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Abstract Modern sensing technology allows us enhanced monitoring of dynamic activities
in business, traffic, and home, just to name a few. The increasing amount of sensor mea-
surements, however, brings us the challenge for efficient data analysis. This is especially
true when sensing targets can interoperate—in such cases we need learning models that can
capture the relations of sensors, possibly without collecting or exchanging all data. Genera-
tive graphical models namely the Markov random fields (MRF) fit this purpose, which can
represent complex spatial and temporal relations among sensors, producing interpretable
answers in terms of probability. The only drawback will be the cost for inference, storing
and optimizing a very large number of parameters—not uncommon when we apply them
for real-world applications.

In this paper, we investigate how we can make discrete probabilistic graphical models
practical for predicting sensor states in a spatio-temporal setting. A set of new ideas al-
lows keeping the advantages of such models while achieving scalability. We first introduce
a novel alternative to represent model parameters, which enables us to compress the param-
eter storage by removing uninformative parameters in a systematic way. For finding the best
parameters via maximum likelihood estimation, we provide a separable optimization algo-
rithm that can be performed independently in parallel in each graph node. We illustrate that
the prediction quality of our suggested method is comparable to those of the standard MRF
and a spatio-temporal k-nearest neighbor method, while using much less computational re-
sources.
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1 Introduction

Sensor-based monitoring and prediction has become a hot topic in a large variety of appli-
cations. According to the slogan Monitor, Mine, Manage (Campbell 2011), series of data
from heterogeneous sources are to be put to good use in diverse applications. A view of data
mining towards distributed sensor measurements is presented in the book on ubiquitous
knowledge discovery (May and Saitta 2010). There are several approaches to distributed
stream mining based on work like, e.g., Wolff et al. (2009) or Sagy et al. (2011). The goal in
these approaches is a general model (or function) which is built on the basis of local mod-
els while restricting communication costs. Most often, the global model allows to answer
threshold queries, but also clustering of nodes is sometimes handled. Although the function
is more complex, the model is global and not tailored for the prediction of measurements
at a particular location. In contrast, we want to predict some sensor’s state at some point in
time given relevant previous and current measurements of itself and other sensors.

Since his influential book, David Luckham has promoted complex event processing suc-
cessfully (Luckham 2002). Detecting events in streams of data has accordingly been mod-
eled, e.g. in the context of monitoring hygiene in a hospital (Wang et al. 2011). However,
in our case, the monitoring does not imply certain events. We do not aim at finding patterns
that define an event, although they may show up as a side effect. We rather want to predict a
certain state at a particular sensor or set of sensors taking into account the context of other
locations and points in time. Although related, the tasks differ.

The analysis of mobile sensor measurements has been framed as spatio-temporal tra-
jectory mining by, e.g., Giannotti et al. (2007). There, frequent patterns are mined from
movements of pedestrians or cars. The places are not given a priori, but interesting places
could be derived from frequent crossings. It does not deliver a prediction of states and no
probabilities. Trajectory mining is a complementary task to that of state prediction.

Let us illustrate the task of spatio-temporal state prediction by an example from traffic
modeling. The structure of the model is given by a street network, which represents spatial
relationships. Nodes within the network represent places, where the traffic is measured over
time. The state of a node is the congestion at this street segment. At training time, we do not
know which place at which time needs to be predicted as “jam”. Given observations of the
state variables at the nodes, a model is trained. The model must answer queries for all parts
of the network and all points in time. Examples of such predictions are:

– Given the traffic densities of all roads in a street network at discrete time points t1, t2, t3
(e.g., Monday, Tuesday, Wednesday 8 o’clock): indicate the probabilities of traffic levels
on a particular road A at another time point, not necessarily following the given ones (e.g.,
Thursday 7 o’clock).

– Given a traffic jam at place A at time ts : output other places with a probability higher than
0.7 for the state “jam” in the time interval of ts < t < ρ.

One particular interest lies in learning probabilistic models for answering such queries in
resource constrained environments. This addresses huge amounts of data on quite fast com-
pute facilities as well as a rather moderate data volume on embedded or ubiquitous devices.

1.1 Previous work

In this section, an overview of previous contributions to spatio-temporal modeling is given.
The task of traffic forecasting is often solved by simulations (Marinosson et al. 2002). This
presupposes a model instead of learning it. In the course of urban traffic control, events are
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merely propagated that are already observed, e.g., a jam at a particular highway section re-
sults in a jam at another highway section, or the prediction is based on a physical rule that
predicts a traffic jam based on a particular congestion pattern (Hafstein et al. 2004). Many
approaches apply statistical time series methods like auto-regression and moving average
(Williams and Hoel 2003). They do not take into account spatial relations but restrict them-
selves to the prediction of the state at one location given a series of observations at this
particular location. An early approach is presented by Whittaker et al. (1997), using a street
network topology that represents spatial relations. The training is done using simply Kalman
filters, which is not as expressive as is necessary for queries like the ones above. A statistical
relational learning approach to traffic forecasting uses explicit rules for modeling spatio-
temporal dependencies like congestion(+s1, h) ∧ next(s1, s2) ⇒ congestion(+s2, h + 1)

(Lippi et al. 2010). Training is done by a Markov Logic Network delivering conditional
probabilities of congestion classes. The discriminative model is restricted to binary classifi-
cation tasks and the spatial dependencies need to be given by hand-tailored rules. Moreover,
the model is not sparse and training is not scaleable. Even for a small number of sensors,
training takes hours of computation. When the estimation of models for spatio-temporal data
on ubiquitous devices is considered, e.g. learning to predict smartphone usage patterns based
on time and visited places, minutes are the order of magnitude in demand. Hence, also this
advanced approach does not yet meet the demands of the spatio-temporal prediction task in
resource constrained environments.

Some geographically weighted regression or non-parametric k-nearest neighbour (kNN)
methods model a task similar to spatio-temporal state prediction (Zhao and Park 2004; Gong
and Wang 2002; May et al. 2008). The regression expresses the temporal dynamics and
the weights express spatial distances. Another way to introduce the spatial relations into
the regression is to encode the spatial network into a kernel function (Liebig et al. 2012).
The kNN method by Lam et al. (2006) models correlations in spatio-temporal data not
only by their spatial but also by their temporal distance. As stated for spatio-temporal state
prediction task, the particular place and time in question need not be known in advance,
because the lazy learner kNN determines the prediction at query time. However, also this
approach does not deliver probabilities along with the predictions. For some applications, for
instance, traffic prognoses for car drivers, a probabilistic assertion is not necessary. However,
in applications of disaster management, the additional information of likelihood is wanted.

As is easily seen, generative models fit the task of spatio-temporal state prediction. For
notational convenience, let us assume just one variable x. The generative model p(x, y)

allows to derive p(y|x) = p(x,y)

p(x)
as well as p(x|y) = p(x,y)

p(y)
. In contrast, the discriminative

model p(y|x) must be trained specifically for each y. In our example, for each place, a dis-
tinct model would need to be trained. Hence, a huge set of discriminative models would be
necessary to express one generative model. A discussion of discriminative versus generative
models can be found in a study by Ng and Jordan (2002). Here, we refer to the capability of
interpolation (e.g., between points in time) of generative models and their informativeness
in delivering probability estimates instead of mere binary decisions.

