ξ .
A PFA is seen as a machine that generates strings according to these transition probabilities.

1PAutomaC (http://ai.cs.umbc.edu/icgi2012/challenge/Pautomac/).

http://ai.cs.umbc.edu/icgi2012/challenge/Pautomac/
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We would like to infer a PFA from given sentences a1, . . . ,am generated by a PFA of our
learning target. For technical convenience, we introduce a special letter, 0, which represents
the end of sentences. We assume that the end marker 0 leads the machine to its unique initial
state 0 to prepare to generate a next sentence, and that the machine goes into the initial state
if and only if one sentence has been generated. This premise allows us to treat the given
sentences a1, . . . ,am as a single sentence a:

a = a10 . . .am0.

The probability that the PFA generates a sentence a = a1 . . . aT by passing states z =
z1 . . . zT +1 in this order is given as

Pr(a,z | ξ,G) =
∏

1≤t≤T

ξ(zt , at , zt+1), (1)

where each at is a letter, zt is a state, and ξ(i, a, j) is the probability assigned to the transition
rule that changes the state from i to j , emitting the letter a. We note that z contains one more
occurrence of 0 than a does. In particular, z1 = zT +1 = 0. We will concisely write ξiaj for
ξ(i, a, j) hereafter. As a probability, ξ must satisfy that 0 ≤ ξiaj ≤ 1 and

∑
a,j ξiaj = 1 for

all states i. Moreover, ξ must satisfy that for all i,

ξi0j = 0 for all j �= 0,

ξia0 = 0 for all a �= 0,

in accordance with the special roles of the end marker and the initial state.
Without loss of generality, in this section, we assume the underlying automaton G to be

a fully connected NFA. In a fully connected NFA, every letter a may induce transition from
every state i to every state j , except when a = 0 or j = 0. That is, ξiaj may have non-zero
value for every i, a(�= 0) and j (�= 0). Any PFAs whose underlying automata have sparse
edges, including DFAs as a special case, can be represented or at least well approximated
with the fully connected NFA by assigning 0 or a very small probability to some edges. We
will discuss another approach, which infers sparse PFAs, in Sect. 3. We fix the number of
states of G to be N + 1 and denote the states by natural numbers 0,1, . . . ,N . Let A be the
size of the letter alphabet including 0. In the sequel, we suppress G.

In addition, we assume that the conjugate prior of ξ is represented as

Pr(ξ) = 1

R(β)

∏

i,a �=0,j �=0

ξ
β−1
iaj ξ

Nβ−1
i00 , where R(β) =

(
Γ (β)N(A−1)Γ (Nβ)

Γ (NAβ)

)N+1

, (2)

where Γ is the gamma function, the extension of the factorial function for real numbers.
β(> 0) is called a hyperparameter of Pr(ξ), and is often chosen to be smaller than 1.

2.2 Feasible and unfeasible marginalization

It is known to be unfeasible to calculate Pr(a) = ∑
z

∫
ξ

Pr(a,z, ξ) based on the definition
of Pr(a,z | ξ) and Pr(ξ) given as Eqs. (1) and (2). The following table shows which combi-
nation of parameters a, z, and ξ makes it feasible or unfeasible to compute the joint and/or
conditional probability.

Pr(ξ,z) and Pr(a, ξ) can be calculated in a dynamic programming manner since Eq. (1)
has the form

∏
t ft (zt , at , zt+1). Pr(a,z) is calculated as
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Definition 1 (delta function)

δ

(
x1, . . . , xn

y1, . . . , yn

)
=

{
1 if xi = yi for all i,

0 otherwise.

Definition 2 (counting functions) C is a function mapping a,z to natural numbers defined
by

C(a,z)i =
∑

t

δ

(
zt

i

)
, C(a,z)iaj =

∑

t

δ

(
zt , at , zt+1

i, a, j

)
.

That is, C(a,z)i represents how many times the state i is visited and C(a,z)iaj is the
number of times that the machine changes the state from i to j with a. Understanding that
the arguments of C are a and z, let us write C instead of C(a,z). Using counting functions,
we can rewrite Eq. (1) as

Pr(a,z | ξ) =
∏

i

( ∏

a �=0,j �=0

ξ
Ciaj

iaj

)
ξ

Ci00
i00 . (3)

By integrating ξ out,

Pr(a,z) =
∫

Pr(a,z | ξ)Pr(ξ)dξ

=
∫ ∏

i

( ∏

a �=0,j �=0

ξ
Ciaj +β−1
iaj

)
ξ

Ci00+Nβ−1
i00 dξ

1

R(β)

=
∏

i

(
∏

a �=0,j �=0 Γ (Ciaj + β))Γ (Ci00 + Nβ)

Γ (Ci + NAβ)

1

R(β)
. (4)

However, it appears computationally hard to sum up Eq. (4) with all possible combinations
of a or z to obtain Pr(z) or Pr(a), respectively (Beal 2003).

It is often the case that inferring a PFA from a is a means of obtaining a probability
prediction of future sentences, although inferring a specific PFA is not the only way to fulfill
the latter purpose. Since we have fixed the underlying machine to be a fully connected NFA
with N states, the inference of a PFA is reduced to that of ξ . According to a Bayesian
approach, which this study uses, this amounts to estimating Pr(ξ |a). The probability of a
future sentence b is represented by Pr(b|a), on the other hand. Thus, the computation of
Pr(ξ |a) and Pr(b|a) is our central concern, which is, however, unfeasible. The difficulty
of computing Pr(ξ |a) and Pr(b|a) can be reduced to the infeasibility of the calculation of
Pr(a). Computing Pr(b|a) in general is obviously harder than computing Pr(a) = Pr(a|ε),
where ε denotes the empty sequence. One can compute Pr(a) using Pr(ξ |a) by Pr(a) =
Pr(ξ,a)/Pr(ξ |a), where Pr(ξ,a) can easily be obtained by dynamic programming.

Therefore, we necessarily have to use some approximation to achieve the above two pur-
poses. In the following sections, we use two approximations obtained by random algorithms,
which are known as collapsed Gibbs sampling (CGS) and collapsed variational Bayesian
method (CVB). We also give a simple variant method of CVB that converges to a local op-
timal point, whereas, in general, CVB has no guarantee of convergence to a local optimal
point.
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2.3 Collapsed Gibbs sampling for the inference of PFAs—CGS-PFA

For a sequence of variables x = x1, . . . , xT , let x¬t denote the sequence obtained from x
by removing xt , i.e., x¬t = x1 · · ·xt−1xt+1 · · ·xT . Gibbs sampling and variational Bayes are
approximation methods for a difficult-to-compute joint distribution Pr(x1, . . . , xk), where,
on the other hand, the conditional one, Pr(xt | x¬t ), for each t is easily obtained. Gibbs sam-
pling first arbitrarily initializes x(0) = x

(0)

1 . . . x
(0)
T , and then, repeats the following procedure

for k = 1,2, . . . , where x(k) is computed from x(k−1).

• For t = 1, . . . , T in this order, we sequentially sample x
(k)
t according to the probability

Pr(xt | x(k)

1 , . . . , x
(k)

t−1, x
(k−1)

t+1 , . . . , x
(k−1)
T ).

• We have obtained a sample x(k) = x
(k)

1 . . . x
(k)
T .

We refer to each repetition computing x(k) from x(k−1) as a single iteration. Since Gibbs
sampling is a Markov chain Monte Carlo method, x, as the random variable, converges
to Pr(x) in the limit, whereas greedy algorithms, such as the Baum-Welch and variational
Bayesian methods, may converge to a local optimal point. In an actual implementation, we
usually discard many samples in order to make the sample distribution closer to the true
probability distribution Pr(x). First, we discard samples x(k) from the early iterations for
k = 1, . . . , b, which are called the burn-in periods, since they strongly depend on the initial
value. Second, we take values periodically; for example, we use only every 100th value after
the burn-in period to make the respective samples (almost) independent of each other. For
details of Gibbs sampling, see, e.g., Chap. 11 of Bishop (2006).

Our approach for obtaining an approximation of Pr(b|a) is based on the formula

Pr(b|a) =
∫

Pr(b|ξ)Pr(ξ |a)dξ. (5)

Instead of integrating Pr(b|ξ)Pr(ξ |a) with respect to ξ , we obtain many concrete values
ξ̃ (1), . . . , ξ̃ (S) of ξ that are “plausible” in terms of a, and approximate the target probability
by Rao-Blackwellization:

Pr(b|a) =
∫

Pr(b|ξ)Pr(ξ |a)dξ ≈ 1

S

S∑

s=1

Pr
(
b|̃ξ (s)

)
. (6)

The computation of Pr(b|̃ξ (s)) is trivial if the value ξ̃ (s) is obtained. Following Teh et al.
(2006b) and others, we first collect different values z(1), . . . ,z(S) by Gibbs sampling. While
z and ξ are dependent, marginalizing out ξ beforehand allows us to treat z only. This tech-
nique is called Collapsed Gibbs Sampling (CGS), and we call our particular algorithm that
is applied to PFAs CGS-PFA. We then determine values ξ̃ (1), . . . , ξ̃ (S) simply as the expec-
tation2

ξ̃
(s)
iaj = E

[
ξiaj

∣∣ a,z(s)
] = Ciaj + β

Ci + ANβ
.

