
Mach Learn (2011) 85:3–39
DOI 10.1007/s10994-010-5226-3

A majorization-minimization approach to the sparse
generalized eigenvalue problem

Bharath K. Sriperumbudur · David A. Torres ·
Gert R.G. Lanckriet

Received: 1 March 2010 / Revised: 17 August 2010 / Accepted: 3 November 2010 /
Published online: 7 December 2010
© The Author(s) 2010. This article is published with open access at Springerlink.com

Abstract Generalized eigenvalue (GEV) problems have applications in many areas of sci-
ence and engineering. For example, principal component analysis (PCA), canonical correla-
tion analysis (CCA) and Fisher discriminant analysis (FDA) are specific instances of GEV
problems, that are widely used in statistical data analysis. The main contribution of this work
is to formulate a general, efficient algorithm to obtain sparse solutions to a GEV problem.
Specific instances of sparse GEV problems can then be solved by specific instances of this
algorithm. We achieve this by solving the GEV problem while constraining the cardinality
of the solution. Instead of relaxing the cardinality constraint using a �1-norm approximation,
we consider a tighter approximation that is related to the negative log-likelihood of a Stu-
dent’s t-distribution. The problem is then framed as a d.c. (difference of convex functions)
program and is solved as a sequence of convex programs by invoking the majorization-
minimization method. The resulting algorithm is proved to exhibit global convergence be-
havior, i.e., for any random initialization, the sequence (subsequence) of iterates generated
by the algorithm converges to a stationary point of the d.c. program. Finally, we illustrate
the merits of this general sparse GEV algorithm with three specific examples of sparse GEV
problems: sparse PCA, sparse CCA and sparse FDA. Empirical evidence for these exam-
ples suggests that the proposed sparse GEV algorithm, which offers a general framework

Editors: Süreyya Özöǧür-Akyüz, Devrim Ünay, and Alex Smola.

B.K. Sriperumbudur (�) · G.R.G. Lanckriet
Department of Electrical and Computer Engineering, University of California, La Jolla, San Diego,
CA 92093-0407, USA
e-mail: bharathsv@ucsd.edu

G.R.G. Lanckriet
e-mail: gert@ece.ucsd.edu

D.A. Torres · G.R.G. Lanckriet
Department of Computer Science and Engineering, University of California, La Jolla, San Diego,
CA 92093-0407, USA

D.A. Torres
e-mail: datorres@cs.ucsd.edu

mailto:bharathsv@ucsd.edu
mailto:gert@ece.ucsd.edu
mailto:datorres@cs.ucsd.edu

4 Mach Learn (2011) 85:3–39

to solve any sparse GEV problem, will give rise to competitive algorithms for a variety of
applications where specific instances of GEV problems arise.

Keywords Generalized eigenvalue problem · Principal component analysis · Canonical
correlation analysis · Fisher discriminant analysis · Sparsity · D.c. program ·
Majorization-minimization · Zangwill’s theory of global convergence · Music annotation ·
Cross-language document retrieval

1 Introduction

The generalized eigenvalue (GEV) problem for the matrix pair (A,B) is the problem of
finding a pair (λ,x) such that

Ax = λBx, (1)

where A, B ∈ R
n×n, R

n � x �= 0 and λ ∈ R. When B is an identity matrix, the problem in
(1) is simply referred to as an eigenvalue problem. Eigenvalue problems are so fundamental
that they have applications in almost every area of science and engineering (Strang 1986).

In multivariate statistics, GEV problems are prominent and appear in problems dealing
with high-dimensional data analysis, visualization and pattern recognition. In these applica-
tions, usually x ∈ R

n, A ∈ S
n (the set of symmetric matrices of size n × n defined over R)

and B ∈ S
n++ (set of positive definite matrices of size n × n defined over R). The variational

formulation for the GEV problem in (1) is given by

λmax(A,B) = max
x

{
xT Ax : xT Bx = 1

}
, (GEV-P)

where λmax(A,B) is the maximum generalized eigenvalue associated with the matrix pair,
(A,B). The x that maximizes (GEV-P) is called the generalized eigenvector associated
with λmax(A,B). Some of the well-known and widely used data analysis techniques that are
specific instances of (GEV-P) are:

(a) Principal component analysis (PCA) (Hotelling 1933; Jolliffe 1986), a classic tool for
data analysis, data compression and visualization, finds the direction of maximal vari-
ance in a given multivariate data set. This technique is used in dimensionality reduc-
tion wherein the ambient space in which the data resides is approximated by a low-
dimensional subspace without significant loss of information. The variational form of
PCA is obtained by choosing A to be the covariance matrix (which is a positive semi-
definite matrix defined over R) associated with the multivariate data and B to be the
identity matrix in (GEV-P).

(b) Canonical correlation analysis (CCA) (Hotelling 1936), similar to PCA, is also a data
analysis and dimensionality reduction method. However, while PCA deals with only
one data space X (from which the multivariate data is obtained), CCA proposes a way
for dimensionality reduction by taking into account relations between samples from two
(or more) spaces X and Y. The assumption is that the data points from these two spaces
contain some joint information that is reflected in correlations between them. Directions
along which this correlation is high are thus assumed to be relevant directions when
these relations are to be captured. The variational formulation for CCA is given by

max
wx �=0,wy �=0

wT
x Σxywy

√
wT

x Σxxwx

√
wT

y Σyywy

, (2)

Mach Learn (2011) 85:3–39 5

where wx and wy are the directions in X and Y along which the data is maximally
correlated. Σxx and Σyy represent the covariance matrices for X and Y respectively and
Σxy = ΣT

yx represents the cross-covariance matrix between X and Y. Equation (2) can
be rewritten as

max
wx ,wy

{wT
x Σxywy : wT

x Σxxwx = 1, wT
y Σyywy = 1}, (3)

which in turn can be written in the form of (GEV-P) with:

A =
(

0 Σxy

Σyx 0

)
, B =

(
Σxx 0

0 Σyy

)
and x =

(
wx

wy

)
.

(c) In the binary classification setting, Fisher discriminant analysis (FDA) finds a one-
dimensional subspace, w ∈ R

n, the projection of data onto which leads to maximal
separation between the classes. Let μi and Σ i denote the mean vector and covariance
matrix associated with class i. The variational formulation of FDA is given by

max
w �=0

(wT (μ1 − μ2))
2

wT (Σ1 + Σ2)w
,

which can be rewritten as

max
w

wT (μ1 − μ2)(μ1 − μ2)
T w

(4)
s.t. wT (Σ1 + Σ2)w = 1.

Therefore, the FDA formulation is similar to (GEV-P) with A = (μ1 − μ2)(μ1 − μ2)
T ,

called the between-cluster variance and B = Σ1 + Σ2, called the within-cluster vari-
ance. For multi-class problems, similar formulations lead to multiple-discriminant
analysis.

Despite the simplicity and popularity of these data analysis and modeling methods, one
potential limitation (depending on the application) is the lack of sparsity in their solution.
Their solution vector, i.e., x, is a linear combination of all input variables. Often, this makes
it difficult to interpret the results and, therefore, limits their use for applications where in-
terpretation of the solution is important. In the following, we motivate the need for sparse
solutions to GEV problems by explaining how, for some specific instances of GEV prob-
lems, i.e., PCA, CCA and FDA, a variety of applications could benefit from sparsity for
different reasons.

In many PCA applications, the coordinate axes have a physical interpretation; in biology,
for example, each axis might correspond to a specific gene. In these cases, the interpreta-
tion of the principal components would be facilitated if they contained only few non-zero
entries (or, loadings) while explaining most of the variance in the data. Moreover, in certain
applications, e.g., financial asset trading strategies based on PCA techniques, the sparsity of
the solution has important consequences, since fewer non-zero loadings imply fewer trans-
action costs. For CCA, consider a document translation application where two copies of a
corpus of documents, one written in English and the other in German are given. The goal
is to extract multiple low-dimensional representations of the documents, one in each lan-
guage, each explaining most of the variation in the documents of a single language while
maximizing the correlation between the representations to aid translation. Sparse represen-
tations, equivalent to representing the documents with a small set of words in each language,
would allow to interpret the underlying translation mechanism and model it better. In music

6 Mach Learn (2011) 85:3–39

annotation, CCA can be applied to model the correlation between semantic descriptions of
songs (e.g., reviews) and their acoustic content. Sparsity in the semantic canonical compo-
nents would allow to select the most meaningful words to describe musical content. This is
expected to improve music annotation and retrieval systems. In a classification setting like
FDA, feature selection aids generalization performance by promoting sparse solutions. To
summarize, sparse representations are generally desirable as they aid human understanding,
reduce computational and economic costs and promote better generalization.

In this paper, we propose an algorithm to find sparse solutions to the generalized eigen-
value problem. Specific instances of the sparse GEV problem, like, e.g., sparse CCA, can
then be solved by specific instances of this algorithm. The sparse GEV problem can be
written as

max
x

{
xT Ax : xT Bx = 1, ‖x‖0 ≤ k

}
, (SGEV-P)

where A ∈ S
n, B ∈ S

n++, 1 ≤ k ≤ n and ‖x‖0 denotes the cardinality of x, i.e., the number
of non-zero elements of x. Depending on the application and its sparsity requirements, k

is chosen a priori. Equation (SGEV-P) can be solved either as a continuous optimization
problem after relaxing the cardinality constraint or as a discrete optimization problem. In this
paper, we follow the former approach, leading to our main contribution, a general algorithm
for sparse GEV problems, which is presented in Sect. 3.

The first step in solving (SGEV-P) as a continuous optimization problem is to approx-
imate the cardinality constraint. One usual heuristic is to approximate ‖x‖0 by ‖x‖1 (see
Sect. 2 for the details on notation). Building on the earlier version of our work (Sripe-
rumbudur et al. 2007), in Sect. 3.1, we approximate the cardinality constraint in (SGEV-P)
as the negative log-likelihood of a Student’s t-distribution, which is a tighter approxima-
tion than ‖x‖1, and has been used earlier in many different contexts (Weston et al. 2003;
Fazel et al. 2003; Candes et al. 2007). We then formulate this approximate problem
as a d.c. (difference of convex functions) program and solve it in Sect. 3.3 as a se-
quence of quadratically constrained quadratic programs (QCQPs) (Boyd and Vanden-
berghe 2004), using the majorization-minimization (MM) method (Lange et al. 2000;
Hunter and Lange 2004), which is briefly discussed in Sect. 3.2. As a special case, when
A ∈ S

n+ (the set of positive semidefinite matrices of size n × n defined over R) and B ∈ S
n++

is a diagonal matrix (as is the case, e.g., for PCA, where B is an identity matrix), a simple
iterative update rule can be obtained in closed form, which has a per iteration complexity of
O(n2). Since the algorithm presented in this paper holds for any A ∈ S

n, it is more general
than the ones in Sriperumbudur et al. (2007) and Moghaddam et al. (2007a), where A ∈ S

n+.
For example, the algorithm in Sriperumbudur et al. (2007) cannot handle the sparse CCA
problem as A ∈ S

n is indefinite. A preliminary version of the algorithm proposed in this
paper, appeared in Torres et al. (2007b) and Sriperumbudur et al. (2009).

Since the proposed algorithm is an iterative procedure, using results from the global
convergence theory of iterative algorithms (Zangwill 1969), we show in Sect. 3.4 that it
is globally convergent. I.e., for any random initialization, the sequence (subsequence) of
iterates generated by the algorithm converges to a stationary point of the d.c. program (see
Sect. 3.4 for a detailed definition). A complete convergence analysis, including the rate of
convergence and the quality of the obtained solution, is beyond the scope of this work and
is the subject of future work.

