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Abstract We present a framework based on convex optimization and spectral regulariza-
tion to perform learning when feature observations are multidimensional arrays (tensors).
We give a mathematical characterization of spectral penalties for tensors and analyze a uni-
fying class of convex optimization problems for which we present a provably convergent and
scalable template algorithm. We then specialize this class of problems to perform learning
both in a transductive as well as in an inductive setting. In the transductive case one has an
input data tensor with missing features and, possibly, a partially observed matrix of labels.
The goal is to both infer the missing input features as well as predict the missing labels. For
induction, the goal is to determine a model for each learning task to be used for out of sample
prediction. Each training pair consists of a multidimensional array and a set of labels each
of which corresponding to related but distinct tasks. In either case the proposed technique
exploits precise low multilinear rank assumptions over unknown multidimensional arrays;
regularization is based on composite spectral penalties and connects to the concept of Mul-
tilinear Singular Value Decomposition. As a by-product of using a tensor-based formalism,
our approach allows one to tackle the multi-task case in a natural way. Empirical studies
demonstrate the merits of the proposed methods.
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1 Introduction

Tensors are the higher order generalization of vectors and matrices. They find applications
whenever the data of interest have intrinsically many dimensions. This is the case for an
increasing number of areas such as econometrics, chemometrics, psychometrics, (biomedi-
cal) signal processing and image processing. Regardless of the specific domain, a common
task in the data analysis workflow amounts at finding some low dimensional representa-
tion of the process under study. Existing tensor-based techniques (Kolda and Bader 2009;
Smilde et al. 2004; Coppi and Bolasco 1989; Kroonenberg 2008) mostly consist of decom-
positions that give a concise representation of the underlying structure of data; this is useful
for exploratory data analysis since it often reveals representative low-dimensional subspaces
(for Tucker-type decompositions) or sum of rank-1 factors (for Canonic Polyadic Decompo-
sition (CPD) and related techniques). In this work we take a broader perspective and consider
a wider set of learning tasks. Our main goal is to extend spectral regularization (Abernethy
et al. 2009; Tomioka and Aihara 2007; Argyriou et al. 2007b, 2010; Srebro 2004) to the case
where data have intrinsically many dimensions and are therefore represented as higher order
tensors.

1.1 Related literature

So far spectral regularization has been advocated mainly for matrices (Tomioka and Aihara
2007; Argyriou et al. 2010, 2008, 2007b; Abernethy et al. 2009). In the important low-
rank matrix recovery problem, using a convex relaxation technique proved to be a valuable
methodology (Cai et al. 2010; Candès and Recht 2009; Candès and Plan 2010). Recently this
approach has been extended and tensor completion has been formulated (Liu et al. 2009;
Signoretto et al. 2011b). The authors of Gandy et al. (2011) considered tensor comple-
tion and low multilinear rank tensor pursuit. Whereas the former assumes knowledge of
some entries, the latter assumes the knowledge of measurements obtained sensing the ten-
sor unknown via a known linear transformation (with the sampling operator being a spe-
cial case). They provide algorithms for solving constrained as well as penalized versions
of this problem. They also discussed formulations suitable for dealing with noisy mea-
surements, in which a quadratic loss is employed to penalize deviation from the observed
data.

1.2 Contributions

We present a framework based on convex optimization and spectral regularization to per-
form learning when data observations are represented as tensors. This includes in particular
the cases where observations are vectors or matrices. In addition, it allows one to deal ap-
propriately with data that have a natural representation as higher order arrays. We begin by
presenting a unifying class of convex optimization problems for which we present a scal-
able template algorithm based on an operator splitting technique (Lions and Mercier 1979).
We then specialize this class of problems to perform single as well as multi-task learning
both in a transductive as well as in an inductive setting. To this end we develop tools ex-
tending to higher order tensors the concept of spectral regularization for matrices (Argyriou
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et al. 2007a). We consider smooth penalties (including the quadratic loss as a special case)
and exploit a low multilinear rank assumption over one or more tensor unknowns through
spectral regularizers. We show how this connects to the concept of Tucker decomposition
(Tucker 1964, 1966) (a particular instance of which is also known as Multilinear Singular
Value decomposition (De Lathauwer et al. 2000)). Additionally, as a by-product of using a
tensor-based formalism, our framework allows one to tackle the multi-task case (Argyriou
et al. 2008) in a natural way. In this way one exploits interdependence both at the level of
the data representations as well as across tasks.

Our main contribution is twofold. A first contribution is to apply the framework to super-
vised transductive and inductive learning problems where the input data can be expressed
as tensors. Important special cases of the framework include extensions of multitask learn-
ing with higher order observation data. A second main contribution lies within the Inexact
Splitting Method that we propose as the template algorithm; we study an adaptive stopping
criterion for the solution of a key sub-problem and give guarantees about the convergence
of the overall algorithm.

1.3 Outline

In the next section we introduce preliminaries and present our notation. In Sect. 3 we dis-
cuss the general problem setting that we are concerned with. We present in Sect. 4 a template
algorithm to solve this general class of problems and show its convergence. In Sect. 5 we
extend to the tensor setting the existing definition of spectral penalty and develop the an-
alytical tools we need. Section 6 deals with tensor-based transductive learning. Inductive
learning is discussed in Sect. 7. We demonstrate the proposed methodologies in Sect. 8 and
end the paper with Sect. 9 by drawing our concluding remarks.

2 Notation and preliminaries

We denote both scalars and vectors as lower case letters (a, b, c, . . .) and matrices as bold-
face capitals (A,B,C, . . .). We write 1N to denote [1,1, . . . ,1]� ∈ R

N and IN to indicate
the N × N identity matrix. We also use subscript lower-case letters i, j in the meaning of
indices and we will use I, J to denote the index upper bounds. Additionally we write NI to
denote the set {1, . . . , I }. We recall that N -th order tensors, which we denote by calligraphic
letters (A, B, C , . . .), are higher order generalizations of vectors (first order tensors) and
matrices (second order tensors). More generally, the order N of a tensor is the number of
dimensions, also known as ways or modes. We write ai1,...,iN to denote the entry (A)i1,...,iN .
Likewise we write ai to mean (a)i and aij to mean (A)ij .

Next we present basic facts about tensors and introduce the mathematical machinery that
we need to proceed further. The level of abstraction that we consider allows one to deal in
a unified fashion with different problems and provides a useful toolset for very practical
purposes. For instance, a proper characterization of operators and corresponding adjoints
allows one to use the chain rule for subdifferentials (see, e.g., Ekeland and Temam 1976)
that we extensively use in Sect. 5. Note that this is very useful also from an implementation
view point. In fact, it is being used for the automatic derivation of differentials and sub-
differentials of composite functions in modern optimization toolboxes (such as Becker et al.
2010).
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Fig. 1 An illustration of the mode unfoldings for a third order tensor

2.1 Basic facts about tensors

An N -th order tensor A is rank-1 if it consists of the outer product of N nonzero vectors
u(1) ∈ R

I1 , u(2) ∈ R
I2 , . . . , u(N) ∈ R

IN , that is, if ai1i2...iN = u
(1)
i1

u
(2)
i2

· · ·u(N)
iN

for all values
of the indices. In this case we write A = u(1) ⊗ u(2) ⊗ · · · ⊗ u(N). The linear span of such
elements forms a vector space, which once endowed with the inner product

〈A, B〉 :=
∑

i1

∑

i2

· · ·
∑

iN

ai1i2···iN bi1i2···iN , (1)

is denoted by1
R

I1×I2×···×IN . The corresponding Hilbert-Frobenius norm is ‖A‖ :=√〈A, A〉. We use 〈·, ·〉 and ‖·‖ for any N ≥ 1, regardless of the specific tuple (I1, I2, . . . , IN).
An n-mode vector of A ∈ R

I1×I2×···×IN is an element of R
In obtained from A by varying the

index in and keeping the other indices fixed. The n-rank of A, indicated by rankn(A), is the
dimension of the space spanned by the n-mode vectors. A tensor for which rn = rankn(A)

for n ∈ NN is called a rank-(r1, r2, . . . , rN ) tensor; the N -tuple (r1, r2, . . . , rN ) is called the
multilinear rank of A. For the higher order case an alternative notion of rank exists. This is:

rank(A) := arg min

{
R ∈ N : A =

∑

r∈NR

u(1)
r ⊗u(2)

r ⊗· · ·⊗u(N)
r : u(n)

r ∈ R
In ∀r ∈ NR,n ∈ NN

}
.

(2)
Whereas for second order tensors rank1(A) = rank2(A) = rank(A) for the general case we
can only establish that rankn(A) ≤ rank(A) for any n ∈ NN . Additionally the n-ranks differ
from each other in the general N -th order case.

Let A ∈ R
I1×I2×···×IN and set

J :=
∏

j∈NN \{n}
Ij .

The n-mode unfolding (also called matricization or flattening) of A is the matrix A〈n〉 ∈
R

In×J whose columns are the n-mode vectors. The ordering according to which the vectors

1In the multilinear algebra literature such a space is often denoted by R
I1 ⊗ R

I2 ⊗ · · · ⊗ R
IN to emphasize

its nature as linear span of rank-1 objects. Here we use R
I1×I2×···×IN for compactness.
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are arranged to form A〈n〉 will not matter for our purposes; what matter is that one sticks to
a chosen ordering rule.

Remark 1 Assume a second order tensor A ∈ R
I1×I2 . Then if the 2-mode unfolding is de-

fined upon the lexicographic ordering, we have

A〈2〉 = A�

where ·� denotes matrix transposition.

In our setting the use of unfoldings is motivated by the elementary fact that2

rankn(A) = rank(A〈n〉). (3)

Note that the n-mode unfolding as introduced above defines the linear operator

·〈n〉 : R
I1×I2×···×IN → R

In×J .

The refolding or tensorization, denoted as ·〈n〉, is defined as its adjoint ·〈n〉 : R
In×J →

R
I1×I2×···×IN satisfying

〈
A〈n〉, B

〉= 〈A, B〈n〉〉.
Finally we recall that the n-mode product of a tensor A ∈ R

I1×I2×···×IN by a matrix U ∈
R

Jn×In , denoted by A ×n U , is defined by

A ×n U := (U A〈n〉)〈n〉 ∈ R
I1×I2×···×In−1×Jn×In+1×···×IN . (4)

2.2 Sampling operator and its adjoint

Assume A ∈ R
I1×I2×···×IN and consider the ordered set

S = {
sp := (

i
p

1 , i
p

2 , . . . , i
p

N

) ∈ NI1 × NI2 × · · · × NIN : p ∈ NP

}

identifying P entries of the N -th order tensor A. In the following we denote by SS :
R

I1×I2×···×IN → R
P the sampling operator defined by

(SS X )p := xi
p
1 i

p
2 ···ip

N
for any p ∈ NP .

Note that SS is linear and it can be equivalently restated as (SS X )p = 〈X , Esp 〉 where Esp

is that element of the canonical basis of R
I1×I2×···×IN defined as

(Esp )i1i2···iN :=
{

1, if (i1, i2, . . . , iN ) = sp

0, otherwise.

Based upon this fact one can show that the adjoint of SS X , namely that unique operator
S∗

S : R
P → R

I1×I2×···×IN satisfying 〈b,SS X 〉 = 〈S∗
S b, X 〉, is:

S∗
S : b �→

∑

p∈NP

bp Esp .

2Note that the right hand side of (3) is in fact invariant with respect to permutations of the columns of A〈n〉 .
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It is immediate to check that SS S∗
S = IP and hence, SS is a co-isometry in the sense of

Halmos (1982, Sect. 127, page 69).

Remark 2 From this fact it follows that any solution of SS X = b can be written as S∗
S b+ Z

where Z ∈ ker(SS ) := {X ∈ R
I1×I2×···×IN : SS X = 0}.

Remark 3 Sampling operators in line with SS abound in learning theory and algorithms.
For instance (Smale and Zhou 2005) considers a sampling operator on a reproducing kernel
Hilbert space of functions H (Aronszajn 1950) based on a set of evaluation functionals of
the type

Ex : f �→ f (x) (5)

where f ∈ H is a function on a certain domain X and x ∈ X . It is worth remarking that
an N -th order array A ∈ R

I1×I2×···×IN can be regarded as a function from NI2 × · · · × NIN to
R. Correspondingly, SS can be restated in terms of evaluation functionals of the same type
as (5), namely

Ei
p
1 i

p
2 ···ip

N
: A �→ ai

p
1 i

p
2 ···ip

N
.

This is no surprise as any finite dimensional space (such as R
I1×I2×···×IN ) is isomorphic to a

reproducing kernel Hilbert space of functions, see e.g. Berlinet and Thomas-Agnan (2004,
Chap. 1).

2.3 Abstract vector spaces

In this paper we consider optimization problems on abstract finite dimensional inner product
spaces that represent a generalization of R

P . We are especially interested in the case where
such an abstract space, denoted by W , is obtained by endowing the Cartesian product of Q

module spaces of tensors of different orders:

(
R

I1×I2×···×IN1
)× (

R
J1×J2×···×JN2

)× · · · × (
R

K1×K2×···×KNQ
)

(6)

with the canonical inner product formed upon the uniform sum of the module spaces’ inner
products:

〈
(W1, W2, . . . , WQ), (V1, V2, . . . , VQ)

〉
W

:= 〈W1, V1〉 + 〈W2, V2〉 + · · · + 〈WQ, VQ〉. (7)

Note that we denoted the q-th component using the notation reserved for higher order ten-
sors. When Nq = 2 (second order case) we stick with the notation for matrices introduced
above and finally we denote it as a vector if Nq = 1. We denote (W1, W2, . . . , WQ) by W .
The norm associated to (7) is ‖W‖W = √〈W, W〉W .

Remark 4 As an example, assume W is formed upon the module spaces R
2×3×3, R

4×4 and
R

5. A generic element of W will be denoted then by (A,B, c) where we use different letters
to emphasize the different role played by the corresponding elements.

Alternatively we will denote elements of W , i.e., abstract vectors, by lower case letters
(w,v, . . .) like ordinary vectors, i.e., elements of R

P . We use this convention whenever we
do not want to specify the structure of W . We note that this is consistent with the fact
that elements of W can always be considered as “long vectors” avoiding involved notation.
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Additionally we denote by capital letters (A,B,C, . . .) general operators between abstract
spaces such as F : W → V and use lower case letters (f,g, . . .) to denote functionals on
W namely operators of the type f : W → R. Next we introduce the general family of
optimization problems of interest.

