Mach Learn (2012) 86:295-333
DOI 10.1007/s10994-011-5265-4

Efficiently identifying deterministic real-time automata
from labeled data

Sicco Verwer - Mathijs de Weerdt - Cees Witteveen

Received: 22 January 2010 / Accepted: 26 September 2011 / Published online: 13 October 2011
© The Author(s) 2011. This article is published with open access at Springerlink.com

Abstract We develop a novel learning algorithm RTI for identifying a deterministic real-
time automaton (DRTA) from labeled time-stamped event sequences. The RTI algorithm is
based on the current state of the art in deterministic finite-state automaton (DFA) identifica-
tion, called evidence-driven state-merging (EDSM). In addition to having a DFA structure,
a DRTA contains time constraints between occurrences of consecutive events. Although this
seems a small difference, we show that the problem of identifying a DRTA is much more
difficult than the problem of identifying a DFA: identifying only the time constraints of a
DRTA given its DFA structure is already NP-complete. In spite of this additional complexity,
we show that RTl is a correct and complete algorithm that converges efficiently (from poly-
nomial time and data) to the correct DRTA in the limit. To the best of our knowledge, this
is the first algorithm that can identify a timed automaton model from time-stamped event
sequences.

A straightforward alternative to identifying DRTAS is to identify a DFA that models time
implicitly, i.e., a DFA that uses different states for different points in time. Such a DFA can
be identified by first sampling the timed sequences using a fixed frequency, and subsequently
applying EDSM to the resulting non-timed event sequences. We evaluate the performance of
both RTI and this sampling approach experimentally on artificially generated data. In these

Editor: Nicolo Cesa-Bianchi.

The main part of this research was performed when the first author was a PhD student at Delft
University of Technology. It has been supported and funded by the Dutch Ministry of Economical
Affairs under the SENTER program.

S. Verwer ()
Katholieke Universiteit Leuven, Celestijnenlaan 200a, Box 2402, 3001 Heverlee, Belgium
e-mail: siccoverwer @ gmail.com

M. de Weerdt - C. Witteveen
Delft University of Technology, Mekelweg 4, 2826 CD, Delft, The Netherlands

M. de Weerdt
e-mail: m.m.deweerdt@tudelft.nl

C. Witteveen
e-mail: c.witteveen @tudelft.nl

@ Springer

mailto:siccoverwer@gmail.com
mailto:m.m.deweerdt@tudelft.nl
mailto:c.witteveen@tudelft.nl

296 Mach Learn (2012) 86:295-333

experiments RTI outperforms the sampling approach significantly. Thus, we show that if we
obtain data from a real-time system, it is easier to identify a DRTA from this data than to
identify an equivalent DFA.

Keywords Timed automata - Real-time automata - Identification in the limit - Supervised
learning

1 Introduction

We present a novel method for the automatic identification (learning) of a timed model from
positive and negative data. This data consists of sequences of events that could have been
generated by a real-time system. A positive sequence characterizes the (correct) behavior
of the system, and a negative sequence does not (or characterizes faulty behavior). In or-
der to obtain such data, the data collected from observations needs to be labeled, i.e., an
expert needs to decide for some data sequences whether the sequence is an example of the
system’s behavior or not. From such data, we construct a model that agrees with all the pos-
itive examples, and none of the negative ones. Moreover, this model is preferably smallest
amongst all possible models that are consistent with the data. We prefer a smaller model
due to an important principle in learning theory (or science in general), known as Occam’s
razor. This states that the simplest explanation (making the least assumptions) for a set of
observations is the best one. A smaller model is simpler, and therefore a better explanation
for the observed sequences.

Intuitively, we are interested in an algorithm that tries to discover the logical structure
underlying the observations. This structure can provide insight into the inner workings of
the real-time process. In contrast, many other well-known models that are commonly used to
identify the behavior of a system are quite difficult to interpret, for example neural networks
or support vector machines, see, e.g., Bishop (2006). Such models are mainly useful for
classifying new data or predicting the future behavior of a system. An identified model can
in addition be used to analyze properties of the process by applying for instance model
checking. The ability to analyze an identified model is one of the main reasons why we are
interested in identifying automaton models from observations.

A well-known model for characterizing systems is the deterministic finite-state automa-
ton (DFA, see e.g., Sudkamp 2006). A DFA is a language model. Hence, its identification (or
inference) problem has been well studied in the grammatical inference field (de la Higuera
2005). Knowing this, we would like to take an established method to identify a DFA and ap-
ply it to the observed event sequences. When observing a real-time system, however, there
often is information in addition to the sequence of symbols: the time at which these sym-
bols occur is also available. By itself, the DFA model is too limited to handle this timed
information.

A straightforward way to make use of this timed information is to sample the timed data.
For instance, an event that occurs 3 seconds after the previous event can be modeled as 3
special time tick symbols followed by the event symbol. Afterwards, we can apply a DFA
identification algorithm to the sampled data. The result is a DFA model that models time
implicitly, i.e., that uses different states to model different points in time. A disadvantage
of such an approach is that it results in an exponential blowup of both the input data and
the resulting automaton size. In this paper, we propose a new algorithm that uses the time
information directly in order to produce a timed model.

A well-known timed model is the timed automaton (TA) (Alur and Dill 1994). In a TA,
each symbol of a sequence occurs at a certain point in time. The state transitions of a TA

@ Springer

Mach Learn (2012) 86:295-333 297

contain constraints on the time values of these occurrences relative to previous occurrences.
Thus the firing of a transition in a TA depends not only on the type of symbol occurring, but
also on the time that has elapsed since some previous symbol occurrence. In this way, TAs
can for instance be used to model deadlines in real-time systems. A TA models such timing
requirements explicitly, i.e., using numbers. Because numbers use a binary representation of
time, and states use a unary representation of time, such an explicit representation can result
in exponentially more compact models than an implicit representation. Therefore, also the
time, space, and data required to identify TAs can be exponentially smaller than the time,
space, and data required to identify DFAs.

While the problem of identifying a DFA from a data set has been a well-studied problem
in the grammatical inference field, see e.g., de la Higuera (2005), there are very few studies
of the identification of a TA from data. The most closely related study deals with the problem
of learning event recording automata (ERAs), which is a restricted but still powerful class of
TAs (Grinchtein et al. 2006). Unfortunately, the proposed algorithm for the identification of
ERAs requires an exponential amount of data in the worst case. We are interested in an algo-
rithm that identifies TAs efficiently, from a small (polynomial) amount of data, and therefore
cannot apply this identification algorithm. In fact, in previous work (Verwer et al. 2011), we
showed that ERAs are too powerful to be identified efficiently. We should therefore look for
a class of TAs more restricted than ERAs. We proved for such a class known as one-clock
deterministic timed automata (1-DTAs) that it is efficiently (from polynomial time and data)
identifiable in the limit from labeled data. This result came as a surprise because the stan-
dard method of converting a deterministic TA into a DFA (the region construction, see Alur
and Dill 1994) results in exponentially larger DFAs when applied to this restricted class of
TAs. Intuitively, the result states that when identifying a timed system, it is more efficient in
terms of both time and data requirements to identify a 1-DTA than to identify a DFA. In this
paper, we show that this intuition also holds in practice.

We focus in this paper on identifying a simple type of 1-DTA, known as a deterministic
real-time automaton (DRTA, see Sect. 2). A DRTA models only the time constraints be-
tween two consecutive events, instead of between any pair of events. We restrict ourselves
to DRTAs and not to the full class of 1-DTAs because DFA identification already is a diffi-
cult problem (NP-complete (Gold 1978) and inapproximable within a polynomial (Pitt and
Warmuth 1989)). Hence, it makes sense to first focus on simple extensions of DFAs. In ad-
dition, although DRTAs are a restricted type of 1-DTAs, they are still expressive enough for
many interesting applications.

We provide an algorithm for identifying DRTAs from labeled data sets (Sect. 4). We call
this algorithm RTI, which stands for real-time identification. The RTI algorithm is based
on the currently best-performing algorithm for the identification of DFAs, called evidence-
driven state-merging (EDSM) (Lang et al. 1998). The only difference between DFAs and
DRTAs are the time constraints. Although this seems like a small difference, the problem of
identifying a DRTA is much more difficult than the problem of identifying a DFA. In this
paper, we show that the subproblem of identifying only the time constraints of a DRTA is
already NP-complete (Sect. 3). In spite of the complexity of this additional problem, RTI is
a correct and complete algorithm that converges efficiently to the correct DRTA in the limit
under an appropriate evidence value (Sect. 4.4). To the best of our knowledge, we are the
first to develop an efficient algorithm for the identification of a class of TAs.

A big difference between EDSM and RTI is that RTI deals with timed data. Therefore,
RTI requires a different evidence value (heuristic) than the one used by EDSM, which is
based only on non-timed data. We provide a few values for timed data that can be used
in RTI (Sect. 5). We then experimentally compare each of these different evidence values

@ Springer

298 Mach Learn (2012) 86:295-333

for RTI with a sampling approach (Sect. 6). The sampling approach first replaces the time
values in timed strings by special time tick symbols, and then runs EDSM to obtain a DFA
representation of a DRTA. We perform the experiments on a large set of artificial data sets
generated from randomly generated DRTAs. The main conclusion of these experiments is
that RTI significantly outperforms the sampling approach. In addition, they show that the
performance of RTI does not depend on the number of possible time values. In contrast,
the performance of the sampling approach degrades quickly when we increase this number.
We also compare the performance of the different evidence values we introduced in order
to deal with the timed data. Furthermore, we include a simple search wrapper around RTI
in our experiments. This search-based version of RTI outperforms the non-search version
significantly. Moreover, it scores sufficiently good for real-world problems.
In short, in this paper we show the following:

— We show that identifying DRTAs is more difficult than identifying DFAs: the subproblem
of identifying only the time constraints is already NP-complete.

— In spite of this result, we show it is still possible to efficiently identify DRTAs from labeled
data: RTI identifies DRTAs efficiently in the limit when given an appropriate evidence
value.

— Furthermore, we show that it is useful to identify a DRTA: by identifying a DRTA we
obtain a better performance than identifying a DFA from sampled data.

— Finally, we provide useful timed evidence values and show that wrapping a search routine
around the RTI algorithm improves its performance significantly.

We conclude this paper with a short overview of related work (Sect. 7) and a discussion of
the RTI algorithm (Sect. 8), including possible applications and ideas for future work.

2 Deterministic real-time automata

The following exposition uses basic notation from language, automata, and complexity
theory. For an introduction the reader is referred to Sipser (1997). In a real-time sys-
tem, each occurrence of a symbol (event) is associated with a time value, i.e., its time
of occurrence. We model these time values using the natural numbers N. This is suf-
ficient because in practice we always deal with a finite precision of time, e.g. millisec-
onds. Timed automata (Alur and Dill 1994) can be used to accept or generate a sequence
T = (aj, t)(az, t2)(as, t3) - - - (ay, t,) of symbols a; € X paired with time values #; € N, called
a timed string. The length of a timed string 7 is the number n of such symbol-time value
pairs. Every time value # in a timed string represents the time (delay) until the occurrence
of symbol g; since the occurrence of the previous symbol a;_;.

In timed automata, timing conditions are added using a finite number of clocks and a
clock guard for each transition. In this paper, we use a class of timed automata known as
real-time automata (RTAs) (Dima 2001). An RTA has only one clock that represents the
time delay between two consecutive events. The clock guards for the transitions are then
constraints on this time delay. When trying to identify an RTA from data, one can always
determine an upper bound on the possible time delays by taking the maximum observed
delay in this data. Therefore, we represent a delay guard (constraint) [n,n’] by a closed
interval in N. We say that [n, n'] is satisfied by a time value ¢t € N if ¢ € [n,n']. An RTA is
defined as follows:

@ Springer

Mach Learn (2012) 86:295-333 299

a,
af0,5] |b[3,10]

b [0,2]

Fig. 1 An example of a DRTA. The leftmost state is the start state, indicated by the sourceless arrow. The
topmost state is an end state, indicated by the double circle. Every state transition contains both a label and a
delay guard. Missing transitions lead to a rejecting garbage state

Definition 1 (RTA) A real-time automaton (RTA) is a 5-tuple A = (Q, X, A, qo, F), where
Q is a finite set of states, X is a finite set of symbols, A is a finite set of transitions, g is the
start state, and F' C Q is a set of accepting states.

A transition § € A in an RTA is a tuple (¢, ¢', a, [n, n']), where ¢, q' € Q are the source
and target states, a € X is a symbol, and [n, n'] is a delay guard.

Due to the complexity of learning non-deterministic automata (see, e.g., de la Higuera
2005), we only consider deterministic RTAs (DRTAs). An RTA A is called deterministic if A
does not contain two transitions with the same symbol, the same source state, and overlap-
ping delay guards. Like timed automata, in DRTAs, it is possible to make time transitions
in addition to the normal state transitions used in deterministic finite state automata (DFAs).
In other words, during its execution a DRTA can remain in the same state for a while before
it generates the next symbol. The time it spends in every state is represented by the time
values of a timed string. In a DRTA, a state transition is possible (can fire) only if its delay
guard is satisfied by the time spent in the previous state. A transition {(q, ¢’, a, [n,n']) of a
DRTA is thus interpreted as follows: whenever the automaton is in state g, reading a timed
symbol (a, t) such that ¢ € [n, n'], then the DRTA will move to the next state g’.

