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Abstract Sparse non-Gaussian component analysis is an unsupervised linear method of
extracting any structure from high-dimensional distributed data based on estimating a low-
dimensional non-Gaussian data component. In this paper we discuss a new approach with
known apriori reduced dimension to direct estimation of the projector on the target space
using semidefinite programming. The new approach avoids the estimation of the data co-
variance matrix and overcomes the traditional separation of element estimation of the target
space and target space reconstruction. This allows to reduced the sampling size while im-
proving the sensitivity to a broad variety of deviations from normality. Moreover the com-
plexity of the new approach is limited to O(d logd). We also discuss the procedures which
allows to recover the structure when its effective dimension is unknown.
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1 Introduction

Numerous statistical applications are confronted today with the so-called curse of dimen-
sionality (cf. Hastie et al. 2001; Wasserman 2006). Using high-dimensional datasets im-
plies an exponential increase of computational effort for many statistical routines, while the
data thin out in the local neighborhood of any given point and classical statistical meth-
ods become unreliable. When a random phenomenon is observed in the high dimensional
space R

d the “intrinsic dimension” m covering degrees of freedom associated with same
features may be much smaller than d . Then introducing structural assumptions allows to
reduce the problem complexity without sacrificing any statistical information (Mizuta 2004;
Roweis and Saul 2000). This study focuses on structural analysis of high dimensional un-
labeled data. It is well known that the projection of high dimensional data on a randomly
selected low-dimensional subspace is nearly normal. This fact can be intuitively explained
by the central limit theorem. At the same time, interesting data features such as multimodal-
ity, limited support, or heavy tails are essentially non-Gaussian. These “deviations from nor-
mality” are easily observable in low-dimensional data (say, up to dimension 3), but they are
hardly detectable when the data is high-dimensional (when data dimension exceeds 10). Our
structural assumption is that the informative non-Gaussian part of the data is (approximately)
located in a low-dimensional linear subspace I while the non-informative noisy Gaussian
part of the data distribution is full dimensional. If such non-Gaussian subspace were known,
one could reduce data dimension and complexity by projecting the data onto it without
loosing any substantial information. This assumption naturally leads to the problem of re-
covering the low dimensional informative non-Gaussian subspace from the original data. In
what follows we focus on the problem of estimating the projector Π onto an m-dimensional
non-Gaussian subspace from d-dimensional data when m � d . This is a semiparametric
statistical problem with a target parameter of dimension O(dm) (the projection matrix) and
a general m-dimensional nonparametric nuisance (the non-Gaussian data distribution). An
important feature of the problem is that the target space—the set of m-dimensional projec-
tors Π in R

d—is not convex, so efficient methods of convex optimization cannot be applied
to this problem directly, and the recovery of the parameter requires application of com-
putationally expensive relaxation techniques. Another challenging task is the design of an
estimation routine which is robust with respect to the unknown covariance matrix of the
Gaussian component of the data. These characteristics of the problem make it hard even in
the case of moderate dimension d .

Modern statistical literature offers two types of methods for solving a similar dimension
reduction problem. The principal component analysis (PCA) looks for the subspace of the
highest data variability but is limited to Gaussian data and is inefficient when recovering the
non-Gaussian features. Another well known statistical technique, the independent compo-
nent analysis (ICA) is based on the rather restrictive assumption that the full dimensional
data distribution is a superposition of independent one-dimensional non-Gaussian sources;
see e.g. Hyvärinen (1999) and references therein.

A novel approach to recovering the non-Gaussian subspace have been proposed recently
in Blanchard et al. (2006), Kawanabe et al. (2007). The procedure called NGCA (for Non-
Gaussian Component Analysis) decomposes the original problem of dimension reduction
into two tasks: the first one is to extract from the data a number of candidate vectors ̂βj

which are “close” to I . The second is to recover an estimation ̂Π of the projector Π∗ on I
from the collection {̂βj }. An essential disadvantage of the original NGCA estimation pro-
cedure is that it uses the ICA algorithm to construct the “initial guess” for I . As a result,
it shares with the ICA its drawbacks. In particular, NGCA (same as projection pursuit of
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Hyvärinen 1999) is extremely sensitive to the condition number of the covariance matrix
of the Gaussian component. To overcome this problem, the NGCA approach has been then
developed into SNGCA (for Sparse NGCA), in Diederichs et al. (2009). The SNGCA al-
gorithm does not rely upon the ICA, and appears to be more stable with respect to the
parameters of the distribution of the Gaussian component. However, that procedure relies
upon solving a convex optimization problem per candidate vector ̂βj , and its numerical cost
becomes prohibitive for problem dimension dimensions d ≥ 50. Furthermore, the iterative
nature of the SNGCA makes the theoretical study of the resulting estimation procedure ex-
tremely involved. In this paper we discuss a new method of NGCA which represents the
problem of recovering the non-Gaussian subspace as a minmax problem. Special relaxation
arguments allow to reduce this problem to a semidefinite convex-concave saddle-point opti-
mization which can be effectively solved by modern methods of convex optimization. When
compared to previous implementations of the SNGCA in Blanchard et al. (2006), Kawanabe
et al. (2007), Diederichs et al. (2009), the new approach “shortcuts” the intermediary stages
and makes better use of available information for estimation of I . Furthermore, it allows to
treat in a transparent way the case of unknown dimension m of the target space I . Finally,
the representation of the estimator ̂Π as a solution of a semidefinite optimization problem
allows to provide a rigorous theoretical study of the accuracy of the proposed method. In
particularly, our theoretical results in Sect. 3 claim root-n consistency of ̂Π (up to a “log-
factor”) and hence its near optimality.

The paper is organized as follows: in Sect. 2 we present the setup of SNGCA and briefly
review some existing techniques. Then in Sect. 3 we introduce the new approach to recovery
of the non-Gaussian subspace and analyze its accuracy. Further in Sect. 4 we describe the
use of the dual extrapolation scheme for linear matrix games for solving the semidefinite op-
timization problem. Finally we provide a simulation study in Sect. 5, where we compare the
performance of the proposed algorithm SNGCA to that of some known projective methods
of feature extraction.

2 Sparse non-Gaussian component analysis

2.1 The setup

The Non-Gaussian Component Analysis (NGCA) approach is based on the assumption that a
high dimensional distribution tends to be normal in almost any randomly selected direction.
This intuitive fact can be justified by the central limit theorem when the number of directions
tends to infinity. It leads to the NGCA-assumption: the data distribution is a superposition of
a full dimensional Gaussian distribution and a low dimensional non-Gaussian component.
In many practical problems like clustering or classification, the Gaussian component is un-
informative and it is treated as noise. The approach suggests to identify the non-Gaussian
component and to use it for the further analysis.

The NGCA set-up can be formalized as follows; cf. Blanchard et al. (2006). Let
X1, . . . ,XN be i.i.d. from a distribution P in R

d describing the random phenomenon of
interest. We suppose that P possesses a density ρ w.r.t. the Lebesgue measure on R

d , which
can be decomposed as follows:

ρ(x) = φμ,Σ(x)q(T x). (1)

Here φμ,Σ denotes the density of the multivariate normal distribution N (μ,Σ) with param-
eters μ ∈ R

d (expectation) and Σ ∈ R
d×d positive definite (covariance matrix). The function
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q : R
m → R with m ≤ d is positive and bounded. T ∈ R

m×d is an unknown linear mapping.
We refer to I = rangeT as target or non-Gaussian subspace. Note that though T is not
uniquely defined, I is well defined, same as the Euclidean projector Π∗ on I . In what fol-
lows, unless it is explicitly specified otherwise, we assume that the effective dimension m of
I is known a priori. For the sake of simplicity we assume that the expectation of X vanishes:
E[X] = 0.