In Sect. 4, we illustrate the merits of the proposed sparse GEV algorithm for some spe-
cific choices of A and B: algorithms for sparse PCA, sparse CCA and sparse FDA are
obtained as special cases of the general sparse GEV algorithm. The empirical results ob-
served for these special cases demonstrate the promise of the proposed algorithm, which is

Mach Learn (2011) 85:3–39 7

more general than any of the special cases. More specifically, in Sect. 4.1, we compare the
specific instance of our algorithm for A ∈ S

n+ and B the identity matrix (which we call DC-
PCA) to other sparse PCA algorithms, SPCA (Zou et al. 2006), DSPCA (d’Aspremont et al.
2007), GSPCA (Moghaddam et al. 2007b) and GPower�0 (Journée et al. 2010), in terms of
sparsity vs. explained variance on the “pit props” benchmark dataset, a random test dataset
and three high-dimensional datasets, where the goal is to find relevant genes (as few as pos-
sible) while explaining the maximum possible variance. The results show that DC-PCA is
competitive (with respect to sparsity, explained variance as well computational efficiency)
with the state-of-the-art for sparse PCA. Given that sparse PCA is a well-studied problem,
this indicates the potential of the general sparse GEV framework, proposed in this work,
for instances of sparse GEV problems that have not been studied extensively. In Sect. 4.2,
the proposed sparse GEV algorithm is used in two sparse CCA applications, one dealing
with cross-language document retrieval and the other with vocabulary selection in music
annotation. The cross-language document retrieval application involves a collection of doc-
uments with each document in different languages, say English and French. The goal is,
given a query string in one language, retrieve the most relevant document(s) in the target
language. We experimentally show that the proposed sparse CCA algorithm performs simi-
lar to the non-sparse version, however using only 10% of non-zero loadings in the canonical
components. In the vocabulary selection application, we show that sparse CCA improves
the performance of a statistical musical query system by selecting only those words (i.e.,
pruning the vocabulary) that are correlated to the underlying audio features. In Sect. 4.3,
we consider the setting of sparse FDA. By exploiting the special structure of A, i.e., A ∈ S

n+
with rank(A) = 1, we propose a sparse FDA algorithm that is more efficient than the general
sparse GEV algorithm. We also discuss the relation of this algorithm to feature selection in
least squares support vector machines (LS-SVMs) (Suykens et al. 2002, Chap. 3), which is
a well-studied problem.

In summary, the main contribution of this paper is a globally convergent algorithm (see
Algorithm 1)—a sequence of QCQPs—for the sparse GEV problem, which can handle any
arbitrary symmetric matrix, A and positive definite matrix, B . When A ∈ S

n+ and B ∈ S
n++ is

a diagonal matrix, the proposed algorithm has a simple, closed-form update rule. Encourag-
ing empirical results obtained by applying the proposed, general algorithm to some special
cases of sparse GEV problems suggest its potential for applications that rely on solving
some instance of a sparse GEV problem.

In the following section, we introduce the notation that is used throughout the paper.
Supplementary results and related discussions are collected in appendices.

2 Notation

S
n (resp. S

n+, S
n++) denotes the set of symmetric (resp. positive semidefinite, positive defi-

nite) n × n matrices defined over R. For x = (x1, x2, . . . , xn)
T ∈ R

n, x � 0 (resp. x � 0)
denotes xi ≥ 0,∀i (resp. xi > 0, ∀i). x � y (resp. x � y) denotes xi ≥ yi, ∀i (resp.
xi ≤ yi, ∀i). ‖x‖0 denotes the number of non-zero elements of the vector x, ‖x‖p :=
(
∑n

i=1 |xi |p)1/p, 1 ≤ p < ∞. I n denotes an n × n identity matrix. D(x) represents a di-
agonal matrix formed with x as its principal diagonal.

3 Sparse generalized eigenvalue problem

In the following, we first discuss the intractability of (SGEV-P), which is then used in
Sect. 3.1 to motivate and propose a d.c. (difference of convex functions) approximation

8 Mach Learn (2011) 85:3–39

to (SGEV-P) that is based on a non-convex approximation to the cardinality constraint. This
d.c. program is then solved as a sequence of QCQPs in Sect. 3.3 (see Algorithm 1) using
the majorization-minimization method, which is briefly discussed in Sect. 3.2. Since the
proposed algorithm is iterative, we present some convergence analysis in Sect. 3.4, which
guarantees that the iterates generated by the algorithm converge to a stationary point of the
d.c. program.

Intractability of (SGEV-P) Let us consider (SGEV-P), where A ∈ S
n and B ∈ S

n++. Sup-
pose A is not negative definite. Then (SGEV-P) is the maximization of a non-concave objec-
tive over the non-convex constraint set Φ := {x : xT Bx = 1} ∩ {x : ‖x‖0 ≤ k}. Although Φ

can be relaxed to a convex set Φ̃ := {x : xT Bx ≤ 1} ∩ {x : ‖x‖1 ≤ k}, this does not simplify
the problem as the maximization of a non-concave objective over a convex set is NP-hard
[p. 342] (Rockafellar 1970).1 Based on this discussion, it is evident that the intractability of
(SGEV-P) is not only due to the cardinality constraint, but also due to the maximization of
the non-concave objective function. Therefore, the �1 approximation that is popularly used
in machine learning to obtain a convex approximation to an intractable problem involving a
cardinality constraint, is not useful to obtain a tractable approximation to (SGEV-P).

In Appendix A, we discuss a convex approximation to (SGEV-P) using semidefinite pro-
gramming (SDP) relaxation (Vandenberghe and Boyd 1996). We don’t pursue such an ap-
proach since it is prohibitively expensive in computation for large n. Instead, in the following
section, we trade convexity for good scalability and propose a non-convex approximation to
(SGEV-P), resulting in a d.c. program, based on a non-convex approximation to the cardi-
nality constraint.

3.1 Non-convex approximation to ‖x‖0 and d.c. formulation

Let us consider the regularized (penalized) version of (SGEV-P) given by

max
x

{
xT Ax − ρ ‖x‖0 : xT Bx ≤ 1

}
, (SGEV-R)

where ρ > 0 is the regularization (penalization) parameter. Note that the quadratic equality
constraint, xT Bx = 1 is relaxed to the inequality constraint, xT Bx ≤ 1. Since

‖x‖0 =
n∑

i=1

1{|xi |�=0} = lim
ε→0

n∑

i=1

log(1 + |xi |/ε)
log(1 + 1/ε)

, (5)

(SGEV-R) is equivalent (we define two programs to be equivalent if their optimizers, i.e.,
solutions are the same) to

max
x

{

xT Ax − ρ lim
ε→0

n∑

i=1

log(1 + |xi |/ε)
log(1 + 1/ε)

: xT Bx ≤ 1

}

. (6)

1Note that (GEV-P) also involves the maximization of a non-concave objective over a non-convex set. How-
ever, it is well-known that polynomial-time algorithms exist to solve (GEV-P), which is due to its special
structure of a quadratic objective with a homogeneous quadratic constraint (Boyd and Vandenberghe 2004,
p. 229).

Mach Learn (2011) 85:3–39 9

The above program is approximated by the following approximate sparse GEV program by
neglecting the limit in (6) and choosing ε > 0,

max
x

{

xT Ax − ρ

n∑

i=1

log(1 + |xi |/ε)
log(1 + 1/ε)

: xT Bx ≤ 1

}

, (7)

which is equivalent to

max
x

{

xT Ax − ρε

n∑

i=1

log(|xi | + ε) : xT Bx ≤ 1

}

, (SGEV-A)

where ρε := ρ/ log(1 + ε−1). Note that the approximate program in (SGEV-A) is a contin-
uous optimization problem unlike the one in (SGEV-R), which has a combinatorial term.
In addition, we show below that the objective of (SGEV-A) exhibits the d.c. structure and
therefore can be written as a d.c. program. D.c. programs are well studied and many global
optimization algorithms exist to solve them (Horst and Thoai 1999). Before we formulate
(SGEV-A) as a d.c. program, we provide the definition of a d.c. program.

Definition 1 (D.c. program, Horst and Thoai 1999) Let Ω be a convex set in R
n. A real

valued function f : Ω → R is called a d.c. function on Ω , if there exist two convex func-
tions g,h : Ω → R such that f can be expressed in the form f (x) = g(x) − h(x), x ∈ Ω .
Optimization problems of the form min{f0(x) : x ∈ Ω,fi(x) ≤ 0, i = 1, . . . ,m}, where
fi = gi − hi, i = 0, . . . ,m, are d.c. functions are called d.c. programs.

To formulate (SGEV-A) as a d.c. program, let us choose τ ∈ R such that A + τI n ∈ S
n+. If

A ∈ S
n+, such τ exists trivially (choose τ ≥ 0). If A is indefinite, choosing τ ≥ −λmin(A)

ensures that A + τI n ∈ S
n+. Therefore, choosing τ ≥ max(0,−λmin(A)) ensures that A +

τI n ∈ S
n+ for any A ∈ S

n. Equation (SGEV-A) is equivalently written as

min
x

{
[
τ‖x‖2

2 − xT (A + τI n)x
] + ρε

n∑

i=1

log(|xi | + ε) : xT Bx ≤ 1

}

. (8)

Introducing the auxiliary variable, y, yields the equivalent program

min
x,y

{

τ‖x‖2
2 −

[

xT (A + τI n)x − ρε

n∑

i=1

log(yi + ε)

]

: xT Bx ≤ 1, −y � x � y

}

, (9)

which is a d.c. program. Indeed, the term τ‖x‖2
2 is convex in x as τ ≥ 0 and, by construction,

xT (A + τI n)x − ρε

∑n

i=1 log(yi + ε) is jointly convex in x and y. So, the above program is
a minimization of the difference of two convex functions over a convex set.

As mentioned before, many global optimization algorithms exist to solve d.c. programs,
e.g., branch and bound, cutting planes, etc. However, since these algorithms are not scalable
for large n, in Sect. 3.3, we propose a local optimization algorithm based on majorization-
minimization (see Sect. 3.2), which allows to exploit the d.c. structure and gives rise to
a simple, efficient algorithm: a sequence of QCQPs. Before we discuss the MM method
in Sect. 3.2 and present the sparse GEV algorithm in Sect. 3.3, we briefly discuss (a) the
approximation to ‖x‖0 that we consider in this paper and (b) the behavior of the solution to
(SGEV-A)—or equivalently to (9)—as ε → 0, assuming the global optimum to (SGEV-A)
can be obtained.

10 Mach Learn (2011) 85:3–39

Approximation to ‖x‖0 The approximation (to ‖x‖0) that we consider in this paper, i.e.,

‖x‖ε :=
n∑

i=1

log(1 + |xi |ε−1)

log(1 + ε−1)
,

has been used in many different contexts: feature selection using SVMs (Weston et al.
2003), sparse signal recovery (Candes et al. 2007), matrix rank minimization (Fazel et al.
2003), etc. This approximation is interesting because of its connection to sparse factorial
priors that are studied in Bayesian inference, and can be interpreted as defining a Student’s
t-distribution prior over x, an improper prior given by

∏n

i=1
1

|xi |+ε
. Tipping (2001) showed

that this choice of prior leads to a sparse representation and demonstrated its validity
for sparse kernel expansions in the Bayesian framework. Other approximations to ‖x‖0

are possible, e.g., Bradley and Mangasarian (1998) used
∑n

i=1(1 − e−α|xi |) with α > 0
(‖x‖0 = limα→∞

∑n

i=1(1 − e−α|xi |)) as an approximation to ‖x‖0 in the context of feature
selection using SVMs.

In Appendix B, we show that the approximation (to ‖x‖0) considered in this paper, i.e.,
‖x‖ε , is tighter than the �1-norm approximation, for any ε > 0. Therefore, sparser solutions
can be expected for (9)—obtained by replacing ‖x‖0 in (SGEV-R) by ‖x‖ε—compared to
replacing ‖x‖0 by ‖x‖1, in (SGEV-R), if the global solution(s) of the non-convex program
in (9) can be found.