Example 1 Figure 1 shows an example DRTA. This DRTA accepts and rejects timed strings
not only based on their event symbols, but also based on their time values. For instance, it
accepts (a,4)(b, 3) (state sequence: left — bottom — top) and (a, 6)(a, 5)(a, 6) (left —
top — left — top), and rejects (a, 6)(b, 2) (left — top — reject) and (a, 5)(a, 5)(a, 6) (left
— bottom — top — left).

The complete behavior of a DRTA is defined by the computation of a DRTA:

Definition 2 (DRTA computation) A finite computation of a DRTA A = (Q, ¥, A, qq, F)
over a (finite) timed string T = (a;, #1) - - - (an, t,) is a finite sequence

(ay,ty) (an,tn)
—

0 — > 41" qn-1 n

such that for all 1 <i <n, (gi_1,qi, ., [n;,n;]) € A, where t; € [n;, n;]. A computation of
a DRTA is called accepting if g, € F.

We say that a timed string 7 ends in a DRTA A in the last state occurring in the compu-
tation of A over 7, i.e., T ends in g,. A DRTA A accepts a timed string 7 if 7 ends in a final
state, i.e., if g, € F. The language of a DRTA A, denoted L (A), is the set of timed strings t
that the computation of A over t is accepting.

@ Springer

300 Mach Learn (2012) 86:295-333
O
M >
by
W p)
OO

Fig. 2 The incomplete DRTA (without delay guards) resulting from the reduction in the proof of Theorem 1.
The alphabet X consists of the variables V of the 3-SAT instance

3 Identifying delay guards of a DRTA is NP-complete

Given a timed input sample S = (S, S_), i.e., a pair of sets of positive and negative timed
strings, we want to identify the smallest DRTA A that is consistent with S, i.e., the smallest
DRTA A such that S; € L(A) and S_ € L(A)°. This problem adds a difficult subproblem
to the DFA identification problem: in addition to identifying the correct DFA structure, the
algorithm needs to identify the correct delay guards. Preferably, we would like an algorithm
that solves this subproblem optimally. It should then be possible to use this algorithm as
a subroutine of a DFA identification algorithm in order to identify DRTAs. Unfortunately,
we start this section by proving that identifying only these timed properties of a DRTA is
already NP-complete. Thus, we will not be able to solve this subproblem efficiently unless
P=NP.

Theorem 1 Given a timed input sample S and an NFA A = (Q, X, A, qo, F), the prob-
lem of finding for every transition § = (q,q’,a) € A a delay guard [n,n'] such that
(0,2, {{q,q9,a,[n,n'1) 1 {q,q’,a) € A,n,n" € N}, qo, F) is a DRTA consistent with S is
NP-complete.

Proof Our proof is by reduction from 3-SAT (for a definition see e.g. Sipser 1997). We first
give the intuition behind this reduction, then we give the formal proof.

The reduction consists of two parts: constructing the NFA A, and constructing the input
sample S. The NFA A has a structure that is mostly independent of the 3-SAT instance; only
the alphabet X contains one symbol a for every variable a € V in the 3-SAT instance. This
structure is depicted in Fig. 2. The main idea of this structure is that the accepting state g4 can
only be reached on an even index. For every clause c¢ in the 3-SAT instance, a positive timed
string 7 of length 6 is constructed. Hence, every such string 7 has 3 opportunities to reach
state g4, once for each literal / in c. Whether they reach state g4 in one such opportunity
depends on the delay guards [n,,n;] and [n3, n4] of the transitions that have as label the
atom a of [:

— if the sign of [is positive, then t reaches g4 if 1 € [n},n;] and 1 € [n3, n4l;
— if the sign of [is negative, then 7 reaches g4 if O € [ny, n,] and 0 € [n3, n4].

For every label a € X, there is a negative timed string v’ € S_ of length 2 that reaches state
q4 only if the delay guards [n, n,] and [n3, n4] of the transitions with label a contain both
0 and 1. Thus, the identification of the guards of this NFA A such that all positive examples
reach ¢4, and none of the negative reach ¢4, represents an assignment of truth values to the
variables of that 3-SAT instance that satisfies all clauses. We now present the formal proof.

Let I = (V ={v,...,v,},C = {c1,...,cn}) be a 3-SAT instance. We construct
the following instance of our delay guard identification problem (S = (S4,S5-),A =
(0, %, A, qo, F)) (A is depicted in), where:

@ Springer

Mach Learn (2012) 86:295-333 301

— S, contains a timed string 7. = (ay, t1)(ai, t1)(az,) (az, 1) (as, t3)(as, t3) for every
clause ¢ = {l1, 15,13} € C, where for all 1 <i <3, g; is the atom variable of literal /;,
and t; = 1 if ; is a positive literal, #; = 0 otherwise;

— S_ contains two timed strings 7, = (@, 0)(a, 1) and 7, = (a, 1)(a, 0) for every variable
acV;

- 0=1{q0.q1, 92, 93, qa};

- x=V;

A=l { (0. 1. a). (1. 0. a). (qo. 92. @), (42. 43, @), }

asv (42, qa, @), (g3, 43, @), (q4, g4, a) ’
- F={q4}.

We now claim that there exists a delay guard for every transition 6 € A such that the resulting
DRTA is consistent with S if and only if the original 3-SAT instance is satisfiable.

(=) Let m : V. — {true, false} be a certificate for the 3-SAT instance 7, i.e., setting all
variables v € V to m(v) makes [satisfied. Using m we create the following delay guards
for the transitions of A:

— for all (g0, q1,a) € A and all (g, g3, a) € A create a guard [, t], where t =0 if m(a) =
true, t = 1 otherwise;

— for all {q1, qo,a) € A, all (g3, ¢3,a) € A, and all (g4, q4, a) € A create a guard [0, 1];

— for all (go, g2, a) € A and all {g>, g4, a) € A create a guard [¢', '], where ¢’ = 1 if m(a) =
true, ' = 0 otherwise.

All the transitions that directly lead to g4 from the start state gy in the DRTA we just
constructed have the same delay guard. Because of this, no negative example 7, € S_ can
end in the final state g4. Instead, they end in the non-final state g;.

For every positive example 7, € Sy, there are two transitions 7. can fire at the start of
the computation of A’: a transition {(qo, q1, a) to g1, or a transition {qo, ¢2, a) to ¢;. It fires a
transition to state g, if either m(a) = true and the first literal in ¢ is a, or m(a) = false and
the first literal in ¢ is —a. Otherwise t fires a transition to state g .

Suppose the fired transition is to state ¢,. Because the delay guard created for all transi-
tions (g2, q4, a) to state g4 is equal to the guards created for the transitions (qo, 2, a), the
construction of 7, guarantees that the next transition it fires is to state g4. After reaching
state g4, the transitions (g4, g4, a) with delay guard [0, 1] guarantee that it ends in g4.

Suppose the fired transition is to state g;. The next transition it fires is a transition
(g1, qo, a) with delay guard [0, 1] back to go. From g it again fires a transition to either
q1 or g, depending on the value of m(a) and whether the next literal is positive or not. Since
there exists at least one literal in c that is satisfied by m, T will at some point fire the transi-
tion to ¢». Thus, it will at some point end in g4. Hence, all positive examples 7. € S; end in
q4. Consequently, it holds that S, € L(A’) and S_ C L(A")".

(<) Let A’ be a DRTA constructed from A by adding delay guards to transitions such
that S, € L(A’) and S_ € L(A")°. Because A accepts all of the positive examples and none
of the negative examples, the transitions (qo, ¢2, @, [1n1,n2]) and (g2, g4, a, [n3, n4]) in A’
(with the same label) are such that O € [n, n,] U [n3,n4] or 1 € [ny, ny] U [n3, n4], but not
{0, 1} € [ny, ny] U [n3, n4]. We construct the following solution for the 3-SAT problem: for
alla € V,setm(a) =trueif 1 € [ny, np]1U[n3, ngl, set m(a) =false it 0 € [ny, n,]U[ns3, nyl.
By construction of S, , and since it holds that S, € L(A’), m is a mapping that satisfies at
least one literal in every clause of the original 3-SAT problem. Hence, the 3-SAT instance is
satisfiable.

The reduction function is clearly polynomial. Checking whether a DRTA is consistent
can clearly be done in polynomial time by running the DRTA on every example from the
input set. Hence the problem is a member of NP. This completes the proof. O

@ Springer

302 Mach Learn (2012) 86:295-333
b a a
\ a
ou b
b b @ © accepting
@_>© @ rejecting

Fig. 3 An augmented prefix tree acceptor for S = (S4 = {a, abaa, bb}, S— = {abb, b}). The start state is
the state with an arrow pointing to it from nowhere

Despite the above theorem, we still want to identify both the delay guards and the struc-
ture of a DRTA. We will not be able to do so efficiently, but we might be able to converge
efficiently to the correct DRTA when given more and more data, i.e., in the limit. In fact,
in previous work (Verwer et al. 2009), we theoretically showed this to be possible. A sim-
ilar issue holds for the identification of DFAs: even though the DFA identification problem
is NP-complete (Gold 1978), there exists a polynomial time algorithm that converges ef-
ficiently to the correct DFA (Oncina and Garcia 1992). Therefore, instead of treating the
identification of delay guards as a subproblem, we provide a new algorithm for identifying
DRTAs that identifies delay guards in a way similar to the way it identifies states and tran-
sitions, i.e., such that it converges efficiently to the correct delay guards. We describe this
algorithm in the next section.

4 Identifying real-time automata

Our algorithm for identifying DRTAs is called RTI (Algorithm 8, p. 311), which stands for
real-time identification. The RTI algorithm is based on the evidence-driven state-merging
(EDSM) algorithm in a red-blue framework (Algorithm 3), which is one of the most suc-
cessful algorithms for identifying DFAs (see, e.g., Lang et al. 1998). RTI can perform all of
the traditional state-merging routines (Algorithms 4 and 6, pp. 306 and 309). In addition, our
DRTA identification algorithm is capable of identifying delay guards by splitting transitions
into two (Algorithm 5, p. 307). This routine identifies delay guards by first assuming them to
contain every time value, and then splitting these constraints into two new non-overlapping
constraints for two new transitions.

We start this section with a concise overview of the EDSM algorithm in a red-blue frame-
work (Sect. 4.1). Both the transition-splitting and the modified state-merging routines are
then explained in Sect. 4.2. Afterwards, we present the main loop of the RTI algorithm in
Sect. 4.3. In Sect. 4.4, we end this section by proving that RTI runs in polynomial time, is
correct, is complete, and that it converges efficiently to the correct DRTA.

4.1 State merging

The algorithm we use for the identification of DRTAs is based on to the EDSM algorithm in
a red-blue framework for the identification of DFAs (Lang et al. 1998). In this section, we
describe the main elements of the original algorithm for DFAs.

An automaton identification process tries to find an automaton A such that its language
L(A) is equal to the target language L,. The identification process should get some form
of data as input from which it can identify L,. We assume it is given a pair of finite sets
of positive sample strings S, C L, and negative sample strings S_ C L¢, called the input

@ Springer

Mach Learn (2012) 86:295-333 303

Algorithm 1 Construct the APTA: APTA
Require: an input sample S = {S4+, S—}
Ensure: A is the APTA for S
A is a DFA containing only a start state ¢
for each sample strings 0 =ay,...,a, from S do
state ¢’ = g, integer i = 1
while i <n do
if A contains no transition § with ¢’ as source and a; as symbol then
Add a new state g”’ to A.
Add such a transition § to A, set its target to be ¢”.
end if
q’ = the target of §,i =i + 1
end while
if o € Sy then
Set ¢’ to be an accepting state.
else
Set ¢’ to be a rejecting state.
end if
end for
return A

O %
e - b

TOELS S
\K - — : O

/ a a

-’1b

\ _-

Fig. 4 A merge of two states from the APTA of Fig. 3. On the left the original part of the automaton is

shown, the states that are to be merged are surrounded by a dashed ellipse. On the right the result of the
merge is shown. This resulting automaton still has to be determinized

d

sample. The goal is to find the smallest DFA that is consistent with § = {S,,S_}, i.e.,
accepting all positive and rejecting all negative strings.

The idea of a state-merging algorithm is to first construct a tree-shaped DFA A from
this input, and then to merge the states of A. This DFA A is called an augmented prefix
tree acceptor (APTA), see Fig. 3. Algorithm 1 shows its construction routine in pseudo
code. An APTA A is a DFA that is consistent with the input sample S. Furthermore, in an
APTA there exists exactly one path from the start state to another state. This implies that the
computations of two strings o and o’ reach the same state ¢ if and only if o and ¢’ share the
same prefix until they reach g. Hence the name prefix tree. An APTA is called augmented
because it contains (is augmented with) states that are neither accepting nor rejecting. No
execution of any sample string from S ends in such a state. Therefore, it is unknown whether
these should be accepting or rejecting. This is determined by merging the states of this APTA
and trying to find a DFA that is as small as possible.