3 General problem setting

3.1 Main optimization problem

The learning tasks that we formulate in this paper can be tackled via special instances of the
following convex optimization problem on an abstract vector space:

minimize
w∈W

f̄ (w) + ḡ(w)

subject to w ∈ C̄ .
(8)

In this problem f̄ is a convex and differentiable functional. As we will illustrate by prelim-
inary examples in Sect. 3.2, it plays the role of a (possibly averaged) cost; it is assumed that
∇f̄ is Lf̄ -Lipschitz, namely that:

∥∥∇f̄ (w) − ∇f̄ (v)
∥∥

W
≤ Lf̄ ‖w − v‖W ∀w,v ∈ W ; (9)

ḡ is a convex but possibly non-differentiable functional playing the role of a penalty. Finally
C̄ ⊆ W is a set which is non-empty, closed and convex; it is used to impose over w a
specific structure, which will depend on the specific instance of the learning task of interest.

3.2 Some illustrative examples

Problem (8) is very general and covers a wide range of machine learning formulations where
one faces single as well as composite penalties, i.e., functions corresponding to the sum of
multiple atomic (stand-alone) penalties. To show this and illustrate the formalism introduced
above, we begin by the simplest problems that can be cast as (8). Successively, we will move
on to the cases of interest, namely tensor-based problems. In the simplest cases, such as in
Ridge Regression (Hoerl and Kennard 1970), f̄ can be set equal to the error functional of
interest f . In other cases, such as those that we will deal with in the remainder of the paper,
it is more convenient to duplicate optimization variables; in these cases f̄ is related to f in
a way that we will clarify later.

In the optimization literature the idea of solving optimization problems by duplicating
variables has roots in the 1950s and was developed in the 1970s, mainly in connection to
control problems, see, e.g., Bertsekas and Tsitsiklis (1989). This general approach underlies
the alternating methods of multipliers and the related Douglas-Rachford technique that we
discuss later in more details. As we will see, duplicating variables allows to decompose
the original problem into simpler sub-problems that can be solved efficiently and can be
distributed across multiple processing units.

3.2.1 Ridge regression

Unlike the original proposal we considered an additional bias term in the model, as common
in machine learning. In this case the ambient space is defined upon two module spaces;
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Eqs. (6) and (7) read:

W = R
D × R,

〈
(w,b), (v, c)

〉
W

:=
∑

d∈ND

wdvd + bc. (10)

The error functional and the penalty term are, respectively,

f (w,b) = 1

2N

∑

n∈NN

(
yn −

∑

d∈ND

wdxdn − b

)2

and g(w) = λ

2

∑

d∈ND

w2
d (11)

where λ > 0 is a user-defined parameter. The problem of interest, namely

min
w∈RD×R

f (w,b) + g(w) (12)

can be solved via problem (8) by letting f̄ := f , ḡ := g and, finally, C̄ := W . The affine
model

m̂(x) = 〈ŵ, x〉 + b̂ , (13)

corresponding to the unique solution (ŵ, b̂), is estimated based upon input data collected in
the design matrix X = [x1, x2, . . . , xN ] ∈ R

D×N and a vector of measured responses y ∈ R
N .

3.2.2 Group lasso

As a second example, consider the more involved situation where the l2 penalty used in
Ridge Regression is replaced by the group lasso penalty with (possibly overlapping) groups,
see Zhao et al. (2009), Jacob et al. (2009). Let 2ND denote the power set3 of ND and consider
some collection of M ordered sets {S1,S2, . . . ,SM} ⊆ 2ND . For any w ∈ R

D let w|S be
defined entry-wise by

(w|S )s =
{
ws, if s ∈ S
0, otherwise.

The group lasso problem with overlapping groups and an unpenalized bias term can be
expressed as

min
w∈RD×R

f (w,b) + g(w) (14)

in which we have for λ > 0:

g(w) := λ
∑

m∈NM

gm(w), where gm(w) := ‖w|Sm‖ for any m ∈ NM. (15)

The latter is a first example of composite penalty. In this case, grouped selection occurs for
non-overlapping groups; hierarchical variable selection is reached by defining groups with
particular overlapping patterns (Zhao et al. 2009). Consider now the abstract vector space

W = R
D × R

D × · · · × R
D

︸ ︷︷ ︸
M times

×R (16)

3The power set of a set A , denoted as 2A , is the set of all subsets of A , including the empty set, denoted
as ∅, and A itself.
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endowed with the canonical inner product

〈
(w[1],w[2], . . . ,w[M], b), (v[1], v[2], . . . , v[M], c)

〉
W

:=
∑

m∈NM

∑

d∈ND

(w[m])d(v[m])d + bc. (17)

Note that the original variable w is duplicated into M copies, namely, w[1],w[2], . . ., w[M].
Once defined the set

C̄ := {
(w[1],w[2], . . . ,w[M], b) ∈ W : w[1] = w[2] = · · · = w[M]

}
(18)

we can solve (14) by means of the problem

minimize
(w[1],w[2],...,w[M],b)∈W

f̄ (w[1],w[2], . . . ,w[M], b) + ḡ(w[1],w[2], . . . ,w[M])

subject to (w[1],w[2], . . . ,w[M], b) ∈ C̄
(19)

where

f̄ (w[1],w[2], . . . ,w[M], b) = 1

M

∑

m∈NM

f (w[m], b)

and

ḡ(w[1],w[2], . . . ,w[M]) =
∑

m∈Nm

gm(w[m]).

Indeed it is clear that if (ŵ[1], ŵ[2], . . . , ŵ[M], b̂) is a solution of (19) then, for any m ∈ NM ,
(ŵ[m], b̂) is a solution of (14).

3.3 Learning with tensors

In the next sections we will deal with both inductive and transductive tensor-based learning
problems. Regularization will be based upon composite spectral penalties that we introduce
in Sect. 5. Multiple module spaces will be used to account for tensor unknowns of different
orders. We will tackle multiple tasks simultaneously and assume input feature are collected
within higher order tensors. A strategy similar to the one considered above for the group
lasso will be used to conveniently recast our learning problems in term of (8).

3.3.1 Transductive Learning

In the transductive case one has an input data tensor with missing features and, possibly,
a partially observed matrix of labels. The goal is to both infer the missing entries in the
data tensors as well as predict the missing labels. Notably, the special case when there is no
labeling information, corresponds to tensor completion that was considered for the first time
in Liu et al. (2009) and can be regarded as a single learning task. For the case where input
patterns are represented as vectors our approach boils down to the formulation in Goldberg
et al. (2010). In this sense the transductive formulation that we propose can be regarded as a
generalization to the case when input data admit a higher order representation. In this case
the essential idea consists of regularizing the collection of input features and labels directly
without learning a model.
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Table 1 The learning tasks that we deal with via the optimization problem in (8)

transductive learning with tensors inductive learning with tensors

soft-completion

data: partially specified input data
tensor and matrix of target labels

data: pairs of fully specified input
features and vectors of target
labels

output: latent features and missing labels output: models for out-of-sample
evaluations of multiple tasks

hard-completion

data: pairs of fully specified input
features and vectors of target
labels

output: missing input data

3.3.2 Inductive learning

For the second family of problems we consider, within the setting of inductive learning, the
goal is to determine a model for each learning task to be used for out of sample prediction.
For the inductive case the model corresponding to a single task will be

m̂(X ) = 〈Ŵ, X 〉 + b̂, (20)

where X ∈ R
D1×D2×···×DM represents here a generic data-tensor, and (Ŵ , b̂) are the esti-

mated parameters, see (13) for comparison.
Each training pair consists of an input tensor data observation and a vector of labels

that corresponds to related but distinct tasks. This setting extends the standard penalized
empirical risk minimization problem to allow for both multiple tasks and higher order ob-
servational data.

3.3.3 Common algorithmic framework

The full taxonomy of learning formulations we deal with is illustrated in Table 1. The fact
that these distinct classes of problems can be seen as special instances of (8) allows us to
develop a unified algorithmical strategy to find their solutions. In particular, a central tool is
given by the fact that W is a metric space (with the metric induced by an inner product as
in (10) and (17)). Next we describe a provably convergent algorithm that is suitable for the
situation where W is high dimensional. In the next sections we will show how this general
approach can be adapted to our different purposes.

4 Unifying algorithmical approach

For certain closed forms of f̄ and ḡ, (8) can be restated as a semi-definite programming
(SDP) problem (Vandenberghe and Boyd 1996) and solved via SDP solvers such as Se-
DuMi (Sturm 1999), or SDPT3 (Tütüncü et al. 2003). However there is an increasing inter-
est in the case where W is high dimensional in which case this approach is not satisfactory.
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Alternative scalable techniques that can be adapted to the solution of (3) consist of prox-
imal point algorithms designed to find a zero of the sum of maximal monotone operators.
Classical references include Rockafellar (1976), Lions and Mercier (1979) and Spingarn
(1983). A modern and comprehensive review with application to signal processing is found
in Combettes and Pesquet (2009). These algorithms include as special cases the Alternat-
ing Direction Method of Multipliers (ADMMs), see Boyd et al. (2011) for a recent review.
Here we propose an algorithm in the family of the Douglas-Rachford splitting methods. No-
tably, ADMMs can be seen as a special instance of the Douglas-Rachford splitting method,
see Eckstein and Bertsekas (1992) and references therein. Our general approach can be
regarded as a variant of the proximal decomposition method proposed in Combettes and
Pesquet (2008) and Combettes (2009) by which it was inspired. As the main advantage, the
approach does not solve the original problem directly; rather, it duplicates some of the opti-
mization variables and solve simpler problems (proximal problems) in a distributed fashion.
As we will show later, the simplicity of proximal problems lies on the fact that they can be
solved exactly in terms of the SVD. Notably, as Sect. (3.2) shows, the algorithm we develop
is not relevant for our tensor-based framework only.

4.1 Proximal point algorithms and operator splitting techniques

4.1.1 Problem restatement

In order to illustrate our scalable solution strategy we begin by equivalently restating (8) as
the unconstrained problem:

minimize
w∈W

h̄(w) = f̄ (w) + ḡ(w) + δC̄ (w) (21)

where δC̄ is defined as:

δC̄ : w̄ �→
{

0, if w̄ ∈ C̄
∞, otherwise.

Note that ŵ is a solution to (21) if and only if (Rockafellar 1970a)

0 ∈ ∇f̄ (ŵ) + ∂ḡ(ŵ) + NC̄ (ŵ) (22)

where ∇f̄ denotes the gradient of f̄ , ∂ḡ is the subdifferential of ḡ and NC̄ is the subdiffer-
ential of δC̄ , i.e., the normal cone (Bauschke and Combettes 2011) of C̄ :

NC̄ (w) :=
{{x ∈ W : 〈x, y − w〉W ≤ 0, ∀y ∈ C̄ }, if w ∈ C̄
∅, otherwise.

Letting now

A := ∇f̄ + NC̄ , B := ∂ḡ and T := A + B (23)

Eq. (22) can be restated as

0 ∈ T (ŵ) = A(ŵ) + B(ŵ) (24)

where A and B , as well as their sum T = A + B , are set-valued operators (for each w their
image is a subset of W ) and they all qualify as maximal monotone. Maximal monotone
operators, of which subdifferentials are a special instance, have been extensively studied in
the literature, see e.g. Minty (1962), Rockafellar (1970b), Brézis (1973) and Phelps (1993).
A recent account on the argument can be found in Bauschke and Combettes (2011).
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4.1.2 Resolvent and proximal point algorithms

It is well known that, for any τ > 0 and a given maximal monotone operator T on W ,
x̂ ∈ T −1(0) if and only if x̂ satisfies x̂ ∈ RτT x̂, i.e., if x̂ is a fixed point of the single-valued
resolvent of τT , defined as

RτT := (I + τT )−1 (25)

see e.g. Bauschke and Combettes (2011). Proximal point algorithms are based on this fun-
damental fact and consist of variations of the basic proximal iteration:

x(t+1) = (I + τT )−1x(t). (26)

In the problem of interest T is a special monotone operator; indeed it corresponds to the
subdifferential of the convex function h̄ = f̄ + ḡ + δC̄ (w). In case of a subdifferential, (26)
can be restated as x(t) ∈ x(t+1) + τ∂h̄(x(t+1)). This, in turn, is equivalent to:

0 ∈ ∂

(
τ h̄(x) + 1

2

∥∥x − x(t)
∥∥2

W

) ∣∣∣∣
x=x(t+1)

. (27)

4.1.3 Proximity operator

Equation (27) represents the optimality condition for the optimization problem:

x(t+1) = arg min
x

τ h̄(x) + 1

2

∥∥x − x(t)
∥∥2

W
. (28)

In light of this, one can restate the proximal iteration (26), as:

x(t+1) = proxτ h̄

(
x(t)
)
, (29)

where proxg is the proximity operator (Moreau 1962) of g:

proxg : x �→ arg min
w∈W

g(w) + 1

2
‖w − x‖2. (30)

4.1.4 Operator splitting approaches

The proximal iteration (29) is numerically viable only in those cases in which it is easy
to solve the optimization problem (28). When h̄ is a quadratic function, for instance, (28)
corresponds to the solution of a system of linear equations that can be approached by reliable
and well studied routines. In general, however, it is non trivial to tackle problem (28) directly.
A viable alternative to the proximal iteration (29) rely on an operator splitting approach,
see Bauschke and Combettes (2011) for a modern review. In the present context, the use
of a splitting technique arises quite naturally from separating the objective function h̄ =
f̄ + ḡ + δC̄ into (1) f̄ + δC̄ (corresponding to the operator A) and (2) the (generally) non-
smooth term ḡ (corresponding to the operator B). As we will see, this decomposition leads to
a tractable algorithm, in which the operators A and B are employed in separate subproblems
that are easy to solve. In particular, a classical method to solve (24) is the Douglas-Rachford
splitting technique that was initially developed in Lions and Mercier (1979) based upon an
idea found in Douglas and Rachford (1956).
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4.2 Douglas-Rachford splitting technique

The Douglas-Rachford splitting technique allows one to solve the inclusion problem (24)
when A and B are maximal monotone operators. The main iteration GDR consists of the
following steps:

GDR

(
w(k);A,B,γ (k), τ

)

⎧
⎪⎪⎨

⎪⎪⎩

y(k) = RτA

(
w(k)

)
, (31a)

r(k) = RτB

(
2y(k) − w(k)

)
, (31b)

w(k+1) = w(k) + γ (k)
(
r(k) − y(k)

)
. (31c)

In the latter τ is a positive proximity parameter and (γ (k))k is a sequence of parameters that,
once chosen appropriately, ensures convergence. With reference to (23), Eq. (31a) reads in
our context

y(k) = arg min
x∈C̄

q̄(x) := f̄ (x) + 1

2τ

∥∥x − w(k)
∥∥2

W
(32)

whereas (31b) reads

r(k) = proxτ ḡ

(
2y(k) − w(k)

)
. (33)

4.3 Modelling workflow within the Douglas-Rachford algorithmic framework

The use of a splitting technique arises quite naturally in our context from separating the
objective function (with constraints embedded via the indicator function) into (1) a part
that can be approached by gradient projection and (2) a non-smooth term that can be con-
veniently tackled via a proximal problem. On the other hand, the Douglas-Rachford algo-
rithmic framework, together with the abstract vector space machinery introduced above,
naturally results into the following mathematical engineering workflow.