Behavior of the solution to (SGEV-A) as ε → 0 As mentioned before, (SGEV-A) is an
approximation to (SGEV-R), which is obtained by approximating ‖x‖0 by ‖x‖ε . Consider
the objective functions of (SGEV-R) and (SGEV-A), given as

Q(x) := xT Ax − ρ‖x‖0,

Qε(x) := xT Ax − ρ‖x‖ε,

which are maximized over Ω := {x : xT Bx ≤ 1}. Suppose that x̂ and xε are solutions to
(SGEV-R) and (SGEV-A) respectively, i.e., maximizers of Q(x) and Qε(x) respectively
over Ω . A natural question to answer is whether ‖xε − x̂‖ → 0 as ε → 0? In general, this
may not be true because Q(x) may be quite flat near its maximum over Ω . If this is not true,
at least, one would like to know whether Qε(xε) → Q(̂x) as ε → 0, i.e.,

lim
ε→0

max
x∈Ω

Qε(x)
?= max

x∈Ω
Q(x) = max

x∈Ω
lim
ε→0

Qε(x). (10)

In other words, we would like to know whether the limit process and the maximization over
Ω can be interchanged. It can be shown that if Qε converges uniformly over Ω to Q, then
the equality in (10) holds. However, it is easy to see that Qε does not converge uniformly
to Q over Ω , so nothing can be said about (10). Therefore, no theoretical guarantees can be
provided about the behavior of Qε(xε) w.r.t. Q(̂x) as ε → 0.

So, from a theoretical point of view, even if we could obtain a global optimum to
(SGEV-A), it remains unclear how a global optimum of (SGEV-A) compares to that of
(SGEV-R), as ε → 0. From a practical perspective, as we pointed out, computing a global
optimum to (SGEV-A) is computationally hard anyway. Therefore, instead of focusing on
a global optimum for (SGEV-A), in Sect. 3.3, we propose a simple and efficient local op-
timization algorithm for (SGEV-A), based on the MM method. It remains an interesting
open problem whether theoretical guarantees can be found, relating a global optimum of
(SGEV-A) to that of (SGEV-R), which we will further investigate in future work.

Mach Learn (2011) 85:3–39 11

3.2 Majorization-minimization method

The majorization-minimization (MM) method can be thought of as a generalization of the
well-known expectation-maximization (EM) algorithm (Dempster et al. 1977). The gen-
eral principle behind MM algorithms was first enunciated by the numerical analysts, Or-
tega and Rheinboldt (1970) in the context of line search methods. The MM principle ap-
pears in many places in statistical computation, including multidimensional scaling (de
Leeuw 1977), robust regression (Huber 1981), correspondence analysis (Heiser 1987), vari-
able selection (Hunter and Li 2005), signal/image processing (Daubechies et al. 2004;
Bioucas-Dias et al. 2006; Figueiredo et al. 2007), etc. We refer the interested reader to a
tutorial on MM algorithms (Hunter and Lange 2004) and the references therein.

The general idea of MM algorithms is as follows. Suppose we want to minimize f over
Ω ⊂ R

n. The idea is to construct a majorization function g over Ω × Ω such that

f (x) ≤ g(x, y), ∀x, y ∈ Ω and f (x) = g(x, x), ∀x ∈ Ω. (11)

Thus, g as a function of x is an upper bound on f and coincides with f at y. The
majorization-minimization algorithm corresponding to this majorization function g updates
x at iteration l by

x(l+1) ∈ arg min
x∈Ω

g(x, x(l)), (12)

unless we already have

x(l) ∈ arg min
x∈Ω

g(x, x(l)),

in which case the algorithm stops. x(0) is usually chosen randomly. The majorization func-
tion, g is usually constructed by using Jensen’s inequality for convex functions, the first-
order Taylor approximation or the quadratic upper bound principle (Böhning and Lindsay
1988). In fact, any other method can be used to construct g as long as it satisfies (11). It is
easy to show that the above iterative scheme decreases the value of f monotonically in each
iteration, i.e.,

f (x(l+1)) ≤ g(x(l+1), x(l)) ≤ g(x(l), x(l)) = f (x(l)), (13)

where the first inequality and the last equality follow from (11) while the sandwiched in-
equality follows from (12).

Note that MM algorithms can be applied equally well to the maximization of f by sim-
ply reversing the inequality sign in (11) and changing the “min” to “max” in (12). In this
case, the word MM refers to minorization-maximization, where the function g is called the
minorization function. To put things in perspective, the EM algorithm can be obtained by
constructing the minorization function g using Jensen’s inequality for concave functions.
The construction of such g is referred to as the E-step, while (12) with the “min” replaced
by “max” is referred to as the M-step. The algorithm in (11) and (12) is used in machine
learning, e.g., for non-negative matrix factorization (Lee and Seung 2001), under the name
auxiliary function method. Lange et al. (2000) studied this algorithm under the name opti-
mization transfer while Meng (2000) referred to it as the SM algorithm, where “S” stands
for the surrogate step (same as the majorization/minorization step) and “M” stands for the
minimization/maximization step depending on the problem at hand. g is called the surrogate
function.

Having briefly discussed the idea behind MM algorithms, in the following example, we
present an MM method to solve d.c. programs, which results in a sequence of convex pro-
grams. This will allow to derive an algorithm for the d.c. program in (9).

12 Mach Learn (2011) 85:3–39

Example 1 (Linear majorization) Let us consider the optimization problem, min{f (x) :
x ∈ Ω} where f = u − v, with u and v both convex, and v continuously differentiable.
Note that, by Definition 1, this is a d.c. program. Now, the goal is to construct an auxil-
iary function, g. Since v is convex, we have v(x) ≥ v(y) + (x − y)T ∇v(y), ∀x,y ∈ Ω .
Therefore,

f (x) = u(x) − v(x) ≤ u(x) − v(y) − (x − y)T ∇v(y) =: g(x,y).

It is easy to verify that g is a majorization function of f . Therefore, by (12), we have

x(l+1) ∈ arg min
x∈Ω

g(x,x(l)) = arg min
x∈Ω

u(x) − xT ∇v(x(l)). (14)

If Ω is a convex set, then the above procedure solves a sequence of convex programs. Note
that the same idea is used in the concave-convex procedure (CCCP) (Yuille and Rangarajan
2003).

In the following section, we apply the above example to (9) to obtain a sparse GEV algo-
rithm, which is a sequence of QCQPs. We would like to mention that the d.c. program in (9)
can be considered as an intermediate step in applying the MM method directly to (SGEV-A),
to facilitate the construction of the majorization function. So, it is the general MM frame-
work that essentially allows to derive a simple, efficient local optimization algorithm for the
proposed sparse GEV problem formulation.

3.3 Sparse GEV algorithm

Let us return to the approximate sparse GEV program in (9). Let

f (x,y) = τ‖x‖2
2 + ρε

n∑

i=1

log(ε + yi) − xT (A + τI n)x, (15)

where τ ≥ max(0,−λmin(A)) so that (9) can be written as min{f (x,y) : (x,y) ∈ Ω} and
Ω = {(x,y) : xT Bx ≤ 1, −y � x � y}. Defining

u(x,y) := τ‖x‖2
2,

v(x,y) := xT (A + τI n)x − ρε

n∑

i=1

log(ε + yi),

which are convex over R
n × R

n and invoking Example 1, yields the majorization function,

g((x,y), (z,w)) := τ‖x‖2
2 − zT (A + τI n)z + ρε

n∑

i=1

log(ε + wi)

− 2(x − z)T (A + τI n)z + ρε

n∑

i=1

yi − wi

wi + ε
, (16)

and therefore the following algorithm based on (14):

(x(l+1),y(l+1)) = arg min
x,y

τ‖x‖2
2 − 2xT (A + τI n)x

(l) + ρε

n∑

i=1

yi

y
(l)
i + ε

s.t. xT Bx ≤ 1, −y � x � y. (17)

Mach Learn (2011) 85:3–39 13

Equation (17) is equivalent to the following sparse GEV algorithm,

x(l+1) = arg min
x

{

τ‖x‖2
2 − 2xT (A + τI n)x

(l) + ρε

n∑

i=1

|xi |
|x(l)

i | + ε
: xT Bx ≤ 1

}

, (ALG)

which is a sequence of quadratically constrained quadratic programs (QCQPs).2 We refer to
Boyd and Vandenberghe (2004) for details about QCQPs. For τ �= 0, the optimal solution of
(ALG), x(l+1), is unique, since the objective function in (ALG) is strictly convex in x when
τ �= 0. On the other hand, for τ = 0, the objective function is no longer strictly convex.
Below, in Special case 1, we show that for τ = 0, (ALG) has a unique optimal solution,
which can be found by solving a quadratic program rather than a QCQP.

Note that (ALG) requires the knowledge of τ , which depends on λmin(A). Although for
certain choices of A, λmin(A) can be computed efficiently, it is generally an expensive task,
which can significantly raise the cost of solving (ALG), if the computation of λmin(A) is
included as part of solving (ALG). However, if A ∈ S

n+ (e.g., for PCA and FDA), τ can be
chosen to be zero, to not raise the cost of solving (ALG).

Special case 1 (A ∈ S
n+, B ∈ S

n++, τ = 0) Define w
(l)
i := (|x(l)

i | + ε)−1, w(l) :=
(w

(l)

1 , . . . ,w(l)
n) and W (l) := D(w(l)), a diagonal matrix with w(l) as its principal diagonal.

Choosing τ = 0 in (ALG), we have that

x(l+1) = arg max
x

{
xT Ax(l) − ρε

2

∥∥W (l)x
∥∥

1
: xT Bx ≤ 1

}
.

We show in Appendix C that when ρε > 2 maxi |(Ax(l))i |(w(l)
i)−1, the unique optimal solu-

tion of (ALG) is x(l+1) = 0. When ρε < 2 maxi |(Ax(l))i |(w(l)
i)−1, we show that

x(l+1) = S(SBS)+(γ + λ(l+1))
√

(γ + λ(l+1))T (SBS)+(γ + λ(l+1))
, (ALG-R)

where C+ denotes the Moore-Penrose pseudoinverse of C, S := D(s), (s)i :=
sign((Ax(l))i), (γ)i := |(Ax(l))i | − ρε

2 w
(l)
i , and

λ(l+1) ∈ arg min
λ

{
(γ + λ)T (SBS)+(γ + λ) : λ � 0

}
. (18)

The solution to (18) is unique for (λ(l+1))i , i ∈ I := {j : (s)j �= 0}, while it is not unique for
(λ(l+1))i , i /∈ I . However, because of the pre-multiplication by S in (ALG-R), (x(l+1))i = 0,
i /∈ I and, therefore, x(l+1) in (ALG-R) is the unique optimal solution of (ALG). Note that
in this case of τ = 0, we just need to solve a quadratic program in (18) compared to solving
a QCQP in (ALG) when τ �= 0.

2Although (ALG) is not a QCQP in standard form, its equivalent program in (17) can be easily written in

standard form as z(l+1) = arg minz{zT Cz + bT z : zT Ez ≤ 1, zT Gz + cT
i

z ≤ 0, zT Gz + dT
i

z ≤ 0, 1 ≤
i ≤ n}, where z := [xT yT]T , b = [−2(A+τIn)x(l)

ρεF−11

]
, C = [τIn 0

0 0

]
, E = [B 0

0 0

]
, F = D(y(l) + ε) and G is

a 2n × 2n matrix of zeroes. ci and di are defined as: for 1 ≤ i ≤ n, (ci)j = δij , 1 ≤ j ≤ n and (ci)j =
−δ(n+i)j , (n + 1) ≤ j ≤ 2n; for 1 ≤ i ≤ n, (di)j = −δij , 1 ≤ j ≤ n and (di)j = −δ(n+i)j , (n + 1) ≤ j ≤
2n, where δ represents the Kronecker delta. Therefore, for simplicity, we refer to (ALG) as a QCQP.

14 Mach Learn (2011) 85:3–39

In case ρε = 2 maxi |(Ax(l))i |(w(l)
i)−1 (rather hypothetical since ρε is a positive real num-

ber chosen by the user), x(l+1) is no longer unique. However, ‖x(l+1)‖0 is usually very small
in this case since (x(l+1))j = 0 for j /∈ arg maxi |(Ax(l))i |(w(l)

i)−1, as discussed in Appen-
dix C. Also, 0 is a solution of (ALG) in this case. Therefore, we set x(l+1) = 0 as the optimal
solution of (ALG) when ρε ≥ 2 maxi |(Ax(l))i |(w(l)

i)−1, to implement practical algorithms.