A merge (see Fig. 4 and Algorithm 2) of two states ¢ and ¢’ combines the states into
one: it creates a new state ¢” that has the incoming and outgoing transitions of both ¢ and
q’. Such a merge is only allowed if the states are consistent, i.e. it is not the case that g is
accepting while ¢’ is rejecting or vice versa. When a merge introduces a non-deterministic

@ Springer

304 Mach Learn (2012) 86:295-333

Algorithm 2 Merging two states: MERGE

Require: an augmented DFA A and two states g, ¢’ from A
Ensure: if ¢ and ¢’ are consistent, then ¢ and ¢’ are merged, A is updated accordingly, and true
is returned, false is returned otherwise
if ¢ is accepting and ¢ is rejecting or vice versa then
return false
end if
Add a new state ¢’ to A that is neither accepting nor rejecting.
if g or ¢’ is an accepting state then
Set ¢ to be an accepting state.
end if
if g or ¢’ is a rejecting state then
Set g” to be a rejecting state.
end if
for each occurrence of g or ¢’ as source or target of transitions A do
Replace the occurrence of g or ¢’ by ¢”.
end for
while A contains a non-deterministic choice with target states g, and g;, do
boolean b = MERGE(A, gx, q},)
if b equals false then
Undo the merge of ¢ with ¢” and return false.
end if
end while

choice, i.e. g¢” is the source of two transitions with the same symbol, the target states of
these transitions are merged as well. This is called the determinization process (the while
loop in Algorithm 2), and is continued until there are no non-deterministic choices left. The
result of a merge is a new DFA that is smaller than before, and still consistent with the input
sample S. A state-merging algorithm continually applies the state merging process until no
more consistent merges are possible.

The red-blue framework follows the state-merging algorithm just described, but in addi-
tion maintains a core of red states with a fringe of blue states (see Fig. 5 and Algorithm 3).
A red-blue algorithm performs merges only between blue and red states. The new states
resulting from these merges are colored red. During a merge, the determinization process
can only merge uncolored states with any other state g. The new states resulting from these
merges takes the color of g. If no red-blue merge is possible the algorithm changes the color
of a blue state into red; we call this changing of color a COLOR operation. The algorithm is
guaranteed not to change any of the transitions between red states. The red core of the DFA
can be viewed as a part of the DFA that is assumed to be correctly identified.

Note that a red-blue state-merging algorithm is capable of producing any DFA that is
consistent with the input sample and smaller than the original APTA. The main goal of a
DFA identification algorithm is to find one of the smallest such DFAs. Currently, the most
successful method to find this DFA is EDSM (Lang et al. 1998). In EDSM each possible
merge is given a score based on the amount of evidence in the merges that are performed
by the merge and determinization processes. A possible merge gets an evidence score equal
to the number of accepting states merged with accepting states plus the number of rejecting
states merged with rejecting states. At each iteration of the EDSM algorithm, the merge
with the highest evidence value is performed. In the following sections we discuss real-time
automata and show how to apply the idea of state merging to these automata.

@ Springer

Mach Learn (2012) 86:295-333 305

@i‘i
GX O—>O

.—»o—»oqo

Fig.5 The red-blue framework. The red states (labeled R) are the identified parts of the automaton. The blue
states (labeled B) are the current candidates for merging. The uncolored states are pieces of the APTA

Algorithm 3 State merging in the red-blue framework

Require: an input sample S
Ensure: A is a small DFA that is consistent with §
A = APTA(S)
Color the start state g of A red and all the children of ¢ blue.
while A contains blue nodes do
if A contains a red state r and a blue state b such that MERGE(A, r, b) equals true then
Call MERGE(A, r, b).
else
Change the color of a blue state in A to red.
end if
Change the color all uncolored children of red states in A to blue.
end while
return A

4.2 Real-time identification

Our DRTA identification algorithm, called RTI, is an EDSM algorithm that uses the red-blue
framework. Most of the conventional state-merging routines are modified in order to deal
with timed data and DRTAs. Moreover, the algorithm now contains a new routine, called
transition-splitting, that enables it to identify the delay guards of a DRTA. This routine
identifies time constraints by first assuming them to contain every time value, and then split-
ting these constraints into two new non-overlapping constraints for two new transitions. In
previous work (Verwer et al. 2009), we described a one-clock deterministic timed automa-
ton identification algorithm ID_1-DTA that identifies clock guards by simply selecting the
smallest consistent one. We use this splitting routine instead of a smallest first order because
this routine makes it possible to use an evidence value similar to the one used in the original
EDSM algorithm. In fact, it is difficult to define a suitable evidence value for the identifica-
tion methods in the ID_1DTA algorithm. In the following we discuss all of the changes we
made to the original EDSM algorithm.

A timed APTA Like the conventional state-merging algorithm, RTI starts with an aug-
mented prefix tree acceptor (APTA) (A, R), i.e., a prefix tree DRTA A, augmented with
a set of rejecting states R. In the conventional APTA, two strings end in the same state only
if they are identical. Two timed strings are identical if at every index both their symbols
and their time values are the same. It rarely occurs that an input sample S contains (prefixes
of) timed strings that have exactly the same time values. Hence, were we to construct an
APTA in the conventional way, we would with high probability obtain an automaton such

@ Springer

306 Mach Learn (2012) 86:295-333

a
. 5.0
a [1.2]
\ [1.2]
O b

[12] © accepting

b @ rejecting
[1.2] M @ inconsistent

[1.2]

Fig. 6 A timed APTA for the timed input sample: (S+ = {(a, 1), (a, 1)(b,2)(b, 1), (b,2)(D, 1)}, S— =
{(a, 1)(b, 1)(a, 1), (b,2), (b, 1)(b, 1)}). The minimum delay #y,;, in the sample is 1, the maximum delay
tmax 18 2

Algorithm 4 Construct the timed APTA: tapta
Require: aninputsample S = {S4, S—} with alphabet ¥ and the global minimum and maximum
delay values #i, and fmax
Ensure: (A, R) is the timed APTA for S (a DRTA A augmented with a set of rejecting states R)
SetA:=(Q ={qo}, X, A=0,qq, F=0)
SetR:=0
for each timed string T = (ay,t1), ..., (an, ty) from S do
Set state g := qo
for everyindex O <i <noft do
if there existno (¢, q’, a;, [t,t']) € A for any ¢ and [t, t'] then
Add a new state g’ to A
Add a new transition (g, q’, a;, [tmin, fmax]) t0 A
end if
Setg:=q’
end for
if T € S4 then set F = F U {q}
if t € S_ thenset R=R U {¢q}
end for
return (A, R)

that every state will be reached by only a single timed string from S. Starting from such
an automaton, the conventional state-merging algorithm could be used to merge the delay
guards of transitions into larger delay guards. In other words, we could identify the delay
guards in a bottom-up way. However, like our ID_1-DTA algorithm, it is very difficult to
come up with a good evidence value for such an bottom-up method. The conventional evi-
dence value clearly fails since the determinization routine will only combine states that are
reached using the same symbol and the same time value(s). In other words, it will usually
merge no states at all. Consequently, the evidence value is usually either 1 or 0, and hence
it contains little information.

A bottom-up approach for identifying states and transitions of the conventional state-
merging algorithm clearly creates some problems for identifying delay guards. Because of
this, we identify the delay guards using a fop-down approach, i.e., by initially setting them to
be as general (large) as possible and specializing them (making them smaller) if necessary.
The states and transitions are still identified using the conventional state-merging approach.

In our timed APTA (see Fig. 6), two timed strings end in the same state if their untimed
strings (the strings obtained by disregarding the time values) are identical. We set the initial
values of the lower and upper bounds of all delay guards of the timed APTA to be the

@ Springer

Mach Learn (2012) 86:295-333 307

-

Fig. 7 A split of a part of the APTA from Fig. 6. On the left, the original DRTA is shown. The guard and
target node that are to be split are surrounded by a dashed ellipse. On the right, the result of the split is shown.
The split is called using time value r = 1

Algorithm 5 Splitting a transition: split
Require: an augmented DRTA (A = (Q, =, A, qq, F), R), a transition § = (q,q’,a, [n,n']),
a time value ¢ € [n,n” — 1], and an input sample S
Ensure: § is split at time # and A is changed accordingly
Remove § from A
Remove the part of the APTA with ¢’ as root from A
Add two new states g1 and g5 to A
Add a new transition 81 := (g, q1,a, [n,t]) to A
Add a new transition 85 := (g, q2,a,[t +1,n']) to A
Set g1 to be the state reached by (a,7) in Ay := tapta(s%1)
Set g7 to be the state reached by (a,t + 1) in Ay := tapta(S82)

minimum fp;, and maximum #,,, time values from the input sample S, respectively. This
timed APTA is identical to the conventional APTA constructed from the untimed versions of
the timed strings from S. We show a timed version of the APTA construction in Algorithm 4.

Our timed APTA construction allows for the possibility of inconsistent states. These are
created when the untimed versions of a positive and a negative example are identical. For
example, in Fig. 6, string bb is the untimed version of (b, 2)(b, 1) € S and (b, 1)(b, 1) € S_.
Our algorithm can get rid of the aforementioned inconsistencies by splitting (specializing) a
transition at some time value ¢ € [fmin, fmax — 1]-

Splitting a transition A split with time value ¢ of a transition & divides the part of the
DRTA pointed to by transition § into two parts. The first part is reached by the timed strings
that fire § with a delay value less or equal to ¢. The second part is reached by timed strings
for which this value is greater than 7. An example split is depicted in Fig. 7.

The exact result of a split depends on which timed strings from the input sample fire §.
Every such string can be written as t(a, t")7’, where 7 is the prefix before firing transition §,
(a, t') is a pair containing the symbol @ of § and a time value ¢’ that satisfies the delay guard
[n,n'] of §, and 7’ is the suffix after firing §. We call the timed string 7 = (a, ') 7’ the tail of
7(a,t')t’ for 8. Such a tail is said to be positive (negative) if Tt° is positive (negative). We
use S° to denote the subsample of all tails from S for §, i.e., $° = (S} ={r° |t € §4}, 82 =
{r% | T € S_}). In a split the two divided parts of the DRTA are reconstructed using these
tails. Because we use the red-blue framework, RTI can only split transitions that have blue
states as their target. The splitting algorithm is shown in Algorithm 5.

Let § be a transition to a blue node. Suppose S° contains two tails t{ and 7} that are
equal if we disregard their time values. Initially, these two tails end in the same state due
to the timed APTA construction. After a split of §, however, it is possible that S%1 contains

@ Springer

308 Mach Learn (2012) 86:295-333

Fig. 8 A merge of a part of the APTA from Fig. 6 after the split from Fig. 7. On the left, the original DRTA
is shown. The states that are to be merged are surrounded by a dashed ellipse. On the right, the result of the
merge is shown

Fig. 9 When merging two states ¢ and ¢’, first the outgoing transitions are split in order to resolve non-de-
terministic choices that are due to differences in delay guards

1:1‘S while §% contains rés (or vice versa). In other words, r{s and 1'25 no longer end in the
same state. In this way, a split can remove both consistent and inconsistent states from a
DRTA. Our algorithm decides where to split a transition based on the amounts of removed
consistent and inconsistent states. This is explained further in Sect. 5.

Merging states in a DRTA Besides the timed APTA construction and the split operation,
our DRTA identification algorithm is still somewhat different from a conventional state-
merging algorithm: the merge operation is modified in order to deal with the delay guards
of a DRTA. Suppose that RTI wants to merge a blue state ¢ and a red state ¢’. In the conven-
tional state-merging algorithm, a new red state ¢” will be created that has all the incoming
and outgoing transitions of both ¢ and ¢’. In the DRTA case, however, we cannot just use the
outgoing transitions of both ¢ and ¢’ as the outgoing transitions for ¢” because their guards
can be partially overlapping. For example, suppose that a DRTA A contains the following
transitions: (g, q1, a, [0, 101}, {¢’, 2, a, [0, 4]), and {¢’, g3, a, [5, 10]), depicted in Fig. 9. If
RTI merges g and ¢’ into a new state ¢”, the transitions of ¢” will be: {(¢”, ¢, a, [0, 10]),
(q”,q2,a,[0,41), and {(q¢”, g3, a, [5, 10]). Thus, there is a non-deterministic choice for a de-
lay value in [0, 4], with targets g; and ¢, and there is a different non-deterministic choice
for a delay value in [5, 10], with targets ¢, and g3. In fact, because the guard of the transition
to g, overlaps with both of the other transitions, a call to the determinization routine will
merge all three of the states ¢, ¢, and g3 into one single state. In other words, the deter-
minization routine also merges the deterministic choice with targets g, and g3. We solve
this issue by splitting (g, q1, a, [0, 10]) into (g, g;, a, [0,4]) and (g, g, a, [5, 10]) before
merging g with ¢’. The guards of the outgoing transitions of g and ¢’ are now identical

@ Springer

Mach Learn (2012) 86:295-333 309

Algorithm 6 Merging two states: merge

Require: an augmented DRTA (A = (Q, %, A, qo, F), R), two states g, ¢’ from A such that ¢’
is not red, and an input sample S
Ensure: g and ¢’ are merged, A is updated accordingly, and true is returned, false is returned

otherwise
if it holds that ¢ € F and ¢’ € R or vice versa then

return false
end if
Add a new state g” to A that is neither accepting nor rejecting
if it holds that g € F or ¢’ € F, thenset F = F U {q"'}
if it holds that ¢ € R or ¢’ € R, then set R = R U {q¢"}
if there exist an outgoing transition 8’ € A from ¢’ then

for all outgoing transitions § = (g, ¢*, a, [n,n']) € A from ¢ do

if it holds that n’ # t;ax then call split((A, R), 8, n’, S)

end for
end if
for all transitions § = (g1, g2, a, [n,n']) € A do

if it holds that g; = ¢ or ¢ = ¢’ then set q; :=¢q”

if it holds that g5 = g or g» = ¢’ then set ¢ :=¢q”
end for
while A contains two non-deterministic transitions (q”, g1, a, [n,#n']) and (¢”, g2, a, [n,n'])
such that ¢ is not red do

Boolean b = merge((A, R), q1,q2, S)

if b equals false then

Undo the merge of g with ¢’ and return false

end if
end while
return frue

and we can simply merge the two states. The determinization routine resolves the resulting
non-determinism in the normal way.