The model (1) allows for the following interpretation (cf. Sect. 2 of Blanchard et al.
2006): suppose that the observation X ∈ R

d can be decomposed into X = Z + ξ , where Z

is an “informative low-dimensional signal” such that Z ∈ I , I being an m-dimensional
subspace of R

d , and ξ is independent and Gaussian. One can easily show (see, e.g.,
Lemma 1 of Blanchard et al. 2006) that in this case the density of X can be represented
as (1).

2.2 Basics of SNGCA estimation procedure

The estimation of I relies upon the following result, proved in Blanchard et al. (2006):
suppose that the function q is smooth, then for any smooth function ψ : R

d → R the as-
sumptions of (1) and E[X] = 0 ensure that for

β(ψ)
def= E

[∇ψ(X)
]=

∫

∇ψ(x)ρ(x) dx, (2)

there is a vector β ∈ I such that

∣

∣β(ψ) − β
∣

∣

2
≤ ∣

∣Σ−1E
[

Xψ(X)
]∣

∣

2

where ∇ψ denotes the gradient of ψ and | · |p is the standard 	p-norm on R
d . In particular,

if ψ satisfies E[Xψ(X)] = 0, then β(ψ) ∈ I . Consequently

∣

∣(I − Π∗)β(ψ)
∣

∣

2
≤
∣

∣

∣

∣

Σ−1
∫

xψ(x)ρ(x) dx

∣

∣

∣

∣

2

, (3)

where I is the d-dimensional identity matrix and Π∗ is the Euclidean projector on I .
The above result suggests the following two-stage estimation procedure: first compute a

set of estimates {̂β	} of elements {βj } of I , then recover an estimation of I from {̂β	}. This
heuristic has been first used to estimate I in Blanchard et al. (2006). To be more precise, the
construction implemented in Blanchard et al. (2006) can be summarized as follows: let for
a family {h	}, 	 = 1, . . . ,L of smooth bounded (test) functions on R

d

γ	
def= E

[

Xh	(X)
]

, η	
def= E

[∇h	(X)
]

, (4)

and let

γ̂	
def= N−1

N
∑

i=1

Xih	(Xi), η̂	
def= N−1

N
∑

i=1

∇h	(Xi) (5)

be their “empirical counterparts”. The set of “approximating vectors” {̂β	} used in Blanchard
et al. (2006) is as follows: ̂β	 = η̂	 − ̂Σ−1γ̂	, 	 = 1, . . . ,L, where ̂Σ is an estimate of the
covariance matrix Σ . The projector estimation at the second stage is ̂Π =∑m

j=1 ej e
T
j , where

ej , j = 1, . . . ,m, are m principal eigenvectors of the matrix
∑L

	=1
̂β	
̂βT

	 . A numerical study,
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provided in Blanchard et al. (2006), has shown that the above procedure can be used suc-
cessfully to recover I . On the other hand, such implementation of the two-stage procedure
possesses two important drawbacks: it relies upon the estimation of the covariance matrix
Σ of the Gaussian component, which can be hard even for moderate dimensions d . Poor
estimation of Σ then will result in badly estimated vectors ̂β	, and as a result, poorly esti-
mated I . Further, using the eigenvalue decomposition of the matrix

∑L

	=1
̂β	
̂βT

	 entails that
the variance of the estimation ̂Π of the projector Π∗ on I is proportional to the number L of
test-functions. As a result, the estimation procedure is restricted to utilizing only relatively
small families {h	}, and is sensitive to the initial selection of “informative” test-functions.

To circumvent the above limitations of the approach of Blanchard et al. (2006) a different
estimation procedure has been proposed in Diederichs et al. (2009). In that procedure the
estimates ̂β of vectors from the target space are obtained by the method, which was referred
to as convex projection. Let c ∈ R

L and let

β(c) =
L
∑

l=1

c	η	, γ (c) =
L
∑

l=1

c	γ	.

Observe that β(c) ∈ I conditioned that γ (c) = 0. Indeed, if ψ(x) = ∑

	 c	h	(x), then
∑

	 c	E[Xh	(X)] = 0, and by (3),

η(c) =
∑

	

c	E
[∇h	(X)

] ∈ I.

Therefore, the task of estimating β ∈ I reduces to that of finding a “good” corresponding
coefficient vector. In Diederichs et al. (2009) vectors {̂cj } are computed as follows: let

η̂(c) =
L
∑

l=1

c	η̂	 and γ̂ (c) =
L
∑

l=1

c	γ̂	, 	 = 1, . . . ,L

and let ξj ∈ R
d , j = 1, . . . , J constitute a set of probe unit vectors. Then it holds

ĉj = arg min
c

{∣

∣ξj − η̂(c)
∣

∣

2
| γ̂ (c) = 0, |c|1 ≤ 1

}

, (6)

and we set ̂βj = ̂β(̂cj ) =∑

	 ĉ	
j η̂	. Then I is recovered by computing m principal axes of the

minimal volume ellipsoid (Fritz-John ellipsoid) containing the estimated points {±̂βj }J
j=1.

The recovery of ̂I through the Fritz-John ellipsoid (instead of eigenvalue decomposition
of the matrix

∑

	
̂βj
̂βT

j ) allows to bound the estimation error of I by the maximal error of
estimation ̂β of elements of the target space (cf. Theorem 3 of Diederichs et al. 2009), while
the 	1-constraint on the coefficients ĉj allows to control efficiently the maximal stochastic
error of the estimations ̂βj (cf. Theorem 1 of Diederichs et al. 2009; Spokoiny 2009). On
the other hand, that construction heavily relies upon the choice of the probe vectors ξj .
Indeed, in order to recover the projector on I , the collection of ̂βj should comprise at least
m vectors with non-vanishing projection on the target space. To cope with this problem a
multi-stage procedure has been used in Diederichs et al. (2009): given a set {ξj }k=0 of probe
vectors an estimation ̂Ik=0 is computed, which is used to draw new probe vectors {ξj }k=1

from the vicinity of ̂Ik=0; these vectors are employed to compute a new estimation ̂Ik=1,
and so on. The iterative procedure improves significantly the accuracy of the recovery of I .
Nevertheless, the choice of “informative” probe vectors at the first iteration k = 0 remains a
challenging task and hitherto is a weak point of the procedure.
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3 Structural analysis by semidefinite programming

In the present paper we discuss a new choice of vectors β which solves the initialization
problem of probe vectors for the SNGCA procedure in quite a particular way. Namely, the
estimation procedure we are to present below does not require any probe vectors at all.

3.1 Informative vectors in the target space

Further developments are based on the following simple observation. Let η	 and γ	 be de-
fined as in (4), and let U = [η1, . . . , ηL] ∈ R

d×L, G = [γ1, . . . , γL] ∈ R
d×L. Using the obser-

vation in the previous section we conclude that if c ∈ R
L satisfies Gc =∑L

	=1 c	γ	 = 0 then
Uc =∑L

	=1 c	η	 belongs to I . In other words, if Π∗ is the Euclidean projector on I , then

(I − Π∗)Uc = 0.