Algorithm 1 describes our inference method CGS-PFA.

2It would be possible to collect values ξ̃ (s,1), . . . , ξ̃ (s,Ss ) again by Gibbs sampling for each z(s) instead of

taking the expectation ξ̃ (s); however, this alternative is too computationally expensive.
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Algorithm 1: CGS-PFA

Input : a, N , BurnInTime, SamplingNum, Period
Output: ξ̃ (1), · · · , ξ̃ (SamplingNum)

1 Initialize z randomly (if at = 0, zt is fixed to 0.);
2 foreach t ∈ [0,BurnInTime] do
3 SingleIteration();
4 end
5 foreach s ∈ [1,SamplingNum] do
6 foreach t ∈ [1,Period] do
7 SingleIteration();
8 end

9 Output ξ̃ (s) defined by ξ̃
(s)
iaj = Ciaj +β

Ci+ANβ
for all i, a, j ;

10 end
11 ;
12 SingleIteration(){
13 foreach t ∈ [0, T ] do
14 if at �= 0 then
15 Let zt = k, where k is randomly chosen by the probability

Pr(zt = k | a,z¬t ) = g
(t)
k∑
i g

(t)
i

, where g
(t)
k is given by Eq. (9);

16 end
17 end
18 }

The key of CGS-PFA is the computation of Pr(zt = k | a,z¬t ) (Line 15), whose com-
putational cost is, in fact, very low. Observe that the computation of Pr(zt = k | a,z¬t ) is
reduced to that of Pr(zt = i,z¬t ,a) for each i by

Pr
(
zt = k | a,z¬t

) = Pr(zt = k,z¬t ,a)∑
i Pr(zt = i,z¬t ,a)

.

The probability Pr(zt = i,z¬t ,a) can be calculated according to Eq. (4). Updating zt affects
only a limited number of counters Ci and Ciaj , each of which will be changed by at most
2. The other factors remain unchanged. Due to the nice property of the gamma function,
Γ (x) = (x − 1)Γ (x − 1), updating Eq. (4) can be done in constant time. Therefore, our
algorithm runs efficiently enough. In fact, we do not compute the value Pr(zt = i,z¬t ,a)

for each i. As we discuss in detail below, we compute g
(t)
i such that Pr(zt = k | a,z¬t ) =

g
(t)
k /

∑
i g

(t)
i .

Let Czt=k be the counting function, where zt in z is assumed to take the state k. That is,

Czt=k
i = C¬t

i + δ

(
k

i

)
,

Czt=k
iaj = C¬t

iaj + δ

(
k, at , zt+1

i, a, j

)
+ δ

(
zt−1, at−1, k

i, a, j

)
,
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where

C¬t
i = Ci − δ

(
zt

i

)
,

C¬t
iaj = Ciaj − δ

(
zt−1, at−1, zt

i, a, j

)
− δ

(
zt , at , zt+1

i, a, j

)
.

Let us define a number gk to satisfy the equation

Pr(zt = k,z¬t ,a) =
∏

i

(
∏

a �=0,j �=0 Γ (Czt=k
iaj + β))Γ (Czt=k

i00 + Nβ)

Γ (Czt=k
i + NAβ)

1

R(β)
(by Eq. (4))

= g
(t)
k

∏

i

(
∏

a �=0,j �=0 Γ (C¬t
iaj + β))Γ (C¬t

i00 + Nβ)

Γ (C¬t
i + NAβ)

1

R(β)
. (7)

It should be noted that all the factors, except g
(t)
k in Eq. (7), are independent of k, and hence,

we have

Pr
(
zt = k | a,z¬t

) = g
(t)
k

/∑

i

g
(t)
i . (8)

Thus, it is sufficient to calculate gi for every i. In fact, g
(t)
i in Eq. (7) has a simple form as

seen below. The differences between Czt=k and C¬t are summarized as follows.

Czt=k
i = C¬t

i + δ

(
i

k

)
.

• If (i, a, j) = (k, at , zt+1) �= (zt−1, at−1, k),

Czt=k
iaj = C¬t

iaj + δ

(
k, at , zt+1

i, a, j

)
+ δ

(
zt−1, at−1, k

i, a, j

)
= C¬t

iaj + 1 = C¬t
kat zt+1

+ 1.

• If (i, a, j) = (zt−1, at−1, k) �= (k, at , zt+1),

Czt=k
iaj = C¬t

iaj + δ

(
k, at , zt+1

i, a, j

)
+ δ

(
zt−1, at−1, k

i, a, j

)
= C¬t

iaj + 1 = C¬t
zt−1at−1k + 1.

• If (i, a, j) = (zt−1, at−1, k) = (k, at , zt+1),

Czt=k
iaj = C¬t

iaj + δ

(
k, at , zt+1

i, a, j

)
+ δ

(
zt−1, at−1, k

i, a, j

)
= C¬t

iaj + 2 = C¬t
zt−1at−1k + 2.

Since Γ (x) = (x − 1)Γ (x − 1), we have

if at−1 = 0, g
(t)
k = δ

(
k

0

)
,

if at−1 �= 0 and at = 0, g
(t)
k = (C¬t

k00 + Nβ)(C¬t
zt−1at−1k + β)

(C¬t
k + NAβ)

,
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if at−1 �= 0 and at �= 0, g
(t)
k =

(C¬t
kat zt+1

+ β)

(
C¬t

zt−1at−1k + δ

(
zt−1, at−1, k

k, at , zt+1

)
+ β

)

(C¬t
k + NAβ)

.

(9)

Since one can calculate gk in constant time, the computational cost for a single iteration is
just O(NT ).

2.4 Collapsed variational Bayes approximations

Teh et al. (2006b) proposed an approximation method called Collapsed Variational Bayes
(CVB) for inferring a probabilistic topic model called Latent Dirichlet Allocation (LDA). In
this subsection, we explain how their approach can be applied to the inference of PFAs. In
a similar way to that described in Sect. 2.3, we first marginalize ξ out, so that the standard
technique of Variational Bayes is applicable to computing Pr(z|a). Thus, this approach is
called collapsed.

A Variational Bayes method approximates Pr(z|a) by a probability function q(z) such
that all zt in z are independent, i.e., the probability function q(z) satisfies that

q(z) =
∏

t

qt (zt ).

The probability function q is optimized so that the KL divergence from Pr(z|a)

DKL
(
q(z)‖Pr(z|a)

) = −
∑

z

q(z) log Pr(z|a) +
∑

z

q(z) logq(z)

will be minimum. From the optimum q , we let

ξ̃iaj = Eq

[
Ciaj + β

Ci + NAβ

]
≈ Eq [Ciaj ] + β

Eq [Ci] + NAβ
, (10)

based on which we obtain Pr(b|̃ξ). Since log Pr(z|a) = log Pr(z,a) − log Pr(a) and
log Pr(a) is constant with respect to q , minimizing the above KL divergence amounts to
minimizing

D(q) = −
∑

z

q(z) log Pr(z,a) +
∑

z

q(z) logq(z). (11)

The probability function q is optimized by updating qt (zt ) for each t ∈ {1, . . . , T + 1},
while all the other qs(zs) with s �= t are fixed. Let q¬t (z¬t ) = ∏

s �=t qs(zs). We note that the
expectation of a function f (z) with a probability function q is given as

Eq

[
f (z)

] =
∑

z

q(z)f (z)

by the independence assumption of q . Eq. (11) can be written as

D(q) = −Eq

[
log Pr(z,a)

] + Eq

[
logq(z)

]

= −Eq

[
log Pr

(
zt | z¬t ,a

)] + Eq

[
logqt (zt )

] + const. w.r.t. qt (zt )

=
∑

k

(−qt (k)ck + qt (k) logqt (k)
) + const.,
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where ck = Eq¬t [log Pr(zt = k | z¬t ,a)], which equals Eq [log Pr(zt = k | z¬t ,a)], since
Pr(zt = k | z¬t ,a) does not depend on qt .

From Eq. (8), we have ck = Eq [log(gk/
∑

i gi)] = Eq [log(gk)] − Eq [log(
∑

i gi)], where
gi is given by Eq. (9). By Lagrange’s multiplier, qt (1), . . . , qt (N), which minimize D(q),
are given as

qt (k) = exp(ck)∑
i exp(ci)

= exp(Eq [log(gk)])∑
i exp(Eq [log(gi)]) . (12)

Hence, it is enough to calculate Eq [log(gk)]. If qt is updated accurately by Eq. (12), D(q)

monotonically decreases, and consequently, q converges to some local minimal point, since
we always have D(q) ≥ log Pr(a). This is the basic idea of CVB. The calculation is, how-
ever, not easy.