Example 2 Figure 8 shows an example of a merge that includes a split operation before
determinization. The second transition fired by (a, 1)(b,2)(b, 1) and (a, 1)(b, 1)(a, 1) (la-
beled with b) is split first before starting the merge procedure. Notice that the accepting state
gets merged with the bottom path (reached by the transition with guard [2, 2]) because it is
reached by (a, 1)(b, 2)(b, 1). The rejecting state gets merged with the top path because it is
reached by (a, 1)(b, 1)(a, 1).

In the red-blue framework, we can only merge a blue state with a red state. Consequently,
the determinization routine only merges uncolored states with other states. Since we only
split the outgoing transitions of red states, in any merge, all of the outgoing transitions of
one of the two states is guaranteed to have the initial delay guard ([#in, fmax])- Hence, we
can always solve the determinization issue by simply splitting these outgoing transitions at
the values of the delay guards of the other state. Algorithm 6 shows the merge and deter-
minization routines that include these splits.

@ Springer

310 Mach Learn (2012) 86:295-333

Algorithm 7 Checking permanent inconsistency: inconsistent
Require: A timed input sample S and an augmented DRTA (A =(Q, X, A, qgp,), R)
Ensure: Returns frue if (A, R) can still be made consistent with S
for all red states ¢ of Q do
if it holds that ¢ € F and g € R then return false
for all transitions (g, ¢’, a, [n,n’]) € A such that ¢ is not red do
Let 8% = (82, §%) be the set of tails of S for §
if Sf_ N S8 = () then return false
end for
end for
return frue

4.3 The RTI algorithm for identifying DRTAs

In the previous section, we constructed routines for timed state-merging and transition-
splitting. These routines can be inserted into the EDSM algorithm within the red-blue frame-
work in order to construct an algorithm for identifying DRTAs. We call this algorithm RTI,
which stands for Real-Time Identification. Algorithm 8 shows this algorithm. This algorithm
tries all possible merges, splits, and colorings, in every iteration. It computes an evidence
value (described in Sect. 5) for every possible action. The algorithm then performs the action
that scores highest, but only if the result is not permanently inconsistent (Algorithm 7). An
augmented DRTA is permanently inconsistent if either an inconsistency occurs in the red
states, or if there exist an identical pair of a positive and a negative tail in the transitions to
blue nodes. These tails can never be pulled apart by any subsequent split operation. If some
actions score equally, the algorithm gives preference to first a merge, then a split, and finally
a color operation.

It might be the case (and in fact it often is the case) that the evidence value gives the
same score to a possible range of splits between two time values #; < f,. We deal with such
a situation by setting ¢ equal to #;. The motivation behind this is that if we should actually
split it at some other time value ¢ < t’ < t,, then the set of time values [r + 1, 1,] is as large
as possible. Hence, if at some later iteration of RTI there is some additional information (by
performing merges and creating loops), then we can still identify the correct split later using
as much information as possible. Setting ¢ to L% 4+ 0.5] might seem to make more sense,
but this minimizes the additional information we can get in order to still identify the correct
split if this split is incorrect. Note that incorrect splits can still be resolved by correct merges
in subsequent iterations of RTI.

4.4 Properties of RTI

We now prove the following important properties of this algorithm: it is efficient, correct
(sound), and complete. In addition, we show that under an appropriate evidence value, poly-
nomial characteristic sets exist, and thus that RTI converges efficiently to the correct DRTA.

Proposition 1 RTI is time efficient, i.e., it requires runtime polynomial in the size of the
input sample S.

Proof RTI starts with the construction of a timed APTA A. This construction (and the re-

sulting APTA) is clearly polynomial in the size of the input. Then, in every iteration of RTI,
either a transition is split, two states are merged, or a state is colored red in A. The split

@ Springer

Mach Learn (2012) 86:295-333 311

Algorithm 8 Identifying DRTAs: RTI

Require: A timed input sample S, with alphabet ¥, and minimum and maximum time values
Imin and /max
Ensure: A is a small DRTA that is consistent with S
Set (A, R) = ((Qa 25 A7 40, F)7 R) = tapta(S, E! tmin; tmax)
Color the start state gg of A red
while A contains non-red states do
for all transitions (g, q’, a, [n,n’]) € A such that g, is red and ¢’ is not do
Color ¢’ blue
end for
for all transitions 8 = (g, qp, a, [n, n']) € A such that g, is blue do
for all red states g, in Q do
Call merge((A, R), gr, qp, S)
if inconsistent((A, R)) is false then
Calculate the evidence value vy,
end if
Undo the merge of ¢, and g,
end for
Let S° be the set of tails for
for all tails 78 = (a, 1)1’ € S do
Call split((A, R), d,t, S)
Calculate the evidence value vg
Undo the split of §
end for
Color gp, red
if inconsistent((A, R)) is false then
Calculate the evidence value v,
end if
Color g, blue
end for
if A merge has the highest evidence value vy, then redo the merge
else if A split has the highest evidence v, then redo the split
else redo the coloring with the highest evidence value v,
end while
return A

operation requires three sets of timed strings S8, 8% and S%, which can all be constructed
(or maintained in an efficient way using binary search trees) in polynomial time by running
A on the input sample. The split operation uses two calls of the polynomial-time APTA
construction in order to compute its result. The merge operation (including determinization)
sometimes calls the polynomial split operation. Since every state created by these splits has
to be reached by at least one timed string, the amount of extra states created is bounded by
the size of the input sample. Thus, the merge operation combines a polynomial amount of
states. Merging two states is clearly polynomial. Therefore, the merge operation is polyno-
mial in the size of the input sample. Coloring a state only requires O (1) time. This proves
that each individual operation requires no more than polynomial time. What remains is to
show that a single iteration of RTI requires no more than polynomial time and that the algo-
rithm ends after a polynomial amount of iterations.

RTI only performs splits that separate the paths of two timed strings from the input sam-
ple. Hence, the amount of possible splits is polynomial in the size of the input sample, i.e.,

@ Springer

312 Mach Learn (2012) 86:295-333

this amount is bounded by |S| x |S|, where |S| =) ., |7|. The amount of possible merges
is bounded by the amount of possible pairs of states of the APTA, i.e., this amount is also
bounded by |S| x |S|. The number of times RTI colors a state red is bounded by the amount
of possible states, i.e., it is bounded by |S|. Thus, in a single iteration, RTI can in the worst
case try 2|S| x |S| + |S| possible polynomial operations before deciding which action to
take.

Once a state is colored red, a pair of states has been merged, or two timed strings have
been split, the same action cannot occur again. Since one of these actions is performed in
every iteration, this bounds the amount of possible iterations of RTI by 2|S| x |S| + |S].
Hence, the proposition follows. O

Proposition 2 RTI is correct (sound), i.e., given any input sample S = (S, S_), it returns
a DRTA A that is consistent with S (such that S, € L(A) and S_ € L(A®)).

Proof By definition, S is such that S; N S_ = @. Thus, although initially it is possible that
A is inconsistent with S, it is not permanently inconsistent. RTI can make A consistent with
S by splitting transitions at the appropriate time values. In addition, a color or merge oper-
ation is only performed if A is not permanently inconsistent afterwards. Hence, during the
execution of RTI, A is never permanently inconsistent. More specifically, there exists no red
state ¢, such that g, € F and ¢, € R. The timed APTA construction ensures that every timed
string T € S, ends in a state g € F, and that every timed string T € S_ ends in a state g € R.

RTI terminates only if all states are colored red. Hence, when it terminates, every timed
string T € S, ends in a red state g, € F, every timed string 7 € S_ ends in a red state
qr € R, and there exists no red state g, such that g, € F and g, € R. In other words, when
it terminates, A is consistent with S. Because the algorithm terminates after a polynomial
number of iterations (Proposition 1), the proposition follows.]

We have just shown that RTl is sound and efficient. Thus, after an amount of time bounded
by a polynomial in the size of the input sample, it will return a (small) DRTA that accepts all
the positive timed strings and none of the negative times strings from the input sample. We
now show that under the right evidence value RTI is also complete, and that it converges effi-
ciently (in the limit from polynomial time and data). We prove this by showing the existence
of polynomial characteristic sets (de la Higuera 1997):

Definition 3 (Polynomial characteristic set) A polynomial characteristic set S of a target
language L, for a learning algorithm A is an input sample {S; € L,, S_ € L7} such that:

— the size of S is bounded by a polynomial in the size of the smallest model (automaton) A,
with L(A,) = L,;

— given S as input, algorithm A returns a model A such that L(A) = L;

— and given any input sample that contains S as input, A still returns A.

Intuitively, the existence of such sets for RTI shows that RTI requires only a polynomial
amount of examples in order to return any target language L,. Since this shows that RTI can
return a DRTA for any language, completeness follows as a corollary. The result of RTI is
not only determined by the input sample, but also by its evidence value. Therefore, we can
only show these properties under a given evidence value. We use a very simple value that
defines a strict ordering of the possible merges and splits. This ordering is similar to the
one we used in previous work for proving the convergence of the ID_1DTA algorithm for
learning one-clock DTAs (Verwer et al. 2011):

@ Springer

Mach Learn (2012) 86:295-333 313

Definition 4 (Shortlex blue state) The shortlex blue state g, in an augmented DRTA is the
blue state reachable by the first timed string in shortlex order (that is (a, t)(a, t;) before
(a,t3)(b,t4), and (b, ;) before (a,t;)(a,t,)). Ties are broken by the sums of their time
values (that is (a, t;)(a, 1) before (a, 3)(a, ty) if t; + 1, < t3 + t4).

Definition 5 (ID_1DTA evidence) Let g, be the shortlex blue state. Assign the value:

— 3 to any consistent merge with gy,

— 2 to a consistent coloring of g, and

— 1 to the split of the transition to g, with the unique time value ¢ such that:
o the resulting new shortlex blue state can be colored red (consistently), and
e the shortlex blue state resulting from a split with time value ¢ 4+ 1 cannot.

Assign 0 to all other operations.

When RTI uses this evidence value, it will first try to merge blue states, then color them if
possible, and finally perform splits only if they are necessary. We now show that this strategy
makes RTI converge efficiently to any target language L,, i.e., requiring only a polynomial
amount of data until it finds a DRTA A such that L(A) = L;. We use the shortlex ordering for
simplifying this analysis (using any other fixed ordering will have the same effect). Using
evidence values based on data (Sect. 5) often results in more swift convergence in practice.
Unfortunately, proving this convergence is very difficult. Even for DFAs, this type of proof
only exists for fixed order algorithms such as RPNI (Oncina and Garcia 1992). Without a
fixed order, much more complex convergence proofs based on statistics are needed, see e.g.
Clark and Thollard (2004) for probabilistic DFAs.

‘We now continue with our proof of efficient convergence for RTI with ID_1DTA evidence.
Our proof consists of two parts: an invariant showing the existence of examples that force
RTI to perform correct merges, colorings, and splits (Proposition 3), which is then used to
show that only a polynomial number of such examples are required to make sure that RTI
identifies L, (Lemma 1). Combined this shows the existence of polynomial characteristic
sets (Theorem 2).

Proposition 3 Given a target DRTA language L,, there exists an input sample S = {S,, S_}
(with S; € L, and S_ C LY) for RTI with ID_1DTA evidence such that the following invariant
holds: all the red states and transitions between them are part of a DRTA A, such that
LA)=L,.

Proof For the initial case, only the start state gy of the timed APTA is colored red. The
proposition above hold here, since any DRTA that accepts L, also contains a start state.
For the arbitrary case (induction step), assume that at the start of the current iteration there
exists a DRTA A; with L(A;) = L, that contains all the red states as well as all the transitions
between them. We distinguish three cases:

Case 1. RTl merges g, with a red state ¢, ;
Case 2. RTI colors g, red;
Case 3. RTI splits the transition § to g,.