Suppose now that the set {h	} of test functions is rich enough in the sense that vectors Uc

span I when c spans the subspace Gc = 0. Recall that we assume the dimension m of the
target space to be known. Then projector Π∗ on I is fully identified as the optimal solution
to the problem

Π∗ = arg min
Π

max
c

⎧

⎨

⎩

∣

∣(I − Π)Uc
∣

∣

2

2

∣

∣

∣

∣

∣

Π is a projector on an
m-dimensional subspace of R

d

c ∈ R
L, Gc = 0

⎫

⎬

⎭

. (7)

In practice vectors γ	 and η	 are not available, but we can suppose that their “empirical
counterparts”—vectors γ̂	, η̂	, 	 = 1, . . . ,L can be computed, such that for a set A of prob-
ability at least 1 − ε,

|̂η	 − η	|2 ≤ δN , |γ̂	 − γ	|2 ≤ νN, 	 = 1, . . . ,L. (8)

Indeed, it is well known (cf., e.g., Lemma 1 in Diederichs et al. 2009 or van der Vaart
and Wellner 1996) that if functions h	(x) = f (x,ω	), 	 = 1, . . . ,L, are used, where f is
continuously differentiable, ω	 ∈ R

d are vectors on the unit sphere and f and ∇xf are
bounded, then (8) holds with

δN = C1 max
x∈Rd , |ω|2=1

∣

∣∇xf (x,ω)
∣

∣

2
N−1/2

√

min{d, lnL} + ln ε−1,

νN = C2 max
x∈Rd , |ω|2=1

∣

∣xf (x,ω)
∣

∣

2
N−1/2

√

min{d, lnL} + ln ε−1,
(9)

where C1, C2 are some absolute constants depending on the smoothness properties and the
second moments of the underlying density.

Then for any c ∈ R
L such that |c|1 ≤ 1 we can control the error of approximation of

∑

	 c	γ	 and
∑

	 c	η	 with their empirical versions. Namely, we have on A:

max
|c|1≤1

∣

∣

∣

∣

∑

	

c	(̂η	 − η	)

∣

∣

∣

∣

2

≤ δN and max
|c|1≤1

∣

∣

∣

∣

∑

	

c	(̂η	 − η	)

∣

∣

∣

∣

2

≤ νN .
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Let now ̂U = [̂η1, . . . , ηL], ̂G = [γ̂1, . . . , γ̂L]. When substituting ̂U and ̂G for U and G into
(7) we come to the following minmax problem:

min
Π

max
c

⎧

⎨

⎩

∣

∣(I − Π)̂Uc
∣

∣

2

2

∣

∣

∣

∣

Π is a projector on an m-dimensional
subspace of R

d

c ∈ R
L, |c|1 ≤ 1, |̂Gc|2 ≤ �

⎫

⎬

⎭

. (10)

Here we have substituted the constraint Gc = 0 with the inequality constraint |̂Gc|2 ≤ � for
some � > 0 in order to keep the optimal solution c∗ to (7) feasible for the modified problem
(10) (this will be the case with probability at least 1 − ε if � ≥ νN ).

As we will see in a moment, when c runs the νN -neighborhood of intersection CN of the
standard hyperoctahedron {c ∈ R

L, |c|1 ≤ 1} with the subspace ̂Gc = 0, vectors ̂Uc span a
close vicinity of the target space I .

3.2 Solution by semidefinite relaxation

Note that (10) is a hard optimization problem. Namely, the candidate maximizers ci of (10)
are the extreme points of the set CN = {c ∈ R

L, |c|1 ≤ 1, |̂Gc|2 ≤ νN }, and there are O(Ld)

of such points. In order to be efficiently solvable, the problem (10) is to be “reduced” to a
convex-concave saddle-point problem, which is, to the best of our knowledge, the only class
of minmax problems which can be solved efficiently (cf. Nemirovski and Yudin 1983).

Thus the next step is to transform the problem in (10) into a convex-concave minmax
problem using the Semidefinite Relaxation (or SDP-relaxation) technique (see e.g., Ben Tal
and Nemirovski 2001, Chap. 4). We obtain the relaxed version of (10) in two steps. First, let
us rewrite the objective function (recall that I −Π is also a projector, and thus an idempotent
matrix):

∣

∣(I − Π)̂Uc
∣

∣

2

2
= cT

̂UT (I − Π)2
̂Uc = cT

̂UT (I − Π)̂Uc = trace
[

̂UT (I − Π)̂UX
]

,

where the positive semidefinite matrix X = ccT is the “new variable”. The constraints on c

can be easily rewritten for X:

1. the constraint |c|1 ≤ 1 is equivalent to |X|1 ≤ 1 (we use the notation |X|1 =∑L

i,j=1 |Xij |);
2. because X is positive semidefinite, the constraint |̂Gc|2 ≤ � is equivalent to into

trace[̂GX̂GT ] ≤ �2.

The only “bad” constraint on X is the rank constraint: rankX = 1, and we simply remove
it. Now we are done with the variable c and we arrive at

min
Π

max
X

⎧

⎨

⎩

trace
[

̂UT (I − Π)̂UX
]

∣

∣

∣

∣

∣

Π is a projector on an m-dimensional
subspace of R

d

X 	 0, |X|1 ≤ 1, trace[̂GX̂GT ] ≤ �2

⎫

⎬

⎭

.

Let us recall that an m-dimensional projector Π is exactly a symmetric d × d matrix of
rankΠ = m and traceΠ = m, with the eigenvalues 0 ≤ λi(Π) ≤ 1, i = 1, . . . , d . Once
again we remove the “difficult” rank constraint rankΠ = m and finish with

min
P

max
X

{

trace
[

̂UT (I − P )̂UX
]

∣

∣

∣

∣

0 
 P 
 I, traceP = m,

X 	 0, |X|1 ≤ 1, trace[̂GX̂GT ] ≤ �2

}

(11)

(we write P 
 Q if the matrix Q − P is positive semidefinite). There is no reason for an
optimal solution ̂P of (11) to be a projector matrix. If an estimation of Π∗ which is itself
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a projector is needed, one can use instead the projector ̂Π onto the subspace spanned by m

principal eigenvectors of ̂P .
Note that (11) is a linear matrix game with bounded convex domains of its arguments—

positive semidefinite matrices P ∈ R
d×d and X ∈ R

L×L.
We are about to describe the accuracy of the estimation ̂Π of Π∗. To this end we need

an identifiability assumption on the system {h	} of test functions as follows:

Assumption 1 Suppose that there are vectors c1, . . . , cm, m ≤ m ≤ L such that |ck|1 ≤ 1
and Gck = 0, k = 1, . . . ,m, and non-negative constants μ1, . . . ,μm such that

Π∗ 

m
∑

k=1

μkUckc
T
k UT . (12)

We denote μ∗ = μ1 + · · · + μm.

In other words, if Assumption 1 holds, then the true projector Π∗ on I is μ∗× convex
combination of rank-one matrices UccT UT where c satisfies the constraint Gc = 0 and
|c|1 = 1.

Theorem 1 Suppose that the true dimension m of the subspace I is known and that � ≥ νN

as in (8). Let ̂P be an optimal solution to (11) and let ̂Π be the projector onto the subspace
spanned by m principal eigenvectors of ̂P . Then with probability ≥ 1 − ε:

(i) for any c such that |c|1 ≤ 1 and Gc = 0,

∣

∣(I − ̂Π)Uc
∣

∣

2
≤ √

m + 1
(

(� + νN)λ−1
min(Σ) + 2δN

);
(ii) further, if Assumption 1 holds then

trace
[

(I − ̂P )Π∗]≤ μ∗((� + νN)λ−1
min(Σ) + 2δN

)2
, (13)

and

‖̂Π − Π∗‖2
2 ≤ 2μ∗(λ−1

min(Σ)(� + νN) + 2δN

)2
τ,

τ = (m + 1) ∧ (

1 − μ∗(λ−1
min(Σ)(� + νN) + 2δN

)2)−1 (14)

(here ‖A‖2 = (
∑

i,j A2
ij )

1/2 = (trace[AT A])1/2 is the Frobenius norm of A).