Spatial relations are naturally expressed by graphical models. For instance, discrimina-
tive graphical models—as are conditional random fields (CRF)—have been used for object
recognition over time (Douillard et al. 2007), but also generative graphical models such as
the Markov random field (MRF) have been applied to video or image data (Yin and Collins
2007; Huang et al. 2008). The number of training instances does not influence the model
complexity of MRF. However, the number of parameters can exceed millions easily. In par-
ticular when using MRF for spatio-temporal state prediction, the many spatial and temporal
relations soon lead to inefficiency.
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Now we have argued in favor of using generative graphical models that model spatial
and temporal dependencies at the same time. However, there are problems which until now
have prohibited this:

– the original parametrization is not well suited for producing sparse models,
– trained models tend to overfit to the training data, and
– training high-dimensional models is not feasible.

In the following, we shall recapitulate graphical models (Sect. 1.2) and regularization
methods (Sect. 1.3) so that we can then introduce a new method for spatio-temporal state
prediction, that does no longer suffer from the listed disadvantages.

1.2 Graphical models

The formalism of probabilistic graphical models provides a unifying framework for captur-
ing complex dependencies among random variables, and building large-scale multivariate
statistical models (Wainwright and Jordan 2007). Let G = (V ,E) be an undirected graph
with the set of vertices V and the set of edges E ⊂ V × V . For each node (or vertex)
v ∈ V , let Xv be a random variable, taking values xv in some space Xv . The concate-
nation of all n = |V | variables yields a multivariate random variable X with state space
X = X1 × X2 × · · · × Xn. Training delivers a full probability distribution over the random
variable X. Let φ be an indicator function or sufficient statistic that indicates if a configura-
tion x obeys a certain event {Xα = xα} with α ⊆ V . We use the short hand notation {xα} to
denote the event {Xα = xα}. The functions of x defined in the following can be also consid-
ered as functions of X—we replace x by X when it makes their meaning clearer. Restricting
α to vertices and edges,1 one gets

φ{v=x}(x) =
{

1 if xv = x

0 otherwise,
φ{(v,w)=(x,y)}(x) =

{
1 if (xv,xw) = (x, y)

0 otherwise

with x ∈ X , xv ∈ Xv and y ∈ Xw . Let us now define vectors for collections of those indicator
functions:

φv(x) := [
φ{v=x}(x)

]
x∈Xv

,

φ(v,w)(x) := [
φ{(v,w)=(x,y)}(x)

]
(x,y)∈Xv×Xw

,

φ(x) := [
φv(x),φe(x) : ∀v ∈ V, ∀e ∈ E

]
.

(1)

The vectors are constructed for fixed but arbitrary orderings of V,E and X . The dimen-
sion of φ(x) is thus d = ∑

v∈V |Xv| + ∑
(v,u)∈E |Xv| × |Xu|. Now, consider a data set

D = {x1,x2, . . . ,xN } with instances xi . Each xi consists of an assignment to every node
in the graph. It defines a full joint state of the random variable X. The quantities

μ̂{v=x} = 1

N

N∑
i=1

φ{v=x}
(
xi

)
, μ̂{(v,w)=(x,y)} = 1

N

N∑
i=1

φ{(v,w)=(x,y)}
(
xi

)
(2)

1In general, one may consider indicator functions not only for nodes and edges, but for all cliques (fully
connected subgraphs) in G. Our description still applies to higher order models, since we can convert them
into models using solely nodes and edges (Wainwright and Jordan 2007, Appendix E).
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are known as empirical moments and they reflect the empirical frequency estimates of the
corresponding events. We say that a given probability mass function p with base measure ν

and expectation Ep[φ{xα }(x)] is locally consistent with data D if and only if p satisfies the
moment matching condition

Ep

[
φ{xα }(x)

] = μ̂{xα}, ∀α ∈ V ∪ E,

i.e. the density p is consistent with the data w.r.t. the empirical moments. This problem is
underdetermined, in that there are many densities p that are consistent with the data, so
that we need a principle for choosing among them. The principle of maximum entropy is to
choose, from among the densities consistent with the data, the densities p∗ whose Shannon
entropy H(p) is maximal. H is given by

H(p) := −
∫
X

p(x) log2

(
p(x)

)
ν(dx).

This is turned into the constrained optimization problem

max
p∈P

H(p) subject to Ep

[
φ{xα }(x)

] = μ̂{xα }, ∀α ∈ V ∪ E.

It can be shown that the optimal solution p∗ takes the form of an exponential family of
densities

pθ (X = x) = exp
[〈
θ ,φ(x)

〉 − A(θ)
]
,

parametrized by a vector θ ∈R
d . Note that the parameter vector θ and the sufficient statistics

vector φ(x) have the same length d . The term A(θ) is called the log partition function,

A(θ) := log
∫
X

exp
[〈
θ ,φ(x)

〉]
ν(dx),

which is defined with respect to a reference measure ν such that P [X ∈ S] = ∫
S
pθ (x)ν(dx)

for any measurable set S. Expanding φ(x) by means of (1) reveals the usual density of
pairwise undirected graphical models, also known as pairwise Markov random field

pθ (X = x) = 1

expA(θ)

∏
v∈V

exp
[〈
θ v,φv(x)

〉] ∏
(v,w)∈E

exp
[〈
θ (v,w),φ(v,w)(x)

〉]

= 1

Ψ (θ)

∏
v∈V

ψv(x)
∏

(v,w)∈E

ψ(v,w)(x).

Here, Ψ = expA is the cumulant-generating function of pθ , and ψα are the so-called poten-
tial functions.

Inference, that is computing the marginal probabilities or maximum a-posteriori states of
each vertex, can be carried out by message propagation algorithms (Kschischang et al. 2001;
Wainwright et al. 2005; Pearl 1988) or variational methods (Wainwright and Jordan 2007).
In order to fit the model on some data set, the model parameters have to be estimated. If
the data set contains solely fully observed instances, the parameters may be estimated by
the maximum likelihood principle. The estimation of parameters in the case of partially
unobserved data is a challenging topic on its own. Here, we assume that the data set D



120 Mach Learn (2013) 93:115–139

contains only fully observed instances. The likelihood L and the average log-likelihood � of
parameters θ given a set of i.i.d. data D are defined as

L(θ;D) :=
N∏

i=1

pθ

(
xi

)
and �(θ;D) := 1

N

N∑
i=1

logpθ

(
xi

) = 〈θ, μ̂〉 − A(θ). (3)

The latter is usually maximized due to numerical inconveniences of L. The most frequently
applied optimization methods are iterative proportional fitting (Darroch and Ratcliff 1972),
gradient descent and quasi-newton methods like LBFGS or conjugate gradient (Nocedal and
Wright 2006). Section 2 will show, how to model spatio-temporal dependencies within this
formalism.

1.3 Regularization

As we can see, the number of parameters in θ grows quite rapidly as we consider more
complex graphical models. A large number of parameters is generally not preferable, since
it may lead to overfitting, not to mention that it becomes hard to implement a memory
efficient predictor. Therefore some regularization would be necessary to achieve a sparse
and robust model.

Popular choices of regularizers are the �1 and �2 norms of the parameter vector, ‖θ‖1 and
‖θ‖2. By minimizing the �1 norm, we coerce the values for less informative parameters to
zero (similarly to LASSO (Tibshirani 1996)), and by the �2 norm we find smooth functions
parametrized by θ (similarly to the penalized splines (Pearce and Wand 2006)). Using both
together is often referred to as the elastic net (Zou and Hastie 2005), which we also use
in our work. For graphical models, elastic nets have been used for the task of structure
learning (estimating the neighborhoods) by Cucuringu et al. (2011) in a manner similar to
the approach of Meinshausen and Buehlmann (2005). For the state prediction task, there
exist two short workshop papers (Piatkowski 2012; Piatkowski et al. 2012) using the elastic
net. However, the analytical and empirical validation of such an approach is rather limited
there.