Optimization modelling Specification of the target problem: definition of the cost f and
of the composite penalty g depending on the learning task of interest.

Problem casting Specification of the auxiliary problem: definition of the abstract vector
space W ; f̄ , ḡ and C̄ are specified so that a solution of the auxiliary problem can be mapped
into a solution of the target problem.

Sect. 3.2 already provided an illustration of these steps in connection to learning prob-
lems involving a parameter vector and a bias term. In general, a key ingredient in doing
the problem casting is to ensure that ḡ is an additive separable function. In this case, in
fact, computing proxτ ḡ in (33) involves subproblems on each module space that can be dis-
tributed. We formally state this result in the following proposition. The simple proof can be
found in the literature, see e.g. Bauschke and Combettes (2011, Proposition 23.30).

Proposition 1 For i ∈ NI let Wi be some vector space with inner product 〈·, ·〉i . Let W
be the space obtained endowing the Cartesian product W1 × W2 × · · · × WI with the inner
product 〈x, y〉 =∑

i∈NI
〈xi, yi〉i . Assume a function ḡ : W → R defined by

ḡ : (x1, x2, . . . , xI ) �→
∑

i∈NI

gi(xi)

where for any i ∈ NI , gi : Wi → R is convex. Then we have:

proxḡ(x) = (
proxg1

(x1),proxg2
(x2), . . . ,proxgI

(xI )
)
.
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4.4 Limits of two-level strategies

Next we present our algorithm based on an inexact variant of the Douglas-Rachford iter-
ation. Our interest is in those situations where (33) can be computed exactly whereas the
inner problem (32) requires an iterative procedure. As it turns out, in fact, in many situa-
tions one can cast the learning problem of interest in such a way that (33) can be computed
easily and with high precision. Nonetheless, for general f̄ in the inner problem (32), using
the Douglas-Rachford iteration to solve (8) requires a procedure consisting of two nested
iterative schemes. In general, the convergence of such a two-level strategy is ensured only
upon exact solution of the inner problem. On the other hand, practical implementations re-
quire to specify a termination criterion and a corresponding accuracy. Notably Gandy et al.
(2011) proposes different algorithms for an instance of the general problem in (8) similar to
the formulations we will consider in Sect. 6. In particular, in Sect. 5.4 they also devise an
inexact algorithm but they do not provide any convergence guarantee. Motivated by this we
propose an adaptive termination criterion for the inner problem and prove the convergence
of the outer scheme to a solution of (8).

4.5 Template based on inexact splitting technique

The approach that we propose here for solving (8), termed Inexact Splitting Method (ISM),
is presented in Algorithm 1 in which we denoted by PC̄ the projection onto C̄ :

PC̄ : x �→ arg min
w∈C̄

‖x − w‖2
W . (34)

The idea is sketched as follows.

1. We apply an inexact version of GDR to solve problem (8), where we only require to
compute y(k) in (32) up to a given precision ε(k). Since, in our setting, (31b) can be
computed in a closed form, we do not require any inexactness at this step.

2. Problem (32) is strongly convex for any τ > 0 and convex and differentiable function f̄ .
One can apply a gradient method that converges in this situation at a linear rate (Nesterov
2003, Theorem 2.2.8, p. 88).

Notice that step 2 in the Main procedure consists of solving the optimization subproblem
(32) with a precision ε(k) that depends upon the iteration index k. In practice this is achieved
via the Goldstein-Levitin-Polyak gradient projection method, see Bertsekas (1976, 1995). In
the first main iterations a solution for (32) is found with low accuracy (from which the term
inexact); as the estimate is refined along the iterations of MAIN the precision within the
inner problem is increased; this ensures that the sequence (y(k))k produced by Algorithm 1
converges to a solution of problem (8), as the following result shows.

Theorem 1 Assume the solution set Ŝ := arg min{f̄ (w) + ḡ(w) : w ∈ C̄ } of problem (8)
is non-empty; In Algorithm 1 let ε0 > 0, σ > 1 and τ > 0 be arbitrarily fixed parameters.
Then {y(k)}k converges to ŵ ∈ Ŝ .

Proof See Appendix B. �

Remark 5 (Unknown Lipschitz constant) Notice that in the procedure that computes the
proximity operator with adaptive precision we assumed known Lf̄ as defined in (9); based
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Algorithm 1 ISM()
procedure MAIN()

comment: ε0 > 0, σ > 1, τ > 0 arbitrarily fixed.

1. w(0) ∈ W

2. κ ←
√

τLf̄ (τLf̄ + 1) + τLf̄

repeat⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

3. ε(k) ← ε0/(κ(k + 1)σ )

4. y(k) ← INEXACTPROXY(w(k), ε(k), τ,Lf̄ )

5. r(k) ← proxτ ḡ(2y(k) − w(k))

6. w(k+1) ← w(k) + r(k) − y(k)

until convergence criterion met
return (y(k))

procedure INEXACTPROXY(z, ε, τ,Lf̄ )

comment: z ∈ W

1. Lq̄ ← Lf̄ + 1/τ

2. w(0) ← z

repeat
3. w(t+1) ← PC̄ (w(t) − 1

Lq̄
(∇f̄ (w(t)) + 1

τ (w(t) − z)))

until ‖w(t) − w(t−1)‖W ≤ ε

return (w(t))

upon the latter, Lq̄ is immediately computed since Lq̄ = Lf̄ + 1/τ , see Lemma 2 in Ap-
pendix B. In practical application, however, Lf̄ is often unknown or hard to compute. In
this situation an upper bound for Lq̄ can be found according to a backtracking strategy, see
Beck and Teboulle (2009), Nesterov (2007) for details. The constant step-size Lq̄ in step 3
of INEXACTPROXY is replaced by an adaptive step-size h ∈ (0, 1

Lq̄
] as appropriately chosen

by the backtracking procedure.

Remark 6 (Termination of the outer loop) Since, as we proved, the sequence {y(k)}k con-
verges to the solution of problem (8), one can use the condition

‖y(k+1) − y(k)‖W

‖y(k)‖W
≤ η (35)

to terminate the loop in the procedure MAIN, where η > 0 is a desired accuracy. However,
for the specific form of the learning problems considered in this paper, we prefer to use the
objective value. Typically, we terminate the outer loop if4

|h̄(y(k+1)) − h̄(y(k))|
|h̄(y(k))| ≤ η. (36)

4Note that in (36) and before in (35) we implicitly assumed that the denominator in the left hand-side is never
exactly zero. In all the problems we will consider later, in particular, one can verify that this is always the
case unless 0 ∈ W is a solution, which never occurs in practical applications. For those specifications of h̄

where this condition might arise one can replace |h̄(y(k))| by |h̄(y(k))| + 1.
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The reason for this choice is as follows: generally the termination condition (36) finds so-
lution close to optimal (with respect to the optimization problem). When it does not, the
algorithm is normally stuck in a plateau which means that the optimization is typically go-
ing to require a lot of time, with no significant improvement in the estimate. In this setting
the termination condition achieves a shorter computational time by accepting the estimate
we got so far and exiting the loop.

5 Spectral regularization and multilinear ranks

So far we have elaborated on the general formulation in (8); in this section we specify the
nature of the penalty functions that we are concerned with in our tensor-based framework.
We begin by focusing on the case where W corresponds to R

I1×I2×···×IN ; we then consider
multiple module spaces in line with (6) and (7).

5.1 Spectral penalties for higher order tensors

We recall that a symmetric gauge function h : R
P → R is a norm which is both absolute

and invariant under permutations5 (von Neumann 1937), see also Horn and Johnson (1994,
Definition 3.5.17). Symmetric gauge functions are for instance all the lp norms. The follow-
ing definition generalizes to higher order tensors the concept of spectral regularizer studied
in Abernethy et al. (2009) and Argyriou et al. (2010).

Definition 1 (n-mode spectral penalty for higher order tensors) For n ∈ NN a function Ω :
R

I1×I2×···×IN → R is called an n-mode spectral penalty if it can be written as:

Ω(W) = h
(
σ(W〈n〉)

)

where, for R = min{In,
∏

j∈NN \{n} Ij }, h : R
R → R is some symmetric gauge function and

σ(W〈n〉) ∈ [0,∞)R is the vector of singular values of the matrix W〈n〉 in non-increasing
order.

We are especially interested in composite spectral regularizers corresponding to the
(weighted) sum of different n-mode spectral penalties. The earliest example of such a situa-
tion is found in Liu et al. (2009). Denoting by ‖ · ‖∗ the nuclear norm for matrices, Liu et al.
(2009) considers the penalty

g(W) =
∑

n∈NN

1

N
‖W〈n〉‖∗ (37)

with the purpose of performing completion of a partially observed tensor. It is clear that
since ‖W〈n〉‖∗ = ‖σ(W〈n〉)‖1 and ‖ · ‖1 is a symmetric gauge function, (37) qualifies as a
composite spectral regularizer.

The nuclear norm has been used to devise convex relaxation for rank constrained matrix
problems (Recht et al. 2007; Candès and Recht 2009; Candes et al. 2011); this parallels the
use of the l1-norm in sparse approximation and cardinality minimization (Tibshirani 1996;
Chen et al. 2001; Donoho 2006). Likewise, minimizing (37) can be seen as a convex proxy
for the minimization of the multilinear ranks.

5The reason for restricting to the class of symmetric gauge functions will become apparent in Proposition 2,
in which their properties are used for the derivation of proximity operators.
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Fig. 2 An illustration of the (truncated) MLSVD

5.2 Relation with multilinear rank

A tensor W ∈ R
I1×I2×···×IN can be written as Tucker (1964)

W = S ×1 U (1) ×2 U (2) ×3 · · · ×N U (N) (38)

where S ∈ R
I1×I2×···×IN is called the core tensor and for any n ∈ NN , U (n) ∈ R

In×In is a
matrix of n-mode singular vectors, i.e., the left singular vectors of the n-mode unfolding
W〈n〉 with SVD6

W〈n〉 = U (n) diag
(
σ(W〈n〉)

)
V (n)�. (39)

Equation (38) is also known as the Multilinear Singular Value (MLSVD) decomposition.
It has some striking similarities with the matrix SVD, see De Lathauwer et al. (2000). In
particular, a good approximation of W can often be achieved by disregarding the n-mode
singular vectors corresponding to the smallest singular values σ(W〈n〉). See Fig. 2 for an
illustration. Since penalizing the nuclear norm of W〈n〉 enforces the sparsity of σ(W〈n〉),
(37) favors low multilinear rank tensors. Notably for N = 2 (second order case) it is easy to
see that (37) is consistent with the definition of nuclear norm for matrices.

The nuclear norm is the convex envelope of the rank function on the spectral-norm unit
ball (Fazel 2002); as such it represents the best convex approximation for a number of non-
convex matrix problems involving the rank function. Additionally it has been established
that under certain probabilistic assumptions it allows one to recover with high probability a
low rank matrix from a random subset of its entries (Candès and Recht 2009; Koltchinskii
et al. 2010). Similar results do not exist for (37) when N > 2, no matter what definition
of tensorial rank one considers (see Sect. 2.1). It is therefore arguable whether or not it is
appropriate to call it nuclear norm for tensors, as done in Liu et al. (2009). Nonetheless

6Assume the unfolding is performed according to the ordering rule in De Lathauwer et al. (2000). Then one

has V (n) = (U (n+1) ⊗ · · · ⊗ U (N−1) ⊗ U (N) ⊗ U (1) ⊗ · · · ⊗ U (n−1))� where ⊗ denotes here the matrix
Kronecker product.
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this penalty provides a viable way to compute low complexity estimates in the spirit of the
Tucker decomposition. By contrast problems stated in terms of the tensorial rank (2) are
notoriously intractable (Hillar and Lim 2010; Hastad 1990). To the best of our knowledge
it remains an open problem to devise an appropriate convexification for this type of rank
function.

5.3 Proximity operators

The numerical feasibility of proximal point algorithms largely depends upon the simplicity
of computing the proximal operator introduced in (30). For the class of n-mode spectral
penalties we can establish the following.

Proposition 2 (Proximity operator of an n-mode spectral penalty) Assume W ∈ R
I1×I2×···×IN

and let (39) be the SVD of its n-mode unfolding W〈n〉. Then the evaluation at W of the prox-
imity operator of Ω(W) = h(σ(W〈n〉)) is

proxΩ(W) = (
U (n) diag

(
proxh

(
σ(W〈n〉)

))
V (n)�)〈n〉

. (40)

Proof For a matrix A with SVD A = U diag(σ (A))V �, Argyriou et al. (2011, Proposi-
tion 3.1) established that

proxh◦σ (A) = U diag
(
proxh

(
σ(A)

))
V �.

It remains to show that proxΩ(W) = (proxh◦σ (W〈n〉))〈n〉. Note that ·〈n〉 is a linear one-to-one
(invertible) operator and that (W〈n〉)〈n〉 = W namely, the composition between the folding
operator and its adjoint yields the identity7 on R

I1×I2×···×IN . Additionally by the chain rule
for the subdifferential (see e.g. Nesterov 2003, Lemma 3.18) and by definition of Ω one has
∂Ω(V) = (∂(h ◦ σ)(V〈n〉))〈n〉. We now have:

V = proxΩ(W) ⇔ V − W ∈ ∂Ω(V) = (
∂(h ◦ σ)(V〈n〉)

)〈n〉

⇔ (V − W)〈n〉 ∈ ((∂(h ◦ σ)(V〈n〉)
)〈n〉)

〈n〉
⇔ V〈n〉 = proxh◦σ (W〈n〉)

⇔ V = (
proxh◦σ (W〈n〉)

)〈n〉
.