For two functions f and g such that the value of Eq [f (g(z))] is difficult but Eq [g(z)]
is easy to calculate, Teh et al. (2006b) proposed approximating Eq [f (g(z))] by the Taylor
expansion around Eq [g(z)]. The Taylor expansion of f (g(z)) around Eq [g(z)] is given as

Eq

[
f

(
g(z)

)] = f
(
Eq

[
g(z)

]) + 0 + f ′′(Eq

[
g(z)

])
Vq

[
g(z)

] + · · · , (13)

where V denotes the variation. The zeroth and first order Taylor approximations result in
the identical formula f (Eq [g(z)]). The CVB method with the zeroth or first-order approx-
imation is called CVB0 (Asuncion et al. 2009).3 By using the 0th order approximation
Eq [log(gk)], from Eq. (9), if at−1 �= 0 and at �= 0, we have

Eq

[
log(gk)

] = Eq

[
log

(
C¬t

kat zt+1
+ β

)] + Eq

[
log

(
C¬t

zt−1at−1k + δ

(
k, at , zt+1

zt−1, at−1, k

)
+ β

)]

− Eq

[
log

(
C¬t

k + NAβ
)]

≈ log
(
Eq

[
C¬t

kat zt+1

] + β
) + log

(
Eq

[
C¬t

zt−1at−1k + δ

(
k, at , zt+1

zt−1, at−1, k

)]
+ β

)

− log
(
Eq [C¬t

k ] + NAβ
)
. (14)

Eq [log(gk)] can be calculated similarly for the other cases where at−1 = 0 and where at−1 �=
0 and at = 0.

The remaining task is to calculate the three terms on the right hand side of Eq. (14) for
PFAs. The existing methods cannot be applied to this task, and therefore, we introduce our
own approach.

2.4.1 Treatments of expectations over q

Definition 3 Let x1, x2, y1, y2 ∈ Z ∪H , where Z is the set of random variables z1, . . . , zT +1

and H is the set of states. We write (x1, y1) ∼ (x2, y2) iff

{x1, y1} ∩ {x2, y2} ∩ Z �= ∅.

3Whereas Teh et al.’s original work uses the second-order approximation (let us call it CVB2), we use CVB0,
since the computational cost of CVB2 for PFA is N times more than that of CVB0 (see Appendix), and it has
been reported that CVB0 often outperforms CVB2 with respect to accuracy for Latent Dirichlet Allocation
(LDA) (Asuncion et al. 2009).
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That is, if (x1, y1) and (x2, y2) have a common element, which is zk for some k, we have
(x1, y1) ∼ (x2, y2). The relation ∼ is obviously symmetric.

Let x1, . . . , xn, y1, . . . , yn ∈ Z ∪ H and R = {(x1, y1), . . . , (xn, yn)}. We define δ(R),
Z(R) and H(R) as

• δ(R) = δ
( x1,...,xn

y1,...,yn

)
,

• Z(R) = {x1, . . . , xn, y1, . . . , yn} ∩ Z,
• H(R) = {x1, . . . , xn, y1, . . . , yn} ∩ H .

Lemma 1 Let ∼R be the equivalence closure of ∼ in R, which partitions R into disjoint
subsets R1, . . . ,Rm. We then have

Eq

[
δ(R)

] = Eq

[
δ(R1)

] · · ·Eq

[
δ(Rm)

]

and for each h,

Eq

[
δ(Rh)

] =
∑

i

( ∏

zt∈Z(Rh)

qt (i)
∏

k∈H(Rh)

δ

(
i

k

))
.

The proof is straightforward. It should be noted that if a function f of z depends on n

elements of z only, i.e., f (z) = f0(zi1 , . . . , zin ) for some f0, the expectation of f over q is
calculated by the summation of Nn terms:

Eq

[
f (z)

] =
∑

zi1 ,...,zin

qi1(zi1) · · ·qin(zin )f0(zi1 , . . . , zin ).

First, for all Rh and Rk with h �= k, Z(Rh) ∩ Z(Rk) = ∅ from the definition of ∼R . Thus,
δ(Rh) and δ(Rk) are independent for each h and k. Second, for each Rh, δ(Rh) = 1 iff all
elements of H(Rh) and the values of all elements of Z(Rh) are identical to some element i

in H . This proves Lemma 1 holds.
Lemma 1 can easily be generalized to the case where R contains pairs of letters. In

that case, respective pairs of letters (a, b) form a singleton equivalence class Ra,b , where
Eq [δ(Ra,b)] = δ

( a

b

)
.

We are now ready to calculate the approximation of Eq [log(gk)] in Eq. (14). Let us con-
sider Eq [C¬t

kat zt+1
], for example. By definition

Eq

[
C¬t

kat zt+1

] =
∑

s �=t,t−1

Eq

[
δ

(
zs, as, zs+1

k, at , zt+1

)]
.

For s �= t − 1, t, t + 1, we have zt+1 �= zs, zs+1. Lemma 1 implies

Eq

[
δ

(
zs, as, zs+1

k, at , zt+1

)]
= qs(k)δ

(
as

at

)(∑

i

qs+1(i)qt+1(i)

)
.

For s = t + 1, we have (zs, k) ∼ (zs+1, zt+1). Thus, Lemma 1 implies

Eq

[
δ

(
zs, as, zs+1

k, at , zt+1

)]
= Eq

[
δ

(
zt+1, at+1, zt+2

k, at , zt+1

)]
= qt+1(k)qt+2(k)δ

(
at

at+1

)
.
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Therefore, we obtain

Eq

[
C¬t

kat zt+1

] =
∑

s �=t,t−1,t+1

qs(k)δ

(
as

at

)(∑

i

qs+1(i)qt+1(i)

)
+ qt+1(k)qt+2(k)δ

(
at

at+1

)
.

Similar calculations give

Eq

[
C¬t

k

] =
∑

s �=t

qs(k),

Eq

[
C¬t

k00

] =
∑

s �=t,t−1

Eq

[
δ

(
zs, as, zs+1

k, 0, 0

)]

=
∑

s �=t,t−1

qs(k)qs+1(0)δ

(
as

0

)

Eq

[
C¬t

zt−1at−1k

] =
∑

s �=t,t−1

Eq

[
δ

(
zs, as, zs+1

zt−1, at−1, k

)]

=
∑

s �=t,t−1,t−2

(∑

i

qs(i)qt−1(i)

)
δ

(
as

at−1

)
qs+1(k)

+ qt−2(k)qt−1(k)δ

(
at−2

at−1

)
,

Eq

[
δ

(
k, at , zt+1

zt−1, at−1, k

)]
= qt−1(k)δ

(
at

at−1

)
qt+1(k).

Using these, exp(Eq [loggk]) is approximated as follows. For the case where at−1 �= 0 and
at = 0,

exp
(
Eq [loggk]

)

≈
(∑

s �=t

qs(k) + NAβ

)−1( ∑

s �=t,t−1

qs(k)qs+1(0)δ

(
as

0

)
+ Nβ

)

×
( ∑

s �=t,t−1,t−2

qs+1(k)
∑

i

qs(i)qt−1(i)δ

(
as

at−1

)
+ qt−2(k)qt−1(k)δ

(
at−2

at−1

)
+ β

)
;

(15)

for at−1 �= 0 and at �= 0,

exp
(
Eq [loggk]

)

≈
(∑

s �=t

qs(k) + NAβ

)−1( ∑

s �=t,t−1,t+1

qs(k)
∑

i

qs+1(i)qt+1(i)δ

(
as

at

)

+ qt+1(k)qt+2(k)δ

(
at

at+1

)
+ β

)
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×
( ∑

s �=t,t−1,t−2

qs+1(k)
∑

i

qs(i)qt−1(i)δ

(
as

at−1

)

+ qt−2(k)qt−1(k)δ

(
at−2

at−1

)
+ qt−1(k)qt+1(k)δ

(
at

at−1

)
+ β

)
; (16)

if at−1 = 0, we have gk = δ
(

k

0

)
.

A naive calculation of Eqs. (15) and (16) takes O(NT ) steps, but in fact one can
compute these values in O(N) by maintaining the values of Eq [Ck] and Eq [Cjak]. To
calculate

∑
s �=t qs(k), for example, it is not necessary to sum up all the T terms qs(k)

every time, since
∑

s �=t qs(k) = Eq [C¬t
k ] = Eq [Ck] − qt (k), where Eq [Ck] is updated by

Eq [Ck] − qold
t (k) + qnew

t (k), which takes constant time. Noting that updating Eq [Cjak] also
takes constant time and

∑

s �=t,t−1,t−2

qs+1(k)
∑

i

qs(i)qt−1(i)δ

(
as

at−1

)

=
∑

i

qt−1(i)
∑

s �=t,t−1,t−2

qs+1(k)qs(i)δ

(
as

at−1

)

=
∑

i

qt−1(i)

(
Eq [Ciat−1k] − qt−2(i)qt−1(k)δ

(
at−2

at−1

)
− qt−1(i)qt (k)

− qt (i)qt+1(k)δ

(
at

at−1

))
,

one can easily see that Eq. (15) can be calculated in O(N) time. A similar argument applies
to the calculation of Eq. (16). Therefore, it takes O(N2T ) steps to update qt (k) for all t

and k.