1.4 Overview

Given the introduction of the spatio-temporal prediction task, graphical models, and regular-
ization, we can now propose how to keep the advantages of a generative graphical model and
achieve robust, sparse models by scalable training, at the same time. The major contributions
of this article are:

– an interpretable model that truly captures spatio-temporal structures,
– a new parametrization that results in sparse models with regularization,
– and scalable training even for high dimensional models.

Section 2 shows how to represent spatio-temporal structures in a graphical model. Section 3
presents the parametrization that yields sparse models and then shows a parallel formulation
of a scaled gradient descend with soft thresholding that enhances the scalability of training.
We evaluate the performance of the suggested method in Sect. 4.

2 From linear chains to spatio-temporal models

Sequential undirected graphical models, also known as linear chains, are a popular method
in the natural language processing community (Lafferty et al. 2001; Sutton and McCallum
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Fig. 1 A spatio-temporal model consisting of multiple snapshot graphs Gt for t = 1,2, . . . , T . The spa-
tial and temporal edges are represented by solid and dotted lines, respectively. (a) A layer Lt is shown as
the shaded region with simple temporal edges (Lt does not include the elements of Gt+1), along with the
corresponding sufficient statistic and parameter subvectors φ(t,X) and θ(t). (b) An extended model with
“crossing” temporal edges between consecutive snapshots. This extended model is adopted in our experi-
ments

2007). There, consecutive words or corresponding word features are connected to a sequence
of labels that reflects an underlying domain of interest like entities or part of speech tags.
If we consider a sensor network G that generates measurements over space as a word, then
it would be appealing to think of the instances of G at different timepoints, like words in a
sentence, to form a temporal chain G1 −G2 −· · ·−GT . We will now present a formalization
of this idea followed by some obvious drawbacks. Afterwards we will discuss how to tackle
those drawbacks and derive a tractable class of generative graphical models for the spatio-
temporal state prediction task.

We first define the part of the graph corresponding to the time t as the snapshot graph
Gt = (Vt ,Et ), for t = 1,2, . . . , T . Each snapshot graph Gt replicates a given spatial graph
G0 = (V0,E0), which represents the underlying physical placement of sensors, i.e., the spa-
tial structure of random variables that does not change over time. We also define the set
of spatio-temporal edges Et−1;t ⊂ Vt−1 × Vt for t = 2, . . . , T and E0;1 = ∅, that represent
dependencies between adjacent snapshot graphs Gt−1 and Gt , assuming a Markov property
among snapshots, so that Et;t+h = ∅ whenever h > 1 for any t . Note that the actual time gap
between any two time frames t and t + 1 can be chosen arbitrarily.

The entire graph, denoted by G, consists of the snapshot graphs Gt stacked in order
for time frames t = 1,2, . . . , T and the temporal edges connecting them: G := (V ,E) for
V := ⋃T

t=1 Vt and E := ⋃T

t=1{Et ∪ Et−1;t }. We sketch the structure of G in Fig. 1.
For simple description, we define a layer Lt as the partial subgraph of G containing all

vertices of Vt and all edges of Et ∪ Et;t+1, for t = 1,2, . . . , T . For instance, a layer Lt is
depicted as a shaded region in Fig. 1. We also define the subvectors of φ(X) and θ that
correspond to a layer Lt as follows,

φ(t,X) := (
φv=a(Xv),φ(v,w)=(a,b)(Xv,Xw) | v ∈ Lt, (v,w) ∈ Lt, a ∈ Xv, b ∈ Xw

)
,

θ(t) := (
θ v=a, θ (v,w)=(a,b) | v ∈ Lt, (v,w) ∈ Lt, a ∈ Xv, b ∈ Xw

)
.

(4)
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Fig. 2 An example of indexing
for a node and state pair over
time. A sensor modeled by the
node v in the spatial graph G0
shows its measurements vt−1
and vt at time frames t − 1 and t ,
respectively. The pairs vt−1 = s

and vt = q are located at the
same index j in the subvectors
θ(t − 1) and θ(t)

By construction, the layers L1,L2, . . . ,LT define a non-overlapping partitioning of a
graph G, which allows us writing

〈
φ(X), θ

〉 = T∑
t=1

〈
φ(t,X), θ(t)

〉
.

The subvectors φ(t,X) and θ(t) have the same length d ′ := d/T for all t = 1,2, . . . , T .
Note that the subvectors should be “aligned”, in the sense that the j th elements in all sub-
vectors must point to the same node:state or edge:states pair over time. We illustrate this in
Fig. 2.

The spatial graph G0 and the sizes of the vertex state spaces Xv determine the number
of model parameters d . In order to compute this quantity, we consider the construction of
G (as shown in Fig. 1(b)) from G0. First, all vertices v and all edges (u, v) from G0 are
copied exactly T times and added to G = (V ,E), whereas each copy is indexed by time t ,
i.e. v ∈ V0 ⇒ vt ∈ V,1 ≤ t ≤ T and likewise for the edges. Then, for each vertex vt ∈ V

with t ≤ T − 1, a temporal edge (vt , vt+1) is added to G. Finally, for each edge (vt , ut ) ∈ E

with t ≤ T − 1, the two spatio-temporal edges (vt , ut+1) and (vt+1, ut ) are also added to G.
The number of parameters per vertex v is |Xv| and accordingly |Xv||Xu| per edge (v,u).
Thus, the total number of model parameters is

d =
∑
v∈V0

T∑
t=1

|Xvt | +
∑
v∈V0

T −1∑
t=1

|Xvt ||Xvt+1 | +
∑

(u,v)∈E0

|XvT
||XuT

|

+
∑

(u,v)∈E0

T −1∑
t=1

(|Xvt ||Xut+1 | + |Xvt+1 ||Xut | + |Xvt ||Xut |
)
. (5)

If we assume that all vertices v,u ∈ V share a common state space and that state spaces do
not change over time, i.e. Xvt = Xut ′ ,∀v,u ∈ V,1 ≤ t, t ′ ≤ T , the expression simplifies to

d = T |V0||Xvt |︸ ︷︷ ︸
# of vertex parameters

+ [
(T − 1)

(|V0| + 3|E0|
) + |E0|

]|Xvt |2︸ ︷︷ ︸
# of edge parameters

with some arbitrary but fixed vertex vt . Note that the last two assumptions are only needed
to simplify the computation of d , the spatio temporal random field that is described in the
following section is not restricted by any of these assumptions.
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This model now truly expresses temporal and spatial relations between all locations and
points in time for all features. However, the memory requirements of such models are quite
high due to the large problem dimension. Even loading or sending models may cause issues
when mobile devices are considered as a platform. Furthermore, the training does not scale
well because of stepsize adaption techniques that are based on sequential (i.e., non-parallel)
algorithms.

3 Spatio-temporal random fields

Now we describe how we modify the naive spatio-temporal graphical model discussed
above. We have two goals in mind: (i) to achieve compact models retaining the same pre-
diction power, and (ii) to find the best of such models via scalable distributed optimization.