Note that if we were able to solve the minimax problem in (10), we could expect its
solution, let us call it ˜Π , to satisfy with high probability

∣

∣(I − ˜Π)Uc
∣

∣

2
≤ (� + νN)λ−1

min(Σ) + 2δN

(cf. the proof of Lemma 1 in the Appendix). If we compare this bound to that of the statement
(i) of Theorem 1, we conclude that the loss of the accuracy resulting from the substitution of
(10) by its treatable approximation (11) is bounded with

√
m + 1. In other words, the “price”

of the SDP-relaxation in our case is
√

m + 1 and does not depend on problem dimensions
d and L. Furthermore, when Assumption 1 holds true, we are able to provide the bound on
the accuracy of recovery of projector Π∗ which is seemingly as good as if we were using
instead of ̂Π the solution ˜Π of (10).
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Suppose now that the test functions h	(x) = f (x,ω	) are used, with ωl on the unit sphere
of R

d , that � = νN is chosen, and that Assumption 1 holds with “not too large” μ∗, e.g.,
μ∗ ≤ 1

2 (� + νN)λ−1
min(Σ) + δN . When substituting the bounds of (9) for δN and νN into (14)

we obtain the bound for the accuracy of the estimation ̂Π (with probability 1 − ε):

‖̂Π − Π∗‖2
2 ≤ C(f )μ∗N−1

(

min(d, lnL) + ln ε−1
)

where C(f ) depends only on f . This bound claims the root-N consistency in estimation of
the non-Gaussian subspace with the log-price for relaxation and estimation error.

3.3 Case of unknown dimension m

The problem (11) may be modified to allow the treatment of the case when the dimension m

of the target space is unknown a priori. Namely, consider for ρ ≥ 0 the following problem

min
P,t

{

t

∣

∣

∣

traceP ≤ t, max
X

trace
[

̂UT (I − P )̂UX
]≤ ρ2, 0 
 P 
 I,

X 	 0, |X|1 ≤ 1, trace
[

̂GX̂GT
]≤ �2.

}

(15)

The problem (15) is closely related to the 	1-recovery estimator of sparse signals (see,
e.g., the tutorial (Candès 2006) and the references therein) and the trace minimization heuris-
tics widely used in the Sparse Principal Component Analysis (SPCA) (cf. d’Aspremont et al.
2007, 2008). As we will see in an instant, when the parameter ρ of the problem is “properly
chosen”, the optimal solution ̂P of (15) possesses essentially the same properties as that of
the problem (11).

A result analogous to that in Theorem 1 holds:

Theorem 2 Let ̂P , ̂X and t̂ = trace ̂P be an optimal solution to (15) (note that (15) is
clearly solvable), m̂ = �̂t�,1 and let ̂Π be the projector onto the subspace spanned by m̂

principal eigenvectors of ̂P . Suppose that � ≥ νN as in (8) and that

ρ ≥ λ−1
min(Σ)(� + νN) + δN . (16)

Then with probability at least 1 − ε:

(i)

t̂ ≤ m and
∣

∣(I − ̂Π)Uc
∣

∣

2
≤ √

m + 1(ρ + 2δN);
(ii) furthermore, if Assumption 1 hold then

trace
[

(I − ̂P )Π∗]≤ μ∗(ρ + δN)2,

and

‖̂Π − Π∗‖2
2 ≤ 2μ∗(ρ + δN)2

[

(m + 1) ∧ (

1 − μ∗(ρ + δN)2
)−1]

(17)

(here ‖A‖2 = (
∑

i,j A2
ij )

1/2 is the Frobenius norm of A).

1Here �a� is the smallest integer ≥a.
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The proof of the theorems is postponed until the Appendix.
The estimation procedure based on solving (15) allows to infer the target subspace I

without a priori knowledge of its dimension m. When the constraint parameter ρ is close to
the right-hand side of (16), the accuracy of the estimation will be close to that, obtained in
the situation when dimension m is known. However, the accuracy of the estimation heavily
depends on the precision of the available (lower) bound for λmin(Σ). In the high-dimensional
situation this information is hard to acquire, and the necessity to compute this quantity may
be considered as a serious drawback of the proposed procedure.

4 Solving the saddle-point problem (11)

We start with the following simple observation: by using bisection or Newton search in ρ

(note that the objective of (15) is obviously convex in ρ2) we can reduce (15) to a small
sequence to feasibility problems, closely related to (11): given t0 report, if exists, P such
that

max
X

{

trace
[

̂UT (I − P )̂UX
]≤ ρ2, 0 
 P 
 I, traceP ≤ t0,

X 	 0, |X|1 ≤ 1, trace
[

̂GX̂GT
]≤ �2

}

.

In other words, we can easily solve (15) if for a given m we are able to find an optimal
solution to (11). Therefore, in the sequel we concentrate on the optimization technique for
solving (11).

4.1 Dual extrapolation algorithm

In what follows we discuss the dual extrapolation algorithm of Nesterov (2007) for solving
a version of (11) in which, with a certain abuse, we substitute the inequality constraint
trace ̂GX̂GT ≤ �2 with the equality constraint trace[̂GX̂GT ] = 0. This way we come to the
problem:

min
P∈P

max
X∈X

trace
[

̂UT (I − P )̂UX
]

(18)

where

X = {

X ∈ SL, X 	 0, |X|1 ≤ 1, trace
[

̂GT
̂GX

]= 0
}

(here SL stands for the space of L × L symmetric matrices) and

P = {

P ∈ Sd , 0 
 P 
 I, trace[P ] ≤ m
}

.

Observe first that (18) is a matrix game over two convex subsets (of the cone) of positive
semidefinite matrices. If we use a large number of test functions, say L2 ∼ 106, the size of
the variable X rules out the possibility of using the interior-point methods. The methodology
which appears to be adequate in this case is that behind dual extrapolation methods, recently
introduced in Nemirovski (2004), Lu et al. (2007), Nesterov (2005, 2007). The algorithm we
use belongs to the family of subgradient descent-ascent methods for solving convex-concave
games. Though the rate of convergence of such methods is slow—their precision is only
O(1/k), where k is the iteration count, their iteration is relatively cheap, what makes the
methods of this type appropriate in the case of high-dimensional problems when the high
accuracy is not required.
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We start with the general dual extrapolation scheme of Nesterov (2007) for linear matrix
games. Let E

n and E
m be two Euclidean spaces of dimension n and m respectively, and let

A ⊂ E
n and B ⊂ E

m be closed and convex sets. We consider the problem

min
x∈A

max
y∈B

〈x,Ay〉 + 〈a, x〉 + 〈b, y〉. (19)

Let ‖ · ‖x and ‖ · ‖y be some norms on E
n and E

m respectively. We say that dx (resp., dy ) is a
distance-generating function of A (resp., of B) if dx (resp., dy ) is strongly convex modulus
αx (resp., αy ) and differentiable on A (resp., on B).2 Let for z = (x, y) d(z) = dx(x)+dy(y)

(note that d is differentiable and strongly convex on A × B with respect to the norm, defined
on A × B according to, e.g. ‖z‖ = ‖x‖x + ‖y‖y ). We define the prox-function V of A × B
as follows: for z0 = (x0, y0) and z = (x, y) in A × B we set

V (z0, z)
def= d(z) − d(z0) − 〈∇d(z0), z − z0

〉

. (20)

Next, for s = (sx, sy) we define the prox-transform T (z0, s) of s:

T (z0, s)
def= arg min

z∈A×B

[〈s, z − z0〉 − V (z0, z)
]

. (21)

Let us denote F(z) = (−AT y − a,Ax + b) the vector field of descend-ascend directions of
(19) at z = (x, y) and let z be the minimizer of d over A × B. Given vectors zk, z

+
k ∈ A × B

and sk ∈ E∗ at the k-th iteration, we define the update zk+1, z+
k+1 and sk+1 according to

zk+1 = T (z, sk),

z+
k+1 = T

(

zk+1, λkF (zk+1)
)

,

sk+1 = sk + λkF
(

z+
k+1

)

,

where λk > 0 is the current stepsize. Finally, the current approximate solution ẑk+1 is defined
with

ẑk+1 = 1

k + 1

k+1
∑

i=1

z+
i .