2.5 An approximation for the objective function D(q)

In this section, a new approximation approach for minimizing D(q) is discussed. The ap-
proach presented in the previous section is based on the updating formula (Eq. (12)), which
should lead q to a local minimum convergence point, provided that it is calculated precisely.
However, instead, we have used an approximation formula where we have no guarantee of
monotonicity or convergence. Moreover, the intractability of the calculation of D(q), even
from the approximated q , prevents us from determining a point where we should stop iter-
ating.

Instead, this subsection proposes an approximation D0(q) of D(q) as an objective func-
tion, to which we apply the CVB0 technique. Unlike for the approximation presented in the
previous section, it is ensured that the values of q will converge to a local optimal point, and
thus one can easily decide when the updating of the values of q should be terminated.

Now, let us return to the definition of D(q):

D(q) = −Eq

[
log

(
Pr(z,a)

)] + Eq

[
log

(
q(z)

)]
.

By Eq. (4), D(q) is rewritten as

D(q) = −
∑

i

( ∑

a �=0,j �=0

Eq

[
logΓ (Ciaj + β)

] + Eq

[
logΓ (Ci00 + Nβ)

]
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− Eq

[
logΓ (Ci + NAβ)

])

+ Eq

[
logR(β)

] + Eq

[
log

(
q(z)

)]
.

As Eq [log(Pr(z,a))] is not tractable, we approximated it by the 0th order Taylor approxi-
mation (Eq. (13)). By using Eq [logΓ (·)] ≈ logΓ (Eq [·]), we approximate D(q) by D0(q)

as

D0(q) = −
∑

i

( ∑

a �=0,j �=0

logΓ
(
Eq [Ciaj ] + β

) + logΓ
(
Eq [Ci00] + Nβ

) − logΓ
(
Eq [Ci]

+ NAβ
)) + Eq

[
log

(
q(z)

)] + const.,

where

Eq [Ci] =
∑

t

qt (i),

Eq [Ciaj ] =
∑

t

qt (i)qt+1(j)δ

(
at

a

)
,

Eq

[
log

(
q(z)

)] =
∑

t

∑

i

qt (i) logqt (i).

We call our method that minimizes D0(q) the zeroth-order global approximation of col-
lapsed variational Bayes (GCVB0). For at−1 �= 0, which implies k �= 0,

∂

∂qt (k)
D0(q)

= −
∑

i �=0

qt+1(i)ψ
(
Eq [Ckat i] + β

)(
1 − δ

(
at

0

))
−

∑

i

qt−1(i)ψ
(
Eq [Ciat−1k] + β

)

− qt+1(0)ψ
(
Eq [Ck00] + Nβ

)
δ

(
at

0

)
+ ψ

(
Eq [Ck] + NAβ

) + 1 + logqt (k), (17)

where ψ(x) = d
dx

logΓ (x). It should be noted that D0(q) is required to be minimized under
restrictions that are a result of the fact that qt (·) is a probability for each t . Optimization is
required to treat these restrictions, and therefore, we have to transform variables and/or use
numerical optimization methods appropriately. The probability function q has local minimal
points, as D0(q) is also lower-bounded. A theoretical analysis proves the convergence of q

to a local optimal point using appropriate numerical optimization methods, such as quasi-
Newton methods. The zeroth-order global approximation of collapsed variational Bayes
(GCVB0). We note that D0(q) has many local minimal points and most numerical optimizers
just converge to one of these points, as is usual for other methods, such as EM and CVB.
The computation time required for the calculation of the derivative in Eq. (17) is O(T N2),
while we calculate ψ O(N2A) times. Details of the implementation are given in Sect. 4.2.
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Fig. 1 A simple generative model for sparse NFAs

3 Using graph structures for inferring sparse PFAs

In the algorithms discussed in Sect. 2, if the smoothing parameter β is large, every tran-
sition rule tends to have somewhat equally large probabilities, unless the training data are
extremely large. Since a smaller β makes the prior of ξ tend to provide fewer edges with
higher probabilities, it makes Pr(a,z) tend to have a higher probability when many Ciaj s
equal 0. Hence, to infer sparse PFAs, we must set β to be very small. In this section, we give
another CGS-based approach, which we call CGS-SG, for sparse NFAs (Fig. 1). CGS-SG
samples sparse NFAs as the underlying graph structures of PFAs. We assume that an NFA
is generated such that transition rules are added one by one up to some number ν, while N

and A are given. We denote the edge from i to j labeled with a by (i, a, j). By identifying
an NFA G as a subset of the set of transition edges in the fully connected NFA, we write,
e.g., G ⊆ G′ if G′ has every edge of G.

Let νi be the number of outgoing edges from state i. We have 0 ≤ νi ≤ NA and ν =∑
i νi . The prior of an NFA G before samples a are drawn is given as

Pr(G) =
∑

ν

Pr(G|ν)Pr(ν).

We assume that edges are added uniformly, under which condition all combinations of ν

edges are equally likely to be generated. Thus, for each Gk that has k edges we have

Pr(Gk | ν = k) = 1

( AN2

k
)

and Pr(Gk | ν = h) = 0 if k �= h. Consequently, for each k in {0, . . . ,AN2 − 1}, we have

Pr(Gk+1 | ν = k + 1)

Pr(Gk | ν = k)
= k + 1

AN2 − k
,

for every sequence G0 ⊂ · · · ⊂ GAN2 , where the number of edges of Gk is k.
This type of distribution of G is different from distributions where each edge is indepen-

dently added. Whereas, in the latter case, ν has a binomial distribution and is centralized at
some point, in the former case, the distribution of ν is free to be given as a prior Pr(ν).

Suppose that a and z are given. By Gmin, we denote the minimal NFA, which consists of
just the edges necessary and sufficient to generate a and z. That is, Gmin = {(i, a, j) | Ciaj >

0}. We assume that the hyperparameter of Pr(ξ) is β for all edges, including transitions to
the end marker and states. By integrating out ξ from Pr(a,z | ξ)Pr(ξ |G) (cf. Eq. (3)), we
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Algorithm 2: A Single Iteration of Gibbs Sampling for Sparse NFAs

Data: a
input and output: G,z

1 Gmin ← the minimal NFA from a and z ;
2 foreach e = (i, a, j) ∈ Gfull − Gmin do
3 if e ∈ G then
4 G ← G − {e} ;
5 end
6 G ← G ∪ {e} with probability

Pr(G ∪ {e} | a,z)/(Pr(G | a,z) + Pr(G ∪ {e} | a,z));
7 end
8 foreach zt ∈ z do
9 foreach state k ∈ 0, · · · ,N do

10 Calculate gk(G);
11 end
12 zt ← k with probability gk(G)/

∑
i gi(G);

13 end

have

Pr(a,z | G) =
∏

i,a,j Γ (Ciaj + β)Γ (β)−1

∏
i Γ (Ci + νiβ)Γ (νiβ)−1

.

Thus, Pr(Gk,a,z), where Gmin ⊂ Gk is given by

Pr(Gk,a,z) = Pr(a,z | Gk)Pr(Gk) =
∏

i,a,j Γ (Ciaj + β)Γ (β)−1

∏
i Γ (Ci + νiβ)Γ (νiβ)−1

1

( AN2

k
)

Pr(ν = k). (18)

It should be noted that, if Gmin � Gk , Pr(Gk,a,z) = 0.
Let Gmin ⊆ Gk ⊂ Gk+1 and Gk ∪ {(i, a, j)} = Gk+1. From Eq. (18),

Pr(Gk+1 | a,z)

Pr(Gk | a,z)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Γ (Ci + νiβ)Γ (νiβ)−1

Γ (Ci + (νi + 1)β)Γ ((νi + 1)β)−1

k + 1

AN2 − k

Pr(ν = k + 1)

Pr(ν = k)

if Ci �= 0,

k + 1

AN2 − k

Pr(ν = k + 1)

Pr(ν = k)

otherwise.

Algorithm 2 shows a single iteration of CGS-SG, which samples z and G in an alternating
fashion. It should be noted that G is not equal to Gmin, but is likely to be larger than Gmin.