(41)

�

In particular for the case where Ω(W) = λ‖σ(W〈n〉)‖1 one has

proxλ‖σ(·〈n〉)‖1
(W) = (

U (n) diag(dλ)V
(n)�)〈n〉

(42)

where (dλ)i := max(σi(W〈n〉) − λ,0). Note that (42) corresponds to refolding the matrix
obtained applying to W〈n〉 the matrix shrinkage operator as introduced in Cai et al. (2010).

5.4 Multiple module spaces

So far we considered the case where W consisted solely of the module space R
I1×I2×···×IN .

Next we focus on the case where W is given by 2 modules, see Sect. 2.3. The following

7Equivalently, ·〈n〉 is unitary.
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definition will turn out useful in the next section where we deal with two distinct type of
unknowns that are jointly regularized.

Definition 2 ((n1, n2)-mode spectral penalty) Assume a vector space W obtained endowing
(RI1×I2×···×IN1 ) × (RJ1×J2×···×JN2 ) with the canonical inner product

〈W, V〉W = 〈W1, V1〉 + 〈W2, V2〉 (43)

and norm ‖W‖W = √〈W, W〉W . Suppose that for n1 ∈ NN1 and n2 ∈ NN2 In1 = Jn2 = K

and let S1 := ∏
p∈NN1 \{n1} Ip, S2 := ∏

p∈NN2 \{n2} Jp . A function Ω : W → R is called an
(n1, n2)-mode spectral penalty if it can be written as:

Ω(W) = h
(
σ
([W1〈n1〉, W2〈n2〉]

))
(44)

where, for R = min{K,S1S2}, h : R
R → R is some symmetric gauge function and

σ([W1〈n1〉, W2〈n2〉]) ∈ [0,∞)R is the vector of singular values of the matrix [W〈n1〉, W〈n2〉] in
non-increasing order.

Note that we required that In1 = Jn2 = K since otherwise W1〈n1〉 and W2〈n2〉 cannot be
concatenated.

Proposition 3 (Proximity operator of an (n1, n2)-mode spectral penalty) Let W , Ω , S1

and S2 be defined as in Definition 2 and assume the SVD:

[W1〈n1〉, W2〈n2〉] = Uσ
([W1〈n1〉, W2〈n2〉]

)
V �.

Then we have

proxΩ(W) = (
Z

〈n1〉
1 ,Z

〈n2〉
2

)
(45)

where

Z = U diag
(
proxh

(
σ
([W1〈n1〉, W2〈n2〉]

)))
V � (46)

is partitioned into [Z1,Z2] where Z1 is a (K × S1)-matrix and Z2 is a (K × S2)-matrix.

Proof Consider the unfolding operator on W , ·〈n1n2〉 : (W1, W1) �→ [W1〈n1〉, W2〈n2〉]. Based
on (43) it is not difficult to see that its adjoint corresponds to the operator ·〈n1n2〉 :
R

K×(S1+S2) → W given by

·〈n1n2〉 : [W 1,W 2] �→ (
W

〈n1〉
1 ,W

〈n2〉
2

)
.

The chain rule for the subdifferential reads now ∂Ω(V) = (∂(h ◦ σ)(V〈n1n2〉))〈n1n2〉. In the
same fashion as in (41) we now have:

V = proxΩ(W) ⇔ V − W ∈ ∂Ω(V) = (
∂(h ◦ σ)(V〈n1n2〉)

)〈n1n2〉

⇔ (V − W)〈n1n2〉 ∈ ((∂(h ◦ σ)(V〈n1n2〉)
)〈n1n2〉)

〈n1n2〉
⇔ V〈n1n2〉 = proxh◦σ (W〈n1n2〉)

⇔ V = (
proxh◦σ (W〈n1n2〉)

)〈n1n2〉
.

(47)

�

We note that Definition 2 and the result above can be easily generalized to more than two
module spaces at the price of a more involved notation.
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6 Transductive learning with higher order data

In this section we specialize problem (8) in order to perform transductive learning with
partially observed higher order data.8 It is assumed one has a set of N items with higher
order representation X (n) ∈ R

D1×D2×···×DM , n ∈ NN . These items are gathered in the input
dataset X ∈ R

D1×D2×···×DM×N defined entry-wise by

xd1d2···dMn = x
(n)
d1d2···dM

.

Associated to the n-th item there is a target vector y(n) ∈ Y T . In particular we shall focus on
the case where Y = {−1,1} so that Y = [y(1), y(2), . . . , y(N)] is a (T × N)-matrix of binary
labels. Entries of X and Y can be missing with

SX = {(
d

p

1 , . . . , d
p

M,np
) ∈ ND1 × ND2 × · · · × NDM

× NN : p ∈ NP

}
(48)

SY = {(
tq , nq

) ∈ NT × NN : q ∈ NQ

}
(49)

being the index set of the observed entries in, respectively, X and Y . The goal is to infer the
missing entries in X and Y simultaneously, see Fig. 3. We refer to this task as heterogeneous
data completion to emphasize that the nature of X and Y is different. Note that this reduces
to standard transductive learning as soon as T = 1, M = 1 and finally SX = ∅ (no missing
entries in the input dataset). Goldberg et al. (2010) considers the more general situation
where T ≥ 1 and SX �= ∅. Here we further generalize this to the case where M ≥ 1, that
is, items admit a higher order representation. We also point out that the special case where
T = 1 and there is no labeling task defined (in particular, SY = ∅) corresponds to tensor
completion as considered for the first time in Liu et al. (2009). Next we clarify our modelling
assumptions.

6.1 Modelling assumptions

The heterogeneous data completion task is ill-posed in the sense that there are infinitely
many ways to fully specify the entries of X and Y .9 Making the inference process feasible
requires to formulate assumptions for both the input dataset as well as for the matrix of
labels.

In this section we consider the following generative model. It is assumed that the input
dataset X ∈ R

D1×D2×···×DM×N can be decomposed into

X = X̃ + E (50)

where X̃ is a rank-(r1, r2, . . . , rM, rM+1) tensor and E is a remainder. In our setting the
assumption considered in Goldberg et al. (2010) is solely that

rM+1 � min(N,J ) (51)

where

J =
∏

j∈NM

Dj .

8The code of some routines can be found at https://securehomes.esat.kuleuven.be/~msignore/.
9This is the case since entries of X are in R.

https://securehomes.esat.kuleuven.be/~msignore/
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Fig. 3 An illustration of transductive learning with higher order data and multiple tasks. In this case each
observation consists of a D1 × D2 matrix and a T -dimensional target vector. Input observations are stacked
along the third-mode of the input dataset X (top), whereas target observations are gathered in the matrix Y
(bottom). Missing entries of X and Y , indexed by SX and SY respectively, are indicated with purple tones
(Color figure online)

This amounts at regarding items as elements of R
J hereby neglecting their multimodal struc-

ture. By contrast we further assume that

rm � min(Dm,NJ/Dm) for some m ∈ NM. (52)

This type of assumption is generally fulfilled in a number of cases where multimodal depen-
dence arises; this occurs for instance when dealing with spectral images (Signoretto et al.
2011b). Additionally we suppose that y

(n)
t , the label of the n-th pattern for the t -th task, is

linked to X̃ (n) via a latent variable model. More specifically, we let

ỹ
(n)
t = 〈

X̃ (n), W (t)
〉

(53)

where W (t) is the parameter tensor corresponding to the t -th task; we assume that y
(n)
t is

produced by assigning at random each binary entry with alphabet {−1,1} following the
probability model

p(ytn|ỹtn, bt ) = 1/
(
1 + exp

(−ytn(ỹtn + bt )
))

. (54)

Note that, in the latter, we considered explicitly a bias term bt . Let W be that element of
R

D1×D2×···×DM×T defined as wd1d2···dM t := w
(t)
d1d2···dM

. Note that W gathers the representers
of the linear functionals associated to the T tasks. We now have that

Ỹ = W〈M+1〉X̃ �
〈M+1〉 (55)

and it follows from (51) that

rank
([

X̃〈M+1〉, Ỹ
�])≤ rM+1 � min(N,J + T ). (56)

Remark 7 Notice that we have deliberately refrained from specifying the nature of E in (50).
Central to our approach is the way input features and target labels are linked together; this
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is specified by the functional relation (53) and by (54). One could interpret E as noise in
which case X̃ can be regarded as the underlying true representation of the input observation.
This is in line with error-in-variables models (Golub and Van Loan 1980; Van Huffel and
Vandewalle 1991). Alternatively one might regard X as the true representation and assume
that the target variable depends only upon the latent tensor X̃ , having low multilinear rank
(r1, r2, . . . , rM, rM+1).

6.2 Multi-task learning via soft-completion of heterogeneous data

We denote by SSX and SSY
the sampling operators (Sect. 2.2) defined, respectively, upon

(48) and upon (49) and let zx ∈ R
P and zy ∈ R

Q be the corresponding measurement vectors.
Let lx, ly : R × R → R

+ be some predefined convex loss functions respectively for the input
data and the target labels. The empirical error functional we consider, namely

fλ0(X̃ , Ỹ , b) := f x(X̃ ) + λ0f
y(Ỹ , b) (57)

is composed by an error for the inputs,

f x : X̃ �→
∑

p∈NP

lx
(
(ΩSX X̃ )p, zx

p

)
(58)

and one for the latent variables and bias terms,

f y : (Ỹ , b) �→
∑

q∈NQ

ly
((

ΩSY
(Ỹ + b ⊗ 1J )

)
q
, zy

q

)
. (59)

The heterogeneous completion task is then solved by means of the optimization problem

(
ˆ̃X ,

ˆ̃Y , b̂) = arg min
(X̃ ,Ỹ ,b)∈V

fλ0(X̃ , Ỹ , b) +
∑

m∈NM

λm‖X̃〈m〉‖∗ + λM+1

∥∥[X̃〈M+1〉, Ỹ
�]∥∥∗ (60)

where V is obtained endowing the Cartesian product:
(
R

D1×D2×···×DM×N
)× (

R
T ×N

)× R
T (61)

with the inner product
〈
(X̃1, Ỹ 1, b1), (X̃2, Ỹ 2, b2)

〉
V

= 〈X̃1, X̃2〉 + 〈Ỹ 1, Ỹ 2〉 + 〈b1, b2〉; (62)

for any m ∈ {0} ∪ NM+1, λm > 0 is a user-defined parameter and
∑

m∈NM+1
λm = 1. Problem

(60) is convex since its objective is the sum of convex functions. It is a form of penalized
empirical risk minimization with a composite penalty. The first M penalty terms

Ωm : X̃ �→ λm‖X̃〈m〉‖∗, m ∈ NM (63)

reflect the modelling assumption (52). The (M + 1)-th penalty

Γ : (X̃ , Ỹ ) �→ λM+1

∥∥[X̃〈M+1〉, Ỹ
�]∥∥∗

ensures that the recovered matrix [ ˆ̃X〈M+1〉, ˆ̃Y �] is approximately low rank, in line with
Eq. (56). The contribution of the different terms is trimmed by the associated regulariza-
tion parameters which are either preselected or chosen according to some model selection
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criterion. In principle any meaningful pair of convex penalties can be used to define the error
functional. Here we follow (Goldberg et al. 2010) and consider in (58) and (59)

lx : (u, v) �→1

2
(u − v)2 (quadratic loss), (64a)

ly : (u, v) �→ log
(
1 + exp(−uv)

)
(logistic loss). (64b)

Note that (64a) is fully justified by assuming that E in (50) has Gaussian entries. These
losses ensure that the overall error functional (57) is smooth. This fact, along with the tools
developed in Sect. 5, allows us to use Algorithm 1 as a template to devise a solution strategy.

6.3 Algorithm for soft-completion

In order to rely on Algorithm 1, we need to suitably design W , f̄ , ḡ as well as C̄ . That is,
we have to cast (60) into the prototypical formulation in (8). Consider the abstract vector
space W obtained endowing10

(×m∈NM+1

{
R

D1×D2×···×DM×N
})× (

R
T ×N

)× R
T (65)

with the canonical inner product

〈
(X̃[1], . . . , X̃[M+1], Ỹ , b), (W[1], . . . , W[M+1],U , c)

〉
W

:=
∑

m∈NM+1

〈X̃[m], W[m]〉 + 〈Ỹ ,U 〉 + 〈b, c〉. (66)

Once defined the set

C̄ := {
(X̃[1], X̃[2], . . . , X̃[M], X̃[M+1], Ỹ , b) ∈ W : X̃[1] = X̃[2] = · · · = X̃[M+1]

}
(67)

we can solve (60) by means of the problem

minimize
(X̃[1],X̃[2],...,X̃[M],X̃[M+1],Ỹ ,b)∈W

f̄ (X̃[1], . . . , X̃[M+1], Ỹ , b) + ḡ(X̃[1], . . . , X̃[M+1], Ỹ )

subject to (X̃[1], . . . , X̃[M+1], Ỹ , b) ∈ C̄
(68)

where

f̄ (X̃[1], . . . , X̃[M+1], Ỹ , b) := 1

M + 1

∑

m∈NM+1

f x(X̃[m]) + λ0f
y(Ỹ , b), (69)

ḡ(X̃[1], . . . , X̃[M+1], Ỹ ) :=
∑

m∈NM

Ωm(X̃[m]) + Γ (X̃[M+1], Ỹ ). (70)

Application of Propositions 2, 3 and 1 shows now that proxτ ḡ in Step 3 of MAIN (Algo-
rithm 1) reads:

proxτ ḡ(X̃[1], . . . , X̃[M+1], Ỹ )

10We adopt the short-hand ×m∈NM
A to indicate the iterated Cartesian product: A × A × · · · × A︸ ︷︷ ︸

M times

.
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= (
proxτλ1‖σ(·〈1〉)‖1

(X̃[1]), . . . ,proxτλM‖σ(·〈M〉)‖1
(X̃[M]),Z1,Z2

)
(71)

where [Z1(X̃ , Ỹ ),Z2(X̃ , Ỹ )] is a partitioning of

Z(X̃ , Ỹ ) = U diag
(
proxτλM+1‖σ(·)‖1

([
X̃〈M+1〉, Ỹ

�]))
V � (72)

consistent with the dimensions of X̃〈M+1〉 and Ỹ
�

, the operator proxλ‖σ(·)‖1
is defined as

in (42) and finally U and V are respectively left and right singular vectors of the matrix

[X̃〈M+1〉, Ỹ
�]. Note that (34) reads here:

PC̄ (X̃[1], . . . , X̃[M+1], Ỹ , b)

=
(

1

M + 1

∑

m∈NM+1

X̃[m], . . . ,
1

M + 1

∑

m∈NM+1

X̃[m], Ỹ , b

)
. (73)

For completeness we reported in Appendix C the closed form of ∇f̄ . We summarize in
Algorithm 2 the steps required to compute a solution. We stress that these steps are obtained
by adapting the steps of our template procedure given in Algorithm 1.