The key element of the above construction is the choice of the distance-generating function
d in the definition of the prox-function. It should satisfy two requirements:

– let D be the variation of V over A × B and let α be the parameter of strong convexity of
V with respect to ‖ · ‖. The complexity of the algorithm is proportional to D/α, so this
ratio should be as small as possible;

– one should be able to compute efficiently the solution to the auxiliary problem (21) which
is to be solved twice at each iteration of the algorithm.

Note that the prox-transform preserve the additive structure of the distance-generating func-
tion. Thus, in order to compute the prox-transform on the feasible domain P × X of (18)
we need to compute its “P and X components”—the corresponding prox-transforms on

2Recall that a (sub-)differentiable on F function f is called strongly convex on F with respect to the norm

‖ · ‖ of modulus α if 〈f ′(x) − f ′(y), x − y〉 ≥ α‖x − y‖2 for all x, y ∈ F .
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P and cX. There are several evident choices of the prox-functions dP and dX of the do-
mains P and X of (18) which satisfy the first requirement above and allow to attain the
optimal value O(

√
m lnd lnL) of the ratio D/α for the prox-function V of (18). However,

for such distance-generating functions there is no known way to compute efficiently the X-
component of the prox-transform T in (21) for the set X . This is why in order to admit an
efficient solution the problem (18) is to be modified one more time.

4.2 Modified problem

We act as follows: first we eliminate the linear equality constraint which, taken along with
X 	 0, says that X = QT ZQ with Z 	 0 and certain Q; assuming that the d rows of ̂G

are linearly independent, we can choose Q as an appropriate (L − d) × L matrix satisfying
QQT = I (the orthogonal basis of the kernel of ̂G). Note that from the constraints on X it
follows that trace[X] ≤ 1, whence

trace
[

QT ZQ
]= trace

[

ZQQT
]= trace[Z] ≤ 1.

Thus, although there are additional constraints on Z as well, Z belongs to the standard
spectahedron

Z = {

Z ∈ SL−d , Z 	 0, trace[Z] ≤ 1
}

.

Now can rewrite our problem equivalently as follows:

min
P∈P

max
Z∈Z, |QT ZQ|1≤1

trace
[

̂UT (I − P )̂U
(

QT ZQ
)]

. (22)

Let, further,

W = {

W ∈ SL, ‖W‖2 ≤ 1
}

, and Y = {

Y ∈ SL, |Y |1 ≤ 1
}

.

We claim that the problem (22) can be reduced to the saddle point problem

min
(P,W)∈P×W

max
(Z,Y )∈Z×Y

{

trace
[

̂UT (I − P )̂UY
]+ λ trace

[

W
(

QT ZQ − Y
)]}

︸ ︷︷ ︸

F(P,W ;Z,Y )

(23)

provided that λ is not too small.
Now, “can be reduced to” means exactly the following:

Proposition 1 Suppose that λ > L|̂U |22, where |U |2 is the maximal Euclidean norm of
columns of U . Let (̂P , ̂W ; ̂Z,̂Y ) be a feasible solution ε-solution to (23), that is

(̂P , ̂W ; ̂Z,̂Y ) ∈ (P, W; Z, Y), and F(̂P , ̂W) − F(̂Z,̂Y) ≤ ε

where

F(P,W) = max
(Z,Y )∈Z×Y

F(P,W ; Z,Y ), F (Z,Y ) = min
(P,W)∈P×W

F(P,W ; Z,Y ).

Then setting

˜Z =
{

̂Z, if |QT ZQ|1 ≤ 1,

|QT ZQ|−1
1
̂Z otherwise,
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the pair (̂P ,˜Z) is a feasible ε-solution to (22). Specifically, we have (̂P ,˜Z) ∈ P × Z with
|QT

˜ZQ|1 ≤ 1, and

G(̂P) − G(˜Z) ≤ ε,

where

G(P ) = max
Z∈Z, |QT ZQ|1≤1

trace
[

̂UT (I − P )̂UQT ZQ
];

G(Z) = min
P∈P

trace
[

̂UT (I − P )̂UQT ZQ
]

.

The proof of the proposition is given in the Appendix A.3.
Note that feasible domains of (23) admit evident distance-generating functions. We pro-

vide the detailed computation of the corresponding prox-transforms in the Appendix A.4.

5 Numerical experiments

In this section we compare the numerical performance of the presented approach, which
we refer to as SNGCA(SDP) with other statistical methods of dimension reduction on the
simulated data.

5.1 Structural adaptation algorithm

We start with some implementation details of the estimation procedure. We use the choice
of the test functions h	(x) = f (x,ω	) for the SNGCA algorithm as follows:

f (x,ω) = tanh
(

ωT x
)

e−α‖x‖2
2/2,

where ω	, l = 1, . . . ,L are unit vectors in R
d .

We implement here a multi-stage variant of the SNGCA (cf. Diederichs et al. 2009). At
the first stage of the SNGCA(SDP) algorithm (Algorithm 1) we assume that the directions
ω	 are drawn randomly from the unit sphere of R

d . At each of the following stages we use
the current estimation of the target subspace to “improve” the choice of directions ω	 as
follows: we draw a fixed fraction of ω’s from the estimated subspace and draw randomly
over the unit square the remaining ω’s. The simulation results below are presented for the
estimation procedure with three stages. The size of the set of test function is set to L = 10d ,
and the target accuracy of solving the problem (11) is set to 1e − 4.

5.2 Experiment description

Each simulated data set XN = [X1, . . . ,XN ] of size N = 1000 represents N independent
and identically distributed (i.i.d.) realizations of a random vectors X of dimension d . Each
simulation is repeated 100 times and we report the average over 100 simulations Frobenius
norm of the error of estimation of the projection on the target space. In the examples below
only m = 2 components of X are non-Gaussian with unit variance, other d − 2 components
of X are independent standard normal random variables. The densities of the non-Gaussian
components are chosen as follows:



224 Mach Learn (2013) 91:211–238

Algorithm 1: SNGCA (SDP)
% Initialization:
The data (Xi)

N
i=1 are re-centered. Let σ = (σ1, . . . σd) be the standard deviations of the

components of Xi . We denote Yi = diag(σ−1)Xi the standardized data.
Set the current estimator ̂Π0 = Id .

% Main iteration loop:

for i = 1 to I do

Sample a fraction of ω(i)’s from the normal distribution N(0, ̂Πi−1) (zero mean,
with covariance matrix ̂Πi−1), sample the remaining ω(i)’s from N(0, Id), then
normalize to the unit length;

% Compute estimations of η	 and γ	

for 	 = 1 to L do
η̂

(i)
	 = 1

N

∑N

j=1 ∇h
ω

(i)
	

(Yj );

γ̂
(i)
	 = 1

N

∑N

j=1 Yjhω
(i)
l

(Yj );

end

Solve the corresponding problem (11) and update the estimation ̂Πi ;

end

(A) Gaussian mixture: 2-dimensional independent Gaussian mixtures with density of each
component given by 0.5φ−3,1(x) + 0.5φ3,1(x).

(B) Dependent super-Gaussian: 2-dimensional isotropic distribution with density propor-
tional to exp(−‖x‖).

(C) Dependent sub-Gaussian: 2-dimensional isotropic uniform with constant positive den-
sity for ‖x‖2 ≤ 1 and 0 otherwise.

(D) Dependent super- and sub-Gaussian: a component of X, say X1, follows the Laplace
distribution L(1) and the other is a dependent uniform U (c, c + 1), where c = 0 for
|X1| ≤ ln 2 and c = −1 otherwise.

(E) Dependent sub-Gaussian: 2-dimensional isotropic Cauchy distribution with density
proportional to λ(λ2 − x2)−1 where λ = 1.