3.1 Toward better sparsification

The memory consumption of the MRF is dominated by the size of its parameter vector:
the graph G can be stored within O(|V | + |E|) space (temporal edges do not have to be
constructed explicitly), and the size of intermediate variables required for inference takes
O(2|E||Xv|). That is, if |Xv| ≥ 2 for all v, the dimension d in (5) and therefore the memory
consumption of the parameter vector is always a dominant factor. Also, since each parameter
is usually accessed multiple times during inference, it is desirable to have them in a fast
storage, e.g. a cache memory.

An important observation of the parameter subvector θ(t) is that it is unlikely to be a
zero vector when it models an informative distribution. For example, if the nodes can have
one of the two states {high, low}, suppose that the corresponding parameters at time t satisfy
[θ(t)]v = 0 for all v and equally for all edge weights. Then it implies P (v = high) = P (v =
low), a uniform marginal distribution. The closer the parameters of a classical MRF are
towards 0, the closer are the corresponding marginals to the uniform distribution.

When all consecutive layers are sufficiently close in time, the transition of distributions
over the layers will be smooth in many real world applications. But the optimal θ is likely
to be a dense vector, and it will require large memory and possibly long time to make pre-
dictions with it as we deal with large graphical models. This brings us the call for another
parametrization.

3.1.1 Reparametrization

In our reparametrization, we consider a piecewise linear representation of θ(t) with new
parameter vectors Z·i ∈ R

d ′
for i = 1,2, . . . , T ,

θ(t) =
t∑

i=1

1

t − i + 1
Z·i , t = 1,2, . . . , T . (6)

Our motivation is best shown by the differences in θ between two consecutive layers,
Δ(t−1):t := θ(t) − θ(t − 1) = Z·t − ∑t−1

i=1
1

(t−i+1)(t−i)
Z·i . That is, the difference (slope) is

mostly captured by the first term Z·t , and by the remainder terms Z·(t−i) with quadratically
decaying weights in O(i−2), for i = 1,2, . . . , t . We note that a simpler alternative might be
setting θ(t) = ∑t

i=1 Z·i , but our approach leads to better conditions in optimization which
allow for faster convergence. More details will be discussed in Sect. 3.2.1.
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Fig. 3 A simplified example of the reparametrization of [θ(t)]j , the j th element in the subvector θ(t), over
the timeframes t = 1,2,3,4. We store slopes Zj t instead of the actual values of the piecewise linear function
[θ(t)]j , between two consecutive timeframes t − 1 and t (except for Zj1 which works as an intercept).
Near-zero slopes Zj t ≈ 0 (Zj3 = 0 above) can be removed from computation and memory

Now with the new parameters, if the changes between two consecutive layers are near
zero, that is, θ(t) ≈ θ(t − 1), then we expect Z·t ≈ 0. This is a novel property of the new
parametrization, since with the classical parameters θ the condition does not necessarily
entail θ(t) ≈ 0. In other words, Z·t = 0 implies no changes in distribution from t − 1 to t ,
but θ(t) = 0 implies the distribution at t suddenly becomes a uniform distribution, regardless
of the previous state at layer t − 1. An example is illustrated in Fig. 3.

Since we have defined θ as a concatenation of vectors θ(1), θ(2), . . . , θ(T ), the
reparametrization reads as follows,

θ =

⎡
⎢⎢⎢⎣

θ(1)

θ(2)
...

θ(T )

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

Z·1
1
2Z·1 + Z·2

...∑T

i=1
1

t−i+1Z·i

⎤
⎥⎥⎥⎦ , Z :=

⎡
⎣ | | |

Z·1 Z·2 · · · Z·T
| | |

⎤
⎦ .

For convenience, we define the slope matrix Z ∈ R
d ′×T as above, which contains Z·1,Z·2,

. . . ,Z·T as its columns. In the following we sometimes use the notations θ(Z) and θ(t,Z),
whenever it is necessary to emphasize the fact that θ and θ(t) are functions of Z under the
new parametrization. Finally, another property of our reparametrization is that it is linear.
Therefore an important property for optimization carries over: A(θ(Z)) is convex in Z as
A(θ) is convex in θ (Wainwright and Jordan 2007).

We note that our reparametrization with Z introduces some overhead, due to the sum-
mation in (6), compared to the classical parametrization with θ . In particular, whenever an
algorithm has to read a value from θ , it has do be decompressed instantly, which adds asymp-
totic complexity O(T ) to every access. However, if we obtain sparse representation with Z,
then it can be stored in small memory (possibly even in CPU cache memory), and therefore
the chances for cache misses or memory swapping will be reduced. This becomes an impor-
tant factor when we deploy a learned model to applications running on mobile devices, for
instance.
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3.1.2 Regularizers revisited

We define the �1 and �2 regularizers for the slope matrix Z as follows,

‖Z‖1 :=
d ′∑

j=1

‖Zj ·‖1, ‖Z‖2
F :=

d ′∑
j=1

‖Zj ·‖2
2. (7)

The latter definition is consistent with that of the Frobenius inner product between two
matrices A and B of the same size, 〈A,B〉F := ∑

i

∑
j Aj iBj i (so that ‖A‖2

F := 〈A,A〉F ).
The two regularizers induce sparsity and smoothness respectively, as we have discussed

in Sect. 1.3. The difference is that due to the reparametrization, now differences between
parameters θ(t − 1) and θ(t) are penalized, not the actual values therein—they are unlikely
to be zero in general.

3.2 High-dimensional scalable learning

Maximum likelihood estimation as described in Sect. 1.2 is the basis of training. Let D :=
{x1,x2, . . . ,xN } be an i.i.d. data set, composed of N training instances, where each xi ∈ X
is a fully observed joint configuration of all nodes in a given graph G. Together with the
regularizers defined in (7), the optimization problem becomes as follows for given λ1 ≥ 0
and λ2 ≥ 0,

min
Z∈Rd′×T

h(Z) := −�
(
θ(Z);D) + λ2

2
‖Z‖2

F︸ ︷︷ ︸
=:f (Z)

+λ1‖Z‖1. (8)

For ease of notation, we denote the “smooth” part of the objective by f (Z), which is con-
tinuously differentiable everywhere. In contrast, ‖Z‖1 is not differentiable at Z = 0 and
therefore is not smooth.

3.2.1 Separable subproblems

The parameter estimation problem in (8) is a convex minimization problem, because of
the convexity of A(θ(Z)), ‖Z‖1 and ‖Z‖2

F in Z. In order to speed up the computation,
distributing the optimization over several computing units would be desirable. However, in
its current form the optimization of (8) is not separable over the components of Z.

Following the general framework in the SpaRSA approach (Wright et al. 2009), we con-
struct subproblems with the second-order approximation to the non-separable but smooth
part f (Z) of the objective function, keeping the non-smooth part ‖Z‖1 intact.

In order to achieve separability, we need the property that the gradient of f (Z) for each
node or edge in the spatial graph G0 can be computed independently, since otherwise we
have to incur costly communication among graph elements in every iteration. The next
lemma shows that we do have this property.

Lemma 1 The partial gradient of f (Z) = −�(θ(Z);D) + λ2
2 ‖Z‖2

F can be computed inde-
pendently for each element in Z, which is given for i, i ′ = 1,2, . . . , T and j = 1,2, . . . , d ′
by,

∂f (Z)

∂Zj i

=
T∑

t=i

[μ(t) − μ̂(t)]j
t − i + 1

+ λ2Zj i , (9a)
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∂2f (Z)

∂Zj i∂Zj i′
=

T∑
t=i

T∑
t ′=i′

Cov([φ(X, t)]j , [φ(X, t ′)]j )
(t − i + 1)(t ′ − i ′ + 1)

+ λ21{i=i′}, (9b)

where Cov(A,B) is the covariance of two random variables A and B , and 1{i=i′} is an
indicator function returning one if i = i ′, and zero otherwise.