On line 10, gk is calculated as follows, similarly to Eqs. (7)–(9):

if either (zt−1, at−1, k) or (k, at , zt+1) is not in G,

gk = 0,

otherwise,
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gk =
(C¬t

kat zt+1
+ β)(C¬t

zt−1at−1k + δ(
zt−1, at−1, k

k, at , zt+1
) + β)

(C¬t
k + νi(G)β)

,

where νi(G) is νi of G.
We can locate the update of G (Line 1–7) inside the loop of updating zt for each t (after

Line 12) in order to sample G more frequently. Since the computational cost of updating G

is O(N2A), while that of updating zt for each t is O(N), the interval of updating G should
be more than O(NA).

We finally predict the generating probability of b by Eqs. (5) and (6), similarly to CGS-
PFA of Sect. 2.3.

4 Experiments

In all the experiments, we used data sets that were offered in the Probabilistic Automata
learning Competition (PAutomaC).4 There are 98 data sets, which were artificially generated
from various kinds of PFAs, including general PFAs, HMMs, and PDFAs. The 98 data sets
were provided in two phases, PAutomaC I and II, where the respective phases contained 50
and 48 data sets. We refer to the 26th problem of PAutomaC II as Prob. II-26, and so on.
Each data set is divided into a training set and a test set. Each test set is constructed such
that it contains no duplicate sentences. Competition participants were required to submit an
answer that assigns probabilities PrC(x) to the sentences x in each test set TS. The score of
the answer is calculated by a perplexity defined as

Score = 2−∑
x∈TS PrT (x) log PrC(x), (19)

where PrT (x) is the true probability assigned to the sentence x. Both PrT and PrC are nor-
malized. The power part of Eq. (19) approximates the KL-Divergence (+ constant w.r.t.
inferred distributions) between the inferred and the true distribution by limiting its domain
to the finite test set. For more details, see Verwer et al. (2012).

Each experiment in this section was run using computation nodes in a grid environment
called InTrigger,5 each node contained 2 CPUs (Xeon E5410/E5330, 2.33/2.3 GHz and 4
cores+HT) with a memory of 32/24 GB. Each execution was done in a single thread, and
therefore, essentially, we did not use parallel computation.

4.1 Experimental details of CGS

In our experiments, we sampled z for every 100 iterations between iterations 10, 100, and
20,000, and hence obtained S = 100 samples in total (Period = 100, BurnInTime = 10,000,
and SamplingNum = 100 in Algorithm 1). Furthermore, we ran the algorithm 10 times in-
dependently.6 Our final answer to each problem was calculated as the average of the proba-
bilities obtained from 1,000 samples. Figure 2 illustrates how we took sampling points in the
whole experiment. Figure 3 shows how the scores vary by changing the number of iterations
for Prob. I-19. The scores are for the answers calculated from the last 100 samples of 10

4PAutomaC (http://ai.cs.umbc.edu/icgi2012/challenge/Pautomac/).
5http://www.intrigger.jp/.
6These independent trials were executed in parallel using a parallel computing processing system, GXP Make
(http://www.logos.ic.i.u-tokyo.ac.jp/gxp/).

http://ai.cs.umbc.edu/icgi2012/challenge/Pautomac/
http://www.intrigger.jp/
http://www.logos.ic.i.u-tokyo.ac.jp/gxp/
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Fig. 2 We took 1,000 sampling points

Fig. 3 Scores by CGS with
different number of iterations for
Prob. I-19 with N = 10 and
β = 0.02

trials for a different number of iterations up to 20,000 (thus, the burn-in period was changed
while the sampling period was fixed). After the 12,000th iteration, the respective lines seem
flat and close to each other. Hence, in fact, 20,000 iterations seem to be sufficient. The black
bold line represents the score of the average answer of the 10 answers. Empirically, the score
obtained by the average of 10 answers is generally better than the average of their scores.

Before the actual training stage, we conducted two preparatory stages in which N and
β were determined. As Fig. 4 shows, the best choice for N depends on the problem. By
10-fold cross-validation (CV), we set N to be the value among {10,20, . . . ,90} that gives
the largest probability, where we used β = 0.5. After determining N , we selected the best
value amongst {0.01,0.02,0.05,0.1,0.2,0.5} for β , again by 10-fold CV. The effectiveness
of this process is illustrated in Fig. 5, where the circles indicate the scores achieved by the
chosen values. Figure 6 shows the average score ratios obtained using different values for
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Fig. 4 Variation in scores when
changing the number of states for
Prob. I-1, between 6, 26, and 49

Fig. 5 CGS scores with
different β

Fig. 6 Average score ratios
obtained by different values of β

β . Bars indexed with real values (0.01–0.5) show the average ratio obtained by using fixed
respective values. On average, the value of β chosen by CV gives better scores than any
other fixed β , and the scores are close to those achieved by the best choice. Figure 7 shows
the correlation between the true number and inferred number of states obtained by cross-
validation for PAutomaC II data sets. The correlation coefficient is 0.56 and the slope of the
regression line is 0.96.

For the respective problems in PAutomaC I, one iteration took approximately 0.2 to 2.0 s,
and thus, 400 to 40,000 s for 20,000 iterations. To determine the values of N and β among
nine and six candidates by 10-fold cross-validation, respectively, one must run CGS 150
times in total for every problem. Using these determined values, we ran CGS 10 times to
obtain the final answer.
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Fig. 7 Correlation between true
numbers of states and inferred
numbers using CV for
PAutomaC II data sets

4.2 Comparison of CVB0, GCVB0, and CGS for PFAs

In this section, we compare CVB0 and GCVB0 for the PFAs described in Sects. 2.4 and 2.5.
The numerical optimizer that we used for GCVBO was a limited-memory quasi-Newton
method called L-BFGS-B (Zhu et al. 1997).7 L-BFGS-B is able to take lower and upper
bounds for each variable and minimizes an objective function within the given bound.

In order to handle the constraints that
∑

k qt (k) = 1 for all t , we use variables xt (k)

such that qt (k) = xt (k)2/
∑

i xt (i)
2, instead of qt (k) themselves. The objective function of

GCVB0 is also modified as D0(q)+∑
t (1 −∑

k qt (k))2. By this transformation, each xt (k)

has only one constraint, xt (k) ≥ 0.8 The computational cost for calculating D0(q) and its
derivations is O(T N2), which is the same as for CVB0. The factor of L-BFGS-B for GCVB0
for convergence9 is set to 107.

Figure 8 shows the experimental results of CVB0 and GCVB0 for the data of PAu-
tomaC I-1, where we set N = 30 and β = 0.01. The thick and thin blue lines in Fig. 8(a)
represent the relation between the number of iterations and the value of D0(q) obtained
at each iteration by CVB0 and GCVB0, respectively. It should be noted that the value of
D0(q) is displayed for CVB0 only for the sake of comparison; it was not used in the algo-
rithm CVB0. GCVB0 converges after 680 iterations10 and is stopped. On the other hand,
one cannot determine when CVB0 has converged, since CVB0 has no global function that
can be minimized, and the change in qt (k) did not become smaller, at least during 2000
iterations.

Figure 8(b) shows the scores obtained by estimated transition probabilities ξ according
to Eq. (10). The final score of CVB0 (32.609 after 2,000 iterations) was better than that
of GCVB0 (32.651). Moreover, the score of CVB0 improved more quickly than that of
GCVB0. Both CVB0 and GCVB0 yielded worse scores than CGS (32.569) for the above
data and settings of N and β .

Figure 8(c) shows the number of edges of the obtained PFA. That is, the number of triples
(i, a, j) such that Eq [Ci,a,j ] > 1, which indicates the density of the network. As the value

7http://users.eecs.northwestern.edu/~nocedal/lbfgsb.html.
8We used xt (k) > 10−7 as the lower bound for L-BFGS-B in practice.
9The objective function f is considered converged when |f (xnew) − f (xold)|/|f (xold)| < 107 · EPSMCH,

where EPSMCH = 2.220 · 10−16 in our environment.
10We define a single iteration for GCVB0 as a computation of D0(q) and its derivation for a single point.

http://users.eecs.northwestern.edu/~nocedal/lbfgsb.html
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Fig. 8 Comparison of CVB0
and GCVB0 for PAutomaC I-1
data. (N = 30, β = 0.01) (Color
figure online)
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Table 1 Comparison of CGS for fully-connected PFAs and Algorithm 2 for a sparse PDFA (PAutomaC II-
26)

β

CGS-PFA CGS-SG

0.5 0.1 0.05 0.01 0.5 0.1 0.05 0.01

score − min. score 14.442 0.942 0.108 0.092 1.800 0.251 0.258 0.391

# of valid states i 91 91 88 82 91 91 91 91

# of valid pairs (i, a) 628 355 334 302 440 392 370 322

# of valid edges (i, a, j) 4775 728 511 346 1087 766 708 525

# of possible edges in G (49231) (49231) (49231) (49231) 1242 1535 2229 5733

inferred determinacy 7.60 2.05 1.53 1.15 2.47 1.95 1.91 1.63

of GCVB0 (117) is much smaller than that of CVB0 (1356), GCVB0 tends to give a more
compact PFA than does CVB0. We represent the value of D0(q)− Eq [q(z)] by thinner lines
in Fig. 8(a), where Eq [q(z)] shows the entropy. The thick and thin red lines (GCVB0) come
quite close to each other, which means that the approximation of D(q) with D0(q) tends to
bias qt (k) toward 0 or 1 as compared to the approximation technique of CVB0.