We provide the 2-d density plots of the non-Gaussian components on Fig. 1. We start with
comparing the presented algorithm with Projection Pursuit (PP) method (Hyvärinen 1999)
and the NGCA for d = 10. The results are presented on Fig. 2 (the corresponding results
for PP and NGCA has been already reported in Diederichs et al. 2009 and Blanchard et al.
2006). Since the minimization procedure of PP tends to be trapped in a local minimum, in
each of the 100 simulations, the PP algorithm is restarted 10 times with random starting
points. The best result is reported for each PP-simulation. We observe that SNGCA(SDP)
outperforms NGCA and PP in all tests.

In the next simulation we study the dependence of the accuracy of the SNGCA(SDP) on
the noise level and compare it to the corresponding data for PP and NGCA. We present on
Fig. 3 the results of experiments when the non-Gaussian coordinates have unit variance, but
the standard deviation of the components of the 8-dimensional Gaussian distribution follows
the geometrical progression 10−r ,10−r+2r/7, . . . ,10r where r = 1, . . . ,8. The conditioning
of the covariance matrix heavily influences the estimation error of PP(tanh) and NGCA, but
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Fig. 1 (A) independent Gaussian mixtures, (B) isotropic super-Gaussian, (C) isotropic uniform and (D)
dependent 1d Laplacian with additive 1d uniform, (E) isotropic sub-Gaussian

not that of SNGCA(SDP). The latter method appears to be insensitive to the differences in
the noise variance along different directions in all test cases.

Next we compare the behavior of SNGCA(SDP), PP and NGCA as the dimension of the
Gaussian component increases. On Fig. 4 we plot the mean error of estimation against the
problem dimension d .

For PP and NGCA methods we observe that the estimation becomes meaningless (the es-
timation error explodes) already for d = 30–40 for the models (A), (C) and for d = 20–30 of
the model (D). In the case of the models (B) and (E) we observe the progressive increase of
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Fig. 2 Comparison of Projection Pursuit (PP), NGCA and the new approach SNGCA(SDP)

the error for methods PP and NGCA. The proposed method SNGCA(SDP) behaves robustly
with respect to the increasing dimension of the Gaussian component for all test models.

5.3 Application to geometric analysis of metastability

Some biologically active molecules exhibit different large geometric structures at the scale
much larger than the diameter of the atoms. If there are more than one such structures
with the life span much larger than the time scale of the local atomic vibrations, the
structure is called metastable conformation (Schütte and Huisinga 2003). In other words,
metastable conformations of biomolecules can be seen as connected subsets of state-
space. When compared to the fluctuations within each conformation, the transitions be-
tween different conformations of a molecule are rare statistical events. Such multi-scale
dynamic behavior of biomolecules stem from a decomposition of the free energy landscape
into particularly deep wells each containing many local minima (Pillardy and Piela 1995;
Frauenfelder and McMahon 2000). Such wells represent different almost invariant geomet-
rical large scale structures (Amadei et al. 1993). The macroscopic dynamics is assumed to
be a Markov jump process, hopping between the metastable sets of the state space while
the microscopic dynamics within these sets mixes on much shorter time scales (Horenko
and Schütte 2008). Since the shape of the energy landscape and the invariant density of the
Markov process are unknown, the “essential degrees of freedom”, in which the rare confor-
mational changes occur, are of importance.

We will now illustrate that SNGCA(SDP) is able to detect a multimodal component of the
data density as a special case of non-Gaussian subspace in high-dimensional data obtained
from molecular dynamics simulation of oligopeptides.
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Fig. 3 Estimation error with respect to the standard deviation of Gaussian components following a geomet-
rical progression on [10−r ,10r ] where r is the parameter on the abscissa

Clustering of 8-alanine The first example is a times series, generated by an equilibrium
molecular dynamics simulation of 8-alanine. We only consider the backbone dihedral angles
in order to determine different conformations.

The time series of dimension d = 14 consists of the cyclic data set of all backbone torsion
angles. The simulation using CHARMM was done at T = 300 K with implicit water by means
of the solvent model ACE2 (Schaefer and Karplus 1996). A symplectic Verlet integrator with
integration step of 1 fs was used; the total trajectory length was 4 µs and every τ = 50 fs a
set of coordinates was recorded.

The dimension reduction reported in the next Fig. 5 was obtained using SNGCA(SDP)
for a given dimension m = 5 of the target space containing the multimodal component.
A concentration of the clustered data in the target space of SNGCA may be clearly observed.
In comparison, the complement of the target space is almost completely filled with Gaussian
noise.

Clustering of a 3-peptide molecule In the next example we investigate Phenylalanyl-
Glycyl-Glycine Tripeptide, which is assumed to realize all of the most important folding
mechanisms of polypeptides (Reha et al. 2005). The simulation is done using GROMACS at
T = 300 K with implicit water. An integration step of a symplectic Verlet integrator is set
to 2 fs, and every τ = 50 fs a set of d = 31 diedre angles was recorded. As in the previous
experience, the dimension of the target space is set to m = 5.

Figure 7 shows that the clustered data can be primarily found in the target space of
SNGCA(SDP).
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Fig. 4 Mean-square estimation error vs problem dimension d

We have studied a new approach to non-Gaussian component analysis. The suggested
method, same as the techniques proposed in Blanchard et al. (2006), Diederichs et al. (2009)
has two stages: on the first stage certain linear test functionals of unknown distribution are
computed as a sampling of the data space and afterwards this information is used to re-
cover the non-Gaussian subspace. The novelty of the proposed approach resides in the new
method of non-Gaussian subspace identification, based upon semidefinite relaxation. The
new procedure allows to overcome the main drawbacks of the previous implementations of
the NGCA and seems to improve significantly the accuracy of estimation. Nevertheless the
proposed algorithm is computationally demanding. While the first-order optimization algo-
rithm we propose allows to treat efficiently the problems which are far beyond the reach
of classical SDP-optimization techniques, the numerical difficulty seems to be one of the
main practical limitation of the proposed approach. Furthermore the new approach lacks the
ability to adapt itself to the underlying type of nonGaussian component. Both aspects includ-
ing new rates of convergence for iterative adaptation of SNGCA to some former estimation
result are currently in preparation.
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Fig. 5 Low dimensional multimodal component of 8-alanine

Appendix

Let X = XT ∈ R
L×L be positive semidefinite with |X|1 ≤ 1, and let Y = X1/2 be the sym-

metric positive semidefinite square root of X. If we denote yi , i = 1, . . . ,L the columns
of Y , then |X|1 ≤ 1 implies that

∑

1≤i,j≤L

∣

∣yT
i yj

∣

∣≤ 1.

We make here one trivial though useful observation: for any matrix A ∈ R
d×L, when denot-

ing B = AT A, we have

‖AY‖2
2 = trace

(

AT AX
)= trace[BX] =

L
∑

j=1

L
∑

i=1

BjiXij ≤ max
ij

|Bij | = |A|22. (24)

(Recall that for a matrix A ∈ R
d×L with columns ai , i = 1, . . . ,L, |A|2 stands for the maxi-

mal column norm: |A|2 = max1≤i≤L |ai |2.)
We can rewrite the problem (11) using Y = X1/2, so that the objective

̂f (X,P ) = trace
[

̂UT (I − P )̂UX
]
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Fig. 6 Gaussian noise in the complement of the SNGCA target space

of (11) becomes

ĝ(Y,P ) = ∥

∥(I − P )1/2
̂UY

∥

∥

2

2
.

Let now (̂X, ̂P ) be a saddle point of (11). Namely, we have for any feasible P and X:

̂f (X, ̂P ) ≤ [

̂f∗ ≡ ̂f (̂X, ̂P )
]≤ ̂f (̂X,P ).

We denote ̂Y = ̂X1/2.
In what follows we suppose that vectors γ	 and η	, 	 = 1, . . . ,L satisfy (8). In other

words,it holds |̂U − U |2 ≤ δN and |̂G − G|2 ≤ γN .