Proof From (3), we have −�(θ;D) = A(θ) − 〈θ , μ̂〉. For the first term, we begin with the
definition of A(θ) to derive,

∂A(θ)

∂Zjk

= ∂

∂Zjk

{
log

∫
X

exp
T∑

t=1

〈
θ(t),φ(x, t)

〉
ν(dx)

}
(using (4))

= ∂

∂Zjk

{
log

∫
X

exp
T∑

t=1

〈
t∑

i=1

1

t − i + 1
Z·i ,φ(x, t)

〉
ν(dx)

}
(using (6))

= ∂

∂Zjk

{
log

∫
X

exp
T∑

i=1

T∑
t=i

〈Z·i ,φ(x, t)〉
t − i + 1

ν(dx)

}
(rearrangements)

=
∫
X

T∑
t=k

1

t − k + 1

[
φ(x, t)

]
j

exp
∑T

i=1

∑T

t=i
〈Z·i ,φ(x,t)〉

t−i+1∫
X exp

∑T

i=1

∑T

t=i
〈Z·i ,φ(x,t)〉

t−i+1 ν(dx)
ν(dx)

=
T∑

t=k

1

t − k + 1
E

([
φ(X, t)

]
j

) =
T∑

t=k

1

t − k + 1

[
μ(t)

]
j
.

The differentiation of the second term 〈θ , μ̂〉 becomes clear when we use the definitions
(4) and (6), and similar rearrangements,

〈θ , μ̂〉 =
T∑

t=1

〈
θ(t), μ̂(t)

〉 = T∑
t=1

〈
t∑

i=1

1

t − i + 1
Z·i , μ̂(t)

〉
=

T∑
i=1

T∑
t=i

1

t − i + 1

〈
Z·i , μ̂(t)

〉
.

Therefore, we have ∂
∂Zjk

〈θ , μ̂〉 = ∑T

t=k
1

t−k+1 [μ̂(t)]j . Combining the above two results, to-

gether with the simple differentiation of the last term in f (Z), leads to the first claim.
Next, starting from the derivations of ∂A(θ)

∂Zjk
above, we have that

∂2A(θ)

∂Zjk∂Zjk′
=

∫
X

T∑
t=k

[φ(x, t)]j
t − k + 1

∂

∂Zjk′

[
exp

∑T

i=1

∑T

t=i
〈Z·i ,φ(x,t)〉

t−i+1∫
X exp

∑T

i=1

∑T

t=i
〈Z·i ,φ(x,t)〉

t−i+1 ν(dx)

]
ν(dx)

=
T∑

t=k

T∑
t ′=k′

E([φ(x, t)]j [φ(x, t ′)]j ) −E([φ(x, t)]j )E([φ(x, t ′)]j )
(t − k + 1)(t ′ − k′ + 1)

.

Using the definition of covariance and a simple differentiation of the linear term λ2Zj i in
(9a), we obtain the second claim. �

We define the gradient matrix J (Z) := ∇f (Z), where each element is given by (9a).
Given an iterate Zk , we construct the kth subproblem progressively as follows to compute
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the next iterate Zk+1:

Zk+1 = arg min
Z∈Rd′×T

〈
Z − Zk, J

(
Zk

)〉
F

+ 1

2

〈
Z − Zk,H k ◦ (

Z − Zk
)〉

F
+ λ1‖Z‖1. (10)

Here A ◦ B is the Hadamard product between the matrices A and B of the same size, and
H k ∈R

d ′×T > 0 is a matrix approximating the curvature of f (Z).
It is important to note that the objective in the subproblem (10) is now separable in

terms of the rows of Z, which correspond to the elements in the spatial graph G0. Therefore
each element in G0 can perform its own optimization, without communicating with other
elements. For each row j = 1,2, . . . , d ′, we have a separated subproblem,

Zk+1
j · = arg min

Zj ·∈RT

(
Zj · − Zk

j ·
)T

J j ·
(
Zk

) + 1

2

(
Zj · − Zk

j ·
)T

Dk
j

(
Zj · − Zk

j ·
) + λ1‖Zj ·‖1. (11)

Here Dk
j is a diagonal matrix such that diag(Dk

j ) = H k
j ·. In this way each row of Zk+1 can

be computed independently, given the corresponding row of J (Zk). Also, each separated
subproblem has a closed form solution:

Zk+1
j i = soft

(
Zk

ji − J j i(Z
k)

H k
ji

,
λ1

H k
ji

)
, i = 1,2, . . . , T ,

where soft(·, ·) is often called as the soft-thresholding function defined by soft(z, a) :=
sgn(z)max{0, |z| − a} for scalars z and a, where the signum function sgn(z) returns +1
if z > 0, −1 if z < 0, and 0 otherwise.

When we use Dk
j > 0, then the objective in (11) is strongly convex, and therefore the

new iterate Zk+1
j · is uniquely determined for each row.

Before proceeding to the next topic, we discuss why our reparametrization in (6) may
lead to better conditions for optimization, compared to a simple alternative setting θ(t) =∑t

i=1 Z·i . Since φ(X, t) ∈ [0,1] by definition, from the expression of the second derivative
of f (Z) in (9b), we have for any two time points i �= i ′ that

∣∣∣∣ ∂2f (Z)

∂Zj i∂Zj i′

∣∣∣∣ ≤
T∑

t=i

T∑
t ′=i′

1

(t − i + 1)(t ′ − i ′ + 1)
∈ [

1,
(
1 + log(T )

)2]
.

Here we have used the fact that the summation in the middle has the maximum value
(
∑T

t=1 1/t)(
∑T

t ′=1 1/t ′) ≤ (1 + ∫ T

1 1/t dt)2 at (i, i ′) = (1,1). On the other hand, if we have
used the simple alternative, we instead have that

∣∣∣∣∂2fsimple(Z)

∂Zj i∂Zj i′

∣∣∣∣ ≤
T∑

t=i

T∑
t ′=i′

1 ∈ [
1, T 2

]
,

which can be easily checked by following the arguments in the proof of Lemma 1. This
implies that with the simple alternative, the differences of curvature over timepoints can be
up to O(T 2), which grows much faster with T than the upper bound of curvature differ-
ences O((log(T ))2) with our parametrization. Considering the contours of the two objective
functions f (Z) and fsimple(Z) resulted from our parametrization and from the simple alter-
native, f (Z) has better scaling: in other words, the fsimple(Z) will look more elliptical than
f (Z). Since the estimation of curvature we will discuss in the next section can be poor, and
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in such cases our optimization procedure reverts to steepest descent, it is important to have
an objective function with better scaling for faster convergence. We refer to the textbook
by Nocedal and Wright (2006, Sect. 3.3) for the relation between the scaling of objective
functions and convergence rates.