Special case 2 (A ∈ S
n+, B ∈ S

n++ diagonal, τ = 0) Let Bn
++ be a diagonal matrix, i.e.,

B = D(b), where b = (b1, . . . , bn) � 0. Then, it can be shown that (ALG-R) reduces to a
simple update rule, given by the closed form expression

x
(l+1)
i = [|(Ax(l))i | − ρε

2 w
(l)
i]+sign((Ax(l))i)

bi

√∑n

i=1 b−1
i [|(Ax(l))i | − ρε

2 w
(l)
i]2+

, ∀ i, (ALG-S)

where [a]+ := max(0, a). See Appendix C for the derivation of (ALG-S). Note that (ALG-S)
has a per-iteration complexity of O(n2) compared to the worst-case complexity of O(n3)

for (ALG) and (ALG-R).

Interpretation of (ALG) Assuming τ �= 0, (ALG) reduces to

x(l+1) = arg min
x

{∥∥x − (τ−1A + I n)x
(l)

∥∥2

2
+ ρε

τ

∥∥W (l)x
∥∥

1
: xT Bx ≤ 1

}
. (19)

Equation (19) is very similar to LASSO (Tibshirani 1996) except for the weighted �1-penalty
and the quadratic constraint. When x(0) is chosen such that x(0) = a1, then the first iteration
of (19) is a LASSO minimization problem except for the quadratic constraint. Let us analyze
(19) to get an intuitive interpretation.

(a) ρε = ρ = 0: (19) reduces to

min
x

{‖x − t (l)‖2
2 : xT Bx ≤ 1

}
,

where t (l) = (τ−1A + I n)x
(l), i.e., the first term in the objective of (19) computes the

best approximation to t (l) in the �2-norm so that the approximation lies in the ellipsoid
xT Bx ≤ 1, and therefore, the solution x is non-sparse.

(b) ρε = ρ = ∞: In this case, (19) reduces to

min
x

{‖W (l)x‖1 : xT Bx ≤ 1
}
,

which is a weighted �1-norm minimization problem. Intuitively, it is clear that if x
(l)
i is

small, its weighting factor, w
(l)
i = (|x(l)

i | + ε)−1 in the next minimization step is large,
which therefore pushes x

(l+1)
i to be small. This way the small entries in x are generally

pushed toward zero as far as the constraints on x allow, therefore yielding a sparse
solution.

From the above discussion, it is clear that (19) is a trade-off between the solution to the
least-squares problem and the solution to the weighted �1-norm problem. From now on, we
refer to (ALG) as the Sparse GEV algorithm, which is detailed in Algorithm 1.

Mach Learn (2011) 85:3–39 15

Algorithm 1 Sparse generalized eigenvalue algorithm
Require: A ∈ S

n, B ∈ S
n++, ε > 0 and ρ > 0

1: Choose τ ≥ max(0,−λmin(A))

2: Choose x(0) ∈ {x : xT Bx ≤ 1}
3: ρε = ρ

log(1+ε−1)

4: if τ = 0 then
5: if B = D(b) then
6: repeat
7: w

(l)
i = (|x(l)

i | + ε)−1

8: if ρε < 2 maxi |(Ax(l))i |(w(l)
i)−1 then

9:

x
(l+1)
i = [|(Ax(l))i | − ρε

2 w
(l)
i]+sign((Ax(l))i)

bi

√∑n

i=1 b−1
i [|(Ax(l))i | − ρε

2 w
(l)
i]2+

, ∀i

10: else
11:

x(l+1) = 0

12: end if
13: until convergence
14: else
15: repeat
16: w

(l)
i = (|x(l)

i | + ε)−1

17: if ρε < 2 maxi |(Ax(l))i |(w(l)
i)−1 then

18: (γ)i = |(Ax(l))i | − ρε

2 w
(l)
i

19: (s)i = sign((Ax(l))i), S = D(s)

20: λ(l+1) ∈ arg minλ

{
(γ + λ)T (SBS)+(γ + λ) : λ � 0

}

21:

x(l+1) = S(SBS)+(γ + λ(l+1))
√

(γ + λ(l+1))T (SBS)+(γ + λ(l+1))

22: else
23:

x(l+1) = 0

24: end if
25: until convergence
26: end if
27: else
28: repeat
29: w

(l)
i = (|x(l)

i | + ε)−1

30: W (l) = D(w(l))

31:

x(l+1) = arg min
x

{∥∥x − (τ−1A + I n)x
(l)

∥∥2

2
+ ρε

τ

∥∥W (l)x
∥∥

1
: xT Bx ≤ 1

}

32: until convergence
33: end if
34: return x(l)

16 Mach Learn (2011) 85:3–39

Choice of ρ, τ and ε To run Algorithm 1, ρ, τ and ε need to be chosen. Based on the
above discussion, although it is clear that ρ controls the sparsity of the solution output by
Algorithm 1, it is not possible to know a priori the value of ρ that will provide some desired
sparsity level. Therefore, in practice, Algorithm 1 is solved for a fixed set of ρ values that
are chosen a priori and the solution with desired cardinality is selected. Depending on the
specific sparse GEV under consideration, ρ may sometimes be selected in a different way.
For example, for supervised learning with FDA, the algorithm can be cross-validated over
the set of ρ values that was fixed a priori and the ρ that provides the smallest cross-validation
error may be selected. Since ρ is a free parameter, τ and ε can be set to any value (that
satisfies the constraints in Algorithm 1) and ρ can be tuned to obtain the desired sparsity as
mentioned above. However, it has to be noted that for a fixed value of ρ, increasing τ or ε

reduces sparsity.3 So, in practice τ is chosen to be max(0,−λmin(A)), ε to be close to zero
and ρ is set by searching for an appropriate value as discussed above.

Post-processing Suppose that Algorithm 1 outputs a solution, x∗ such that ‖x∗‖0 = k.
Can we say that x∗ is the optimal solution of (SGEV-P) among all x with cardinality k?
The following proposition provides a condition to check for the non-optimality of x∗. In
addition, it also presents a post-processing step (called variational renormalization) that
improves the performance of Algorithm 1. See Moghaddam et al. (2007b, Proposition 2) for
a similar result in the case of A ∈ S

n+ and B = I n.

Proposition 1 Suppose Algorithm 1 converges to a solution x∗ such that ‖x∗‖0 = k. Let z

be the sub-vector of x∗ obtained by removing the zero entries of x∗ and

uk = arg max
x

{xT Akx : xT Bkx = 1},

where Ak and Bk are submatrices of A and B defined by the same non-zero indices of x∗. If
z �= uk , then x∗ is not the optimal solution of (SGEV-P) among all x with the same sparsity
pattern as x∗ (and therefore, is not the optimal solution of (SGEV-P) among all x with
‖x‖0 = k). Nevertheless, by replacing the non-zero entries of x∗ with those of uk , the value
of the objective function in (SGEV-P) increases from [x∗]T Ax∗ to λ(Ak,Bk), its optimal
value among all x with the same sparsity pattern as x∗.

Proof Assume that x∗, the solution output by Algorithm 1, is the optimal solution of
(SGEV-P). Define v such that vi = 1{|x∗

i
|�=0}. Since x∗ is the optimal solution of (SGEV-P),

we have

x∗ = arg max
y

{
yT D(v)AD(v)y : yT D(v)BD(v)y = 1

}
,

which is equivalent to z = arg max{wT Akw : wT Bkw = 1} = uk and the result follows. Note
that λ(Ak,Bk) is the optimal value of (SGEV-P) among all x with the same sparsity pattern
as x∗. Therefore, if z = uk , then [x∗]T Ax∗ = λ(Ak,Bk). �

The variational renormalization suggests that given a solution (in our case, x∗ at the termi-
nation of Algorithm 1), it is almost certainly better to discard the loadings, keep only the

3Increasing ε increases the approximation error between ‖x‖0 and ‖x‖ε and therefore reduces sparsity. From

(19), it is clear that increasing τ reduces the weight on the term ‖W (l)x‖1, which means more importance is
given to reducing the approximation error, ‖x − (τ−1A + In)x(l)‖2

2, leading to a less sparse solution.

Mach Learn (2011) 85:3–39 17

sparsity pattern and solve the smaller unconstrained subproblem to obtain the final load-
ings, given the sparsity pattern. This procedure surely improves any continuous algorithm’s
performance.

In Algorithm 1, we mention that the iterative scheme is continued until convergence.
What does convergence mean here? Does the algorithm really converge? If it converges,
what does it converge to? Does it converge to an optimal solution of (SGEV-A)? To ad-
dress these questions, in the following section, we provide some convergence analysis of
Algorithm 1, using tools from global convergence theory (Zangwill 1969).

3.4 Convergence analysis

For an iterative procedure like Algorithm 1 to be useful, it must converge to point solutions
from all or at least a significant number of initialization states and not exhibit other nonlinear
system behaviors, such as divergence or oscillation. Global convergence theory of iterative
algorithms (Zangwill 1969) can be used to investigate this behavior. We mention up front
that this does not deal with proving convergence to a global optimum. Using this theory,
recently, Sriperumbudur and Lanckriet (2009) analyzed the convergence behavior of the
iterative linear majorization algorithm in (14) and showed that under certain conditions on
u and v, the algorithm in (14) is globally convergent, i.e., for any random initialization,
x(0), the sequence of iterates {x(l)}∞

l=0 converges to some stationary point—x∗ is said to
be stationary point of a constrained optimization problem if it satisfies the corresponding
Karush-Kuhn-Tucker (KKT) conditions (Bonnans et al. 2006, Sect. 13.3), which assuming
constraint qualification are necessary for the local optimality of x∗—of the d.c. program,
min{u(x) − v(x) : x ∈ Ω}. Since (ALG) is obtained by applying linear majorization to (9),
as shown in Sect. 3.3, the convergence analysis of (ALG) can be carried out by invoking
the results in Sriperumbudur and Lanckriet (2009). This results in Theorem 1, which states
that Algorithm 1 is globally convergent. This expresses, in a sense, the certainty that the
algorithm works. The rate of convergence remains an open problem and is the subject of
future work. It is important to stress the fact that global convergence does not imply (contrary
to what the term might suggest) convergence to a global optimum for all initial points x(0).
Based on Theorem 1, we also present the convergence analysis for some special cases of
Algorithm 1 in Corollaries 1–3. The proofs of all these results are provided in Appendix D.

Theorem 1 (Global convergence of sparse GEV algorithm) Let {x(l)}∞
l=0 be any sequence

generated by the sparse GEV algorithm in Algorithm 1. Then, all the limit points of {x(l)}∞
l=0

are fixed points of Algorithm 1, which are stationary points of the program in (SGEV-A),

ρε

n∑

i=1

log(ε + |x(l)
i |) − [x(l)]T Ax(l) → ρε

n∑

i=1

log(ε + |x∗
i |) − [x∗]T Ax∗ := L∗, (20)

for some fixed point x∗, ‖x(l+1) −x(l)‖ → 0, and either {x(l)}∞
l=0 converges or the set of limit

points of {x(l)}∞
l=0 is a connected and compact subset of S (L∗), where S (a) := {x ∈ S :

xT Ax − ρε

∑n

i=1 log(ε + |xi |) = −a} and S is the set of fixed points of Algorithm 1. If
S (L∗) is finite, then any sequence {x(l)}∞

l=0 generated by Algorithm 1 converges to some x∗
in S (L∗).

Having considered the convergence of Algorithm 1, we now consider the convergence of
some of its special cases. The following result shows that a simple iterative algorithm can be
obtained to compute the generalized eigenvector associated with λmax(A,B), when A ∈ S

n+.

18 Mach Learn (2011) 85:3–39

Corollary 1 Let A ∈ S
n+, τ = 0 and ρ = 0. Then, any sequence {x(l)}∞

l=0 generated by the
following algorithm

x(l+1) = B−1Ax(l)

√
[x(l)]T AB−1Ax(l)

, (21)

converges to some x∗ such that λmax(A,B) = [x∗]T Ax∗ and [x∗]T Bx∗ = 1.

Assuming B = I n, ρ = 0 and τ = 0, as a corollary to Corollary 1, the following result shows
that Algorithm 1 reduces to the power method for computing λmax(A), and the sequence of
iterates generated by Algorithm 1 converges to the eigenvector associated with λmax(A).