6.4 Hard-completion without target labels

The problem of missing or unknown values in multi-way arrays is frequently encountered
in practice. Missing values due to data acquisition, transmission, or storage problems are
for instance encountered in face image modelling by multilinear subspace analysis (Geng
et al. 2011). Generally speaking, missing data due to faulty sensors are widespread in biosig-
nal processing; Acar et al. (2011), in particular, considers an EEG (electroencephalogram)
application where data are missing due to disconnections of electrodes. Another problem
in Acar et al. (2011) arises from modelling time-evolving computer network traffic where
cost-sensitivity imposes that only a subset of edges in the network are sampled.

Problem (60) assumes that data consist of both input and target measurements. In turn, the
situation where we do not consider target measurements can be dealt with by the following
special instance of (60):

ˆ̃X = arg min
X̃ ∈R

D1×D2×···×DM ×N
f x(X̃ ) +

∑

m∈NM+1

Ωm(X̃ ). (74)

In the latter, f x penalizes the misfit of X̃ to the partially observed input data tensor; the
composite penalty term favors solution with small multilinear rank. The solution strategy
illustrated in the previous section can be easily adjusted to deal with this situation. For
certain practical problems, however, it is more desirable to complete the missing entries
while requiring the exact adherence to the data. Let us use V as a shorthand notation for
R

D1×D2×···×DM×N . Strict adherence to observables can be accomplished by means of the
following constrained formulation of tensor completion (Gandy et al. 2011; Tomioka et al.
2011; Liu et al. 2009; Signoretto et al. 2011b):

minimize
X̃ ∈R

D1×D2×···×DM ×N

∑

m∈NM+1

Ωm(X̃ )

subject to SSX X̃ = zx

(75)

where SX is the sampling set (48).
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Algorithm 2 SoftCompletion()
input index sets SX and SY , vectors of measurements zx and zy

output estimate (X̃ , Ỹ , b)

procedure MAIN()

comment ε0 > 0, σ > 1, τ > 0 arbitrarily fixed.
comment procedure INEXACTPROXY() is found in Algorithm 1

1. (V (k)
[1] , · · · , V (k)

[M+1],M(k), c(k)) ∈ W

2. κ ←
√

τLf̄ (τLf̄ + 1) + τLf̄

repeat

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3. ε(k) ← ε0/(κ(k + 1)σ )

4. (X̃ (k)
[1] , · · · , X̃ (k)

[M+1], Ỹ
(k)

, b(k)) ←
INEXACTPROXY((V (k)

[1] , · · · , V (k)
[M+1],M(k), c(k)), ε(k), τ,Lf̄ )

comment PC̄ in INEXACTPROXY computed according to Eq. (73)

5a. R(k)
[m] ← proxτλ1‖σ(·〈m〉)‖1

(2X̃ (k)
[m] − V (k)

[m]), m ∈ NM

5b.

⎧
⎪⎨

⎪⎩

R(k)
[M+1] = Z1(2X̃ (k)

[M+1] − V (k)
[M+1],2Ỹ

(k) − M(k))<M+1>

Q(k) = Z2(2X̃ (k)
[M+1] − V (k)

[M+1],2Ỹ
(k) − M(k))�

(see Eq. (72))

6a. V (k+1)
[m] ← V (k)

[m] + R(k)
[m] − X̃ (k)

[m], m ∈ NM+1

6b. M(k+1) ← M(k) + Q(k) − Ỹ
(k)

6c. c(k+1) ← b(k)

until convergence criterion met

(X̃ , Ỹ , b) ← (1/(M + 1)
∑

m∈NM+1
X̃ (k)

[m], Ỹ
(k)

, b(k))

return (X̃ , Ỹ , b)

6.5 Algorithm for hard-completion

As before in order to devise a solution strategy for problem (75) we accommodate Algo-
rithm 1. Consider the abstract space W obtained endowing V M+1 with the canonical inner
product. Let us introduce the constraint set:

C̄ := {
(X̃[1], X̃[2], . . . , X̃[M+1]) ∈ W : X̃[1] = X̃[2] = · · ·
= X̃[M+1], ΩS X̃[m] = zx ∀m ∈ NM+1

}
. (76)
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It is clear that a solution of (75) is readily obtained from a solution of the following problem:

minimize
(X̃[1],X̃[2],...,X̃[M+1])∈W

∑

m∈NM+1

Ωm(X̃[m])

subject to (X̃[1], X̃[2], . . . , X̃[M+1]) ∈ C̄ .

(77)

Note that, with respect to the prototypical problem (8), we now have that f̄ is identically
zero and

ḡ : (X̃[1], X̃[2], . . . , X̃[M+1]) �→
∑

m∈NM+1

Ωm(X̃[m]). (78)

Additionally, the projection of elements of W onto C̄ can be computed in closed form. To
see this let X̃ |B denote the tensor obtained from X̃ ∈ R

D1×···×DM×N setting to zero those
entries that are not indexed by B ⊂ ND1 × ND2 × · · · × NDM

× NN :

(X̃ |B)b1b2···bMc :=
{

0 if (b1, b2, . . . , bM, c) /∈ B
xb1b2···bMc otherwise.

We have the following result where we denote by S c
X the complement of SX .

Proposition 4 (Projection onto C̄ ) Let W and C̄ be defined as above. Then for any
(X̃[1], . . . , X̃[M+1]) ∈ W , it holds that

PC̄ (X̃[1], X̃[2], . . . , X̃[M+1]) = (Z, Z, . . . , Z)

where

Z =
(

1

M + 1

∑

m∈NM+1

X̃[m]
) ∣∣∣∣

S c
X

+S∗
SX

zx,

and we denoted by S∗
SX

the adjoint of the sampling operator SSX .

Proof See Appendix D. �

Finally by Propositions 2 and 1 it follows that proxτ ḡ in Step 3 of MAIN (Algorithm 1)
reads:

proxτ ḡ(X̃[1], . . . , X̃[M+1])

= (
proxτλ1‖σ(·〈1〉)‖1

(X̃[1]), . . . ,proxτλM‖σ(·〈M〉)‖1
(X̃[M+1])

)
. (79)

The steps needed to compute a solution are reported in Algorithm 3, which is obtained
adapting Algorithm 1 to the present setting. With reference to the latter, note that INEX-
ACTPROXY is no longer needed. Indeed, since f̄ is identically zero, (32) boils down to
computing the projection onto C̄ . By Proposition 4, this can be done in closed form.

Remark 8 Algorithm 3 is explicitly designed for the higher order case (M ≥ 2). However
it can be easily simplified to perform hard completion of matrices (M = 1). In this case it
is not difficult to see that one needs to evaluate only one proximity operator; consequently,
duplication of the matrix unknown can be avoided.
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Algorithm 3 HardCompletion()
input index set SX , vector of measurements zx

output estimate X̃

procedure MAIN()

comment τ > 0 arbitrarily fixed.

1. (W (0)
[1] , . . . , W (0)

[M+1]) ∈ W

repeat

⎧
⎪⎪⎨

⎪⎪⎩

2. X̃ (k) ← ( 1
M+1

∑
m∈NM+1

W (k)
[m])|S c

X
+ S∗

SX
zx

3. R(k)
[m] ← proxτλm‖σ(·〈m〉)‖1

(2X̃ (k) − W (k)
[m]) ∀m ∈ NM+1

4. W (k+1)
[m] ← W (k)

[m] + R(k)
[m] − X̃ (k) ∀m ∈ NM+1

until convergence criterion met
X̃ ← X̃ (k)

return (X̃ )

7 Inductive learning with tensor data

For the inductive case the goal is to learn a predictive model based upon a dataset DN of N

input-target training pairs

DN := {(
X (n), y(n)

) ∈ R
D1×D2×···×DM × Y T : n ∈ NN

}
. (80)

Each item is represented by an M-th order tensor and is associated with a vector of T labels.
As before, we focus on the case where Y = {−1,1}. For ease of notation we assumed that
we have the same input data across the tasks; in general, however, this needs not to be the
case.

To understand the rationale behind the regularization approach we are about to propose,
consider the following generative mechanism.

7.1 Modelling assumptions

For a generic item, represented by the tensor X , assume the decomposition X = X̃ + E
where

X̃ = SX̃ ×1 U 1 ×2 U 2 × · · · ×M UM (81)

where for any m ∈ NM and Rm < Dm, Um ∈ R
Dm×Rm is a matrix with orthogonal columns.

Note that the core tensor SX̃ ∈ R
R1×R2×···×RM and E ∈ R

D1×D2×···×DM are item-specific; on
the other hand for any m ∈ NM , the full rank matrix Um spans a latent space relevant to the
tasks at hand and common to all the input data. To be precise we assume the target label yt

were generated according to the probability model p(yt |ỹt ) = 1/(1+ exp(−yt ỹt )), where ỹt

depends upon the core tensor SX̃ :

ỹt = 〈SX̃ , SW (t)〉 + bt (82)
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where SW (t) ∈ R
R1×R2×···×RM and bt are task-specific unknowns. It is important to remark

that, in this scenario, SW (t) comprises R1R2 · · ·RM � D1D2 · · ·DM parameters. In practice
the common latent spaces as well as the core tensor SX̃ are both unknowns so that SW (t)

cannot be estimated directly. However if we further assume that

R(E〈m〉) ⊥ R(Um) (83)

for at least one m ∈ NM , where we denote by R(A) the range of a matrix A, one has the
following.

Proposition 5 Assume (83) holds for m1 ∈ NM . Then

ỹt = 〈
X , W (t)

〉+ bt (84)

where W (t) ∈ R
D1×D2×···×DM is the low multilinear rank tensor:

W (t) = SW (t) ×1 U 1 ×2 U 2 × · · · ×M UM. (85)

Proof See Appendix E. �

Note that the right-hand side of (84) is an affine function of the given higher order repre-
sentation X of the item, rather than an affine function of the unobserved core tensor SX̃ , as
in (82).

Remark 9 Equation (83) requires that E does not “overlap” with the discriminative features;
in practice this will not hold. One can only hope that E does not “overlap too much” so that
ỹt ≈ 〈X , W (t)〉 + bt .

Let now W ∈ R
D1×D2×···×DM×T be the tensor that gathers all the T tasks:

w̃d1d2···dM t := w̃
(t)
d1d2···dM

for any t ∈ NT . (86)

Additionally we consider the case where the tasks are related, as common in the literature of
multi-task learning, see e.g. Argyriou et al. (2007c). In our context this is accomplished by
assuming that W〈M+1〉 can be explained by a limited number of factors, namely that W〈M+1〉
admits thin SVD (Golub and Van Loan 1996):

W〈M+1〉 = UM+1SM+1V
�
M+1

where for RM+1 � DM+1 one has UM+1 ∈ R
DM+1×RM+1 , SM+1 ∈ R

RM+1×RM+1 and finally
V M+1 ∈ R

RM+1×D1D2···DM . Note that W can now be equivalently restated as the low multi-
linear rank tensor:

W = SW ×1 U 1 ×2 U 2 ×3 · · · ×M+1 UM+1 (87)

for some core tensor SW ∈ R
R1×R2×···×RM×RM+1 and latent matrices Um, m ∈ NM+1 that

define subspaces that concentrate the discriminative relationship.
We conclude by pointing out that a supervised learning problem where data observations

are represented as matrices, namely second order tensors, is a special case of our setting.
Single classification tasks in this situation were studied in Tomioka and Aihara (2007). Sim-
ilarly to the present setting, the latter proposes a spectral regularization as a principled way
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to perform complexity control over the space of matrix-shaped models. Before discussing
a solution strategy we point out that the method can be easily generalized to regression
problems by changing the loss function.

7.2 Model estimation

As for transduction we evaluate misclassification errors via the logistic loss; we therefore
measure the empirical risk associated to the different tasks on the dataset (80) via:

fDN
: (W, b) �→

∑

n∈NN

∑

t∈NT

log
(
1 + exp

(−y
(n)
t

(〈
X (n), W (t)

〉+ bt

)))
(88)

where

wd1d2···dM t := w
(t)
d1d2···dM

for any t ∈ NT . (89)

The pair (W, b) is estimated based upon the following penalized empirical risk minimization
problem:

minimize
(W,b)∈V

fDN
(W, b) +∑

m∈NM+1
λm‖W〈m〉‖∗ (90)

where V is formed upon the module spaces R
D1×D2×···×DM×T and R

T . The composite spec-
tral penalty in (90) is designed to match the assumption that W has low multilinear rank, as
discussed above. Note that, in line with (87), other than performing complexity control, the
regularization allows one to determine subspaces that concentrate discriminative informa-
tion, without any additional feature extraction step.