3.2.2 Estimation of curvature

The subproblem (11) is constructed using a linear approximation of the non-separable
smooth function f (Z), to create a separable objective. The second term
1
2 (Zj · − Zk

j ·)T Dk
j (Zj · − Zk

j ·) in the objective ensures that the next iterate Zk+1
j · is not too far

from the current iterate Zk
j ·, since the linear approximation becomes less accurate on farther

points.
In another view, the term augments the linear approximation with a quadratic function

whose curvature is represented by a positive definite diagonal matrix Dk
j . Each element of

Dk
j can be computed separately, capturing the curvature between two consecutive iterates

for all i = 1,2, . . . , T and j = 1,2, . . . , d ′:

[
Dk

j

]
ii

= arg min
s∈R

∥∥s
(
Zk

ji − Zk−1
j i

) − (
J k

ji − J k−1
j i

)∥∥2

2
= 〈J k

ji − J k−1
j i ,Zk

ji − Zk−1
j i 〉

‖Zk
ji − Zk−1

j i ‖2
2

.

This is motivated from the works by Barzilai and Borwein (1988) and Wright et al. (2009),
but we use a diagonal matrix to approximate the Hessian, not a scaled identity matrix as
in the previous works. The difference is more important than it appears, since our gradient
components have different scales over time due to our reparametrization, and the compo-
nents (over time) are expected to behave differently (many becoming zero), comparing to
the original parametrization.

Since the spectrum computed above is only an approximation, we project each value onto
an interval defined by 0 < Dmin < Dmax to avoid numerical issues. In the worst case, for a
certain j , we could have all (over time) curvature estimates to be Dmin (or Dmax)—in such
cases our method performs the steepest descent optimization for Zj ·.

3.2.3 Approximate line search

The line search is particularly challenging with spatio-temporal random fields, since the
evaluation of f (Z) at each trial point requires calling the belief propagation routine, which
by itself is an iterative procedure to run until convergence. We avoid such load by consider-
ing a separable linear approximation to the difference of objective function values instead,
evaluated at a trial point Z with a given iterate Zk , which becomes the lower bound of the
true difference h(Z) − h(Zk) due to the convexity of h, that is,

h(Z) − h
(
Zk

) ≥
d ′∑

j=1

〈
Zj · − Zk

j ·,J j ·
(
Zk

)〉 + λ1

d ′∑
j=1

(‖Zj ·‖1 − ∥∥Zk
j ·
∥∥

1

)
.

We perform an Armijo line search procedure (Nocedal and Wright 2006) until the expression
in the right-hand side above becomes negative, decreasing the step size by half whenever
the test fails. Due to the Taylor’s theorem, our line search becomes more exact as the trial
stepsizes becomes smaller.

In fact we can separate the sums into partial sums for the elements in G0 as before, and
check if a partial sum corresponding to each graph element becomes negative, performing
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line search in parallel as well. This may endow a stronger condition than the lower bound
itself becoming negative, but at least in our experiments it seems to compensate the inaccu-
racy of our approximate line search.

3.2.4 Stopping criterion and convergence

In order to check if an iterate Z satisfies the optimality condition 0 ∈ ∂h(Z), we define an
optimality measure σ(Z),

σ(Z) := 1√
d

min
g∈∂h(Z)

‖g‖F . (12)

To compute this measure, we need to find the subgradient g∗ ∈ ∂h(Z) that has the minimal
norm, and it can be constructed in a closed form as follows,

[
g∗]

j i
=

{
J j i(Z) + sgn(Zj i)λ1 if |Zj i | > 0,

soft(J j i(Z), λ1) otherwise.

We terminate our optimization with Zk when σ(Zk) falls below a given threshold.
For the result that our separated optimization eventually finds an optimal solution, we

refer to Theorem 1 of Wright et al. (2009). The theorem requires that the smooth part of
the objective is convex and Lipschitz continuously differentiable, and our f (Z) satisfies the
conditions (the second condition is easily verifiable from our Lemma 1 and from the fact
that ‖μ(t) − μ̂(t)‖∞ ≤ 1 by construction).

Algorithm 1 presents the outline of our algorithm. The first parallel loop computes the
empirical moments μ̂ defined in (2). This computation is required once for a given data
set D, and therefore can be computed separately—in that case, we consider μ̂ as another
input. The second part optimizing Z summarizes individual procedures described in this
section. Note that we set an arbitrary ordering to the nodes in the spatial graph G0, in order
to avoid updating parameters twice for each edge.

4 Experiments

We evaluate the performance of our suggested method on two real-world data sets, where
each set is described by a spatial graph G0 = (V0,E0) with a set of sensors V0 and connec-
tions E0, and a set of historical sensor readings D. We evaluate the two approaches Markov
random field with the original parametrization (MRF) and the spatio temporal random field2

(STRF) proposed in the present paper.
First we discuss about model training. We investigate the prediction quality and sparsity

of resulting models with respect to regularization parameters. Also, the impact of separable
optimization on training time is presented. Next, the quality of prediction on test sets is
discussed, regarding the sparsity (and thereby the size in memory) of trained models. Finally,
a qualitative analysis in terms of interpretability (non-overfitting) of our model is presented.

All experiments have been performed on a Linux system with four Intel Xeon CPUs
(each with 8 cores at 2.00 GHz and 18 MB cache) and 256 GB of main memory, except for
measuring test performance in Sect. 4.4—there we have used a Linux machine with smaller

2Our C++ source code is available at http://sfb876.tu-dortmund.de/strf.

http://sfb876.tu-dortmund.de/strf
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Algorithm 1: STRF Algorithm

input: A spatial graph G0 = (V0,E0), its spatio-temporal graph G = (V ,E), and a
data set D = {x1,x2, . . . ,xN }.

// Compute empirical moments μ̂ in (2) (once for a given D):
(parallel) for each node v ∈ V0

for t = 1,2, . . . , T do
// Update node moments (vt : the realization of v at time t )
μ̂{vt =x} ← 1

N

∑N

i=1 φ{vt =x}(xi ), ∀x ∈ Xvt ;

// Update edge moments (NG(vt ) : the neighboring nodes of vt in G)
for each w ∈ N (vt ) \ {vt } do

μ̂{(vt ,w)=(x,y)} ← 1
N

∑N

i=1 φ{(vt ,w)=(x,y)}(xi ), ∀(x, y) ∈ Xvt ×Xw ;

// Optimize Z:
Z1 ← 0 // Initialization
Assign distinct index numbers idx(v) to the nodes v ∈ V0 (in an arbitrary order);

for k = 1,2, . . . do

Compute marginal probability vector μ ← Eθ(Zk)[φ(X)]:
– Use loopy belief propagation (e.g. Kschischang et al. (2001)).
– Parameters θ(Zk) at time t has the form in (6)

(parallel) for each node v ∈ V0

// To update the parameters for v and for the edges connected to v only once,
we prepare the sets:

– N+
G0

(v) ← {w : w is a neighboring node of v in G0, and idx(w) > idx(v)}
– U(v) ← {v} ∪ {(v,w) : w ∈ N+

G0
(v)}

for each j ∈ {1,2, . . . , d ′ = |U(v)|} do
Compute the gradient J j ·(Zk) by Lemma 1;
Estimate diagonal curvature matrix Dk

j as in Sect. 3.2.2;
Update parameters: for i = 1,2, . . . , T :

Zk+1
j i ← soft

(
Zk

ji − J j i(Z
k)

[Dk
j ]ii

,
λ1

[Dk
j ]ii

)
.

Perform an approximate line search, if required, as in Sect. 3.2.3;

If Zk+1 is convergent according to the optimality measure (12), then stop;

(16 GB) amount of memory and a single commodity Intel i7 CPU (at 3.40 GHz and with
8 MB cache), in order to better simulate low-memory situations.