Corollary 2 (Power method) Let A ∈ S
n+, B = I n, τ = 0 and ρ = 0. Then Algorithm 1

is the power method for computing λmax(A), wherein any sequence {x(l)}∞
l=0 generated by

Algorithm 1 converges to some x∗ ∈ {x : ‖x‖2
2 = 1} such that λmax(A) = [x∗]T Ax∗.

Finally, Corollary 3 generalizes the above result for any A ∈ S
n with λmax(A) > 0, i.e., the

sequence of iterates generated by Algorithm 1 converges to the eigenvector associated with
λmax(A) for any A ∈ S

n with λmax(A) > 0, and not just for A ∈ S
n+.

Corollary 3 Let A ∈ S
n such that λmax(A) > 0. Assume B = I n and ρ = 0. Then, any

sequence {x(l)}∞
l=0 generated by Algorithm 1 converges to some x∗ ∈ {x : ‖x‖2

2 = 1} such
that λmax(A) = [x∗]T Ax∗.

In summary, in this section, we have presented our main contribution: a globally conver-
gent sparse GEV algorithm (Algorithm 1) which can handle any A ∈ S

n and B ∈ S
n++. In

the following section, we illustrate the potential of this general algorithm for some specific
instances of sparse GEV problems, corresponding to specific choices for A and B: sparse
PCA, sparse CCA and sparse FDA.

4 Experimental results

To illustrate the potential of the sparse GEV algorithm (Algorithm 1), suited for any ap-
plication that involves a specific instance of a sparse GEV problem, we present empirical
results for some of its special cases in this section. To this end, in Sect. 4.1, we choose
A ∈ S

n+, B = I n and τ = 0—a special case of (ALG-S)—to obtain a sparse PCA algorithm,
called DC-PCA, which is then compared to various other sparse PCA algorithms (that are
proposed in literature) on both benchmark and three high-dimensional gene datasets. Experi-
ments show that the performance of DC-PCA in terms of explained variance vs. cardinality,
as well as its computational efficiency compare well to the state-of-the-art amongst these
other algorithms. In Sect. 4.2, we choose A ∈ S

n (with A being indefinite as shown beneath
(3)) and B ∈ S

n++ to obtain a sparse CCA algorithm, which is evaluated for two sparse CCA
applications: cross-language document retrieval and vocabulary selection in music annota-
tion. In Sect. 4.3, we choose A ∈ S

n+ with rank(A) = 1 and B ∈ S
n++, which is the setting

of FDA (see (4)). Exploiting the special structure of A for FDA allows to propose a sparse
FDA algorithm that is more efficient than the general sparse GEV algorithm in Algorithm 1.
We also discuss its relation to feature selection in least squares SVMs (Suykens et al. 2002,
Chap. 3).

Mach Learn (2011) 85:3–39 19

Algorithm 2 Sparse PCA algorithm (DC-PCA)
Require: A ∈ S

n+, ε > 0 and ρ > 0
1: Choose x(0) ∈ {x : xT x ≤ 1}
2: ρε = ρ

log(1+ε−1)

3: repeat
4: w

(l)
i = (|x(l)

i | + ε)−1

5: if ρε < 2 maxi |(Ax(l))i |(w(l)
i)−1 then

6:

x
(l+1)
i = [|(Ax(l))i | − ρε

2 w
(l)
i]+sign((Ax(l))i)

√∑n

i=1[|(Ax(l))i | − ρε

2 w
(l)
i]2+

, ∀i

7: else
8:

x(l+1) = 0

9: end if
10: until convergence
11: return x(l)

4.1 Sparse principal component analysis

In this section, we consider sparse PCA as a special case of the sparse GEV algorithm,
presented in Sect. 3.3, for A ∈ S

n+ being a covariance matrix, B = I n and τ = 0, and call the
resulting algorithm DC-PCA (see Algorithm 2). Note that this is a special case of (ALG-S)
with bi = 1, ∀i. Since the computation of x(l+1), from x(l), involves computing Ax(l), which
has a complexity of O(n2), the DC-PCA algorithm has a per iteration complexity of O(n2).
Being a special case of Algorithm 1, which is a globally convergent algorithm, DC-PCA is
also globally convergent.

Before empirically comparing the performance of DC-PCA to other sparse PCA algo-
rithms that have been proposed in literature, we briefly discuss the prior work on sparse
PCA algorithms. The earliest attempts at “sparsifying” PCA consisted of simple axis ro-
tations and component thresholding (Cadima and Jolliffe 1995) for subset selection, often
based on the identification of principal variables (McCabe 1984). The first true computa-
tional technique, called SCoTLASS (Jolliffe et al. 2003), provided an optimization frame-
work using LASSO (Tibshirani 1996) by enforcing a sparsity constraint on the PCA solution
by bounding its �1-norm, leading to a non-convex procedure. Zou et al. (2006) proposed a
�1-penalized regression algorithm for PCA (called SPCA) using an elastic net (Zou and
Hastie 2005) and solved it efficiently using least angle regression (Efron et al. 2004). Subse-
quently, d’Aspremont et al. (2007) proposed a convex relaxation to the non-convex cardinal-
ity constraint for PCA (called DSPCA) leading to a SDP with a complexity of O(n4√logn).
Although this method shows performance comparable to SPCA on a small-scale benchmark
data set, it is not scalable for high-dimensional data sets, even possibly with Nesterov’s
first-order method (Nesterov 2005). Moghaddam et al. (2007b) proposed a combinatorial
optimization algorithm (called GSPCA) using greedy search and branch-and-bound meth-
ods to solve the sparse PCA problem, leading to a total complexity of O(n4) for a full set of
solutions (one for each target sparsity between 1 and n). d’Aspremont et al. (2008) formu-
lated a new SDP relaxation to the sparse PCA problem and derived a more efficient greedy
algorithm (compared to GSPCA) for computing a full set of solutions at a total numerical

20 Mach Learn (2011) 85:3–39

complexity of O(n3), which is based on the convexity of the largest eigenvalue of a symmet-
ric matrix. Recently, Journée et al. (2010) proposed a simple, iterative sparse PCA algorithm
(GPower�0) with a per iteration complexity of O(n2) and showed that it performs similar or
better than many of the above mentioned algorithms.

We now illustrate the effectiveness of DC-PCA in terms of sparsity and scalability
on various datasets by comparing to different approaches. On small datasets, the perfor-
mance of DC-PCA is compared against SPCA, DSPCA, GSPCA and GPower�0 , while on
large datasets, DC-PCA is compared to all these algorithms except DSPCA and GSPCA
due to scalability issues. Since GPower�0 has been compared to the greedy algorithm of
d’Aspremont et al. (2008) by Journée et al. (2010), wherein it is shown that these two al-
gorithms perform similarly except for the greedy algorithm being computationally more
complex, we do not include the greedy algorithm in our comparison. The results show that
the performance of DC-PCA is comparable to the performance of many of these algorithms,
with state-of-the-art scalability, i.e., comparable to GPower�0 . This competitive comparison
to the state-of-the-art for the special case of sparse PCA, which is a well-studied problem, il-
lustrates the potential of the general sparse GEV algorithm, proposed in this work, for other
instances of sparse GEV problems that have not been studied extensively. The experiments
in this paper are carried out on a Linux 3 GHz, 4 GB RAM workstation. On the implemen-
tation side, we fix ε to be the machine precision in all our experiments, which is motivated
from the discussion in Sect. 3.1.

4.1.1 Pit props data

The pit props dataset (Jeffers 1967) has become a standard benchmark example to test sparse
PCA algorithms. The first 6 principal components (PCs) capture 87% of the total variance.
Therefore, the explanatory power of sparse PCA methods is often compared on the first 6
sparse PCs.4 Table 1 shows the first 3 sparse PCs and their loadings for SPCA, DSPCA,
GSPCA, GPower�0 and DC-PCA. Using the first 6 sparse PCs, SPCA captures 75.8% of
the variance with a cardinality pattern of (7,4,4,1,1,1), which indicates the number of
non-zero loadings for the first to the sixth sparse PC, respectively. This results in a total
of 18 non-zero loadings for SPCA, while DSPCA captures 75.5% of the variance with a
sparsity pattern of (6,2,3,1,1,1), totaling 14 non-zero loadings. With a sparsity pattern
of (6,2,2,1,1,1) (total of only 13 non-zero loadings), DC-PCA, GSPCA and GPower�0

can capture 77.1% of the total variance. Comparing the cumulative variance and cumulative
cardinality, Figs. 1(a–b) show that DC-PCA explains more variance with fewer non-zero
loadings than SPCA and DSPCA. In addition, its performance is similar to that of GSPCA
and GPower�0 . For the first sparse PC, Fig. 1(c) shows that DC-PCA consistently explains
more variance with better sparsity than SPCA, while performing similar to other algorithms.
Figure 1(d) shows the variation of sparsity and explained variance with respect to ρ for the
first sparse PC computed with DC-PCA. This plot summarizes the method for setting ρ:
the algorithm is run for various ρ and the value of ρ that achieves the desired sparsity is
selected.

4The discussion so far dealt with computing the first sparse eigenvector (which we also call the “first sparse
PC”) of A. To compute the second sparse eigenvector (or “second sparse PC”), the matrix A is deflated with
the first sparse eigenvector (see Mackey 2009 for details) and the sparse PCA algorithm is applied again. In
general, subsequent sparse eigenvectors (or “sparse PCs”) are obtained by applying the sparse PCA algorithm
to a sequence of deflated matrices. In this paper, we use the orthogonalized Hotelling’s deflation, as mentioned
in Mackey (2009). More details can also be found in Sriperumbudur et al. (2007).

Mach Learn (2011) 85:3–39 21

Ta
bl

e
1

L
oa

di
ng

s
fo

r
fir

st
th

re
e

sp
ar

se
pr

in
ci

pa
lc

om
po

ne
nt

s
(P

C
s)

of
th

e
pi

tp
ro

ps
da

ta
.T

he
SP

C
A

an
d

D
SP

C
A

lo
ad

in
gs

ar
e

ta
ke

n
fr

om
Z

ou
et

al
.(

20
06

)
an

d
d’

A
sp

re
m

on
te

t
al

.(
20

07
)

re
sp

ec
tiv

el
y

PC
x

1
x

2
x

3
x

4
x

5
x

6
x

7
x

8
x

9
x

10
x

11
x

12
x

13

SP
C

A
1

−.
48

−.
48

0
0

.1
8

0
−.

25
−.

34
−.

42
−.

40
0

0
0

2
0

0
.7

9
.6

2
0

0
0

−.
02

0
0

0
.0

1
0

3
0

0
0

0
.6

4
.5

9
.4

9
0

0
0

0
0

−.
02

D
SP

C
A

1
−.

56
−.

58
0

0
0

0
−.

26
−.

10
−.

37
−.

36
0

0
0

2
0

0
.7

1
.7

1
0

0
0

0
0

0
0

0
0

3
0

0
0

0
0

−.
79

−.
61

0
0

0
0

0
.0

1

G
SP

C
A

1
.4

4
.4

5
0

0
0

0
.3

8
.3

4
.4

0
.4

2
0

0
0

2
0

0
.7

1
.7

1
0

0
0

0
0

0
0

0
0

3
0

0
0

0
0

.8
2

.5
8

0
0

0
0

0
0

G
Po

w
er

�
0

1
.4

4
.4

5
0

0
0

0
.3

8
.3

4
.4

0
.4

2
0

0
0

2
0

0
.7

1
.7

1
0

0
0

0
0

0
0

0
0

3
0

0
0

0
0

.8
2

.5
8

0
0

0
0

0
0

D
C

-P
C

A
1

.4
5

.4
6

0
0

0
0

.3
7

.3
3

.4
0

.4
2

0
0

0

2
0

0
.7

1
.7

1
0

0
0

0
0

0
0

0
0

3
0

0
0

0
0

.8
2

.5
8

0
0

0
0

0
0

22 Mach Learn (2011) 85:3–39

Fig. 1 (Color online) Pit props: (a) cumulative variance and (b) cumulative cardinality for the first 6 sparse
principal components (PCs); (c) proportion of explained variance (PEV) vs. cardinality for the first sparse
PC (obtained by varying the sparsity parameter and computing the cardinality and explained variance for
the solution vector); (d) dependence of sparsity (shown in red) and PEV (shown in brown) on ρ for the first
sparse PC computed with DC-PCA

4.1.2 Random test problems

In this section, we follow the experimental setup that is considered in Journée et al. (2010).
Throughout this section, we assume A = CT C, where C is a p × n random matrix whose
entries are generated according to a Gaussian distribution, with zero mean and unit variance.
In the following, we present the trade-off curves (proportion of explained variance vs. car-
dinality for the first sparse PC associated with A), computational complexity vs. cardinality
and computational complexity vs. problem size for various sparse PCA algorithms.