7.3 Algorithm for inductive learning

Consider the abstract vector space W obtained endowing

(×m∈NM+1

{
R

D1×D2×···×DM×T
})× R

T (91)

with the canonical inner product. Additionally let

C̄ := {
(W[1], W[2], . . . , W[M], W[M+1], b) ∈ W : W[1] = W[2] = · · · = W[M+1]

}
. (92)

We solve (90) based upon the following problem:

minimize
(W[1],W[2],...,W[M],W[M+1],b)∈W

f̄ (W[1], . . . , W[M+1], b) + ḡ(W[1], . . . , W[M+1])

subject to (W[1], . . . , W[M+1], b) ∈ C̄
(93)

where

f̄ (W[1], . . . , W[M+1], b) := 1

M + 1

∑

m∈NM+1

fDN
(W[m], b) (94)

and ḡ is the same as in (78). Its proximity operator is found in (79). The gradient of f̄ is
given in Appendix C.
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Algorithm 4 InductiveLearning()
input data set DN

output estimate for W (equation (84)), and vector of bias terms b

procedure MAIN()

comment ε0 > 0, σ > 1, τ > 0 arbitrarily fixed.
comment procedure INEXACTPROXY is found in Algorithm 1

1. (V (k)
[1] , . . . , V (k)

[M+1], c(k)) ∈ W

2. κ ←
√

τLf̄ (τLf̄ + 1) + τLf̄

repeat

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3. ε(k) ← ε0/(κ(k + 1)σ )

4. (W (k)
[1] , . . . , W (k)

[M+1], b(k)) ←
INEXACTPROXY((V (k)

[1] , . . . , V (k)
[M+1], c(k)), ε(k), τ,Lf̄ )

5. R(k)
[m] ← proxτλm‖σ(·〈m〉)‖1

(2W (k)
[m] − V (k)

[m]), m ∈ NM+1

6a. V (k+1)
[m] ← V (k)

[m] + R(k)
[m] − W (k)

[m], m ∈ NM+1

6b. c(k+1) ← b(k)

until convergence criterion met

(W, b) ← (1/(M + 1)
∑

m∈NM+1
W (k)

[m], b(k))

return (W, b)

8 Experiments

8.1 Transductive learning

We begin by presenting experiments on transductive learning with multiple tasks, see Sect. 6.

8.1.1 Evaluation criterion and choice of parameters

As performance indicators we considered: (1) the capability of each procedure to predict
the correct test labels; (2) the capability to interpolate the missing entries in the input data
tensor. We measure the latter based upon the normalized root mean square error (NRMSE)
on the complementary set S c

X̃ :

NRMSE(X̃ , X̂ ) :=
‖SS c

X̃
X̃ − SS c

X̃
X̂ ‖

(max(SS c

X̃
) − min(SS c

X̃
))

√
J c

(95)

where we denoted by J c the cardinality of S c

X̃ and X̃ is as in (50). For both tensor soft-
completion (tensor-sc) and matrix soft-completion (matrix-sc) we solve the optimization
problem in (60) via the approach presented in Sect. 6.3. The parameter λ0 is chosen in the
set {10−5,10−4,10−3, 10−2,10−1,1}. For tensor-sc we set the parameters in the composite
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spectral penalty as

λm = 1

M + 1
λ̄ for any m ∈ NM+1 (96)

where M + 1 is the order of the input data tensor and λ̄ is a varying parameter. For matrix-sc
we take

λm =
{

0 if m ∈ NM

λ̄ if m = M + 1.
(97)

Notice that by doing so we essentially recover the matrix-based approach proposed in Gold-
berg et al. (2010, Formulation 1). We let λ̄ in both (96) and (97) vary on a wide range.
More precisely we follow Goldberg et al. (2010) and Ma et al. (2011); for each value of λ0

we compute the regularization path with respect to λ̄ beginning with a large value λ̄(0) and
solving a sequence of problems with λ̄(t) = ηλ̄λ̄

(t−1) where as in Goldberg et al. (2010) we
consider as decay parameter ηλ̄ = 0.25. At each step t we perform warm-starting, that is,
we take as initial point the solution obtained at step t − 1. We stop when λ̄ ≤ 10−6. For both
tensor and matrix soft-completion we choose the values of parameters corresponding to the
minimum fraction of mis-predicted labels of a hold-out validation set.

8.1.2 Implementation of the optimization algorithm

As termination criterion for the algorithm that finds a solution of (60) we use the relative
increment (36) where we set η = 10−4. With reference to Algorithms 2 and 3 we let ε0 =
10−2 and set σ = 1.1. We use a backtracking procedure to find an upper bound for the
Lipschitz constant Lq̄ (see Remark 5 and references therein). Finally we let τ = 0.02/L̃f̄

where L̃f̄ is an upper bound for the Lipschitz constant Lf̄ , also found via backtracking.
As explained above we compute the entire path with respect to the penalty parameter and
use warm-starting at each step. At step t = 0 the initialization of the algorithm is performed
as follows. For both matrix as well as tensor-sc we set b(0) to be a vector of zeros. For
what concerns X (0) and Ỹ

(0)
we do as follows. Let X ∗ and Y ∗ be obtained setting to zero

unobserved entries of X and Y respectively. Consider a partitioning [ZM+1,1,ZM+1,2] of the
rank-1 approximation of the matrix [X ∗

〈M+1〉,Y
∗�] consistent with the dimension of X ∗

〈M+1〉
and Y ∗�. Both matrix-sc and tensor-sc are then initialized according to

X (0) = Z
〈M+1〉
M+1,1 and Ỹ

(0) = Z�
M+1,2.

This approach is adapted from the method suggested in Goldberg et al. (2010) for their
matrix soft completion procedure.

8.1.3 Alternative approach

We also report results obtained using linear kernel within LS-SVM classifiers applied to vec-
torized input data, see Suykens and Vandewalle (1999). We find models via the LS-SVMlab
toolbox (De Brabanter et al. 2010). A classifier is built for each task independently since
these models do not handle vector-valued labels simultaneously. Although the presence of
missing values in the context of LS-SVM has been studied (Pelckmans et al. 2005) the tool-
box does not implement any strategy to handle this situation. For this reason we considered
as input data the vectorized version of X ∗ + Z

〈M+1〉
M+1,1|S c

X
where X ∗ and Z

〈M+1〉
M+1,1 are as in the

previous paragraph. We denote this approach as imp+ls-svm where imp is a shorthand for
imputation.
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Table 2 Fractions of unobserved labels (test data) predicted incorrectly and NRMSEs. tensor-sc exploits
low rank assumptions along all the modes; in contrast, matrix-sc works only with the third mode unfolding
(hereby ignoring the two-way nature of each data observation). tensor-sc generally performs comparably or
better than matrix-sc and imp+ls-svm in terms of misclassification errors; tensor-sc generally outperforms
matrix-sc on the reconstruction of the underlying input data tensor X̃ , see (50)

ml-rank N ω tensor-sc matrix-sc imp+ls-svm

label error NRMSE (×10−2) label error NRMSE (×10−2) label error

(3,3,3) 30 0.2 0.28(0.09) 6.81(1.24) 0.31(0.08) 7.63(1.42) 0.32(0.03)

0.3 0.20(0.07) 3.29(2.39) 0.21(0.07) 5.98(2.24) 0.20(0.05)

0.4 0.13(0.04) 1.68(1.29) 0.13(0.04) 3.87(1.12) 0.14(0.06)

90 0.2 0.11(0.03) 2.75(1.00) 0.11(0.02) 3.74(1.26) 0.16(0.03)

0.3 0.08(0.02) 0.87(0.36) 0.09(0.02) 1.68(0.67) 0.10(0.02)

0.4 0.05(0.01) 1.87(1.56) 0.06(0.01) 2.55(1.67) 0.07(0.02)

(3, 3, 9) 30 0.2 0.44(0.09) 11.13(2.52) 0.42(0.09) 11.57(1.96) 0.41(0.05)

0.3 0.29(0.04) 5.57(2.53) 0.33(0.06) 10.19(2.51) 0.33(0.03)

0.4 0.25(0.04) 4.91(5.31) 0.27(0.04) 8.82(2.88) 0.27(0.04)

90 0.2 0.17(0.02) 4.71(0.56) 0.18(0.02) 6.63(1.16) 0.27(0.02)

0.3 0.13(0.02) 3.97(2.67) 0.14(0.02) 4.07(1.62) 0.17(0.03)

0.4 0.10(0.01) 2.81(3.15) 0.11(0.02) 3.44(2.10) 0.14(0.02)

8.1.4 Soft completion: toy problems on multi-labeled data

For the first set of experiments we considered a family of synthetic datasets following the
generative mechanism illustrated in Sect. 6.1. For each experiment we generated a core
tensor S in R

r1×r2×r3 with entries i.i.d. from a normal distribution; for i ∈ {1,2} a matrix
U i ∈ R

D×ri with entries i.i.d. from a normal distribution. Finally U 3 ∈ R
N×r3 was generated

according to the same distribution. The input data tensor in R
D×D×N was taken to be

X = S ×1 U 1 ×2 U 2 ×3 U 3 + σ E .

Next, for each task t ∈ NT we created a weight tensor Wt and a bias bt , again with inde-
pendent and identically normally distributed entries; successively, we produced Ỹ and Y

according to (55) and the probability model (54).11 Finally, the sampling sets SX and SY

in (48) and (49) were created by picking uniformly at random a fraction ω of entries of
the data tensor and the target matrix respectively. For matrix and tensor soft-completion we
performed model selection by using 70 % of these entries for training; we measure the per-
formance corresponding to each parameter pair on the hold-out validation set constituted
by the remaining entries. We finally use the optimal values of parameters and train with
the whole set of labeled data; we then measure performance on the hold-out test set. Model
selection for the linear LS-SVM classifiers was based on 10-fold cross-validation.

The procedure above was considered for D = 30, T = 10, σ = 0.1 and different values of
the multilinear rank (r1, r2, r3), N and ω. Table 2 concerns the fraction of unobserved labels
(that is, test data) predicted incorrectly by the different procedures as well as NRMSEs. Note

11Note that each input observation possesses multiple (binary) labels. This situation differs from the multi-
class paradigm that we consider later on. In here any possible binary vector is admissible; by contrast, in a
multi-class setting only those vectors belonging to the codebook are admissible.
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that the latter is not reported for the linear LS-SVM models as these approaches do not have
an embedded imputation strategy. We report the mean (and standard deviation) over 10
independent trials where each trial deals with independently generated data and sample sets.

Remark 10 According to Table 2 tensor-sc generally performs comparably or better to
matrix-sc in terms of misclassification errors; however the experiments show that the for-
mer leads to more favorable results for the reconstruction of the underlying input data tensor
X̃ , see (50).

8.1.5 Multi-class categorization via soft-completion: Olivetti faces

In this experiment we deal with classification of pictures of faces of different persons; we
compared tensor-sc with matrix-sc and imp+ls-svm as before. We considered the first five
persons of the Olivetti database.12 For each person, ten different 56×46 grayscale pictures13

are available; the input dataset consists therefore of a (56 × 46 × 50)-tensor of which 65 %
of entries were artificially removed. For each input image a vector-valued target label was
created with one-vs-one encoding. That is, if ci ∈ {1,2, . . . ,5} denotes the class (person)
indicator for the i-th image we set y(i) ∈ {−1,1}5 to be

(
y(i)
)
j
=
{−1, if j �= ci

1, otherwise.

The same type of encoding was also used within imp+ls-svms. For these classifiers we con-
sidered as input the vector unfoldings of the images. For tensor-sc the task is to simultane-
ously complete the (56×46×50)-tensor and the (5×50)-matrix of target vectors. Likewise
matrix-sc, obtained from (60) setting all but the last regularization parameter equal to zero,
treats each image as a vector by considering only the last matrix unfolding. In all the cases
we use 25 images for training and validation and the remaining for testing. As for the toy
problems above, the spectral penalties parameters within matrix-sc and tensor-sc were set
according to (97) and (96). We compute the regularization path corresponding to the free
parameter λ̄. In all the cases the selection of parameters is driven by the misclassification
error. For the LS-SVM models we used ten-fold CV. For matrix-sc and tensor-sc we chose
parameters according to a hold-out set. More precisely, of the 25 images we use 17 for ac-
tual training and consider the remaining 8 for validation and then use all of the 25 images
once the set of optimal parameters has been found. Following this procedure we performed
five trials each of which obtained from random splitting of training and test data and ran-
dom mask of input missing entries. For each method we report in Table 3 the cumulative
confusion matrix obtained summing up the confusion matrices associated to the test (unla-
beled) data found in the different trials. Table 4 summarizes the performance of the different
methods in terms of classification accuracy and feature imputation.

Remark 11 Note that, since the choice of parameters was driven by misclassification er-
rors, the objective of the approach is the correct completion of the labeling. Therefore the
estimated input features X̂ in (60) should be interpreted as carriers of latent discriminative
information rather than a reconstruction of the underlying images. With reference to Re-
mark 7 we interpret here X (i) as the true representation of the i-th image, X̃ (i) as latent
discriminative features and X̂ (i) as their estimates.

12Publicly available at http://cs.nyu.edu/~roweis/data.html.
13Sizes refer to the images obtained after removing borders.

http://cs.nyu.edu/~roweis/data.html
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Table 3 Cumulative confusion matrices for the different procedures. tensor-sc leads to better classification
accuracy in comparison to the alternative techniques

(a) tensor-sc

y

1 2 3 4 5

ŷ 1 19 3 0 0 3
2 0 29 0 0 0
3 0 0 20 0 0
4 0 0 1 23 0
5 0 0 0 0 27

(b) matrix-sc

y

1 2 3 4 5

ŷ 1 17 3 1 0 4
2 2 27 0 0 0
3 0 0 20 0 0
4 0 0 3 21 0
5 1 0 2 0 24

(c) imp+ls-svm

y

1 2 3 4 5

ŷ 1 14 5 0 1 5
2 0 29 0 0 0
3 0 0 19 0 1
4 0 0 2 22 0
5 0 0 0 0 27

Table 4 Mean and standard deviation of misclassification error rates and NRMSE of features imputation for
the Olivetti dataset

tensor-sc matrix-sc imp+ls-svm

label err NRMSE (×10−2) label err NRMSE (×10−2) label err

0.05(0.10) 19.90(9.75) 0.11(0.14) 20.90(10.24) 0.09(0.13)

Remark 12 Unlike in the toy problems above, for which X̃ was available, the NRMSEs in
Table 4 are computed upon the actual set of images X .

Figure 4 illustrates the retrieval of latent features for some unlabeled (test) pictures. No-
tably the latent features obtained by tensor-sc look as over-smoothed images whereas those
obtained by matrix-sc generally look more noisy. In particular, the cases for which matrix-sc
incorrectly assigns labels often correspond to situations where latent features do not capture
person-specific traits (first and second rows). Wrongly assigned labels also correspond to
cases where latent features are close to those corresponding to a different person (last two
rows).