4.3 Effects of sampling underlying NFAs for sparse PFAs

An experimental result for CGS-SG, which was introduced in Sect. 3, is shown in this sec-
tion. In the experiment, we assumed that Pr(ν) was uniform, and G was periodically resam-
pled in the loop of updating zt in Algorithm 2. We implemented and executed CGS-PFA and
CGS-SG for Prob. II-26, which was generated by a sparse PDFA. The number of states was
set to 90 and the number of iterations to 40,000, where 201 points were taken as samples in
the latter half of all iterations.

Table 1 summarizes the results obtained by CGS-PFA and CGS-SG with different values
for β . Among them, CGS-PFA with the smallest β = 0.01 results in the best score. However,
with larger values for β , the performance of CGS-PFA decreases sharply. CGS-SG achieved
its best score when β = 0.1. For other values, CGS-SG performed rather stably as compared
to CGS-PFA. For the two largest β , 0.1 and 0.5, CGS-SG performed better than CGS-PFA.

We call a state i valid if Ci > 0, and similarly a pair (i, a) and an edge (i, a, j) are
said to be valid if Cia > 0 and Ciaj > 0, respectively. It should be noted that the minimal
NFA defined in Sect. 3 has all and only valid edges. CGS-PFA with β = 0.01 had the least
number, 346, of valid edges after the last iteration. The number 346 is close enough to
the true number, 299, of the edges of the generating PDFA11 of Prob. II-26. We define the
inferred determinacy to be the ratio of valid pairs to valid edges. The value should be 1
if the generating PDFA is correctly inferred. The inferred determinacy of CGS-PFA with
β = 0.01 is 1.15, which suggests that CGS-PFA with sufficiently small β can be effective
for inferring sparse PDFAs.

CGS-PFA outperformed the other methods when the hyperparameter β was set correctly;
nevertheless, with larger values for β , the performance of CGS-PFA decreased quite sharply
in terms of both the score and determinacy. On the other hand, CGS-SG worked stably with
different values of β .

11The number is obtained after transforming the PDFA to satisfy our postulation on the forms of PFAs
described in Sect. 2.1.
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Fig. 9 Number of edges as a function of iterations for Gmin and sampled G of Algorithm 2 for PAu-
tomaC II-26. β ∈ {0.5,0.1,0.05,0.01}

Figure 9 shows a further analysis of the underlying NFA sampled by CGS-SG. The bold
and thin lines show the numbers of the edges of the minimal NFAs Gmin and sampled NFAs
Gsampled, respectively, as functions of iterations. Different colors correspond to different val-
ues of β . The larger the β , the smaller the gap between the number of edges of Gmin and
Gsampled. If β is not small, while Gmins are bounded by sampled Gs and can be easily ex-
panded within sampled Gs, sampled Gs are expected to be not much larger than Gmin. Thus,
CGS-SG succeeded in inferring a relatively sparse PFA, even when β was not sufficiently
small.

4.4 Comparison of CGS for PFAs and CGS for HMMs

HMMs are a special type of PFAs. In HMMs, ξ is factorized as ξiaj = ηiaθij , where ηia

is the emission probability that letter a is emitted from state i, and θij represents the state
transition probability from state i to state j . It is known that every PFA has an equivalent
HMM, but in general the transformation from a PFA to an equivalent HMM squares the
number of states.

CGS-HMM, the CGS algorithm for inferring HMMs, is obtained in a way similar to
CGS-PFA:

Pr
HMM

(
zt = k | a,z¬t

) = gHMM
k∑
i g

HMM
i

,

where gHMM
k is given as follows.

if at−1 = 0, gHMM
k = δ

(
k

0

)
,

if at−1 �= 0 and at = 0, gHMM
k = (C¬t

kat
+ α)(C¬t

zt−1k + β)

(C¬t
k + Aα)

,
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if at−1 �= 0 and at �= 0, gHMM
k =

(C¬t
kat

+ α)(C¬t
kzt+1

+ β)(C¬t
zt−1k + δ(

zt−1, k

k, zt+1
) + β)

(C¬t
k + Aα)(C¬t

k − C¬t
k0 + Nβ)

.

α and β are hyperparameters for the prior of η and θ , respectively. From sampled z, CGS-
HMM calculates

ξ̃iaj = η̃ia θ̃ij = Cia + α

Ci + Aα

Cij + β

Ci + Nβ
, (20)

which is inserted in Eq. (6). For technical convenience, for the analysis of CGS-HMM, we
further introduce CGS-HMM(*), which calculates ξ̃ using

ξ̃iaj = Ciaj + β

Ci + NAβ

instead of Eq. (20).
We ran CGS-PFA and CGS-HMM together with CGS-HMM(*) for PAutomaC I

data sets, which are classified into three types of data according to the generative
model, namely, PFAs, PDFAs, and HMMs. Both hyperparameters α and β in CGS-PFA
and CGS-HMM were always set to 0.1. The number of states were searched among
{10,15,20,30,40,50,70,90}. For each problem, both CGS-PFA and CGS-HMM were
run 10 times, where each execution consisted of 10,000 iterations.

As Fig. 10 shows, CGS-HMM performed much worse than CGS-HMM, even when the
generating automata were HMMs. The fact that CGS-HMM performed worse than CGS-
HMM(*) suggests that CGS-HMM failed to estimate appropriate η and θ values, which
can factorize ξiaj as ηiaθij . Table 2 shows the differences in scores for the data sets that
are generated from HMMs. The second row (HMM− HMM(∗)) represents the score of CGS-
HMM minus the score of CGS-HMM(*), whose value is negative iff the above factorization
of ξ̃ gives a better result. The negative values of the third column (min{HMM,HMM(∗)} −
PFA) show that the scores of CGS-PFA are worse than those of both CGS-HMM and CGS-
HMM(*). As Table 2 shows, min{HMM,HMM(∗)} − PFA is negative (Nos. 37,39,40) only if
HMM − HMM(∗) is negative (Nos. 37, 38, 39, 40). This implies that the reason why CGS-
HMM performs worse than CGS-PFA is that it is difficult for CGS-HMM to estimate the η

and θ that can factorize ξ appropriately.
The numbers of states that give the best results for CGS-HMM are shown in the fourth

column of Table 2. As the figure shows, CGS-HMM tends to have a small number of states
when it gives a good result. Although the number of states may not be sufficient for CGS-
HMM, since HMMs with N2 states can represent any PFAs with N -states, it is preferable to
choose CGS-PFA for the following reasons. The computational cost of CGS-PFA is lower
than that of CGS-HMM with a larger number of states; and CGS-HMM has the difficulty
discussed in the previous paragraph.

4.5 Other collapsed methods for subclasses of PFAs

This section compares CGS-PFA with two other methods: (1) A state-merging algorithms
for PDFAs; and (2) an algorithm based on variable-length gram (VGram). As described
below, they maximize greedily a probability that is obtained by collapsing transition proba-
bilities.
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Fig. 10 Comparison of CGS-HMM, CGS-HMM(*) and CGS-PFA for respective generating classes

Table 2 Differences of scores among CGS-HMM, CGS-HMM(*) and CGS-PFA for the subset of PAu-
tomaC I data sets generated by HMMs

No. HMM− HMM(∗) min{HMM,HMM(∗)} − PFA N (HMM) N (PFA)

2 0.6062386 0.0484486 90 40

3 10.6874226 0.2430831 70 15

4 3.6180065 0.3853828 90 15

5 2.0407411 0.1371957 90 50

22 0.2159087 0.0474664 90 30

23 4.0745021 1.0769991 90 15

24 0.0216522 0.0243302 90 50

25 0.4575560 0.3295595 90 70

26 0.1223562 0.1214686 90 50

37 −0.0039283 −0.0006234 50 50

38 −0.0031304 0.0040898 30 40

39 −0.0013565 −0.0080017 50 50

40 −0.0000129 −0.0002220 30 70

41 0.0221770 0.0005653 70 90

4.5.1 Evidence-based state-merging algorithm for PDFAs (EStateMerge)

ALERGIA (Carrasco and Oncina 1994) is a well-known state-merging algorithm for infer-
ring PDFAs. It constructs a PDFA starting from the probabilistic prefix tree acceptor (PPTA)
for the training sample by merging states, the stochastic behaviors of which are similar.
A modification of ALERGIA, called MDI (Thollard et al. 2000; Thollard 2001), merges
states using another criterion: it merges states if this reduces the size of the automaton,
while the Kullback-Leibler divergence (KLD) with the initial PPTA is kept small. We pro-
pose another state-merging evidence-based algorithm, EStateMerge. The criterion adopted
by EStateMerge for merging states is based on the marginal probability obtained by collaps-
ing transition probabilities: We greedily merge states if this increases Pr(a|G), where G is
the DFA concerned. Since the model is assumed to be a PDFA, the sequence of states z is
uniquely determined by a. Hence, by marginalizing ξ similarly to Eq. (4), we obtain

Pr(a|G) = Pr(a,z) =
∫

Pr(a,z | ξ)Pr(ξ)dξ =
∏

i

∏
a Γ (Cia + β)

Γ (Ci + Aβ)

1

R(β)
, (21)



180 Mach Learn (2014) 96:155–188

where Cia = ∑
t δ

( zt , at

i, a

)
and R(β) = (Γ (β)Γ (Aβ)−1)N+1.