A.1 Proof of Theorem 1

Lemma 1 Let ̂P be an optimal solution to (11). Then

max
c

{∣

∣(I − ̂P )1/2Uc
∣

∣

2
|c|1 ≤ 1, Gc = 0

}≤ λ−1
min(Σ)(� + νN) + 2δN . (25)

Proof We write:

max
c

{∣

∣(I − ̂P )1/2Uc
∣

∣

2

∣

∣ |c|1 ≤ 1, Gc = 0
}

≤ max
Y

{∣

∣(I − ̂P)1/2UY
∥

∥

2

∣

∣

∣

∣Y 2
∣

∣

1
≤ 1, GY = 0

}
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Fig. 7 Low dimensional multimodal component of 3-peptide

≤ max
Y

{∣

∣(I − ̂P)1/2
̂UY

∥

∥

2

∣

∣

∣

∣Y 2
∣

∣

1
≤ 1, GY = 0

}

+ max
Y

{∥

∥(I − ̂P )1/2(̂U − U)Y
∥

∥

2

∣

∣

∣

∣Y 2
∣

∣

1
≤ 1, GY = 0

}

≤ max
Y

{∥

∥(I − ̂P )1/2
̂UY

∥

∥

2

∣

∣

∣

∣Y 2
∣

∣

1
≤ 1, ‖̂GY‖2 ≤ �

}

+ ∣

∣(I − ̂P )1/2(̂U − U)
∣

∣

2
(by (24))

= ∥

∥(I − ̂P )1/2
̂ÛY

∥

∥

2
+ δN ≤ ∥

∥

(

I − Π∗)1/2
̂ÛY

∥

∥

2
+ δN (due to 0 
 I − ̂P 
 I )

≤ ∥

∥

(

I − Π∗)1/2
ÛY

∥

∥

2
+ 2δN (again by (24)).

On the other hand, as ‖̂ĜY‖2 ≤ νN , we get

‖ĜY‖2 ≤ ‖̂ĜY‖2 + ∥

∥(̂G − G)̂Y
∥

∥

2
≤ � + |̂G − G|2 ≤ � + νN,

and by (3),
∥

∥(I − Π∗)ÛY
∥

∥

2
≤ λ−1

min(Σ)(� + νN).

This implies (25). �

We now come back to the proof of the theorem. Let̂λj and ̂θj , j = 1, . . . , d be respec-
tively the eigenvalues and the eigenvectors of ̂P . Assume that ̂λ1 ≥̂λ2 ≥ · · · ≥̂λd . Then
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̂P = ∑d

j=1
̂λj
̂θj
̂θT

j and ̂Π = ∑m

j=1
̂θj
̂θT

j . Let β = Uc for c such that |c|1 ≤ 1 and Gc = 0.
We have

βT (I − ̂P )β =
m
∑

j=1

(1 −̂λj )
(

̂θT
j β

)2 +
∑

j>m

(1 −̂λj )
(

̂θT
j β

)2

≥
∑

j>m

(1 −̂λj )
(

̂θT
j β

)2 ≥ (1 −̂λm+1)
(

̂θT
j β

)2

= (1 −̂λm+1)β
T (I − ̂Π)β = (1 −̂λm+1)

∣

∣(I − ̂Π)β
∣

∣

2

2
.

Since, for obvious reasons,̂λm+1 ≤ m
m+1 , it applies (i) due to (25).

Let us show (ii). We have due to (12) and (25):

trace
[

(I − ̂P )Π∗] = trace
[

(I − ̂P )1/2Π∗(I − ̂P)1/2
]

≤
m
∑

k=1

μk trace
[

(I − ̂P )1/2Uckc
T
k UT (I − ̂P )1/2

]

=
m
∑

k=1

μk

∣

∣(I − ̂P )1/2Uck

∣

∣

2

2

≤
m
∑

k=1

μk max
c

{∣

∣(I − ̂P )1/2Uc
∣

∣

2

2

∣

∣ |c|1 ≤ 1, Gc = 0
}

= μ∗(λ−1
min(Σ)(� + νN) + 2δN

)2
, (26)

which is (13).
Note that trace[̂PΠ∗] ≤∑

j≤m
̂λj (cf., e.g., Corollary 4.3.18 of Horn and Johnson 1985),

thus by (26),

̂λm+1 ≤ m −
∑

j≤m

̂λj ≤ trace
[

(I − ̂P)Π∗]≤ μ∗(λ−1
min(Σ)(� + νN) + 2δN

)2
.

On the other hand,

trace
[

(I − ̂P )Π∗] =
m
∑

j=1

(1 −̂λj )̂θ
T
j Π∗

̂θj +
∑

j>m

(1 −̂λj )̂θ
T
j Π∗

̂θj

≥
∑

j>m

(1 −̂λj )̂θ
T
j Π∗

̂θj ≥ (1 −̂λm+1)̂θ
T
j Π∗

̂θj

= (1 −̂λm+1) trace
[

(I − ̂Π)Π∗],

and we conclude that

trace
[

(I − ̂Π)Π∗]≤ trace[(1 − ̂P )Π∗]
1 −̂λm+1

≤ μ∗(λ−1
min(Σ)(� + νN) + 2δN)2

1 − μ∗(λ−1
min(Σ)(� + νN) + 2δN)2

.

Now, using the relation trace ̂Π = traceΠ∗ = m, we come to

‖̂Π − Π∗‖2
2 = trace

[

̂Π2 − 2̂ΠΠ∗ + (

Π∗)2]= 2m − 2 trace
[

̂ΠΠ∗]= 2 trace
[

(I − ̂Π)Π∗],

and we arrive at (14).
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A.2 Proof of Theorem 2

Let now ̂P , ̂X and t̂ = trace ̂P be a triplet of optimal solution to (15).

Lemma 2 Let ̂P be an optimal solution to (15).

(i) In the premises of the theorem Π∗ is a feasible solution of (15) and trace ̂P ≤
traceΠ∗ = m.

(ii) We have

max
c

{∣

∣(I − ̂P)1/2Uc
∣

∣

2

∣

∣ |c|1 ≤ 1, Gc = 0
}≤ ρ + δN . (27)

Proof We act as in the proof of Lemma 1: to verify (i) we observe that

max
X

{

trace
[

̂UT
(

I − Π∗)
̂UX

] ∣

∣X 	 0, |X|1 ≤ 1, trace
[

̂GX̂GT
]≤ �2

}

= max
Y

{∥

∥

(

I − Π∗)
̂UY

∥

∥

2

2

∣

∣

∣

∣Y 2
∣

∣

1
≤ 1, ‖̂GY‖2 ≤ �

}

≤ max
Y

{(∥

∥

(

I − Π∗)UY
∥

∥

2
+ δN

)2 ∣
∣

∣

∣Y 2
∣

∣

1
≤ 1, ‖̂GY‖2 ≤ �

}

≤ (

λ−1
min(Σ)(� + νN) + δN

)2
.

Thus, if ρ ≥ λ−1
min(Σ)(� + νN) + δN , Π∗ is a feasible solution of (15) and, as a result,

trace ̂P ≤ traceΠ∗. To show (ii) it suffices to note that

max
c

{∣

∣(I − ̂P )1/2Uc
∣

∣

2

∣

∣ |c|1 ≤ 1, Gc = 0
}

≤ max
Y

{∥

∥(I − ̂P)1/2UY
∥

∥

2

∣

∣

∣

∣Y 2
∣

∣

1
≤ 1, GY = 0

}

≤ max
Y

{∥

∥(I − ̂P)1/2
̂UY

∥

∥

2

∣

∣

∣

∣Y 2
∣

∣

1
≤ 1, GY = 0

}+ ∣

∣(I − ̂P )1/2(̂U − U)
∣

∣

2

≤ max
Y

{∥

∥(I − ̂P)1/2
̂UY

∥

∥

2

∣

∣

∣

∣Y 2
∣

∣

1
≤ 1, ‖̂GY‖2 ≤ �

}+ δN ≤ ρ + δN

because of the feasibility of ̂P . �

Now using the bound m̂ ≤ m we complete the proof following exactly the lines of the
proof of Theorem 1.