Trade-off curves Figure 2(a) shows the trade-off between the proportion of explained vari-
ance and the cardinality for the first sparse PC associated with A for various sparse PCA
algorithms. For each algorithm, the sparsity inducing parameter (k in the case of DSPCA
and GSPCA, and the regularization parameter in the case of SPCA, GPower�0 and DC-PCA)
is incrementally increased to obtain the solution vector with cardinality that decreases from
n to 1. The results displayed in Fig. 2(a) are averages of computations on 100 random ma-
trices with dimensions p = 100 and n = 300. It can be seen from Fig. 2(a) that DC-PCA
performs similar to DSPCA, GSPCA and GPower�0 , while performing better than SPCA.

Mach Learn (2011) 85:3–39 23

Fig. 2 Random test data: (a) (average) proportion of explained variance vs. cardinality for the first sparse PC
of A; (b) (average) computation time vs. cardinality. In (a), all the sparse PCA algorithms perform similarly
and better than SPCA. In (b), the complexity of GSPCA grows significantly with increasing cardinality of
the solution vector, while the speed of the other methods is almost independent of the cardinality

Table 2 Average computation time (in seconds) for the first sparse PC associated with A for a fixed regular-
ization parameter

p × n 100 × 1000 250 × 2500 500 × 5000 750 × 7500 1000 × 10000

SPCA 0.135 1.895 10.256 34.367 87.459

GPower�0 0.027 0.159 0.310 1.224 1.904

DC-PCA 0.034 0.151 0.301 1.202 1.913

Computational complexity vs. cardinality Figure 2(b) shows the average time required by
the sparse PCA algorithms to extract the first sparse PC of A with p = 100 and n = 300,
for varying cardinality. It is obvious from Fig. 2(b) that as the cardinality increases, GSPCA
tends to get slower while the speed of SPCA, GPower�0 and DC-PCA is not really affected
by the cardinality. We did not show the results of DSPCA in Fig. 2(b) as its computational
complexity is an order of magnitude (around 100 times) more than the scale on the vertical
axis of Fig. 2(b). Journée et al. (2010) have demonstrated that the greedy method proposed
by d’Aspremont et al. (2008) also exhibits the behavior of increasing computational com-
plexity with the increase in cardinality.

Computational complexity vs. problem size Figure 3 shows the average computation time
in seconds, required by various sparse PCA algorithms, to extract the first sparse PC of A,
for various problem sizes, n, where n is increased exponentially and p is fixed to 500. The
times shown are averages over 100 random instances of A for each problem size, where the
sparsity inducing parameters are chosen such that the solution vectors of these algorithms
exhibit comparable cardinality. It is clear from Fig. 3 that DC-PCA and GPower�0 scale bet-
ter to large-dimensional problems than the other algorithms. Since, on average, GSPCA and
DSPCA are much slower than the other methods, even for low cardinalities (see Fig. 2(b)),
we discard them from all the following numerical experiments that deal with large n.

For the remaining algorithms, SPCA, GPower�0 and DC-PCA, we run another round of
experiments, now examining the computational complexity with varying n and p but with
a fixed aspect ratio n/p = 10. The results are depicted in Table 2. Again, the corresponding

24 Mach Learn (2011) 85:3–39

Fig. 3 Average computation
time (seconds) for the first sparse
PC of A vs. problem size, n, over
100 randomly generated
matrices A

Table 3 Gene expression datasets

Dataset Samples (p) Genes (n) Reference

Colon cancer 62 2000 Alon et al. (1999)

Leukemia 38 7129 Golub et al. (1999)

Ramaswamy 127 16063 Ramaswamy et al. (2001)

regularization parameters are set in such a way that the solution vectors of these algorithms
exhibit comparable cardinality. The values displayed in Table 2 correspond to the average
running times of the algorithms on 100 random instances of A for each problem size. It
can be seen that our proposed method, DC-PCA, is comparable to GPower�0 and faster than
SPCA.

4.1.3 Gene expression data

Gene expression data from DNA microarrays provides the expression level of thousands of
genes across several hundreds or thousands of experiments. To enhance the interpretation
of these large data sets, sparse PCA algorithms can be applied, to extract sparse principal
components that involve only a few genes.

Datasets Usually, gene expression data is specified by a p×n matrix (say C) of p samples
and n genes. The covariance matrix, A is therefore computed as CT C. In our experiments,
we consider three gene expression datasets which are tabulated in Table 3. The colon cancer
dataset (Alon et al. 1999) consists of 62 tissue samples (22 normal and 40 cancerous) with
the gene expression profiles of n = 2000 genes extracted from DNA microarray data. Its first
principal component explains 44.96% of the total variance. The leukemia dataset (Golub et
al. 1999) consists of a training set of 38 samples (27 ALL and 11 AML, two variants of
leukemia) from bone marrow specimens and a test set of 34 samples (20 ALL and 14 AML).
This dataset has been used widely in classification settings where the goal is to distinguish
between two variants of leukemia. All samples have 7129 features, each of which corre-
sponds to a normalized gene expression value extracted from the microarray image. The

Mach Learn (2011) 85:3–39 25

Fig. 4 Trade-off curves between explained variance and cardinality for (a) colon cancer, (b) leukemia and
(c) Ramaswamy datasets. The proportion of variance explained is computed on the first sparse principal
component. (a–c) show that DC-PCA performs similar to GPower�0 , while explaining more variance (for a
fixed cardinality) than SPCA

first principal component explains 87.64% of the total variance. The Ramaswamy dataset
has 16063 genes and 127 samples, its first principal component explaining 76.5% of the
total variance.

The high dimensionality of these datasets makes them suitable candidates for studying
the performance of sparse PCA algorithms, by investigating their ability to explain variance
in the data based on a small number of genes, to obtain interpretable results. Since DSPCA
and GSPCA are not scalable for these large datasets, in our study, we compare DC-PCA to
SPCA and GPower�0 .

Trade-off curves Figures 4(a–c) show the proportion of explained variance versus the car-
dinality for the first sparse PC for the datasets shown in Table 3. It can be seen that DC-PCA
performs similar to GPower�0 and performs better than SPCA.

Computational complexity The average computation time required by the sparse PCA
algorithms on each dataset is shown in Table 4. The indicated times are averages over n

computations, one for each cardinality ranging from n down to 1. The results show that DC-
PCA and GPower�0 are significantly faster than SPCA, which, for a long time, was widely
accepted as the algorithm that can handle large datasets.

26 Mach Learn (2011) 85:3–39

Table 4 Computation time (in seconds) to obtain the first sparse PC, averaged over cardinalities ranging
from 1 to n, for the colon cancer, leukemia and Ramaswamy datasets

Colon cancer Leukemia Ramaswamy

n 2000 7129 16063

SPCA 2.057 3.548 38.731

GPower�0 0.182 0.223 2.337

DC-PCA 0.034 0.156 0.547

Overall, the results in this section demonstrate that DC-PCA performs similar to or bet-
ter than various sparse PCA algorithms proposed in literature, both in terms of scalability
and proportion of variance explained vs. cardinality. As mentioned before, DC-PCA (see
Algorithm 2) is a special instance of a more general framework (see Algorithm 1), that can
be used to address other sparse generalized eigenvalue problems as well, e.g., sparse CCA,
sparse FDA, etc., whereas most other sparse PCA algorithms cannot be readily extended to
these other settings.

4.2 Sparse canonical correlation analysis

In this section, we consider sparse CCA as a special case of the sparse GEV algorithm and
present two CCA applications where sparsity is helpful. We call our sparse CCA algorithm
DC-CCA, where A and B are determined from the covariance and cross-covariance matri-
ces as explained right below (3). Note that A is indefinite and, therefore, in our experiments,
we choose τ = −λmin(A) in Algorithm 1. In the following, we present two sparse CCA ap-
plications, one related to the task of cross-language document retrieval and the other dealing
with semantic annotation and retrieval of music (Torres et al. 2007a, 2007b).

4.2.1 Cross-language document retrieval

The problem of cross-language document retrieval involves a collection, {Di}N
i=1 of doc-

uments, with each document being represented in different languages, say English and
French. The goal of the task is, given a query string in one language, retrieve the most
relevant document(s) in the target language. The first step is to obtain a semantic represen-
tation of the documents in both languages, which models the correlation between translated
versions, so we can detect similarities in content between the two document spaces (one
for English and the other for French). This is exactly what CCA does by finding a low-
dimensional representation in both languages, with maximal correlation between them. Vi-
nokourov et al. (2003) used CCA to address this problem and showed that the CCA approach
performs better than the latent semantic indexing approach used by Littman et al. (1998).
CCA provides an efficient basis representation (that captures the maximal correlation) for
the two document spaces.

Using a bag-of-words representation for the documents, sparse CCA would allow to find
a low-dimensional model based on a small subset of words in both languages. This would
improve the interpretability of the model and could identify small subsets of words that are
used in similar contexts in both languages and, possibly, are translations of one another. Rep-
resenting documents by their similarity to all other documents (e.g., by taking inner products

Mach Learn (2011) 85:3–39 27

of bag-of-word vectors, as explained below), sparse CCA would create a low-dimensional
model that only requires to measure the similarity for a small subset of the training doc-
uments. This would immediately improve storage requirements and the efficiency of re-
trieval computations. In this study, we follow the second approach, representing documents
by their similarity to all other training documents by applying a linear kernel function to
a binary bag-of-words representation of the documents, as proposed in Vinokourov et al.
(2003). This will illustrate how we can achieve significant sparsity without significant loss
of retrieval performance.

More specifically, each version of a document (English or French) is modeled using
a bag-of-words feature vector. Within a feature vector, we associate an element in {0,1}
with each word wi in its language vocabulary. A value of 1 indicates that wi is found in
the document. We collect the feature vectors into the n × p matrix E, where we collect the
English feature vectors, and the n×q matrix F , where we collect the French feature vectors.
n is the number of documents and p and q are the vocabulary sizes of E and F respectively.
Computing the similarity between English documents as the inner product between their
binary bag-of-words vectors (i.e., the rows of E) results in computing an n × n data matrix
EET . Similarly, we compute an n×n data matrix FF T and obtain two feature spaces which
are both n-dimensional.

By applying sparse CCA, we effectively perform simultaneous feature selection across
two vector spaces and characterize the content of and correlation between English and
French documents in an efficient manner. We use the DC-CCA algorithm, using the covari-
ance and cross-variance matrices associated with the document matrices EET and FF T and
obtain successive pairs of sparse canonical components which we stack into the columns of
V E and V F . Subsequent pairs of these sparse canonical components are obtained by deflat-
ing EET and FF T with respect to previous canonical components. For a detailed review
on deflation, we refer the reader to Shawe-Taylor and Cristianini (2004).

Then, given a query document in an input language, say English, we convert the query
into the appropriate feature vector, qE . We project qE onto the subspace spanned by the
sparse canonical components in the English language space by computing V T

EqE .5 Simi-
larly, we project all the French documents onto the subspace spanned by the sparse canon-
ical components, V F associated with the French language. Finally, we perform document
retrieval by selecting those French documents whose projections are closest to the projected
query, where we measure distance in a nearest neighbor sense.