From the viewpoint of computational cost, one of the advantages of EStateMerge, as
well as of other state-merging algorithms, is that both Ci and Ci,a are changed only when
the state i is merged with other states. Thus, it is enough to recalculate these local parts
to update Pr(a|G) at each merging step. Since states are aggressively merged whenever
Pr(a|G) increases, EStateMerge does not have the PAC learnability property for PDFAs that
is shown (Clark and Thollard 2004) for state-merging frequency-based algorithms, such as
ALERGIA.

4.5.2 Evidence-based VGram (EVGram)

The n-gram model, which assumes the probability of the occurrence of a letter ai is de-
termined by the preceding n − 1 letters ai−n+1 . . . ai−1, is a naive but powerful model for
the prediction of sentences. A sequence of letters of length n is called an n-gram. A typi-
cal elaboration of an n-gram model is a variable-length gram model (VGram), which uses
grams of different length. In the literature, a variety of criteria for determining the length
of a gram to be used has been proposed. The criterion of our algorithm, Evidence-based
VGram (EVGram), is also based on marginal probabilities, which is essentially the same as
Eq. (21), since a variable-length gram model can be seen as a special case of a PDFA:

Pr(a|Q) =
∏

w∈Q′

∏
a Γ (Cwa + β)

Γ (Cw + Aβ)

1

R(β)
,

where Q′ = {w | wa ∈ Q} where Q is the bag of grams. Similarly to EStateMerge, the prefix
trie corresponding to Q is expanded at leaves greedily if Pr(a|Q) increases.

4.5.3 Comparison of evidence-based VGram and cross-validation-based VGram

We also implemented a variant of Niesler and Woodland’s (1999) VGram algorithm, the
criterion of which is based on cross-validation. We call it CVGram and compared it with
EVGram.

We used 10-fold CVGram, since it empirically gives a better result than the leave-one-out
CVGram, which Niesler and Woodland (1999) used. Generally, the leave-one-out CV de-
creases the bias of estimated predictive probabilities, although the 10-fold CV is considered
sufficient in many cases, as discussed in Kohavi (1995). If the number of blocks of CV is too
small, it underestimates the accuracy of a learning method. On the other hand, CV is known
to cause over-fitting for model selection due to variance in the estimated predictive proba-
bilities (Cawley and Talbot 2010; Bengio and Grandvalet 2004). Thus, there is a trade-off
between underestimating bias and over-fitting due to variance, and such a trade-off is one of
the reasons why the results of the 10-fold CVGram are better than those of the leave-one-out
CVGram.

As Fig. 11(b) shows, CVGram performed better than EVGram overall. This implies, at
least for VGrams, that the model selection based on MP is not necessarily better than others,
such as those based on CV.

4.5.4 Comparison of CGS-PFA, EStateMerge, and EVGram

Figure 11(a) shows the scores achieved by the above methods for all the problems of PAu-
tomaC I. For normalizing, they are divided by the minimum scores, which are given by
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Fig. 11 Comparison of EStateMerge, EVGram, CGS-PFA, and CVGram for 50 data sets in PAutomaC I

substituting the true probabilities of the test set in Eq.(19). As a result, CGS-PFA performed
the best. The average ratio of its scores to the theoretical minimum scores exceeded 1 by
0.00129. CVGram, EVGram, and EStateMerge achieved 0.00642, 0.00992, and 0.0185, re-
spectively. Figure 11(b) summarizes the scores of these methods for three types of generat-
ing models, PDFAs, PFAs, and HMMs. For any type of generating model, CGS-PFA yields
a higher-level accuracy than the other methods. While the scores of EVGram and CVGram
do not show significant differences among different target generating models, CGS-PFA and
EStateMerge obtained significantly better scores on the problems generated by PDFAs than
did other models.

4.6 Relation between computational costs and scores for different methods

We discuss the relation between the computational costs and the accuracy for CGS, State-
Merge, CVGram, and EVGram using a subset of problems of PAutomaC II (Table 3) in this
section. The problems were chosen such that we had a sufficient variety of data sizes. The
number N of states for each problem used in CGS was chosen beforehand in the preparatory
stage described in Sect. 4.1.

4.6.1 How many iterations should suffice in CGS?

The time complexity of CGS is O(NT L), where N is the number of states, T is the sample
size, and L is the number of iterations. We determined N in the preparatory experiment, but
we had no particular criterion by which to determine L. Figure 12(a) shows how the scores
vary by changing L for different problems from PAutomaC II, where the burn-in period was
set at L/2. We used the score achieved by a trial of CGS, which may largely have depended
on the initial value. Most curves become fairly flat after 10,000 iterations, although some
(II-5) continue to decrease until around the 20,000th iteration.

We further investigated the relation between the number of iterations and the score on
Prob. II-5 and 43 by running CGS 10 times with different initial values. Figure 12(b) and (c)
shows the results for Prob. II-5 and 43, respectively. The shapes of the score curves largely
depend on the initial values, particularly for Prob. II-5, but, unlike in Fig. 12(a), not many
curves seem to be converged before the 10,000th for this problem. On the other hand, in
Fig. 12(c), all the curves gather and are tangled. For Prob. II-43, the choice of the initial
value does not seem to be very important.
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Fig. 12 Relation between
iteration numbers and scores
(Color figure online)
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Fig. 13 Computational time of
the 10,000 iterations of CGS for
each data set as a function of (the
number of states) × (sample size)

We conclude that the number of iterations that suffices for convergence depends on the
initial value and the problem. At least for the problems of PAutomaC, the number L =
20,000 seems sufficient, in general, although more iterations might improve the scores for
some limited number of problems.

4.6.2 Comparison of computational cost of different methods

Table 3 shows the computation time, the score, and the number of states of different methods,
CGS-PFA, EStateMerge, CVGram, and EVGram, for some problems from PAutomaC II.
We used a different number for L for CGS where we executed just one trial. Apparently,
CGS took much more time, while the scores are much better than those of the other methods,
in general. As expected, CGS ran in a time proportional to NT L (Fig. 13), whereas it is not
necessarily the case for other methods that the time is proportional to NT . In most problems,
CGS with L = 10,000 received much better scores than the other methods, and these scores
are not significantly improved in CGS with L = 20,000, except for Prob. II-5. As Fig. 12(b)
shows, the performance on this problem strongly depends on the initial value. However, most
curves get close enough to the convergence point after the 20,000th iteration. We remark that
in the actual implementation we ran CGS with different initial values in parallel and used
the average. This reduces the effect of unlucky choices of initial values, as discussed in
Sect. 4.1.

The scores of CGS in Table 3 for Prob.II-5 are of the trial corresponding to the green line
in Fig. 12(b).

Among these methods, StateMerge often achieves scores significantly worse than do the
other methods, while it often succeeded in finding a concise automaton as compared to
C/EVGram. The number of the states of a VGram tree constructed by EVGram sometimes
becomes even bigger than the sample size.