A.3 Proof of Proposition 1

Observe that

F(̂Z,̂Y) = min
(P,W)∈P×W

{

trace
[

BT (I − P )BQT
̂ZQ

]+ λ trace
[

W
(

QT
̂ZQ − ̂Y

)]}

= min
P∈P

{

trace
[

BT (I − P )BQT
̂ZQ

]− λ
∥

∥QT
̂ZQ − ̂Y

∥

∥

2

}

≤ min
P∈P

{

trace
[

BT (I − P )BQT
̂ZQ

]}= G(̂Z); (28)
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and

F(̂P , ̂W) = max
(Z,Y )∈Z×Y

{

trace
[

BT (I − ̂P)BQT ZQ
]+ λ trace

[

̂W
(

QT ZQ − Y
)]}

≥ max
Z∈Z, |QT ZQ|1≤1, Y=QT ZQ

{

trace
[

BT (I − ̂P )BQT ZQ
]

+ λ trace
[

̂W
(

QT ZQ − Y
)]}

= G(̂P ).

Assume first that |QT
̂ZQ|1 ≤ 1. In this case ˜Z = ̂Z and

ε ≥ F(̂P , ̂W) − F(̂Z,̂Y ) = G(̂P ) − G(̂Z) = G(̂P) − G(˜Z)

(the second, is given by (28)), as claimed. Now assume that s = QT
̂ZQ|1 > 1. We have

already established the first equality of the following chain:

F(̂Z,̂Y) = min
P∈P

{

trace
(

BT (I − P )BQT
̂ZQ

)− λ
∥

∥QT
̂ZQ − ̂Y

∥

∥

2

}

≤ min
P∈P

{

trace
[

BT (I − P )BQT
̂ZQ

]− λ

L

∣

∣QT
̂ZQ − ̂Y

∣

∣

1

}

≤ min
P∈P

{

trace
[

BT (I − P )BQT
̂ZQ

]− λ

L
(s − 1)

}

= min
P∈P

{

s trace
[

BT (I − P )BQT
˜ZQ

]− λ

L
(s − 1)

}

≤ min
P∈P

{

trace
[

BT (I − P )BQT
˜ZQ

]+ (s − 1)
∣

∣BT (I − P )B
∣

∣

∞
∣

∣QT
˜ZQ

∣

∣

1
︸ ︷︷ ︸

≤(s−1)|BT B|∞=(s−1)|B|22

− λ

L
(s − 1)

}

≤ min
P∈P

{

trace
[

BT (I − P )BQT
˜ZQ

]}= G(˜Z),

where the concluding ≤ is readily given by the definition of λ.3 Further, we have already
seen that

F(̂P , ̂W) ≥ G(̂P ).

Consequently,

ε ≥ F(̂P , ̂W) − F(̂Z,̂Y) ≥ G(̂P) − G(˜Z),

as claimed. �

3We denote |A|∞ = maxij |Aij |.
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A.4 Computing the prox-transform

Recall that because of the additivity of the distance-generating function d the computation
of the prox-transform on the set P × W × Z × Y can be decomposed into independent
computations on the four domains of (23).

Prox-transform on P The proxy-function of P is the matrix entropy:

d(P0,P ) = βP trace

[

P

m

(

ln

(

P

m

)

− ln

(

P0

m

))]

for P,P0 ∈ P, βP > 0.

To compute the corresponding component of T we need to find, given S ∈ Sd ,

Tβ(P0, S) = arg max
P∈P

{

trace
[

S(P − P0)
]− βP trace

[

P

m

(

ln

(

P

m

)

− ln

(

P0

m

))]}

= arg max
P∈P

{

trace

[(

S + βP

m
ln

(

P0

m

))

P

]

− βP trace

[

P

m
ln

(

P

m

)]}

. (29)

By the symmetry considerations we conclude that the optimal solution of this problem is
diagonal in the basis of eigenvectors of S + βP

m
ln(

P0
m

). Thus the solution of (29) can be
obtained as follows: compute the eigenvalue decomposition

S + βP

m
ln

(

P0

m

)

= Γ ΛΓ T

and let λ be the diagonal of Λ. Then solve the “vector” problem

p∗ = arg max
0≤p≤1,

∑

p≤m
λT p − βP

m

d
∑

i=1

pi ln(pi/m) (30)

and compose

Tβ(P,S) = Γ diag(y∗)Γ T .

Now, the solution of (30) can be obtained by simple bisection: indeed, using Lagrange
duality we conclude that the components of y∗ satisfies

p∗
i = exp

(

λi

β
− ν

)

∧ 1, i = 1, . . . , d,

and the Lagrange multiplier ν is to be set to obtain
∑

p∗
i = m, what can be done by bisection

in ν. When the solution is obtained, the optimal value of (29) can be easily computed.

Prox-transform on W The distance-generating function of W is βW trace[W 2]/2 =
‖W‖2

2/2 so that we have to solve for S ∈ SL

Tβ(W0, S) = arg max
‖W‖2≤1

{

trace
[

S(W − W0)
]− βW

2

‖W − W0‖2
2

2

}

. (31)

The optimal solution to (31) can be easily computed

Tβ(W0, S) =
{

W0 + S/βW if ‖W0 + S/βW‖2 ≤ 1,

(W0 + S/βW)/‖W0 + S/βW‖2 if ‖W0 + S/βW‖2 > 1.
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Prox-transform on Z The prox-function of Z is the matrix entropy and we have to solve
for S ∈ SL−d

Tβ(Z,S) = arg max
Z∈ZZ

trace
[

S(Z − Z0)
]− βZ trace

[

Z
(

ln(Z) − ln(Z0)
)]

= arg max
Z∈ZZ

trace
[(

S + βZ ln(Z0)
)

Z
]− βZ trace[Z lnZ].

Once again, in the basis of eigenvectors of S + βZ ln(Z0) the problem reduces to

z∗ = arg max
z≥0,

∑

z≤1
λT z − βZ

d
∑

i=1

zi ln(zi),

where λ is the diagonal of Λ with S + βZ lnZ0 = Γ ΛΓ T . In this case

z∗
i = exp(

λi

β
)

∑L

j=1 exp(
λj

β
)
, i = 1, . . . ,L − d.

Prox-transform on Y The distance generating function for the domain Y is defined as
follows:

d(Y ) = min

{

L
∑

i,j=1

(

uij ln[uij ] + vij ln[vij ]
) :

n
∑

i=1

(uij + vij ) = 1,

Yij = uij − vij , uij ≥ 0, vij ≥ 0, 1 ≤ i, j ≤ L

}

.

In other words, the element Y ∈ Y is decomposed according to Y = u − v, where (u, v) is
an element of the 2L2-dimensional simplex Δ = {x ∈ R

2L2
, x ≥ 0,

∑

i xi = 1}. To find the
Y -component of the prox-transform amounts to find for S ∈ SL

TβY
(Y0, S) = TβY

(

u0, v0, S
)

= arg max
u,v∈Δ

trace
[

S(u − v)
]− βY

∑

ij

[

uij ln

(

uij

u0
ij

)

+ vij ln

(

vij

v0
ij

)]

. (32)

One can easily obtain an explicit solution to (32): let

aij = u0
ij exp

(

Sij

βY

)

, bij = v0
ij exp

(

−Sij

βY

)

.

Then TβY
(Y0, S) = u∗ − v∗, where

u∗
ij = aij

∑

ij (aij + bij )
, v∗

ij = bij
∑

ij (aij + bij )
.
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