Throughout the experiments, our STRF algorithm has produced solutions satisfying our
target optimality of σ(Z) < 10−5 in term of the measure (12), within ten iterations.
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4.1 Data sets

Traffic The traffic data from German North Rhine-Westphalia highways, are available at
the Online Traffic Information System (http://autobahn.nrw.de) and consist of the number of
vehicles and their average speed per minute, and the occupancy rate of the highway region
covered by each sensor. Due to the amount of data, scalability is particularly an issue with
this set. Here, the data from July to December 2010 is used, together more than 200 million
sensor readings.

The highways are naturally partitioned into several segments by their departing locations.
To prepare a spatial graph, we create nodes for notable segments, and consider the remaining
segments as edges connecting the nodes. If there are more than one sensor assigned to the
same vertex, we average the sensor readings as a measurement for the vertex. Different
types of measurements are combined and discretized into four states following Marinosson
et al. (2002), namly green which is defined by high average speed and low traffic density,
yellow which allows slightly higher traffic density, orange additionally limits the average
speed and red represents a traffic jam. After removing malfunctioning sensors, the final
spatial graph contained 174 nodes and 218 edges. It is assumed that each week of collected
traffic data is generated by the same underlying distribution. Thus, the spatio-temporal graph
has 144 × 7 = 1008 layers (i.e. each weekday is sampled at 144 time points), consists of
174 × 1008 = 175392 nodes and ((174 + 218 × 3) × 1007 + 218) = 834014 edges. Notice
that the corresponding MRF model has more than 107 parameters, if counted by (5).

Temperature The second data set consists of data collected in March 2004 from the sensors
deployed in the Intel Berkeley Research lab (the data are available at http://db.csail.mit.edu/
labdata/labdata.html). The measurements consist of humidity, temperature, light, and volt-
age values captured every 31 seconds. One half of two million sensor readings were consid-
ered for training, and the rest for testing.

The spatial layer is constructed by means of a nearest neighbor graph, where each node
represents a sensor and edges are disconnected whenever there is a wall between neighboring
sensors. We also excluded sensors reported faulty in (Apiletti et al. 2011). The final spatial
graph contained 48 nodes and 150 edges. We use the temperature measurements every 30
minutes, since it was the finest resolution without too many missing values, and discretized
them into 21 equally sized bins. We assume that each day of collected temperature data
is generated by the same underlying distribution. As a result, the spatio-temporal graph
models exactly one day of temperature measurements. It has 48 layers, contains 2304 nodes
and 23556 edges. Although the number of layers is smaller than in the traffic data, the
corresponding model still has more than 107 parameters, due to the larger state space size.

4.2 Measures

Each data set has been split into a training set DTrain and a test set DTest in an obvious way,
such that the states of future time points (the test set) are predicted, given those of the past
(the training set).

We measure the instance-wise prediction accuracy as the number of correctly predicted
vertex states.

Acc(x, x̂ | xU) := 1

|V | − |U |
∑

v∈V \U
1{xv=x̂v}.

Here, x is the true state of a test instance and x̂ is a prediction. The set V contains all spatio-
temporal nodes and U is a proper subset of V . Their cardinalities are expressed by |V | and

http://autobahn.nrw.de
http://db.csail.mit.edu/labdata/labdata.html
http://db.csail.mit.edu/labdata/labdata.html
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|U |, respectively. In case of STRF and MRF, we make predictions for the traffic data via
maximum-a-posteriori (MAP) estimation,

x̂ = arg max
x∈X pθ (xV \U | xU).

To compute this quantity, we apply the max-product algorithm (Kschischang et al. 2001),
often referred to as loopy belief propagation (LBP). Although LBP computes only approxi-
mate marginals and therefore MAP estimation by LBP may not be perfect (Heinemann and
Globerson 2011), it suffices our purpose. For the temperature data, the marginal probabili-
ties, as estimated by LBP, were used to compute the expected temperature for each vertex.

Based on the generative nature of our method, each prediction can be conditioned on an
arbitrary subset of vertices U ⊆ V for which the values have to be known at prediction time.
Notice that U = ∅ is a perfectly valid choice and represents the most probable joint state of
all vertices in the graph.

For kNN, the same spatio-temporal graph as for STRF and MRF is considered. For two
nodes u and v, their spatio-temporal distance d(v,u) is given by the number of edges of
the shortest path that connects both nodes. The kNN prediction for xv | xU (with v /∈ U ) is
made by (i) computing the distance d(xi ,xU) from each training instance xi to xU , which
is simply the cardinality of U minus the number of matching values in xi and xU . (ii) For
each vertex u in each training instance xi , compute the distance du := d(v,u) + d(xi ,xU).
(iii) Sort all vertices by du and return the top k. If more than one of these k states have
the maximum frequency, we select one of them at random. This simple algorithm looks
appealing, but it has an obvious drawback that it needs access to the complete training data
for prediction. Lastly, the random prediction method selects a uniformly distributed random
state for each vertex.

Training and test data are further split into distinct pairs (Di
Train,Di

Test) per month indexed
by i, in order to compute an estimator for the prediction quality of different models. Train
and test sets are generated from consecutive time intervals, e.g. D0

Train is the first half of the
first month and D0

Test is the second half. If k of such pairs are considered, the accuracy on
DTest given U ⊂ V is computed as

Acc(DTest | U) :=
k∑

i=1

1

|Di
Test|

∑
x∈Di

Test

Acc
(
xi, x̂ | U)

.

Here, xi is the prediction of a model that has been trained on Di
Train. To reveal the training

progress of models, −�(θ;D), the negative log-likelihood (3), is reported. Notice that this
value is not computed for kNN due to its non-probabilistic nature.

Finally, to investigate the compressibility of models, we compute the ratio of non-zero
entries of a d-dimensional parameter ω.

NNZ Ratio(ω) := 1

d

d∑
i=1

1{|ωi |>ε}.

Again, if many parameters are set to the zero value, we can implement inference algorithms
with sparse data structures and sparse arithmetic, saving memory and computation time.
For numerical stability, we declare all parameters with magnitude smaller than ε = 10−8 as
zeroes, although it is not necessary for our method STRF since it sets the values to exactly
the zero value whenever possible.
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Fig. 4 The effect of regularization on models for varying sparsity parameter λ1 (left: Traffic data, right:
Temperature data, top: NNZ ratio, bottom: negative log-likelihood). All measurements were obtained after
ten iterations, which was enough for STRF to reach tight optimality

4.3 Regularized training of spatio-temporal random fields

In our model, the �2 regularizer imposes “smoothness” to the dynamics of parameters over
time, providing a controllable way to avoid overfitting noisy observations. The degree of
smoothness is controlled by λ2, whereas the compression ratio is controlled by λ1. Positive
values of λ2 help in our method, since the curvature estimation in Sect. 3.2.2 becomes better
conditioned.