5 Conclusions and future work

In this paper, we compared various collapsed Bayesian methods for PFAs and their variants,
including HMMs, PDFAs, and VGrams. For fully connected PFAs, we discussed how exist-
ing techniques of Collapsed Gibbs Sampling (CGS) and Collapsed Variable Bayes with the
0th-order Taylor approximation (CVB0) can be applied, and in addition, we proposed a new
method called GCVB0 for which the convergence is ensured. While CVB2, the CVB with
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Table 3 Comparison of computational time of different methods

Prob. SampleSize CGS(10k) CGS(20k) ESMerge

sec. score N sec. score N sec. score N

II-43 87,107 540 0.1105 30 1,100 0.1062 30 5.7 0.9464 13

II-5 136,094 350 0.1792 10 680 0.0019 10 1.4 2.4717 9

II-15 222,182 1,800 0.0371 40 3500 0.0375 40 120 0.5464 174

II-11 307,062 5300 0.0670 80 11,000 0.0670 80 85 0.2934 47

II-32 476,902 10,000 0.0098 90 20,000 0.0079 90 13 1.8411 40

II-41 645,907 5,100 0.0112 40 10,000 0.0089 40 130 0.1500 30

II-47 900,567 18,000 0.0006 90 36,000 0.0006 90 170 0.0538 61

II-36 1,021,088 9,900 0.0273 50 20,000 0.0228 50 670 0.4523 127

II-18 1,335,090 13,000 0.0037 50 25,000 0.0030 50 250 0.9027 24

II-22 1,615,065 28,000 0.0095 80 65,000 0.0097 80 7,600 0.2876 583

Prob. CVGram EVGram

sec. score N sec. score N

II-43 1.6 0.1648 79 0.89 0.1828 43

II-5 1.1 0.0135 99 0.87 0.0135 99

II-15 9.7 0.6289 29,776 14 0.7015 597,556

II-11 80 0.9273 171,886 584 1.0444 7,229,083

II-32 3.4 0.1004 19,616 3.6 0.1323 15,446

II-41 2.0 0.0272 377 2.4 0.0887 105

II-47 18 0.0049 37,377 31 0.0065 644,417

II-36 4.9 0.2848 5,931 7 0.5153 33,411

II-18 8.9 0.0643 8,023 11 0.0587 62,245

II-22 130 0.1279 214,303 260 0.2110 6,039,155

the second-order approximation, may appear to yield a more accurate probability predic-
tion, its computational cost per iteration is evaluated as O(N3T ), which is not sufficiently
efficient unless the size of target automata is restricted to be very small. In contrast, the
costs for CGS, CVB0, and GCVB0 are only O(NT ), O(N2T ), and O(N2T ), respectively.
Hence, these methods can be applied to bigger PFAs. According to the experimental results
for PAutomaC data sets, CGS performed better than CVB0 and GCVB0. Although GCVB0
is guaranteed to converge to some local optimal point and thus it is clear when its iterations
should be stopped, the results of GCVB0 were worse than those of CVB0 and CGS. For
sparse PFAs, by using a simple generative model, an algorithm for sampling graph struc-
tures of PFAs is proposed.

We also empirically compared algorithms that targeted different types of PFAs using
PAutomaC data sets generated by different types of PFAs. In the comparison of CGS-PFA
and CGS-HMM, it appeared that CGS-PFA achieves better scores than CGS-HMM, since
CGS-HMM often failed to find appropriate emission probabilities η and state transition
probabilities θ that can factorize the transition probability ξ . CGS-PFA gives better scores
than EStateMerge, CVGram, and EVGram for every generating model, whereas EState-
Merge and EVGram run much faster than CGS-PFA, since they change the graph struc-
tures in order to maximize marginal probabilities greedily. Graph structures for PDFAs and
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VGram should have been sampled in the Bayesian manner. Our conclusion is that, empiri-
cally, CGS-PFA is the best choice among the collapsed methods described in this paper.

Many methods for inferring PFAs still remain to be compared with the methods we de-
scribed in this paper. For instance, although we fixed the numbers of states based on cross
validation in this study, the numbers can be sampled simultaneously with values of z in
nonparametric methods. The comparison of our methods with nonparametric methods, such
as HDP (Teh et al. 2006a), on PAutomaC data constitutes future work. In our experiments,
EStateMerge did not perform better than CGS in terms of accuracy, even on sample sets
generated by PDFAs. There is no guarantee that EStateMerge will PAC-learn PDFAs, since
it merges states greedily according to marginal probabilities. Since other state-merging tech-
niques for which PAC learnability is proven might yield more accurate results, we should
compare them with the methods examined in this paper using data sets generated from
PDFAs.
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Appendix: The second-order CVB for PFAs

In order to apply the second-order Taylor approximation for CVB (CVB2) to PFAs, we
have to calculate the variance over q for the terms C¬t

k , C¬t
k00, C¬t

kat zt+1
, and C¬t

zt−1at−1zt+1
+

δ
( k, at , zt+1

zt−1, at−1, k

)
.

The first term is represented in a simple form, since the variation of the summation of
independent variables equals the summation of the variations of independent variables:
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However, the other terms have complicated forms, since δ
( zs , as , zs+1

k, at , zt+1

)
is not independent for

each s. We calculate the variance of the third term using Lemma 1 and discuss its computa-
tional cost below.

Vq

[
C¬t

kat zt+1

] = Eq

[(
C¬t

kat zt+1

)2] − Eq

[
C¬t

kat zt+1

]2

=
∑

u�=t,t−1

∑

v �=t,t−1

Eq

[
δ

(
zu, au, zu+1, zv, av, zv+1

k, at , zt+1, k, at , zt+1

)]

− Eq

[
C¬t

kat zt+1

]2
. (22)

Let e(u, v) = Eq

[
δ
( zu, au, zu+1, zv , av, zv+1

k, at , zt+1, k, at , zt+1

)]
. To apply Lemma 1, e(u, v) should be classified

by how ∼ partitions them. Ensuring the symmetry of u and v and {u,v} ∩ {t − 1, t} = ∅,
we can classify e(u, v) to e1(u, v), . . . , e5(u, v) as

e1(u, v) = Eq

[
δ

(
zu, au, zu+1

k, at , zt+1

)]
if v = u and u �= t + 1,
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e2(u, v) = Eq

[
δ

(
zt+1, at+1, zt+2

k, at , zt+1

)]
if v = u and u = t + 1,

e3(u, v) = Eq

[
δ

(
zu, au, zu+1, zu+1, au+1, zu+2

k, at , zt+1, k, at , zt+1

)]

if v = u + 1 and u �= t + 1,

e4(u, v) = Eq

[
δ

(
zt+1, at+1, zt+2, zt+2, at+2, zt+3

k, at , zt+1, k, at , zt+1

)]

if v = u + 1 and u = t + 1,

e5(u, v) = Eq

[
δ

(
zu, au, zu+1

k, at , zt+1

)]
Eq

[
δ

(
zv, av, zv+1

k, at , zt+1

)]
if |v − u| > 1.

Because e5(u, v), except for |v − u| > 1, equals Eq[C¬t
kat zt+1

]2, which is the second term of
Eq. (22), we have to calculate e5(u, v) when |v − u| ≤ 1 and subtract them from e1(u, v) +
· · · + e4(u, v). By Lemma 1, we have

e1(u, v) = pu(k)
∑

i

pu+1(i)pt+1(i)δ

(
au

at

)
if v = u and u �= t + 1,

e2(u, v) = pt+1(k)pt+2(k)δ

(
at+1

at

)
if v = u and u = t + 1,

e3(u, v) = pu(k)pu+1(k)pt+1(k)pu+2(k)δ

(
au, au+1

at , at

)
if v = u + 1 and u �= t + 1,

e4(u, v) = pt+1(k)pt+2(k)pt+3(k)δ

(
at+1, at+2

at , at

)
if v = u + 1 and u = t + 1.

e5(u, v), where |v − u| ≤ 1, is again classified according to ∼, and therefore, we have

e5(u, v) =
(

pu(k)
∑

i

pu+1(i)pt+1(i)

)2

δ

(
au

at

)
if v = u and u �= t + 1,

e5(u, v) = (
pt+1(k)pt+2(k)

)2
δ

(
at+1

at

)
if v = u and u = t + 1,

e5(u, v) = pu(k)

(∑

i

pu+1(i)pt+1(i)

)
pu+1(k)

(∑

j

pu+2(j)pt+1(j)

)
δ

(
au, au+1

at , at

)

if v = u + 1, u �= t + 1,

e5(u, v) = pt+1(k)pt+2(k)pt+2(k)
∑

i

pt+3(i)pt+1(i)δ

(
at+1, at+2

at , at

)

if v = u + 1, u = t + 1.

By summing e1 + e2 + e3 + e4 − e5 with respect to u and v,

Varq
[
C¬t

kat zt+1

]
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=
∑

u�=t,t±1

δ

(
au

at

)
pu(k)

∑

i

pu+1(i)pt+1(i)

(
1 − pu(k)

∑

j

pu+1(j)pt+1(j)

)

+ δ

(
at+1

at

)
pt+1(k)pt+2(k)

(
1 − pt+1(k)pt+2(k)

)

+ 2
∑

u�=t,t±1

δ

(
au, au+1

at , at

)
pu(k)pu+1(k)

(
pt+1(k)pu+2(k)

−
∑

i

pu+1(i)pt+1(i)
∑

j

pu+2(j)pt+1(j)

)

+ 2δ

(
at+1, at+2

at , at

)
pt+1(k)pt+2(k)

(
pt+3(k) − pt+2(k)

∑

i

pt+3(i)pt+1(i)

)
.

Not only is the above representation complicated, but also its computational cost is high. If
we use the technique for reducing the computational cost similar to that of CVB0, we still
have to update O(N3) values in order to keep the following terms:

∑

u

δ

(
au

a

)
pu(k)pu+1(i)pu+1(j),

∑

u

δ

(
au, au+1

a, a

)
pu(k)pu+1(k)pu+1(i)pu+2(j).

Thus, CVB2 costs O(N3T ).
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