8.1.6 Hard completion: toy problems

In here we test the capability of hard completion (Sect. 6.4), denoted by tensor-hc, to re-
cover missing entries of a partially specified input data tensor of order 3. We compare to
the case where the higher order structure is neglected; in this case the input data tensor is
flattened into its third matrix unfolding and one performs matrix completion of the arising
second order tensor (matrix-hc). Note that, with reference to (75), this is equivalent to retain
the tensor structure and set all but the last of the regularization parameters λm, m ∈ {1,2,3}
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Fig. 4 Olivetti faces: the task is
to simultaneously complete the
input features, a
(56 × 46 × 50)-tensor (ten
56 × 46 images for each one of
the five persons), and the
(5 × 50)-matrix of
five-dimensional target vectors,
where five relates to the
one-versus-one encoding used for
the five classes. Here we reported
the reconstructed features and
assigned labels for 6 unlabelled
56 × 46 images; see also Tables 3
and 4. Wrong labels are reported
in red. Estimated input features
should be interpreted as carriers
of latent discriminative
information rather than a
reconstruction of the underlying
images, see Remark 11. In
particular, the cases for which
matrix-sc incorrectly assigns
labels often correspond to
situations where latent features
do not capture person-specific
traits (first and second rows).
Wrongly assigned labels also
correspond to cases where latent
features are close to those
corresponding to a different
person (last two rows)

to zero. In either case we compute solutions via Algorithm 3 keeping into account the sim-
plifications that occur in the second order case. For each experiment we generated a core
tensor S in R

r1×r2×r3 with entries i.i.d. according to the uniform distribution on the interval
[−0.5,0.5], denoted as U([−0.5,0.5]); for i ∈ {1,2,3} a matrix U i ∈ R

D×ri was generated
also with entries i.i.d. from U([−0.5,0.5]). The input data tensor in R

D×D×D was taken to
be X = X̃ + σ E where

X̃ = S ×1 U 1 ×2 U 2 ×3 U 3
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Table 5 NRMSEs and execution times for tensor-hc and matrix-hc; the latter completes the given tensor
based upon low rank assumption on the third mode only. Note that the computational complexity of tensor-hc
is roughly 3 times that of matrix-hc, in line with Remark 14

σ Multilinear rank ω tensor-hc matrix-hc

NMRSE
(×10−2)

time (s) NMRSE
(×10−2)

time (s)

0.02 (3,3,3) (SNR ≈ 3) 0.3 4.41(0.48) 42.04(2.15) 5.51(0.65) 13.93(1.01)

0.6 3.10(0.43) 23.24(1.14) 3.86(0.55) 8.05(1.09)

0.9 3.07(0.60) 16.13(1.26) 3.71(0.73) 5.24(0.58)

(3,3,9) (SNR ≈ 9.5) 0.3 3.47(0.36) 54.65(2.03) 6.15(0.63) 21.09(0.89)

0.6 2.36(0.26) 29.06(1.10) 4.04(0.44) 11.98(1.04)

0.9 2.11(0.22) 18.27(0.96) 3.44(0.36) 5.99(0.58)

(9,9,3) (SNR ≈ 30) 0.3 3.32(0.45) 104.21(7.00) 2.26(0.35) 28.10(1.59)

0.6 1.96(0.31) 41.01(2.25) 1.57(0.24) 13.12(0.67)

0.9 1.77(0.22) 21.59(1.05) 1.40(0.18) 6.64(0.44)

0.04 (3,3,3) (SNR ≈ 0.8) 0.3 7.88(0.87) 50.34(3.92) 8.55(0.99) 17.53(1.64)

0.6 5.75(0.82) 35.03(1.51) 6.68(1.00) 11.65(0.94)

0.9 5.74(1.13) 25.67(1.20) 6.68(1.13) 8.17(0.58)

(9,9,3) (SNR ≈ 2.36) 0.3 6.28(0.65) 77.31(3.54) 8.53(0.86) 26.74(1.88)

0.6 4.42(0.50) 46.08(1.58) 6.54(0.70) 15.60(1.02)

0.9 3.99(0.41) 29.97(1.10) 5.90(0.59) 9.71(0.55)

(9,9,3) (SNR ≈ 7.5) 0.3 5.95(0.78) 118.89(6.74) 4.55(0.60) 35.62(2.09)

0.6 3.72(0.59) 59.66(2.54) 3.00(0.47) 19.39(0.88)

0.9 3.40(0.43) 36.20(1.80) 2.71(0.34) 10.61(0.72)

and E is a (D × D × D)-tensor with independent normally distributed entries. Finally the
sampling sets SX were created by picking uniformly at random a fraction ω of entries
of the data tensor. We took D = 50 and considered different values of σ , the multilinear
rank (r1, r2, r3) and ω. In Table 5 we report the mean (and standard deviation) of NRM-
SEs and execution times over 10 independent trials where each trial deals with indepen-
dently generated data and sample sets. Note that keeping fixed σ across different values of
multilinear rank gives a different noise level. We therefore report in the table the approx-
imate signal-to-noise ratio (SNR) obtained on the different trials. The latter is defined as
SNR := var(x̃)/(σ 2) where x̃ denotes the generic entry of X̃ and var denotes the empirical
variance.

Remark 13 The experimental evidence suggests that tensor completion performs better than
matrix completion (performed along the third mode) when either no n-rank dominates the
others or when the 3-rank is higher. This observation holds across different noise levels and
fractions of entries used in the reconstruction.

Remark 14 As Table 5 shows, for the third order case, the computational complexity of
our implementation of tensor completion is roughly three times that of matrix completion.
This is expected since the computational load is determined by Step 5 and 6 which, in turn,
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involve a number of iterations equal to the order of the tensor (M + 1). This is no longer
needed for M = 1 (second order case), see Remark 8.

8.1.7 Impainting of colored images via hard completion

In here we apply hard-completion to impainting of 8-bit RGB colored images, each of which
is represented as a third order tensor. The first two modes span the pixels space; the third
mode contains information from the three channels. For each image we remove entries in all
the channels simultaneously (first three rows of Fig. 5), or consider the case where entries
are missing at random (last two rows of Fig. 5). We then solve the problem in Eq. (75) with
the sampling set SX indexing non-missing pixels. A solution is found via Algorithm 3.
As termination criterion we use the relative increment (36) where we set η = 10−7. With
reference to Algorithm 2 we let τ = 104 and λm = 1 for m ∈ {1,2,3}. Figure 5 reports the
original pictures, the input data tensor and the outcome of our algorithm.

8.2 Inductive learning

We report here experiments on inductive learning with multiple tasks, see Sect. 7. As per-
formance indicator we considered the capability of each procedure to predict the correct test
labels. We compared LS-SVM models with linear kernel (lin ls-svm) and naive Bayes classi-
fiers (naive Bayes) (Domingos and Pazzani 1997)14 with models obtained solving (90). With
reference to the latter we set the parameters in the composite spectral penalty as follows. In
one case, referred to as log mlrank,15 we set

λm = 1

M + 1
λ̄ for any m ∈ NM+1 (98)

where M is the order of the input data and λ̄ is a varying parameter. Alternatively we take

λm =
{

0 if m ∈ NM

λ̄ if m = M + 1.
(99)

This latter approach, referred to as log rank, corresponds to leverage only the interdepen-
dence between tasks; structural assumptions over the input features are not exploited. In
either case we use Algorithm 4 and compute the entire regularization path with respect to λ̄.
In our experiments the choice of this parameter was driven by the misclassification rate. For
log mlrank and log rank we use a hold-out validation set. For LS-SVM we found models via
the LS-SVMlab toolbox (De Brabanter et al. 2010) and considered ten-fold CV for model
selection.

8.2.1 Multi-labeled data toy problems

We begin by a set of artificially generated problems. For each trial we considered an ensem-
ble of T models represented by a (D×D×T )-tensor W with multilinear rank (r, r, r) and a

14Specifically we considered the routine NAIVEBAYES contained in the Statistics Toolbox of MATLAB.
15We use log as a short-hand for logistic since (90) is based on the logistic loss; we use mlrank as a short-hand
for multilinear rank since in this case we penalize high multilinear rank of the tensor corresponding to the
ensemble of models.
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Fig. 5 Hard-completion for impainting of a 8-bit RGB image. Here we report the result of five impainting
experiments. Each image is represented as a (300 × 300 × 3)-tensor; the first two modes span the pixels
space; the third mode contains information from the three channels. Original images (left column); given
pixels (middle column); reconstruction by Algorithm 3 (right column)
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Table 6 Fractions of unobserved labels (test data) predicted incorrectly

D T N log mlrank log rank lin ls-svm naive Bayes

5 2 200 0.08(0.03) 0.11(0.03) 0.13(0.02) 0.23(0.02)

4 400 0.07(0.02) 0.08(0.01) 0.13(0.01) 0.22(0.01)

8 800 0.06(0.01) 0.07(0.01) 0.14(0.01) 0.22(0.01)

15 2 200 0.22(0.03) 0.31(0.02) 0.34(0.01) 0.39(0.01)

4 400 0.19(0.05) 0.28(0.03) 0.35(0.01) 0.39(0.01)

8 800 0.17(0.02) 0.22(0.01) 0.35(0.01) 0.39(0.01)

vector of bias terms b ∈ R
T with normal entries; W was obtained by generating a core tensor

SW in R
r×r×r with entries i.i.d. from a normal distribution; for i ∈ {1,2} a matrix U i ∈ R

D×r

and U 3 ∈ R
T ×r were generated also with entries i.i.d. from a normal distribution. Finally we

set

W = SW ×1 U 1 ×2 U 2 × U 3. (100)

We then created a dataset of N input-output pairs as follows. For n ∈ NN we let X (n)

be a (D × D)-matrix with normal entries; for any t ∈ NT we let the corresponding la-
bel y

(n)
t be a Bernoulli random variable with alphabet {1,−1} and success probability

1/(1 + exp(−ỹ
(n)
t )); the latent variable ỹ

(n)
t was taken to be

ỹ
(n)
t = 〈

W (t), X (n)
〉+ bt

where for any t ∈ NT , W (t) is as in (86).
We set r = 2 and considered the procedure above for different values of T and D. For

a fixed value of T we use N = 100T pairs for training. Note that N refer to the whole set
of tasks; in turn, the N pairs were distributed uniformly at random across different tasks.
As such, there are on average 100 input-output pairs per task; in this way, the amount of
training information is kept constant as T varies. For each setting we perform 10 trials. For
log mlrank and log rank we chose λ̄ based upon a validation set of 30 % pairs selected at
random within the N observations. Results in terms of misclassification rate on a test set are
reported in Table 6.

Remark 15 The experiments show that leveraging relations between tasks (log mlrank and
log rank) significantly improves results; the performance of ls-svm models, which are trained
independently, is the same as T is increased. This is to be expected since the amount of
training data per task is kept approximately the same across different values of T .

Remark 16 A comparison between log mlrank and log rank reveals that exploiting structural
assumptions over the input features is a good idea; this is seen to be the case especially when
the number of tasks is small or the features dimensionality is higher.
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Table 7 Fractions of misclassified test digits, multiple problems, T = 2

(a) “2” vs “7”

log mlrank log rank lin ls-svm

0.05(0.04) 0.07(0.04) 0.06(0.04)

(b) “I” vs “J”

log mlrank log rank lin ls-svm

0.12(0.05) 0.13(0.05) 0.14(0.04)

(c) “4” vs “L”

log mlrank log rank lin ls-svm

0.10(0.05) 0.11(0.04) 0.10(0.04)

(d) “R” vs “S”

log mlrank log rank lin ls-svm

0.07(0.05) 0.08(0.05) 0.07(0.03)

(e) “8” vs “9”

log mlrank log rank lin ls-svm

0.06(0.05) 0.07(0.05) 0.07(0.05)

(f) “M” vs “N”

log mlrank log rank lin ls-svm

0.15(0.05) 0.16(0.06) 0.14(0.07)

8.2.2 Multiclass classification of Binary Alphadigits

In this experiment we considered discrimination between handwritten digits. We focused on
the Binary Alphadigits dataset16 made up of digits from “0” through “9” followed by capital
letters from “A” through “Z” (English alphabet). Each digit is represented by 39 examples
each of which consists of a binary 20 × 16 matrix. In log mlrank the matrix shape of each
digit is retained; log rank and lin ls-svm treat each input pattern as a vector of dimension
320. We consider problems with different numbers of classes. As before we used one-vs-one
encoding (see Sect. 8.1.5); correspondingly, the number of tasks T is equal to the number
of classes. In each case we train models upon N training examples uniformly distributed
across the considered classes; we chose N so that approximately 10 examples per class are
used for training (and model selection) whereas the remaining examples are retained for
testing. For each setting we average results over 20 trials each of which is obtained from a
random splitting of training and test data. Due to the scarcity of training patterns an error
occurs when running NAIVEBAYES; therefore we could not obtain results for this approach.
Tables 7 and 8 report results for different values of T . For T = 2 we considered a subset
of arbitrary binary problems; for T > 2 we considered classes of digits in their given order.
In general, for T ≤ 4 log mlrank seems to perform slightly better than log rank (Tables 7
and 8). As for the multi-labels example above, there is a strong evidence that enforcing task
relationships via the regularization mechanism in log mlrank and log rank improves over the
case where tasks are considered independently (Table 8).

9 Concluding remarks

In this paper we have established a mathematical framework for learning with higher order
tensors. The transductive approach we considered is especially useful in the presence of
missing input features. The inductive formulation, on the other hand, allows one to predict
labels associated to input items unavailable during training. Both these approaches work

16Publicly available at http://cs.nyu.edu/~roweis/data.html.

http://cs.nyu.edu/~roweis/data.html
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Table 8 Fractions of
misclassified test digits, T > 2 T N log mlrank log rank lin ls-svm

4 40 0.07(0.03) 0.08(0.03) 0.08(0.03)

8 80 0.17(0.04) 0.17(0.04) 0.22(0.04)

12 120 0.24(0.03) 0.24(0.03) 0.38(0.04)

16 160 0.27(0.02) 0.27(0.03) 0.51(0.02)

by simultaneously identifying subspaces of highly predictive features without the need for
a preliminary feature extraction step. This is accomplished both leveraging relationships
across tasks and within the higher order representation of the (possibly very high dimen-
sional) input data.