4.3.1 Sparsity of trained models and their training accuracy

The performance of STRF (our method) and MRF (classical parametrization) in terms of
the negative log-likelihood and the NNZ ratio, to a range of values for λ1, is shown in Fig. 4.
The parameter λ2 was fixed to 10−1 (the characteristics were almost identical for various
λ2 values we tried in the range of [0,1]). For MRF, we augmented the objective with �1

and �2 regularizers discussed in Sect. 1.3, then applied a subgradient descent method with
fixed stepsize (η = 10−2). Our results show that (i) the subgradient method does not properly
perform regularization for MRF, regardless of the choices of (λ1, λ2); (ii) the negative log-
likelihood decreases as λ1 is increased, as expected, since at the strongest �1 regularization
will force all marginals to be uniform distributions; (iii) our method STRF identifies sparse
models accordingly to given regularization strength, while retaining similar likelihood val-
ues to MRF. More precisely, focusing on the curves for STRF, likelihood keeps improving
until λ1 reaches 0.47 (beyond this value, the model is compressed too much, losing predic-
tion power). Overall, the pair (λ1, λ2) = (0.4655,1.0) with NNZ ratio 0.101573 has been
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Fig. 5 The effect of separable optimization. Left: comparison of convergence rate in function values (using
32 CPU cores for both methods), right: the scalability of STRF w.r.t. the number of cores. The runtime per
iteration for optimizing Z in Algorithm 1 (enumerated by k) is shown. Both STRF and MRF share the same
code base and are executed on the same hardware without any additional load

identified as a good choice for the traffic data, and (λ1, λ2) = (0.0255,1.0) with NNZ ratio
0.248136 for the temperature data, since both lead to sparse models with reasonable likeli-
hood values. We use these values in the following experiments.

Since the number of edge parameters is a dominant factor in the dimension d of the
parameter space, it would be desirable if STRF compresses edge parameters well enough.
Considering the NNZ ratio of vertex and edge parameters separately, it turns out that STRF
has such a property: with the good parameter values above, the NNZ ratio of vertices is
about 0.95, whereas that of edges is about 0.09.

4.3.2 Scalability of separable optimization

The number of parameters can grow quite rapidly with the size of the spatial graph, the
number of states, and the number of layers. Therefore the scalability of training such models
is important for practical applications, where models may have to be updated frequently for
new data.

We show the characteristic of our algorithm STRF in Fig. 5, comparing it to the standard
gradient descent method for MRF. For comparison, we first run MRF for 100 iterations
on the traffic data with 144 layers, record the final objective value, then run STRF with
λ1 = λ2 = 0.1 until it reaches a similar objective. As we can see, our method converges
much faster than the gradient descent: in an ideal situation, we expect quadratic convergence
from our method, compared to the linear convergence of gradient descent. The plot on the
right shows how the runtime of our optimization scales with different numbers of CPU
cores, illustrating the benefit of separable optimization. Experiments with other graphs and
different numbers of layers showed no qualitative difference in the convergence behavior.

4.4 Prediction on test sets

Here we investigate (i) the test set performance of the sparse models, obtained with the good
parameter values of λ1 and λ2 found in training, and (ii) how the sparsity of trained models
affect the testing time.

4.4.1 Prediction quality of sparse models

The test set accuracy of the models, obtained by the regularization parameters described
in Sect. 4.3.1, is presented in Fig. 6. Here our method STRF, the classical MRF, the kNN
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Fig. 6 Test accuracy of STRF, MRF, and k-nearest neighbor algorithm on the traffic data set for four sce-
narios: unconditioned (first column, first two rows), random observed layers (second column, first two rows),
conditioned on Monday (first column, last two rows), conditioned on Monday to Saturday (first column, last
two rows)

algorithm with several values of k, and the random guessing method, are compared. The
prediction quality of the models produced by STRF is almost identical to that of MRF,
although the STRF models are much smaller in size (10.2 % and 24.8 % of the MRF models
in size, respectively for Traffic and Temperature). The kNN algorithm sometimes performs
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Fig. 7 Effects of sparsity to loading model parameters and belief propagation (BP) computation time for
prediction. Left: Traffic, right: Temperature, top: small graphs, bottom: large graphs. MRF models do not
depend on sparsity, and therefore their corresponding values are represented as straight lines: solid (loading)
and dashed (BP)

better than STRF and MRF, but remember that kNN cannot capture probabilistic relations
and requires the access to full training data, which is not the case for STRF and MRF.

4.4.2 The effect of sparsity on prediction time

As discussed in Sect. 3.1.1, our reparametrization brings in some computational overhead,
especially up to O(T ) to the message computation of the belief propagation (BP) algorithm,
which is used for answering queries. However, it is not the entire picture. For example,
STRF could produce a tiny model that can be stored in CPU caches, whereas MRF produces
a much larger model that has to be swapped out. Then, fetching the model parameters would
take much longer for MRF than for STRF, even making the extra computation time for STRF
negligible—which is a likely scenario for small ubiquitous devices.

For a preliminary investigation, we use a standard Linux PC with 8 MB of cache and
16 GB of main memory, to monitor the effect of sparsity to the loading times of model pa-
rameters from disks, as well as the computation time per BP iteration. The results are shown
in Fig. 7. Since loading and prediction time of MRF is not affected by regularization, they
are represented as straight lines. As expected, the loading time is reduced quite significantly
by sparsifying the model parameters. For instance, the MRF traffic model with T = 168
requires 16.18 MB and the corresponding STRF model with (λ1, λ2) = (0.2,0.1) only 4.04
MB. The time for a single BP iteration also reduces slightly with increased sparsity. For
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Fig. 8 Smooth marginal probabilities on synthetic data (top) and traffic data (bottom). X-Axis: Layer from
1 to 144, each of 10 min width. Y-Axis: Probability. Smoothed marginals are generated by our smooth
reparametrization after 5 training iterations, λ1 = λ2 = 10

small graphs, the difference in prediction time of STRF and MRF is negligible. In case of
larger graphs, STRF takes about two times longer than MRF in BP computation. Consider-
ing the loading time however, we expect that the characteristic will change more favorably
to STRF, when host systems have smaller memory. Also, stronger sparsification can be tried,
although it would lead to a loss in prediction accuracy.

4.5 Smooth probabilistic modelling

Graphical models can produce probabilistic answers for queries, and it is one motivation
why we choose such models. Instead of the MAP prediction, the marginal probabilities
pv(xv) may be considered for analysis.

In case of the traffic data set, the vertex marginals represent the probabilities that a certain
vertex is in one of the four states {green, yellow, orange, red}. Figure 8 shows two noisy
input distributions and their smooth estimates. The two plots at the bottom show empirical
and smooth estimated marginal probability for a certain node from the traffic graph. One
can clearly see the day and night pattern in the estimates, which is existing but not easy to
see in the empirical data. The other plots show a noisy synthetic marginal for the state space
Xv = {0,1,2,3} with pv(xv) ∝ N (exp(−x2),1) and its smooth estimate.

These very smooth results can be achieved by considering the reparametrization θ̄(t) :=∑t

i=1 Z·i as mentioned in Sect. 3.1.1 in conjunction with strong regularization, i.e. λ1 =
λ2 = 10. It has to be clear, that those models represent strong generalizations of the data and
as a result, the corresponding test accuracies are strictly worse, compared to reparametriza-
tion (6). Compared to the STRF results from Sect. 4.4.1, the just mentioned model gets
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around 20 % less accuracy. We also note that these robust models cannot be achieved with
the classical MRF parametrization, due to its rigidness to regularization.

5 Conclusions

We presented an improved graphical model designed for efficient probabilistic modelling of
spatio-temporal data. It is based on a novel parametrization that allows, for the first time,
a regularization of spatio-temporal graphical models, such that the estimated parameters
are sparse and the estimated marginal probabilities are smooth without loosing prediction
accuracy. We investigated sparsity, smoothness, prediction accuracy and scalability of our
model on two real world data sets. The experiments showed that our model with around 10 %
of the original size retained almost the same prediction accuracy. Our method is designed
to run in parallel, and scales very well with an increasing number of CPUs. Future research
will consider other reparametrizations of graphical models as well as specialized inference
algorithms for spatio-temporal data.
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