In case 1, RTI identifies the target of a new transition § = (g, ¢,, a, [r, n']). To arrive at
a contradiction, suppose this transition is not included in A;, however by the invariant both
q and ¢, are included. Without loss of generality, we assume that § does not target g, with
a reason, i.e., adding § to A, and removing/modifying overlapping transitions results in a

@ Springer

314 Mach Learn (2012) 86:295-333

DRTA A] such that L(A]) # L,. If there is no reason, the invariant holds for A, instead of
A;, and A] is not larger than A,. Under this assumption, there exist (at least) three timed
strings 7, 7,, and 7, such that: 7 ends in ¢, 7, ends in ¢,, and t(a,n)ty; € L; but 7,7, & L,
or vice versa. If included in the input sample, t(a, n)t,; and 7,7, will create a permanent
inconsistency when RTI tries to merge ¢, with g,: after the merge, 7 (a, t) and 7, both end in
g, and the remaining t,; has to be both rejected and accepted. Thus, by adding timed strings
to the input sample S, we can force RTI to perform only merges that identify transitions &
that are included in A,. Furthermore, if § is included in A,, such timed strings do not exist
since L(A;) = L,.

In case 2, RTI identifies a new transition § = (g, gp, @, [n,n’]) to a new red state gy,.
Furthermore, due to the ID_1DTA evidence value, every single merge with existing red states
resulted in a permanent inconsistency. Thus for all existing red states ¢,, (g, g,, a, [n,n']) is
not included in A,. Suppose that § is also not included in A,. Since § is the only transition
that targets g;, and since g, cannot be merged with any existing red state, A, does contain
a transition from ¢ to g, with symbol a. Hence, A, does not include such a transition with
delay guard [r, n']. Instead, A, includes such a transition with delay guard [n,, n;] such that
n; > n and/or n, < n’. Therefore, without loss of generality, there exist two timed strings
7 and 7, such that: T ends in ¢, and t(a,n)t; € L, but t(a,n’)ty &€ L, or vice versa. If
included in the input sample S, these timed strings will create a permanent inconsistency
when RTI tries to color g,. Thus, we can also force RTI to perform only colorings that
identify transitions § that are included in A;. Furthermore, if A; does contain § there clearly
exists a timed string 7 (a, t) that ensures that ¢, is identified as a final state if and only if it
is a final state in A,. Hence, also the red final states are included as final states in A, .

In case 3, RTI identifies the delay guard of a new transition § = (g, g5, a, [n, n']). Since
this transition still targets a blue state g;, the invariant clearly still holds after the split.

‘We conclude that if all red states and the transitions between them are included in A,,
then given the right input data, after an iteration of RTI, the red states and transitions between
them are still included in A,. By induction, all the red states and transitions between them
remain included in A, during the entire execution of RTI, and hence the proposition follows.

d

What remains to show is that RTI will return a DRTA A; with L(A;) = L, after a poly-
nomial number of iterations, and that during every iteration only a polynomial number of
polynomially sized strings (a polynomial characteristic set) are required. Since RTIl with
ID_1DTA evidence performs the same steps as the ID_1DTA algorithm, the proof can imme-
diately be derived from the fact that ID_1DTA identifies the larger class of 1-DTAs efficiently
(Verwer et al. 2011). Here, we give the intuition of this proof, for details the reader is referred
to the convergence proof of ID_1DTA.

Lemma 1 There exists polynomial characteristic sets for RTI with ID_1DTA evidence.

Proof (Sketch) Due to the fixed order over merges, colorings, and splits, we can generate a
polynomial characteristic set for a target language L,, with smallest target DRTA A,, using
the following method:

1. Start with an empty input sample S.

2. Run RTI with S as input one iteration at a time.

3. Whenever RTI performs a merge or coloring that identifies a transition not in A,, add
timed strings to S that create a permanent inconsistency after this operation (see Propo-
sition 3), and restart RTI.

@ Springer

Mach Learn (2012) 86:295-333 315

4. Otherwise, whenever RTI colors a blue state red, add a timed string that ends in the blue
state to S, and restart RTI.

5. If RTI finishes without identifying such a transition, it returns A, and S contains the
characteristic set.

S contains a polynomial characteristic set because RTI follows a fixed order over merges,
colorings, and splits. Because of this order, it will iterate through the exact same steps every
time it is restarted. Only the last merge, coloring, or split operation will be different due to
the examples added to S. In the end, every merge, coloring, and split operation identifies
a transition, state, or/and delay guard in A,. Since there cannot exist examples that create
permanent inconsistencies when RTI performs merges or colorings resulting in transitions
in A,, this fixed (data independent) order ensures that adding extra examples to S does not
influence the result of RTI (Definition 3 property 3).

By choosing examples on the boundaries of delay guards in A, (see Proposition 3), the
property of splits with evidence 1 in the ID_1DTA evidence value ensures that RT| identifies
exactly the delay guards in A,. Every other possible split receives an evidence of 0. The
permanent inconsistencies ensure (without loss of generality, see Proposition 3) that the
transition targets are also contained in A;. Thus every transition of A, will be identified by
RTI, and since A, is finite, this ensures that RTIl will return A, (Definition 3 property 2).

Since RTI cannot identify extra delay guards, the number of splits performed by RTI will
be bounded by the number of transitions in A;.

In every iteration, before finding the operation that identifies a transition in A,, RTI will
try a number of merges and colorings bounded by the number of states in A;. Since the
number of transitions RTI identifies is bounded by the number of transitions in A;, the above
method requires a polynomial number of restarts before finishing. Every time it restarts it
adds at most two timed strings of polynomial length (see Verwer et al. 2011) to S, and thus
the size of S is bounded by a polynomial in the size of A, (Definition 3 property 1). This
proves the lemma. O

Corollary 1 RTI is complete, i.e., for every DRTA language L there exists a sample S such
that RTI returns a DRTA A with L(A) = L.

Proof If polynomial characteristic sets (Definition 3) exist for any DRTA target language L,
(Lemma 1), RTl is able to return a DRTA A such that L(A) = L;. O

Theorem 2 RTI with ID_1DTA evidence converges efficiently (from polynomial time and
data) to any DRTA language in the limit.

Proof By the fact that RTI is efficient (Proposition 1) and the existence of polynomial char-
acteristics sets for RTl (Lemma 1). Together these form the definition of identification in the
limit from polynomial time and data (see, e.g., de la Higuera 1997), i.e., efficient conver-
gence. |

In conclusion, RTI is a timed version of EDSM that runs in polynomial-time, is a correct
and complete algorithm, and converges efficiently to the correct DRTA in the limit using
ID_1DTA evidence. Such a fixed order value, however, does not perform very good in prac-
tice since it does not use any of the statistical information available in the data set. Therefore,
we base the heuristics for RTI on the value used by EDSM. In the next section, we provide
a few of these values.

@ Springer

316 Mach Learn (2012) 86:295-333

5 Heuristics for RTI

Our algorithm uses an evidence (score) value (measure) in order to determine which action
to take. The action that results in the highest evidence value, i.e., the one that agrees most
with the input sample, is selected to be performed. Thus, the evidence value can be thought
of as a heuristic that guides RTI. RTI stops when it has reached a local optimum, i.e., when
it cannot perform any actions and can therefore be thought of as a greedy procedure. In
this section, we describe the four heuristics for this greedy procedure that we use in our
experiments. In addition, we explain a simple search variant of RTI. This search procedure
uses the size of the DRTA resulting from an entire run of RTI as an evidence value. We
compared the performance of this search variant in our experiments in order to give some
insight into the effects of searching for a smaller solution.

5.1 Four evidence values

Since RTI is based on the EDSM algorithm for the identification of DFAs, we also based
all of our heuristics on the EDSM evidence value. The intuition behind the EDSM evidence
value is that the labels of the states that are combined during the determinization procedure
of a merge can be seen as statistical tests for testing whether the merge is good or bad. A
good merge is one where the states are instances of the same state in the target DFA, in a bad
merge they are instances of different states. In the case of a good merge, none of the labels
of the states that are merged by the determinization procedure can result in an inconsistency.
In the case of a bad merge, some of these labels can result in an inconsistency. Thus, the
greater the number of merged labeled states, the more confident we are that the merge is a
good merge.

In addition to the normal non-timed (EDSM) evidence, RTI has access to information in
the form of time values. Naturally, we would like RTI to make use of this timed information.
Moreover, we would like to show that using this additional information leads to improved
performance.

We created four heuristics that make use of the EDSM evidence value and the additional
time information in different ways. We now first explain the two simple ones that do not
make use of time information, then one that does make use of time information by giving
more power to tails that are closer together, and finally one that tries to penalize the evidence
value based on the amount of splits necessary in order to remove all inconsistencies.

Pure EDSM In order to give more insight into whether it is beneficial to make use of the
time information in the input sample, we included the exact score value used by EDSM in
our experiments. The evidence value used by EDSM is defined as:

pure = #merge(pos, pos) + #merge(neg, neg)

where #merge(pos, pos) (or #merge(neg, neg)) is the number of merges of pairs of only
positive (or negative) states performed so far (including by the determinization procedure).
We compute this value before and after a merge or split operation, and use the difference
as a heuristic value. Since a split can only make previous merges undone, a split can only
obtain negative values, and thus this heuristic performs splits only if no merge or coloring is
possible.

@ Springer

Mach Learn (2012) 86:295-333 317

Consistent EDSM A big difference between EDSM and our DRTA identification algorithm
is that in our case, we allow for the possibility of inconsistent states. The split operation can
be used to remove such inconsistencies. Intuitively, these inconsistencies should of course
have some negative influence on the evidence value. We included a variant of EDSM that
uses the inconsistencies in a very simple way: it simply subtracts the number of inconsistent
merges from the number of consistent ones. It is defined as:

consistent = #merge(pos, pos) + #merge(neg, neg) — #merge(pos, neg)

When using this evidence value it is possible that a color operation gets the highest score.
This occurs when all possible splits and merges score negatively (when they add (remove)
more (less) inconsistent merges than they add (remove) consistent merges). This is different
from conventional EDSM within the red-blue framework where a color operation is only
applied when no merge is possible. Our algorithm simply picks the highest scoring opera-
tion, including color operations. If some operations score equally, we give preference to first
merge, then split, and finally color operations.

Impact EDSM The first timed value we use is based on the idea that tails that lie far away
from each other are more likely to be pulled apart by a future split operation than tails that
lie close to each other. For example, suppose that RTl merges two states in a DRTA, each
containing just one tail (each state is reached by just one timed string). Let these tails starting
from these two states be something like: (a, 1)(b, 3)(c,5) and (a, 2)(b, 3)(c, 4). These tails
lie close to each other in time and should intuitively get a higher impact on the score than
say: (a, 1)(b, 3)(c,5) and (a, 5)(b, 6)(c, 7).

We calculate this impact value using the distance in time between every pair of tails t and
7’ that are identical if we disregard their time values, i.e., if untime(t) = untime(z’). These
two tails currently end in the same state in the augmented DRTA (A = (Q, X, A, qo, F'), R).
We define the impact of t and t’ as the probability that T and 7’ still end in the same state
if we were to choose a split point uniformly at random in every non-red transition. Since
RTI cannot split transitions between two red states, these transitions are excluded from this
definition. The impact of two tails is calculated using Algorithm 9. The evidence value we
use is computed as the sum over all timed strings from S of the maximum impact with any
other consistent timed string minus the maximum impact with any other inconsistent timed
string. All pairs of timed strings that end in a red state get an impact of 1.0 because they can
never be separated by any split. Let O, denote the red states of Q, and let A, denote the
transitions to blue states of A. S denotes the sample of tails (suffixes) of timed strings from
S that fire §. Using these sets, the evidence value is:

impact = Z pure(q) — Z max{impact(z, 7') |t € 5} and 7’ € §° }
qe0, Selp

+ Z max{impact(z, 7)) [t #7, T € S2 and 7’ € Si}

SeAyp

+ Z max{impact(r, U)|t#£T, T€ $% and v’ € Si}

Sep

where pure(q) is the pure evidence value for state g, i.e., the number of timed strings from
S that end in ¢ minus 1.

@ Springer

318 Mach Learn (2012) 86:295-333

Algorithm 9 The probability of not separating two timed strings: IMPACT

Require: Two tails T and 7’ for a transition to a blue state § that have equal untimed versions,
and the minimum and maximum time value #j, and fmax
Ensure: Returns the probability that and T’ end in the same state if we split all non-red transi-
tions uniformly at random
Set probability p :=1.0
for allintegers 1 <i <|t| do
Let #; and #, be the ith time values in T and 7’ respectively

11—t)
max —Imin

Set p:=p x (1.0 —
end for
return p

Algorithm 10 Making a state consistent with splits: splits
Require: A state non-red g of a colored DRTA A and a timed input sample S
Ensure: Returns an approximation of the minimum amount of times we need to split a transition
in order to make ¢ consistent
Let § be transition to the root of the APTA that contains ¢
Let S = (57, 57) denote the subsample of S8 of tails for § that end in q
for all integers 1 <i <n, where n is the length of the tails of S do
Let T4 denote the set of ith time values in tails from Si

Let 7— denote the set of ith time values in tails from S
if 7y NT_ =0 then
Sets:=0
for all time values r € T+ do
Ifmin({t' e T_ |’ > t}) <min({t' € T4 | t’ > t}) then set s :=5 + 1
end for
for all time valuest € T— do
If min({t' € T4 | t' > t}) <min({t' € T— |’ > t}) then set 5 := 5 + 1
end for
end if
end for
return the minimum value for s

Splits EDSM Like our second evidence value, our last evidence value includes inconsis-
tencies in an EDSM-like score. However, it does so in a way that is a bit more sophisticated
than simply subtracting the amount of inconsistencies. Instead, it removes these inconsis-
tencies from the timed APTA by splitting transitions. Afterwards it uses the standard EDSM
evidence value on the consistent APTA. The intuition is that an APTA is less likely to be
correct (perform well) if it is more difficult to remove inconsistencies. In this case, more
splits will be required, thus more merges will be undone, and the resulting EDSM score will
be smaller.