A drawback of our methods is their restriction to linear models only. An interesting line
of future research concerns the extension to a broader class of models. For certain problem
of interest one could perhaps extend results for matrix representer theorems (Argyriou et al.
2009), used within multi-task learning (Argyriou et al. 2008). In the setting of Argyriou
et al. (2008), different but related learning problems are associated to task vectors belonging
to a feature space associated to a used-defined kernel function. As a special case, i.e. when
the feature mapping is the identity, the feature space corresponds to the input space where
data are originally represented. In this case one obtains linear models in the data, like in
this paper. In general, one can show that these (possibly infinite dimensional) task vectors
lie within the span of the mapped data associated to all the tasks (Argyriou et al. 2009). In
the context of this paper, we assumed low multilinear ranks hereby leveraging the algebraic
structure of data in the input space. This is rather crucial, especially when the higher order
data entails missing observations and part of the learning problem consists of completing
the data. In contrast, Argyriou et al. (2008) exploits the geometry of the feature space rather
than that of the original input space. Therefore, although nonlinear extensions are certainly
possible (and desirable) they will need working assumptions attached to the geometry of
the feature space rather than that of the input space. For some cases, a viable alternative is
to conceive a mapping that preserves properties of the higher order data in the input space.
This is the spirit of the Grassmanian kernels proposed in Signoretto et al. (2011a).

It is also important to note that in our experiments we either considered a single spectral
penalty (as in (97) and (99)) or a composite regularizer where all the penalties were equally
enforced ((96) and (98)). Although uniform weights are shown to work in practice, this
black and white setting is clearly restrictive: ideally one would perform model selection to
search for the optimal combination of parameters. Unfortunately this comes at the price of
increasing substantially the computation burden.
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Appendix A: Inexact Douglas-Rachford iteration

In this appendix we recall a result that we need in order to prove convergence of Algorithm 1.
Consider an inexact variant of the Douglas-Rachford iteration defined as follows:

GIDR

(
w(k);A,B,γ (k), τ, a(k), b(k)

)

⎧
⎪⎪⎨

⎪⎪⎩

y(k) = RτA

(
w(k)

)+ a(k), (101a)

r(k) = RτB

(
2y(k) − w(k)

)
, (101b)

w(k+1) = w(k) + γ (k)
(
r(k) − y(k)

)
. (101c)

Note that GIDR differs from GDR , introduced in (31a), (31b) and (31c), only in the first step
(101a), where we allow to compute y(k) inexactly with an error a(k). The following lemma is
a reduced version of Combettes (2009, Theorem 2.1) that deals with the more general case
of infinite dimensional problems in a Hilbert space setting and also considers inexactness at
step (101b).

Lemma 1 (Asymptotic behavior of the inexact Douglas-Rachford iteration) Let W be some
finite dimensional space endowed with the norm ‖ · ‖W ; assume A and B are maximal
monotone operators on W and that zer(A+B) := {x : 0 ∈ A(x)+B(x)} �= ∅. Consider the
Douglas-Rachford algorithm with inexact iteration GIDR introduced in (101a), (101b) and
(101c); let τ ∈]0,+∞[ and {γ (k)}k be a sequence with elements in ]0,2[. Then if

∑

k∈N

γ (k)
∥∥a(k)

∥∥
W

< ∞ and
∑

k∈N

γ (k)
(
2 − γ (k)

)= ∞ (102)

the sequence {y(k)}k converges to an element of zer(A + B).

Appendix B: Proof of Theorem 1

In order to prove the theorem we rely on the error analysis reported in Appendix A. First,
we show in the following lemma that if f̄ is Lipschitz continuously differentiable then so is
q̄ introduced in (32).

Lemma 2 Suppose that f̄ is convex and differentiable and ∇f̄ is Lf̄ -Lipschitz. Then the
function q̄ defined in (32) is strongly convex with parameter 1

τ
and its gradient ∇q̄ is Lq̄ -

Lipschitz continuous with a Lipschitz constant

Lq̄ = Lf̄ + 1

τ
. (103)

Proof Since f̄ is convex, it is trivial that q̄ is strongly convex with a parameter 1
τ

> 0. Now,
we prove the Lipschitz continuity of ∇q̄ . We have ∇q̄(w) = ∇f̄ (w) + 1

τ
(w − w(k)). Using

the Lipschitz continuity of ∇f̄ , we have

∥∥∇q̄(w) − ∇q̄
(
w′)∥∥

W
=
∥∥∥∥∇f̄ (w) − ∇f̄

(
w′)+ 1

τ

(
w − w′)

∥∥∥∥
W

≤ ∥∥∇f̄ (w) − ∇f̄
(
w′)∥∥

W
+ 1

τ

∥∥w − w′∥∥
W
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≤
(

Lf̄ + 1

τ

)∥∥w − w′∥∥
W

,

which shows that ∇q̄ is Lipschitz continuous with a Lipschitz constant Lq̄ := Lf̄ + 1
τ

. �

In order to prove Theorem 1 let us choose now in (101a), (101b) and (101c) a sequence
of errors {a(k)}k such that

∥∥a(k)
∥∥

W
≤ ε0

(k + 1)σ

for any k ∈ N, where ε0 > 0 and σ > 1 are given. Additionally let γ (k) = 1 for any k ∈ N. By
these choices the assumptions of Lemma 1 are both satisfied. In fact the second inequality
in (102) is clearly verified. For the first we have:

∑

k∈N

γ (k)
∥∥a(k)

∥∥
W

≤ ε0

∑

k∈N

1

(k + 1)σ
< ∞.

From (101a), we have

∥∥y(k) − RτA

(
w(k)

)∥∥
W

= ∥∥a(k)
∥∥

W
≤ ε0

(k + 1)σ
. (104)

Now note that computing the resolvent RτA is equivalent to solving the convex optimization
problem in (32), namely:

min
w∈C̄

q̄(w) := f̄ (w) + 1

2τ

∥∥w − w(k)
∥∥2

W
.

Since q̄ in the latter is strongly convex and C̄ is nonempty, closed and convex, one can apply
a projected gradient method (Nesterov 2003) to solve this problem up to accuracy ε0

(k+1)σ
.

More precisely, let z in INEXACTPROXY correspond to the current estimate w(k) of the outer
scheme MAIN and set w(0) = z. We then generate a sequence {w(t)}t≥0 as

w(t+1) = PC
(
w(t) − ht∇q̄

(
w(t)

))
,

where ht ∈ (0, 1
Lq̄

] is a given step-size and Lq̄ is as in (103). Note that since ∇q̄(w) =
∇f̄ (w) + 1

τ
(w − w(k)), we can write this iteration as

w(t+1) = PC

(
w(t) − ht

(
∇f̄

(
w(t)

)+ 1

τ

(
w(t) − w(k)

)))
. (105)

Note that in Algorithm 1, we fix the step size ht at ht = 1
Lq̄

. According to Theorem 2.2.8 in
Nesterov (2003), we have

∥∥w(t+1) − RτA

(
w(k)

)∥∥
W

≤
(

τLf̄

τLf̄ + 1

)1/2∥∥w(t) − RτA

(
w(k)

)∥∥
W

, ∀t ≥ 0. (106)

If we set y(k) = w(t+1) then we need to find the iterate t such that y(k) satisfies (104). We
have:

∥∥w(t+1) − w(t)
∥∥

W

by triang. inequality≥ ∥∥w(t) − RτA

(
w(k)

)∥∥
W

− ∥∥w(t+1) − RτA

(
w(k)

)∥∥
W

(107)
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by (106)≥
[(

τLf̄ + 1

τLf̄

)1/2

− 1

]∥∥w(t+1) − RτA

(
w(k)

)∥∥
W

(108)

≥ 1

κ

∥∥y(k) − RτA

(
w(k)

)∥∥
W

, (109)

where κ := √
τLf̄ (τLf̄ + 1) + τLf̄ . Consequently, if ‖w(t+1) − w(t)‖W ≤ ε0

κ(k+1)σ
then

‖y(k) − RτA(w(k))‖W ≤ ε0
(k+1)σ

. We use the condition

∥∥w(t+1) − w(t)
∥∥

W
≤ ε0

κ(k + 1)σ

to terminate the inner loop of Algorithm 1, which guarantees that y(k) = w(t+1) approxi-
mates to RτA(w(k)) up to the accuracy ε0

(k+1)σ
. The claim of Theorem 1 now follows from

application of Lemma 1.

Appendix C: Closed form of gradients

With reference to Eq. (69), ∇f̄ reads:

∇X̃[m] f̄ (X̃[1], . . . , X̃[M+1], Ỹ , b) =
{ 1

M+1 (x̃[m]dp
1 ···dp

M
np − zx

p), if (d
p

1 , . . . , d
p

M,np) ∈ SX

0, otherwise
(110a)

∇Ỹ f̄ (X̃[1], . . . , X̃[M+1], Ỹ , b) =
{

− λ0z
y
p

exp(z
y
p(ỹtpnp +btp ))+1

, if (tp, np) ∈ SY

0, otherwise
(110b)

∇bf̄ (X̃[1], . . . , X̃[M+1], Ỹ , b) = −
∑

p : (tp,np)∈SY

z
y
p

exp(z
y
p(ỹtpnp + btp )) + 1

etp (110c)

where we denoted by etp the tp-th canonical basis vector of R
T ,

(etp )i :=
{

1, if i = tp

0, otherwise.

With reference to equation (94), ∇f̄ reads:

∇W (t)
[m]

f̄ (W[1], . . . , W[M+1], b) = − 1

M + 1

∑

n∈NN

y
(n)
t X (n)

1 + exp(y
(n)
t (〈W t

[m], X (n)〉 + bt ))
(110d)

∇bt f̄ (W[1], . . . , W[M+1], b) = − 1

M + 1

∑

n∈NN

∑

m∈NM+1

y
(n)
t

1 + exp(y
(n)
t (〈W t

[m], X (n)〉 + bt ))
.

(110e)

Appendix D: Proof of Proposition 4

Let us use V as a shorthand notation for R
D1×D2×···×DM×N and denote by ker(SSX ) the

kernel of SSX , ker(SSX ) := {v ∈ V : SSX v = 0}. Observe that its orthogonal complement
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is ker(SSX )⊥ = ker(SS c
X

) = {v ∈ V : SS c
X

w = 0}. Recall now the definition of projection
onto a convex subset of an abstract inner product space given in (34). With the present
specification of C̄ and W the latter reads:

arg min
(W[1],W[2],...,W[M+1])∈C̄

∥∥(X[1], X[2], . . . , X[M+1]) − (W[1], W[2], . . . , W[M+1])
∥∥2

W

(by definition of ‖ · ‖W )= arg min
(W[1],W[2],...,W[M+1])∈C̄

∑

m∈NM+1

‖X[m] − W[m]‖2

(by definition of C̄ )= ×p∈NM+1

{
arg min

W∈{V∈V : SSX V=zx }

∑

m∈NM+1

‖X[m] − W‖2

}

(Remark 1)= ×p∈NM+1

{
S∗

SX
zx + arg min

W∈ker(SSX )

∑

m∈NM+1

‖X[m] − W‖2

}
. (111)

For the problem

min
W∈ker(SSX )

∑

m∈NM+1

‖X[m] − W‖2 = min
W∈ker(SSX )

∑

m∈NM+1

∥∥X[m]|S c
X

− W
∥∥2

first order optimality conditions shows that the unique solution can be written as

Ŵ =
(

1

M + 1

∑

m∈NM+1

X[m]
) ∣∣∣∣

S c
X

,

which concludes the proof.

Appendix E: Proof of Proposition 5

We have:

〈
X , W (t)

〉= 〈
X〈m1〉, W (t)

〈m1〉
〉= 〈

X〈m1〉,Um1U
�
m1

W (t)
〈m1〉

〉

= 〈
U�

m1
(X̃〈m1〉 + E〈m1〉),U�

m1
W (t)

〈m1〉
〉 by (83)= 〈

U�
m1

X̃〈m1〉,U�
m1

W (t)
〈m1〉

〉

= 〈
X̃ ×m1 U�

m1
, W (t) ×m1 U�

m1

〉
(112)

in which we relied on the definition (4), and used the fact that the decomposition (85) implies
that Um1U

�
m1

W (t)
〈m1〉 = W (t)

〈m1〉, where Um1U
�
m1

is a projection matrix. Now since by decom-

position (85) we actually have UmU�
mW (t)

〈m〉 = W (t)
〈m〉 for any m ∈ NM , we have, for any17

17Note that m2 is a generic index; contrary to m1 it is unrelated to (83).
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m2 �= m1:

〈
X̃ ×m1 U�

m1
, W (t) ×m1 U�

m1

〉

= 〈(
X̃ ×m1 U�

m1

)
〈m2〉,

(
W (t) ×m1 U�

m1

)
〈m2〉

〉

= 〈(
X̃ ×m1 U�

m1

)
〈m2〉,Um2U

�
m2

(
W (t) ×m1 U�

m1

)
〈m2〉

〉

= 〈
U�

m2

(
X̃ ×m1 U�

m1

)
〈m2〉,U

�
m2

(
W (t) ×m1 U�

m1

)
〈m2〉

〉

= 〈
X̃ ×m1 U�

m1
×m2 U�

m2
, W (t) ×m1 U�

m1
×m2 U�

m2

〉
. (113)

Iterating the same procedure for all m ∈ NM we obtain:

〈
X , W (t)

〉= 〈
X̃ ×1 U�

1 ×2 · · · ×M U�
M, W (t) ×1 U�

1 ×2 · · · ×M U�
M

〉
. (114)

Recall from De Lathauwer et al. (2000, Property 3) that (A ×m F ) ×m G = A ×m (GF )

where A is a generic tensor and F , G are generic matrices with the appropriate sizes.
Substituting the expression for X̃ in (81) and the expression for W (t) in (85) into (114) and
using the aforementioned property we have:

〈
X̃ ×1 U�

1 ×2 · · · ×M U�
M, W (t) ×1 U�

1 ×2 · · · ×M U�
M

〉

= 〈
(SX̃ ×2 U 2 × · · · ×M UM) ×1

(
U�

1 U 1

)×2 · · · ×M U�
M,

(SW (t) ×2 U 2 × · · · ×M UM) ×1

(
U�

1 U 1

)×2 · · · ×M U�
M

〉

= 〈
(SX̃ ×2 U 2 × · · · ×M UM) ×2 U�

2 · · · ×M U�
M,

(SW (t) ×2 U 2 × · · · ×M UM) ×2 U�
2 · · · ×M U�

M

〉
. (115)

Iterating the same procedure for all the modes, i.e., for all m ∈ NM , we finally obtain:

〈
X , W (t)

〉= 〈SX̃ , SW (t)〉 (116)

which implies that the right hand side of (82) and the right hand side of (84) coincide. This
proves the statement.
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