Experimental details The data set used was the Aligned Hansards of the 36th Parliament of
Canada (Germann 2001), which is a collection of 1.3 million pairs of text chunks (sentences
or smaller fragments) aligned into English and French translations. The text chunks are split
into documents based on ∗ ∗ ∗ delimiters. After removing stop words and rare words (those
that occur less than 3 times), we are left with an 1800 × 26328 English document-by-term
matrix and a 1800 × 30167 French matrix. Computing EET and FF T results in matrices
of size 1800 × 1800.

To generate a query, we select English test documents from a test set not used for train-
ing. The appropriate retrieval result is the corresponding French language version of the
query document. To perform retrieval, the query and the French test documents are pro-
jected onto the sparse canonical components and retrieval is performed as described before.
Table 5 shows the performance of DC-CCA (sparse CCA) against CCA. We measure our

5Notice how this projection, onto the sparse canonical components, only requires to compute a few elements
of qE , i.e., the ones corresponding to the non-zero loadings of the sparse canonical components; differently
said, we only need to compute the similarity of the query document to a small subset of all training documents.

28 Mach Learn (2011) 85:3–39

Table 5 Average area under the ROC curve (in %) using CCA and sparse CCA (DC-CCA) in a cross-
language document retrieval task. d represents the number of canonical components and sparsity represents
the percentage of zero loadings in the canonical components

d 100 200 300 400 500

CCA 99.92 99.93 99.96 99.95 99.93

DC-CCA 95.72 97.57 98.45 98.75 99.04

Sparsity 87.15 87.56 87.95 88.21 88.44

results using the average area under the ROC curve (average AROC). The results in Table 5
are shown in percentages. To go into detail, for each test query we generate an ROC curve
from the ranked retrieval results. Results are ranked according to their projected feature
vector’s Euclidean distance from the query. The area under this ROC curve is used to mea-
sure performance. For example, if the first returned document was the most relevant (i.e.,
the corresponding French language version of the query document) this would result in an
ROC with area under the curve (AROC) of 1. If the most relevant document came in above
the 75th percentile of all documents, this would lead to an AROC of 0.75, and so on. So,
we’re basically measuring how highly the corresponding French language document ranks
in the retrieval results. For a collection of queries we take the simple average of each query’s
AROC to obtain the average AROC. An average AROC of 1 is best, a value of 0.5 is as good
as chance.

In Table 5, we compare retrieval using sparse CCA to regular CCA. For sparse CCA,
we use a sparsity parameter that leads to loadings that are approximately 10% of the full
dimensionality, i.e., the canonical components are approximately 90% sparse. We note that
sparse CCA is able to achieve good retrieval rates, only slightly sacrificing performance
compared to regular CCA. This is the key result of this section: we can achieve performance
close to regular CCA, by using only about 12% of the number of loadings (i.e., documents)
required by regular CCA. This shows that sparse CCA can narrow in on the most informa-
tive dimensions exhibited by data and can be used as an effective dimensionality reduction
technique.

In summary, Torres et al. (2007a) illustrates that vocabulary selection using sparse CCA
significantly improves the retrieval performance of a computer audition system (by effec-
tively removing noisy words), outperforming a random baseline and a human agreement
heuristic.

4.2.2 Vocabulary selection for music information retrieval

In this section we provide a short summary of the results in Torres et al. (2007a), which
nicely illustrate how sparse CCA can be used to improve the performance of a statistical
musical query application, by identifying problematic query words and eliminating them
from the model. The application involves a computer audition system (Turnbull et al. 2008)
that can annotate songs with semantically meaningful words or tags (such as, e.g., rock or
mellow), or retrieve songs from a database, based on a semantic query. This system is based
on a joint probabilistic model between words and acoustic signals, learned from a training
data set of songs and song tags. “Noisy” words, that are not or only weakly related to the
musical content, will decrease the system’s performance and waste computational resources.
Sparse CCA is employed to prune away those noisy words and improve the system’s perfor-
mance.

Mach Learn (2011) 85:3–39 29

Fig. 5 Comparison of
vocabulary selection techniques
for music retrieval

The details of this experiment are beyond the scope of this work and can be found in
Torres et al. (2007a). In short, each song from the CAL-500 dataset6 is represented in two
different spaces: in a semantic space, based on a bag-of-words representation of a song’s
semantic tags, and in an audio space, based on Mel-frequency cepstral coefficients (Mckin-
ney 2003) extracted from a song’s audio content. This representation allows sparse CCA to
identify a small subset of words spanning a semantic subspace that is highly correlated with
audio content. In Fig. 5, we use sparse CCA to generate a sequence of vocabularies of pro-
gressively smaller size, ranging from full size (containing about 180 words) to very sparse
(containing about 20 words), depicted on the horizontal axis. For each vocabulary size, the
computer audition system is trained and the average area under the receiver operating char-
acteristic curve (AROC) is shown on the vertical axis, measuring its retrieval performance
on an independent test set. The AROC (ranging between 0.5 for randomly ranked retrieval
results and 1.0 for a perfect ranking) initially clearly improves, as sparse CCA (DC-CCA)
generates vocabularies of smaller size: it is effectively removing noisy words that are detri-
mental for the system’s performance. Also shown in Fig. 5 are the results of training the
music retrieval system based on two alternative vocabulary selection techniques: random
selection (offering no improvement) and a heuristic that eliminates words exhibiting less
agreement amongst the human subjects that were surveyed to collect the CAL-500 dataset
(only offering a slight improvement, initially).

4.3 Sparse fisher discriminant analysis

In this section, we show that the FDA problem is an interesting special case of the GEV
problem and that the special structure of A allows the sparse FDA problem to be solved
more efficiently than the general sparse GEV problem.

Let us consider the GEV problem in (GEV-P) with A ∈ S
n+, B ∈ S

n++ and rank(A) = 1.
This is exactly the FDA problem as shown in (4) where A is of the form A = aaT , with a =
(μ1 − μ2) ∈ R

n. The corresponding GEV problem, written as λmax(A,B) = max{(aT x)2 :
xT Bx = 1}, can be posed as a minimization problem as shown by the following result.

6The CAL-500 data set consists of a set of songs, annotated with semantic tags, obtained by conducting
human surveys. More details can be found in Turnbull et al. (2008).

30 Mach Learn (2011) 85:3–39

Proposition 2 Suppose x1 is the solution to

max
x

{
(aT x)2 : xT Bx = 1

}
, (22)

and x2 is the solution to

min
x

{
xT Bx : aT x = 1

}
. (23)

Then

x1 = x2

√
aT B−1a. (24)

Proof Consider max{(aT x)2 : xT Bx = 1}, whose Lagrangian is given as L1(x, λ1) =
(aT x)2 −λ1(x

T Bx −1), where λ1 > 0 is the Lagrange multiplier. Differentiating L1 w.r.t. x
and setting to it zero gives aaT x = λ1Bx, i.e., x = λ−1

1 (aT x)B−1a. Note that aT x deter-
mines the scale of x and does not determine its direction. Therefore, let x = cB−1a, where
c ∈ R is chosen such that xT Bx = 1, which gives x1 = (aT B−1a)− 1

2 (B−1a).
On the other hand, the Lagrangian of min{xT Bx : aT x = 1} is given by L2(x, λ2) =

xT Bx −λ2(a
T x − 1), where λ2 ∈ R is the Lagrangian multiplier. Differentiating L2 w.r.t. x

and setting it to zero gives x = λ2
2 B−1a, where λ2 is chosen by setting aT x = 1, therefore

yielding x2 = (aT B−1a)−1B−1a. The result in (24) follows. �

The above result shows that the solutions to (22) and (23) are the same except for scale.
Therefore, instead of considering (22), we will consider its equivalent minimization formu-
lation in (23), the advantage of which will become clear when we consider its sparse version,
i.e., after introducing the constraint {x : ‖x‖0 ≤ k} in (23). Clearly, introducing the sparsity
constraint in (23) makes it intractable. However, introducing an �1-norm relaxation in this
formulation gives rise to a convex program,

min
x

{
xT Bx : aT x = 1, ‖x‖1 ≤ k

}
, (25)

more specifically a quadratic program (QP). On the other hand, as discussed in Sect. 3, the
�1-norm relaxation to the cardinality constraint, when used in (22), does not convexify the
problem (and a convex approximation requires additional relaxation, e.g., as discussed in
Appendix A). Therefore, the formulation in (23) is better suited to introduce sparsity than
the one in (22).

Suppose that one would like to use a better approximation to ‖x‖0 than ‖x‖1, for sparse
FDA. Using the approximation to ‖x‖0 we consider in this work, the sparse version of (23),
given by

min
x

{
xT Bx + ν‖x‖0 : aT x = 1

}
, (26)

is approximated as

min
x

{

xT Bx + νε

n∑

i=1

log(ε + |xi |) : aT x = 1

}

, (27)

where (26) is the regularized version of min{xT Bx : aT x = 1, ‖x‖0 ≤ k}, ν > 0 is the reg-
ularization parameter and νε := ν/ log(1 + ε−1). Note that (27) can be written as a d.c. pro-
gram and therefore, applying the MM method (see Example 1) to (27) results in the follow-
ing iterative scheme,

Mach Learn (2011) 85:3–39 31

x(l+1) = arg min
x

{

xT Bx + νε

n∑

i=1

|xi |
|x(l)

i | + ε
: aT x = 1

}

, (28)

which is a sequence of QPs.7 In this case, Algorithm 1 would solve a sequence of QPs as
well (since A ∈ S

n+, we can have τ = 0).
Suykens et al. (2002, Sect. 3.3) and Mika et al. (2001, Proposition 1) have shown connec-

tions between the FDA formulation in (23) with a = μ1 − μ2 and B = Σ1 + Σ2 (see para-
graph below (4) for details) and least squares SVMs8 (classifiers that minimize the squared
loss, see Chap. 3 in Suykens et al. 2002). Therefore, sparse FDA is equivalent to feature
selection with least squares SVMs, i.e., (25) is equivalent to LASSO, while the formulation
in (27) is similar to the one considered in Weston et al. (2003). Since these are well studied
problems, we do not pursue further showing the numerical performance of sparse FDA.

5 Conclusion and discussion

This work presents a general, efficient algorithm that allows to obtain sparse solutions to a
generalized eigenvalue problem. After proposing a non-convex but tight approximation to
the cardinality constraint, we formulate the resulting optimization problem as a d.c. program
and derive an iterative algorithm, based on the majorization-minimization method. This re-
sults in solving a sequence of quadratically constrained quadratic programs, an algorithm
which exhibits global convergence behavior, as we show. To empirically demonstrate the
merit of this general framework, specific versions of the proposed algorithm are derived for
some special cases, like, e.g., sparse PCA (DC-PCA) and sparse CCA (DC-CCA). For the
special case of sparse PCA, we experimentally demonstrate on both benchmark and real-life
datasets of varying dimensionality that DC-PCA has performance and scalability similar to
the state-of-the-art for sparse PCA, while being derived from a more general framework
that can readily be extended to other sparse generalized eigenvalue problems, unlike other
sparse PCA algorithms. For the setting of sparse CCA, we illustrate the benefits of DC-CCA
in two applications: cross-language document retrieval and vocabulary selection for music
information retrieval.

The proposed algorithm does not allow to set the regularization parameter a priori, to
guarantee a given sparsity level. SDP-based relaxation methods (see Appendix A), on the
other hand, are better suited to achieve a given sparsity level in one shot, by incorporating an
explicit constraint on the sparsity of the solution (although, eventually, through relaxation,
an approximation of the original problem is solved). Since the algorithm we propose solves
a LASSO problem in each step but with a quadratic constraint, in future work, we will
explore a modified version of path following techniques like least angle regression (Efron et
al. 2004) to learn the entire regularization path.

Another topic for future work is to study the behavior of the solution obtained for
(SGEV-A), compared to that of (SGEV-R) as ε → 0. As mentioned in Sect. 3.1, at present,
we do not have any theoretical guarantees about the behavior of xε or Qε(xε) as ε → 0. In

7Although (28) is not a QP in standard form, it can be reformulated as the following standard QP:

z(l+1) = arg minz{zT Cz + bT z : eT z = 1, Fz � 0}, where z := [xT yT]T , C = [B 0
0 0

]
, b = [0

νεG−11

]
,

F = [In −In

−In −In

]
, G = D(y(l) + ε) and e = [a

0

]
. Here, yi are the auxiliary variables introduced for |xi | (see

Boyd and Vandenberghe 2004, Chap. 4). Therefore, for simplicity, we refer to (28) as a QP.
8Here, we mean the linear classifier case and not the kernelized version.