The size of the resulting consistent APTA, and hence the resulting EDSM score, is deter-
mined by the splits performed by the algorithm that computes the evidence value. Unfortu-
nately, the problem of finding splits that minimize the size of the resulting APTA is difficult.
In fact, the hardness proof for determining the correct delay guards (the proof of Theorem 1)
can easily be adapted to show that this problem is NP-hard. We therefore use a simple ap-
proximation algorithm to determine the splits (Algorithm 10). This algorithm computes the
minimum amount of splits required to make one state of the APTA consistent. We use this

@ Springer

Mach Learn (2012) 86:295-333 319

size = 40

size = 58

size = 96
depth size = 165

Fig. 10 The search tree of our simple search process depicted as a triangle, the search depth increases from
left to right. From the current node of the search tree, the search procedure computes a complete execution of
RTI for every possible action, and chooses the action that results in the smallest DRTA (size = 40)

algorithm to compute the following recursion for every state g:

#splits(q. S, A) = max(splits(g, S, A), #splits(q’, S,A)) ifqis r.10t red
0 otherwise

where ¢’ is the source state of the transition to g. Intuitively, this value reflects the amount
of states that a state ¢’ will be split into if we were to remove all inconsistencies from
A. If the parent state ¢ of ¢’ requires more splits than ¢’, we assume that ¢’ will also
be split into the same amount of states. Since red states cannot be split, their evidence
value is 0. In order to obtain an estimate on the number of remaining consistent merges
we simply subtract splits(g, S, A) from the original amount of consistent merges of states
(the pure evidence value), with 0 as a minimum. For the complete augmented DRTA
A=(0,%, A, qo, F), R), with input sample S, the evidence value then becomes:

splits = Z max (pure(q) — #splits(q, S, A), 0)
qeQ

where pure(q) is the pure evidence value for state g. This split evidence value does not
compute the actual EDSM evidence that remains if we were to split our DRTA in an optimal
way, but it tries to approximate this value from above.

5.2 A simple search procedure

In addition to these four heuristics, we tested a simple search process that we wrapped
around RTI in order to test how much we can increase the performance by searching. Such
an approach has been successfully applied to the original EDSM algorithm (Bugalho and
Oliveira 2005). Our search process uses an evidence values in an indirect way (see Fig. 10):

— For every possible action (split/merge), the search procedure first computes a complete
(greedy) execution of RTI| with an evidence value. The result is a DRTA A.

— The search process then chooses the action that results in the smallest DRTA, i.e., such
that the number of transitions in A is smallest.

The intuition behind this process is that actions taken by RTI that lead to a small DRTA
are more likely to be correct. More specifically, although an evidence value m assigns a
small value to a specific action a, if a is in fact a good (correct) action, then the result of
performing a and then using m to determine the subsequent actions can still lead to a better

@ Springer

320 Mach Learn (2012) 86:295-333

result than an action with a high value. In other words, the action that scores highest using
m is not always the action that leads to the best result after a complete greedy run using m.
Like our original algorithm, once the algorithm has chosen an action, it cannot be changed
by subsequent iterations. The main benefits of this simple search procedure compared to a
search procedure that uses an evidence value directly are:

— The procedure is an anytime algorithm. We can remember the smallest resulting DRTA
and return it if the process is interrupted.

— The procedure produces results that are at least as good as the non-search (greedy) algo-
rithm.

— The procedure requires only polynomial time in the size of the input sample: There are at
most a polynomial amount of possible actions and the non-search algorithm is a polyno-
mial time algorithm.

— The procedure ends without having to search through all possible DRTAs smaller than the
result, i.e., it is incomplete but efficient.

Although our search procedure is a polynomial time algorithm, it takes a lot more time
than the execution of our original algorithm since it can call this original algorithm tens of
thousands of times as a subroutine.

6 Experiments

In this section, we experimentally compare each of the different evidence values (including
the search procedure) for RTI described in the previous section. In addition, we compare all
of these implementations of RTI to a sampling approach that first samples the timed data and
then runs EDSM to obtain a DFA representation of a DRTA. We perform the experiments
on a large set of artificial data sets generated from a randomly generated DRTA. In order to
give insight into which method performs best in which setting, we generate these DRTAs
with different number of states, transitions, delay guards, time values, etc.

This section is structured as follows. We first describe the sampling approach in Sect. 6.1.
Then, we explain the experimental setup and provide the algorithms we used to produce the
artificial data sets in Sect. 6.2. We list our expectations with respect to these experiments in
Sect. 6.3. Finally, we show, describe, and explain our results in Sect. 6.4.

6.1 Sampled finite automata

As mentioned in the introduction, it is possible to sample timed data into an equivalent
untimed format. Suppose we have a timed string t = (ay,) - - - (ay, t,). The equivalent un-
timed format for this timed string is a string s;a, - - - s,a,, where s; =00 --- O is a string
consisting of special time tick symbols O of length #;.

Similarly, there also exists an equivalent DFA representation for any DRTA language.
In fact, there exists a DFA representation for any DTA language. Given a DTA, a DFA
representation can be constructed using the region construction method (see Alur and Dill
1994). Essentially, this method creates additional states for every possible combination of a
state and a time value. The same state with a higher time value can be reached by a series
of transitions labeled with the time tick symbol O. In Fig. 11, we give the DFA that results
from the region construction when applied to the DRTA of Fig. 1. Formally, we can use the
region construction to show that the language of any DRTAs can be recognized by a DFAs
when the timed strings are sampled:

@ Springer

Mach Learn (2012) 86:295-333 321

Fig. 11 A DFA equivalent to the harmonica DRTA of Fig. 1. The start state is indicated by the thick arrow.
The arrows with no label are the time tick transitions

Lemma 2 For any DRTA A there exists a DFA A’ such that for every timed string T it holds
that t € A if and only if SAMPLE(t) € L(A).

Proof LetA= (0, X, A, qo, F) be aDRTA, and let ¢ € N be the largest constant that occurs
in any delay guard of A. We define the following DFA A’ = (Q', &', A/, ¢|, F'), where:

-0 ={q,i)lqeQ,ieN,and0<i <c+ 1}

_ Y =3 U0}

- A= {{{g,i),{q,i +1i),0) | {g,i),{q,i + 1) € '} U {{{q,i),{q",0),a) | 3q,q',a,
[n,n']) € A such thati € [n,n']}

= g0 ={(q0,0)

- F'={{(q.0) | {(q,0)€ Q"and q € F}.

We now claim that for every timed string t it holds that T € L(A) if and only if SAMPLET €
L(A’). We prove this by showing that the following invariant holds for any prefix t; of t: if
7; ends in ¢ in A, then SAMPLE(T;) ends in (g, 0) in A’.

For the initial case, A starts in gy and A’ starts in {(go, 0). For the arbitrary case, let (a, t) be
the ith symbol-time value pair of 7, i.e., T; = 1;_;(a, t). Suppose for the sake of induction
that 7;_; ends in ¢ in A and that SAMPLE(t;_;) ends in (g, 0) in A’. There has to exist a
transition (g, q’,a,[n,n’]) € A such that ¢ € [n,n’]. Thus, 7; ends in g’. By construction
of A’, there also exists a regular transition ({q, t), (¢’, 0), a) in A’. In addition, there exists
time tick transitions {((g, i), (g, i+1), O) forall 0 <i <rin A’. The sampling transformation
of (a,t) results in a string s =0 -+ O a such that |s| =7 + 1. This string s will fire ¢ time
tick transitions and one regular in the computation of A’ over SAMPLE(t). After firing the
t time tick transitions, it will have reached the state (g, ¢). Once in this state, it will fire the
regular transition ((q, t), {(¢’, 0), a), thus ending in {g’, 0). The invariant holds by induction.

Thus, if 7 ends in a state ¢ in A, then SAMPLE(7) ends in a state (g, 0). By construction
of F’,if t € L(A) then it holds that SAMPLE(t) € L(A’). This proves the lemma. O

@ Springer

322 Mach Learn (2012) 86:295-333

Since region construction can always be used to construct a DFA that accepts exactly the
same language as a DRTA, it is never really necessary to identify a DRTA. Instead we can
identify a DFA that recognizes exactly the same language. The downside to trying to identify
this DFA is that it is exponentially larger in the size of the DRTA. More specifically, since
all constants of a DRTAs are written down in binary, the number of states is exponential in
the size of these constants. If we want the DFA returned by a DFA identification algorithm
to be correct, we naturally require that every state in this DFA is reached by at least one
string from the input data. Hence, using a DFA identification algorithm in order to identify
a DRTA language is inefficient since it requires an exponential amount of data in order to
return the correct result. In other words, it requires exponential time and space in order to
converge. In contrast, by Lemma 2, it is possible to converge to the correct DRTA using only
a polynomial amount of data.

In theory, identifying a DRTA model for a DRTA language seems to be a better idea
than identifying a DFA model for a sampled DRTA language. However, in practice one may
argue that it makes no sense to sample the timed data using single time ticks. If the timed
data has millisecond precision, it probably does not hurt to sample the timed data every
100 or even 1000 time ticks. Hence, in practice, the sampling transformation will usually
contain an additional argument r that denotes the sampling rate. The result of sampling a
timed string T = (ay, t1)(az,) (as, t3) - - - (a,, t,) withrate r is a string s;a;s>a,s3as - - - S,a,,
where s; =00 --- O is a string of length L’r—" + 0.5]. Using such a sampling rate, it is of
course possible that the region construction no longer works. In other words, it is possible
that there exists no equivalent DFA for a DRTA when the timed strings are sampled with
rate r. However, the blowup in automaton size is not so great when this rate r is used (the
blowup is exponential in ¢). In practice, it is not a big problem that the resulting DFA is not
equivalent to the actual DRTA. We are usually satisfied when it only approximates (in terms
of a high percentage of overlap in accepted timed strings) the actual DRTA.

In the next section, we describe how we compare the RTI algorithm with the approach
of first sampling the timed data using some fixed frequency and then using a DFA learning
algorithm.

6.2 Experimental setup

In order to test our DRTA identification algorithms, we generate random DRTAs with 4, §,
16, and 32 states and alphabets of sizes 2, 4, and 8. To each of these DRTAs, we apply the
split routine 4, 8, 16, and 32 times at random time values in order to create clock guards. The
minimum time value of the clock guards is set to 0. The maximum time values of the clock
guards is either 100 or 1000. Every state of the DRTA has a chance of 0.5 to be an accepting
state. We disallow the case that all or none of the states were chosen to be accepting.

From these DRTAs, we randomly generate input samples consisting of either 1000 or
2000 timed strings. These input samples are used as data sets for our algorithms. We also
generate test sets consisting of 50000 newly generated timed strings. Each of these timed
strings has a probability of 0.1 to stop in each state it visits. Whether a string is positive or
negative was determined by the state it ended in.

For every unique combination of the parameters of the DRTA generating algorithm, we
generate 10 different DRTAs. This results in 4 x 3 x 4 x 2 x 2 x 10 = 1920 data and test
sets. In order to compare RTI with a sampling approach, we sampled these data and test sets
using a fixed sampling size of 10. We replace every symbol-time value pair (a,) with an a
symbol and ﬁ special time increase symbols. Rounding is used to get rid of fractions. We
use a sampling size of 10 for both the 100 and 1000 maximum values of the clock guards.

@ Springer

Mach Learn (2012) 86:295-333 323

We run RTI on the constructed data sets, and used the test set to evaluate its performance.
For the search process, we use the consistent EDSM value because it is simple to compute,
and because it turned out to perform not worse than the timed evidence values. The algorithm
we use for identifying a DFA from the sampled data is the red-blue algorithm, which we
downloaded from the Abbadingo web-site.! In the following, we first present the expected
results, then we provide and discuss the actual results of these algorithms.

6.3 Expectations

The main goal of the experimental setup described in the previous section, is to determine
whether RTI performs better than the sampling approach. Because sampling results in a
blow-up in both the amount of data and the size of the resulting automaton, we expect
that RTI will perform better. In addition, the sampling transformation results in a small loss
of information (otherwise there would be an even greater blow-up). However, since the
sampling approach is a straightforward application of the current state of the art in DFA
identification, we expect that this approach also performs reasonably well.

With respect to the four different evidence values, we expect that both the splits and
impact EDSM values will perform best because they make use of the time values of timed
strings. The pure and consistent values do not consider these values. Between the two of
them, we expect the consistent value to perform better because it also uses the inconsistent
merges as information. We do not know what to expect regarding the performance difference
of the impact and splits values. Both values make sense, we leave it to the experiments to
show which one is superior.

When increasing the amount of delay guards (splits) of the original DRTA that was used
to produce the data sets, we expect the decrease in performance of the timed evidence values
to be less than the non-timed evidence values. This makes sense because additional splits
cause more differences in behavior between timed strings with the same symbols, but differ-
ent time values. Similarly, when increasing the amount of states, we expect the non-timed
evidence values to decrease more slowly than the timed ones, because the behavior is then
not influenced by differences in time values. The same holds for additional symbols in the
alphabet.

We expect that all methods perform better when more data is available, and that all per-
form worse when more time points are used. The search version of RTI should perform best,
since this one runs a greedy version of RT| many times in order to decide between a single
merge or split. We hope that, using the search procedure, we will be able to identify DRTAs
that are sufficiently large enough for practical applications.

6.4 Results

We run RTI on all of the 1920 data sets using each of the different evidence values. In
addition, we run the sampled and the search approaches on these data sets. We use two
indicators for the performance of the DRTAs (or DFAs in case of the sampling method)
resulting from these runs. The first is the size, measured in number of transitions of the
DRTA (DFA), which we like to be as small as possible. The second is the percentage of
correctly classified timed strings of the test set, which we like to be as large as possible. In
Fig. 12, we show both of these performance indicators for every method over all data sets

1Abbadingo One: DFA Learning Competition: http://abbadingo.cs.unm.edu/.

@ Springer

http://abbadingo.cs.unm.edu/

324 Mach Learn (2012) 86:295-333

S T 1)
8 | <1 T T T T T
| [T R B !
8 - 24 0
- T I I T |
o © | |
08_ ! TTI Sl_.)o'_ |
N A Tlsg |
n o | ~
HEEE |
I
o ©
&7 : [:E ST !
L 4 L
od L 1L 1 91 o1 o o | L +
T (I{\I | B — e T k\l T T
e o & §® P & @ & & (P &
& &8 @ QY W 6" of 3@
& R L P o X L P
C & F R C & TR

Fig. 12 Boxplots of the sizes and scores of every method over all data sets

as boxplots. The plots show the lower quartile, median, and upper quartile as a box. Around
the median of each box, there is a small triangular cut in the box, called a notch. This notch
depicts (roughly) the 95% confidence interval of the median. Thus, if the median of another
boxplot is outside of this range, then the median of these two plots differ significantly.

From Fig. 12, it is clear that the sampling method performs much worse (in both perfor-
mance measures) than RTI, independent of which of the evidence values is used. In addition,
the search procedure does help to increase the performance of RTI (again in both measures).
Furthermore, the consistent evidence value results in smaller DRTAs on average than any
of the other values. We used a paired t-test for independence to test the significance of this
difference in size between the consistent and splits evidence values. The result of this test is
a p-value of less than x 107!, thus the difference is significant. On average, the consistent
evidence value finds DRTAS that contain 36 transitions less than the splits evidence value.

It seems that the score of the consistent value is smaller on average than the score of
the splits value, but this score difference is not significant: a paired t-test applied to these
score values results in a p-value of about 0.666. Surprisingly, the impact value performs the
worst of the four evidence values. The score of the impact value is even (just) below the pure
evidence value. Apparently, the distance in time between tails is a less successful heuristic
than simply counting the number of correct merges. Since the impact value does make use
of the time information in a sensible way, this is an unexpected result.

When looking at the boxplots in Fig. 12 a question that comes to mind is whether it
is better to return smaller DRTAs. The results of the search method seem to indicate that
searching for smaller solutions only performs a little worse in a few cases, but in much
more cases it performs a lot better. More specifically, searching performs worse in 440 of all
1920 cases. The average decrease in score of these 440 cases is 0.01. However, in the 1480
remaining cases the average score increase is 0.05. To give more insight into the relation
between score increase and size decrease, we created Fig. 13. Figure 13 shows the decrease
in size when searching plotted against the score increase. Again, each individual dot in this
plot represents a single data set. From this plot we conclude that finding smaller DRTAs
helps a lot, but only if the size decrease is more than approximately 25 transitions.

In the remainder of this section, we show plots of the performance of every method on
different settings of each individual parameter that was used to generate the data sets. This
can help to give insight into which method should be used in which setting. It is especially
interesting to find out with what settings the splits value outperforms the consistent value and
the other way around. In addition, these results show how each of the parameters influences
the difficulty of the identification problem.

@ Springer

Mach Learn (2012) 86:295-333 325

consistent vs search zoomed in

200 300 400

size decrease

100

00 01 02 03 04 -0.10 -0.05 0.00 005 0.10

score increase

Fig. 13 The size decrease plotted against the score increase when searching. The plot on the right shows a
zoomed-in version of the left plot

Different sized target DRTAs Figures 14, 15 and 16 show the performance of each of the
individual methods on data sets for different sizes (alphabet, states, and splits) of original
DRTAs that were used to generate the data set. We observe that the sampling method per-
forms the worst in all cases. This is a very good result as it shows the value of the RTI
algorithm. The search procedure performs best overall. It scores sufficiently good (about
80% accuracy) for DRTAs with up to 16 states, 16 splits, and alphabet of size 2, for DR-
TAs with up to 16 states, 8 splits, and alphabet of size 4, and for DRTAs up to 4 states, 8
splits, for an alphabet of size 8. Showing that RTI can be successfully applied in practice for
problems of this size.

For the larger DRTAs, however, the search procedure does not significantly improve the
performance of RTI. All methods perform bad on problems with a large number of states,
and even worse on problems with a large number of splits. However, when a large amount
is states is combined with a large alphabet, all methods perform better in the case of many
splits than in the case of many states. This makes sense as each additional state creates an
additional number of transitions to identify equal to the alphabet size.

With respect to the heuristic performances, we observe that on alphabets of size 2, the
splits value outperforms the consistent value both on the resulting size and the score values.
On alphabets of size 8, this is the other way around. This suggests that the splits value per-
forms better on the smaller problems and the consistent value performs better on the larger
problems. These results also show the difficulty of identifying the correct splits. Intuitively,
when the number of splits is high, the evidence value that make use of time information
should perform better than those that do not. This is exactly what we observe. With few
splits, the scores of both the splits and the impact values score are lower than the score
of the consistent value. With increasing amounts of splits, however, the difference in score
becomes less. At 16 splits, the splits value already outperforms the consistent value. At 32
splits, even the impact value starts to outperform the consistent value. In fact, this is the only
plot we have where the impact value outperforms any of the other values.

Different number of time values and data set sizes Figure 17 shows the performance of
each of the individual methods on data sets while varying the amount of examples, and the
amount of time values. From these plots we draw two important conclusions:

— More data leads to larger DRTAS, but the score of these DRTAs is significantly larger.
This also holds for the sampling approach.

@ Springer

Mach Learn (2012) 86:295-333

326

VLI Teursuo oy jo syds pue soje)s Jo junowe oY) SUIKIEA Uaym pue g Jo 9zIs Joqeydye ue yiim s)as ejep) U0 poyioul KI9Ad JO S2I00s pue sozis oy Jo sjofdxog T “S1q

2ece 29l

g8

[A384

a1'ze 91’8l 9Le 8oLy 8Z¢ 89L 88 8y vze v9l ¥e

vy seleissyds

It

EE psidwes
I I

TrTrr

@___:

@2 T

|
Tl Nl
1y 1ty

Z 9z1s 1aqeydje

60 80 L0 90 S0

ol

0

008 009 00¥ 002

21008

8z1s

pringer

As

327

Mach Learn (2012) 86:295-333

VLI reuisuo ayy jo syrds pue sejels Jo junowre Ay Surkrea uaym pue 4 Jo 9z1s 3oqeyd[e ue yim sjos eJep 9y} U0 poylatl AI9A JO SAI0JS pue S9ZIs Y} Jo sjo[dxog ST “Sig

ceee ce9l

[A5%: B4 4

alze 99l

9l'g 9L’y

g8¢e 89l

vee vol

vy seleissyds

L

«41

, ETH

Ly _

:m_ﬁ.mﬂ

-

T

Tt

mm,_

¥ 9zis 18qeyde

60 80 L0 90 S0

ol

0

008 009 00¥ 002

81008

azIs

pringer

Ns

Mach Learn (2012) 86:295-333

328

VI reursuo ayj jo syds pue sajeis Jo junowe ay) SuIkIea uaym pue § Jo azis joqeyd[e ue Yirm s3as Blep 9y U0 POYIawWl AI9Ad JO SAI0DS pue sIzIs ay) jo sjofdxog 9y S

2100s

azIs

ceETE TE€9l TE8 TEYV gl’ze 99l 9L's 9Ly 8¢ce 89l 98 8y ¥ee ¥9l ¥8 144 wwﬁmum.mt_am
, | | | | 1 | | | 1 . o
v
1T ..-,. !
; 3. r_ ﬁ___ g
L _ : , .,: :_ 1 _ @
_ I “ " L e
[N ~
: o
| o
o
| w0
-3
13 wouess =3 porduwes I3 suds
| | | | | | |
- o
ﬂ IS
1 1 11 N H R Lo Tr IS
TR YL
=}
Y 1 I f +
! Tl “ n hind Ein! i iin Hin | w
o —k " —k n TS TS (TR | T S
@
- o
=}
| ' 1 1 1 “ “ ! B

g 9zIs Jageyd|e

pringer

As

329

Mach Learn (2012) 86:295-333

39S BIRP) JO AZIS AY) Puk sanfea dwm d[qIssod Jo junouwre oY) SurAIes udym poyiowr £19Ad JO S2I0JS pue SozIs oy Jo sjofdxog LT “Siq

S X\)
s & PR P S P s & PR PR 4 P
P o D O T o N O @ o > D @2 P P &
R o 6@0@/@. > @& o 6@0@@. > R oF Aoé/oo/n\: o @ N P &vo/m 2"
| | | | /_ | o | | | | ./_ | o | | | | | | o | | | | | |
T B - -5 - R - -
T T T T T T T T T LT T T T T
! 1] i Lo | ! i I Lo i | | | Lo ! ' | i [
! o 1 ! 1 o | | 1 I \ o
I
i Lo Lo Lo i N
| ~ g T 3 |
| | | |
i . = i ; L o ! Lo ! i T
| | @® ! | | @ | | @ ! | | | |
| 1] ' “ 1 | l ' | 1 1 1 ' | '
m T A [T T T = A T A SR m A
| 1 ' ' © - 1 | 1 ' © | 1 | 1 © 1 1 1 1 '
1 1 1 1 | 1 1 1 1 1 I 1 1 1 1 1 I 1 1
1 I 1 I I 1 1 I 1 I T I 1 I 1 1 1 I 1 I
4 5 4 o o o = . m T T) . m T T 4 5 4+ 4+ . . |
<) <] <)
| |
T T T T T TSl T T T oo T TrelTeg Ty T Tl TS YT 0
m N N m R A o — o m T o
1 1 [= I L+ 9 ! i 1 | [=1 | m ~
=) =3 =1
n e T el e e e e I el = L=
b — -S| =T -8l T -3 I
! ! 1 \ \ T 1 | “ ! ! ' \ T | . -
-+ ! | I i > -+ 1 | 1 1 o -+ | | | ; >
1 <+ | -8 ' . | [1 T | - S —
! ! T o ! = | | o "
. . | - . . |
- I @ - |
=]) - S L S ! L
-) 1 =3 =3 L
I
! 3 - 3 “ L3 i L
: g & _ g .
wuc_OQ oWl 000+ wuc_OQ awn 00k wm_Qmem 0002 sajdwexs 0001

60 80 L0 90 G0

oL

0

0001 008 009 00¥ 002

8100s

ozIs

pringer

A's

330 Mach Learn (2012) 86:295-333

— An increase in the number of time points does not affect the results of the DRTA identifi-
cation algorithms much, but the performance of the sampling approach decreases signifi-
cantly.

The first conclusion is very interesting since it seems to contradict the expectation that
smaller DRTAs lead to better performance. However, as we can see from the plots, searching
still helps, i.e., it decreases the size and increases the score. Thus, there seems to be a depen-
dence on the sizes of DRTAs that perform well and the size of the data sample. Intuitively,
the availability of more data makes it possible to infer more transitions correctly, even (or es-
pecially) in larger DRTAs. But this does not explain why RTI produces larger DRTAs when
more data is available. We believe this occurs because more data also creates more possible
inconsistencies (a positive example that ends in the same state as a negative example). To
solve these inconsistencies, RTI requires larger DRTAs. This especially holds if RTI makes
a (small) mistake, i.e., it performs an incorrect merge or split. In this case, when there is
more data, more timed strings will end up in wrong states. Hence, more possible inconsis-
tencies are created. Note that this phenomenon is not the same as the overtraining problem
in machine learning, see e.g. Mitchell (1997). Overtraining occurs when a large number of
parameters (states/splits) are fitted too closely to the data set. In such a case, the performance
on the test set decreases. In our case, this performance increases.

The second conclusion is also interesting. That the sampling method performs worse is
not very surprising since more time points results in a larger blowup. In addition, longer
strings contain less useful data (it can create less inconsistencies) for the DFA identification
algorithm, and hence the performance decreases. More interesting is the fact that it does not
seem to matter much for RTI. In the DRTA case, an increase in the number of time points
will make more splits possible, and hence results in a larger search space. When the amount
of possible splits is larger, it makes sense that the chance that RTI chooses an incorrect split
increases, and hence that the score decreases. Fortunately, in the boxplots of Fig. 17 this
does not seem to occur.

Timing We did not perform any time measurements of our experiments. However, the
consistent value can be computed very quickly. Running RTI with the consistent value over
all of the 1920 problems took a few hours. Running RTI with the splits value took twice as
long. The sampling approach took even longer, it took about 5 days in order to compute the
results. Naturally, the search procedure took the longest, it required about 3 weeks. However,
searching the smaller DRTAs (alphabet 4 and 8 states) usually finishes in one or two minutes.
We performed the experiments on a 1.8 GHz PowerPC G5 computer.

7 Related work

As mentioned in the introduction, the most closely related work deals with the problem of
learning event recording automata (ERAs) (Grinchtein et al. 2006). That work proposes an
algorithm for learning these TAs from a timed teacher using membership and equivalence
queries. It is possible to adapt a query learning algorithm to the setting of learning from a
data set by simulating the queries using the data set (Goldman and Mathias 1996). Therefore,
it should be possible to adapt the ERA query learning algorithm to the problem of learning
an ERA from a data set. However, since the ERA learning algorithm requires an exponential
amount of queries, this simulation would require a very large amount of data.

Other approaches to the problem of learning a timed system mainly deal with the infer-
ence of probabilistic timed models. One may observe that DRTAs are somewhat similar to

@ Springer

Mach Learn (2012) 86:295-333 331

continuous time Markov models. The difference being (besides the transition probabilities)
that these Markov models use a distribution over the execution times of events instead of
time constraints. However, it may well be the case that a probabilistic variant of a TA can be
used to define exactly the same timed probabilistic languages as some continuous-time hid-
den semi-Markov model, as is the case for regular probabilistic DFAs and hidden Markov
models (Dupont et al. 2005).

For continuous-time Markov chains an identification method has been constructed (Sen
et al. 2004). This method is based on a method to infer probabilistic DFAs, known as ALER-
GIA (Carrasco and Oncina 1994). The ALERGIA method is adapted by adding time dis-
tributions to the model and inference methods for these distributions to the algorithm. We
believe continuous-time Markov chains to be too restrictive for our problem because the
time values must be exponentially distributed. However, our approach is similar in that we
adapt a known method (state-merging) to a timed setting and supply it with a specialized in-
ference mechanism (splitting) for the timed properties of the model (a DRTA). For (hidden)
semi-Markov models several inference methods exists (see, e.g., Guédon 2003). However,
to the best of our knowledge these methods deal with the problem of optimizing the param-
eters of known models as to maximize the likelihood. Since in our problem we do not know
the structure of the model to be identified, we are interested in methods that identify the
structure in addition to the parameters.

In timed automata research, the model identification problem has not received a lot of
attention. However, there are several related problems that can benefit from a good model
identification method. For instance, the problem of testing timed automata (Springintveld
et al. 2001) deals with a similar setting. Given access to a black-box system, the problem
is to determine whether the system acts conform its specification. This problem is usually
solved by finding a (preferably small) test set of labeled examples such that the system acts
conform its specification if and only if it gives the correct labels to each of the examples.
Given a model identification method and a set of labeled historic data, this problem can be
solved in a different manner. The idea is to first identify a model from the historic data and
then subsequently test this model either by hand (visually) or using a model verification tool,
such as UPPAAL (Larsen et al. 1997).

Another closely related problem is that of controller synthesis for timed automata (Pnueli
et al. 1998). Here the idea is to find a controller, that restricts the transitions a given TA is
allowed to take, such that the behavior of the combined system satisfies certain properties.
With the help of a model identification method, it becomes possible to synthesize controllers
for unknown or black-box systems. This can be of importance in for example agent-based
systems, where the internal structure of agents should remain unknown to other agents, but
the behavior of the complete agent system should satisfy some properties, such as deadlock-
freeness.

Closely related research comes from the temporal data-mining field (Roddick and
Spiliopoulou 2002). In temporal data mining, the objective is to discover previously un-
known rules from time series data. Moreover, these rules should be easy to understand and
to validate. This is very much like the problem we are trying to solve. Our method for solving
this problem looks very similar to one that is used to mine a hierarchy of temporal patterns
from (multivariate) time series data (Morchen and Ultsch 2004). It is different, however, in
that this approach (and most other approaches in temporal data mining) focuses on finding
simple patterns or correlations in the data, and not on finding a model for the actual system
that generated this data.

@ Springer

332 Mach Learn (2012) 86:295-333

8 Discussion

We have constructed a novel identification algorithm for deterministic real-time automata
(DRTASs). These automata can be used to model systems for which the time between con-
secutive events is important for the system’s behavior. We have adapted the state-merging
algorithm for the identification of deterministic finite automata to the setting of real-time
automata. To the best of our knowledge, ours is the first algorithm that can identify a timed
automaton model from a timed input sample. Our results show that learning a DRTA returns
a model of much higher accuracy than a straightforward adaptation of a state-of-the-art
state-merging method by using sampling.

We believe that the main reason why RTI outperforms the sampling method is that RTI
uses a heuristic to determine the values of the delay guards. In the sampling case, these
values are fixed and lead to an exponential blowup. Intuitively, the use of a heuristic to avoid
this blowup seems a good idea.

With RTI, we have developed an algorithm that can be used to automatically construct
timed automaton models for real-time systems from data. Like many other commonly used
models, the timed automaton models can be used to classify the behavior of such systems.
In addition, however, a timed automaton model can also be used to analyze properties of the
real-time system by applying for instance model checking. In this way, the RTI algorithm
can prove to be very useful for providing insight into black-box real-time systems. It would
be very interesting to try such a combination of techniques in future work.

For many applications, a problem of RTI can be that it requires labeled data. In many
settings, it is very difficult to obtain labeled data: we can use sensors to observe systems,
but not to label their behavior. Because we also want to apply RTI to such a setting, we
will extend the RTI algorithm to the setting of unlabeled (only positive) data in future work.
Such an adaptation can be made by using statistics as an evidence value. For the EDSM
algorithm similar adaptations have been made, see, e.g., Kermorvant and Dupont (2002). In
such an algorithm, two states cannot be merged if the strings that end up in those states are
statistically different. In our case, the only difference is that RTI not only needs to decide
whether two states are statistically different (should not be merged), but also whether they
are statistically the same (should not be split). In addition, a trade-off will sometimes need
to be made between these two alternatives.

Another possible issue can be that RTI identifies a restricted class of timed automata. It
should not be too difficult, however, to adapt RTI in order to identify more general timed
automata. This can be done for example by simply trying to reset clocks on the transitions
to blue states. The automaton changes because of this reset and hence we can compute
some evidence for this reset. We then only reset a clock if there is sufficient evidence for it.
Since timed automata with resets can be very complex, it is unclear what the performance
will be like. Furthermore, in the previous work (Verwer et al. 2008) we showed that in
order to identify a timed automaton with two or more clocks, one will sometimes require an
exponential amount of data. We therefore expect the performance of an adapted version of
RTI (or any other algorithm) to perform poorly on identifying timed automata with two or
more clocks. However, it would still be interesting to test this experimentally in future work.

Acknowledgements We thank anonymous reviewers for their helpful comments and suggestions on earlier
versions of this article.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommer-
cial License which permits any noncommercial use, distribution, and reproduction in any medium, provided
the original author(s) and source are credited.

@ Springer

Mach Learn (2012) 86:295-333 333

References

Alur, R., & Dill, D. L. (1994). A theory of timed automata. Theoretical Computer Science, 126, 183-235.

Bishop, C. M. (2006). Pattern recognition and machine learning. Berlin: Springer.

Bugalho, M., & Oliveira, A. L. (2005). Inference of regular languages using state merging algorithms with
search. Pattern Recognition, 38, 1457-1467.

Carrasco, R., & Oncina, J. (1994). Learning stochastic regular grammars by means of a state merging method.
In LNCS: Vol. 862. Proceedings of the 2nd international collogium on grammatical inference (pp. 139—
150). Berlin: Springer.

Clark, A., & Thollard, F. (2004) PAC-learnability of probabilistic deterministic finite state automata. Journal
of Machine Learning Research, 473-497.

Dima, C. (2001). Real-time automata. Journal of Automata, Languages and Combinatorics, 6(1), 2-23.

Dupont, P., Denis, F., & Esposito, Y. (2005). Links between probabilistic automata and hidden Markov mod-
els: probability distributions, learning models and induction algorithms. Pattern Recognition, 38, 1349—
1371.

Gold, E. M. (1978). Complexity of automaton identification from given data. Information and Control, 37(3),
302-320.

Goldman, S. A., & Mathias, H. D. (1996). Teaching a smarter learner. Journal of Computer and System
Sciences, 52(2), 255-267.

Grinchtein, O., Jonsson, B., & Petterson, P. (2006). Inference of event-recording automata using timed deci-
sion trees. In LNCS: Vol. 4137. CONCUR (pp. 435-449). Berlin: Springer.

Guédon, Y. (2003). Estimating hidden semi-Markov chains from discrete sequences. Journal of Computa-
tional and Graphical Statistics, 12(3), 604-639.

de la Higuera, C. (1997). Characteristic sets for polynomial grammatical inference. Machine Learning, 27(2),
125-138.

de la Higuera, C. (2005). A bibliographical study of grammatical inference. Pattern Recognition, 38(9), 1332—
1348.

Kermorvant, C., & Dupont, P. (2002). Stochastic grammatical inference with multinomial tests. In LNAI:
Vol. 2484. Proceedings of the 6th international colloquium on grammatical inference (pp. 149—-160).
Berlin: Springer.

Lang, K. J., Pearlmutter, B. A., & Price, R. A. (1998). Results of the Abbadingo one DFA learning compe-
tition and a new evidence-driven state merging algorithm. In LNCS: Vol. 1433. Grammatical inference.
Berlin: Springer.

Larsen, K. G., Petterson, P., & Yi, W. (1997). Uppaal in a nutshell. International Journal on Software Tools
for Technology Transfer, 1(1-2), 134-152.

Mitchell, T. (1997). Machine learning. New York: McGraw-Hill.

Morchen, F., & Ultsch, A. (2004). Mining temporal patterns in multivariate time series. In LNCS: Vol. 3238.
Advances in artificial intelligence (pp. 127-140). Berlin: Springer.

Oncina, J., & Garcia, P. (1992). Inferring regular languages in polynomial update time. In Series in ma-
chine perception and artificial intelligence: Vol. 1. Pattern recognition and image analysis (pp. 49-61).
Singapore: World Scientific.

Pitt, L., & Warmuth, M. (1989). The minimum consistent DFA problem cannot be approximated within and
polynomial. In Annual ACM symposium on theory of computing (pp. 421-432). New York: ACM.
Pnueli, A., Asarin, E., Maler, O., & Sifakis, J. (1998). Controller synthesis for timed automata. In IFAC

symposium on system structure and control (pp. 469-474). Amsterdam: Elsevier.

Roddick, J. F., & Spiliopoulou, M. (2002). A survey of temporal knowledge discovery paradigms and meth-
ods. IEEE Transactions on Knowledge and Data Engineering, 14(4), 750-767.

Sen, K., Viswanathan, M., & Agha, G. (2004). Learning continuous time Markov chains from sample execu-
tions. In Proceedings of the quantitative evaluation of systems (pp. 146—155).

Sipser, M. (1997). Introduction to the theory of computation. Boston: PWS Publishing.

Springintveld, J., Vaandrager, F. W., & D’Argenio, P. R. (2001). Testing timed automata. Theoretical Com-
puter Science, 254(1-2), 225-257.

Sudkamp, T. A. (2006). Languages and machines: an introduction to the theory of computer science (3rd
ed.). Reading: Addison-Wesley.

Verwer, S., de Weerdt, M., & Witteveen, C. (2008). Polynomial distinguishability of timed automata. In
LNCS: Vol. 5278. Grammatical inference: theory and applications (pp. 238-251). Berlin: Springer.
Verwer, S., de Weerdt, M., & Witteveen, C. (2009). One-clock deterministic timed automata are efficiently
identifiable in the limit. In LNCS: Vol. 5457. Language and automata theory and applications (pp. 740—

751). Berlin: Springer.

Verwer, S., de Weerdt, M., & Witteveen, C. (2011). The efficiency of identifying timed automata and the

power of clocks. Information and Computation, 209(3), 606-625.

@ Springer

	Efficiently identifying deterministic real-time automata from labeled data
	Abstract
	Introduction
	Deterministic real-time automata
	Identifying delay guards of a DRTA is NP-complete
	Identifying real-time automata
	State merging
	Real-time identification
	A timed APTA
	Splitting a transition
	Merging states in a DRTA

	The RTI algorithm for identifying DRTAs
	Properties of RTI

	Heuristics for RTI
	Four evidence values
	Pure EDSM
	Consistent EDSM
	Impact EDSM
	Splits EDSM

	A simple search procedure

	Experiments
	Sampled finite automata
	Experimental setup
	Expectations
	Results
	Different sized target DRTAs
	Different number of time values and data set sizes
	Timing

	Related work
	Discussion
	Acknowledgements
	References