32 Mach Learn (2011) 85:3–39

future work, we would like to study in detail the conditions under which Qε(xε) → Q(̂x)

as ε → 0 (see Sect. 3.1 for details on the notation).

Acknowledgements The authors thank the editors and reviewers for their constructive comments. B.K.S.
thanks Suvrit Sra for helpful discussions while the former was an intern at the Max Planck Institute for Biolog-
ical Cybernetics, Tübingen. The authors wish to acknowledge support from the National Science Foundation
(grant DMS-MSPA 0625409), the Fair Isaac Corporation and the University of California MICRO program.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommer-
cial License which permits any noncommercial use, distribution, and reproduction in any medium, provided
the original author(s) and source are credited.

Appendix A: Semidefinite programming relaxation for (SGEV-P)

Let us consider the following approximate program that is obtained by relaxing the non-
convex constraint set {x : xT Bx = 1} ∩ {‖x‖0 ≤ k} in (SGEV-P):

max
x

{xT Ax : xT Bx ≤ 1, ‖x‖1 ≤ k}. (29)

As mentioned before, this program is still intractable due to the maximization of the non-
concave objective. Had the objective function been linear, (29) would have been a canonical
convex program, which could then be solved efficiently. One approach to linearize the ob-
jective function is by using the lifting technique (Lemaréchal and Oustry 1999, Sect. 4.4),
which was considered by d’Aspremont et al. (2005) when A ∈ S

n+ and B = I n. The lifted
version of (29) is given by,

max
X,x

{tr(XA) : tr(XB) ≤ 1, ‖x‖1 ≤ k, X = xxT }.

Note that in the above program, the objective function is linear in X, and the constraints are
convex except for the non-convex constraint, X = xxT .9 Relaxing X = xxT to X − xxT ∈
S

n+ results in the following program

max
X,x

{tr(XA) : tr(XB) ≤ 1, ‖x‖1 ≤ k, X − xxT ∈ S
n
+}, (30)

which is a semidefinite program (SDP). The �1-norm constraint in (30) can be relaxed as
‖x‖2

1 ≤ k2 ⇒ 1T |X|1 ≤ k2 so that the problem reduces to solving only for X. Here [|X|]ij =
|[X]ij |. Therefore, we have obtained a tractable convex approximation to (SGEV-P).

Although (30) is a convex approximation to (SGEV-P), it is computationally very in-
tensive as general purpose interior-point methods for SDP scale as O(n6 log ε−1), where ε

is the required accuracy on the optimal value. For large-scale problems, first-order meth-
ods (Nesterov 2005; d’Aspremont et al. 2007) can be used which scale as O(ε−1n4√logn).
Therefore, the SDP-based convex relaxation to (SGEV-P) is prohibitively expensive in com-
putation for large n.

9X = xxT ⇔ X ∈ S
n+, rank(X) = 1, where rank(X) = 1 is a non-convex constraint and therefore X = xxT

is a non-convex constraint.

Mach Learn (2011) 85:3–39 33

Appendix B: Approximation to ‖x‖0

In Sect. 3.1, we approximated ‖x‖0 by

‖x‖ε :=
n∑

i=1

log(1 + |xi |ε−1)

log(1 + ε−1)
.

We now show that ‖x‖ε is a tighter approximation to ‖x‖0 than ‖x‖1, for any ε > 0. To

this end, let us define aε := log(1+aε−1)

log(1+ε−1)
, where a ≥ 0, so that ‖x‖ε = ∑n

i=1 |xi |ε . Note that
‖x‖0 = limε→0 ‖x‖ε and

lim
ε→∞‖x‖ε = lim

h→0

n∑

i=1

log(1 + |xi |h)

log(1 + h)

(a)=
n∑

i=1

lim
h→0

|xi |(1 + h)

(1 + h|xi |) =
n∑

i=1

|xi | = ‖x‖1,

where we have invoked L’Hôpital’s rule in (a). In addition, we have a > aε1 > aε2 > · · · > 1
for a > 1 and 1 > · · · > aε2 > aε1 > a for 0 < a < 1, if ε1 > ε2 > · · · , i.e., for any a > 0 and
any 0 < ε < ∞, the value aε is closer to 1 than a is to 1. This means aε for any 0 < ε < ∞
is a better approximation to 1{a �=0} than a is to 1{a �=0}. Therefore, ‖x‖ε for any 0 < ε < ∞ is
a better approximation to ‖x‖0 than ‖x‖1 is to ‖x‖0.

Appendix C: Derivation of (ALG-R) and (ALG-S)

Let A ∈ S
n+ and B ∈ S

n++. Using τ = 0 in (ALG), we have that x(l+1) is a maximizer of the
following program:

max
xT Bx≤1

xT Ax(l) − ρε

2

∥∥W (l)x
∥∥

1
= max

xT Bx≤1

n∑

i=1

[
xi(Ax(l))i − ρε

2
w

(l)
i |xi |

]

= max
xT Bx≤1

n∑

i=1

|xi |
[
(Ax(l))isign(xi) − ρε

2
w

(l)
i

]

(a)= max
zT SBSz≤1,z�0

n∑

i=1

zi

(∣∣(Ax(l))i

∣∣ − ρε

2
w

(l)
i

)
, (31)

where xi = sizi , zi ≥ 0 is used in (a) with si := (s)i = sign((Ax(l))i) and S := D(s). Note
that SBS ∈ S

n+. Define γi := (γ)i = |(Ax(l))i | − ρε

2 w
(l)
i . Then, we have

x(l+1) = Sz(l+1), (32)

where z(l+1) is an optimizer of

max
z

{
γ T z : zT SBSz ≤ 1, z � 0

}
. (33)

If ρε > 2 maxi |(Ax(l))i |(w(l)
i)−1, then γ ≺ 0 and, therefore, z(l+1) = 0 is the unique op-

timizer of (33). This implies x(l+1) = 0 is the unique optimal solution of (ALG). For
ρε = 2 maxi |(Ax(l))i |(w(l)

i)−1, all the elements of γ are negative except for one or more
that are zero, i.e., γj = 0 for j ∈ arg maxi |(Ax(l))i |(w(l)

i)−1 and γi < 0, i �= j . So, we have

34 Mach Learn (2011) 85:3–39

(z(l+1))i = 0, i �= j , while any (z(l+1))j ≥ 0 is optimal as long as zT SBSz ≤ 1. Apart from
the uninteresting case ρε = 0 and x(l) = 0, having ρε = 2 maxi |(Ax(l))i |(w(l)

i)−1 is clearly
rather hypothetical, as ρε is a positive real number chosen by the user, and having γj = 0
(and thus many (z(l+1))j ≥ 0 optimal) for multiple j even more hypothetical. Therefore,
and since 0 is a solution of (ALG) when ρε = 2 maxi |(Ax(l))i |(w(l)

i)−1, we set x(l+1) = 0
as the optimal solution of (ALG) for ρε ≥ 2 maxi |(Ax(l))i |(w(l)

i)−1, when implementing a
practical algorithm (e.g., Algorithms 1 and 2).

Let ρε < 2 maxi |(Ax(l))i |(w(l)
i)−1. Consider the Lagrangian of (33):

L(z, b,λ) = −γ T z + b(zT SBSz − 1) − λT z,

where b ≥ 0 and λ � 0. Differentiating L w.r.t. z and setting it zero gives

z(l+1) = (SBS)+(γ + λ)

2b
, (34)

where C+ represents the Moore-Penrose pseudoinverse of C. Substituting for z(l+1) in L

gives the following dual program:

min
b,λ

{
b + 1

4b
(λ + γ)T (SBS)+(λ + γ) : b ≥ 0, λ � 0

}
. (35)

Solving (35) w.r.t. b gives

b = 1

2

√
(γ + λ)T (SBS)+(γ + λ), (36)

which satisfies the constraint, b ≥ 0, as (SBS)+ ∈ S
n+. We show that b > 0. For this, let I :=

{i : si �= 0}. Note that for i /∈ I , ((SBS)+)ij = 0, ∀j , which means (γ + λ)T (SBS)+(γ +
λ) = ∑

i,j∈I (γi + (λ)i)(γj + (λ)j)((SBS)+)ij . Let η : I → {1, . . . , |I|} be a bijective map.

By defining (γ̄)η(i) := (γ)i , i ∈ I , (λ̄)η(i) := (λ)i , i ∈ I , (s̄)η(i) = si, i ∈ I , S̄ = D(s̄) and
(B̄)η(i),η(j) = B ij , i, j ∈ I , we have that (γ +λ)T (SBS)+(γ +λ) = (γ̄ + λ̄)T (S̄B̄S̄)−1(γ̄ +
λ̄) = (γ̄ + λ̄)T S̄B̄

−1
S̄(γ̄ + λ̄). Suppose b = 0. This means γ̄ + λ̄ = 0 as S̄B̄

−1
S̄ ∈ S

|I|
++ (since

B ∈ S
n++ and thus B̄ ∈ S

|I|
++), and, therefore, λ̄ = −γ̄ . However, this violates the constraint

λ̄ � 0 because our assumption of ρε < 2 maxi |(Ax(l))i |(w(l)
i)−1 implies that there exists

i ∈ {1, . . . , |I|} such that (γ̄)i > 0 (since (γ)j ≤ 0 for j /∈ I). Therefore, b > 0. Substituting
(36) in (35) yields

λ(l+1) ∈ arg min
λ

{
(γ + λ)T (SBS)+(γ + λ) : λ � 0

}
. (37)

From the above analysis, it is clear that λ̄
(l+1)

is uniquely computed as

λ̄
(l+1) = arg min

λ̄

{
(γ̄ + λ̄)T S̄B̄

−1
S̄(γ̄ + λ̄) : λ̄ � 0

}
,

because S̄B̄
−1

S̄ ∈ S
|I|
++ and, therefore, the objective is strictly convex in λ̄, while (λ(l+1))i ,

i /∈ I cannot be uniquely computed. Combining (32), (34), (36) and (37), we have

x(l+1) = S(SBS)+(γ + λ(l+1))
√

(γ + λ(l+1))T (SBS)+(γ + λ(l+1))
. (38)

Mach Learn (2011) 85:3–39 35

Although (λ(l+1))i , i /∈ I cannot be uniquely computed, (x(l+1))i , i /∈ I is uniquely deter-
mined as zero because of the pre-multiplication by S. Therefore, x(l+1) is the unique opti-
mizer of (31), as shown in (ALG-R).

If B is a diagonal matrix, i.e., B = D(b) with b = (b1, . . . , bn) � 0, then (37) reduces to

λ(l+1) = arg min
λ

{
∑

i∈I

(γi + (λ)i)
2

bi

: λ � 0

}

.

It is easy to see that (λ(l+1))i = [−γi]+, ∀ i ∈ I , where [a]+ := max(0, a). Substituting this
in (38) yields

x
(l+1)
i = si[γi]+

bi

√∑n

i=1 b−1
i [γi]2+

,

as shown in (ALG-S).

Appendix D: Proofs of results in Sect. 3.4

In this section, we present the proofs of Theorem 1 and Corollaries 1–3.
The proof of Theorem 1 is based on a result due to Sriperumbudur and Lanckriet (2009),

which is mentioned as Theorem 2 below. In order to understand this result, we introduce
some notation and terminology as follows.

The convergence analysis of an iterative procedure like Algorithm 1 uses the notion of a
set-valued mapping, or point-to-set mapping, which is central to the theory of global con-
vergence. A point-to-set map Ψ from a set X into a set Y is defined as Ψ : X → P(Y),
which assigns a subset of Y with each point of X, where P(Y) denotes the power set of Y .
Ψ is said to be uniformly compact on X if there exists a compact set H independent of x

such that Ψ (x) ⊂ H for all x ∈ X. Note that if X is compact, then Ψ is uniformly compact
on X. A fixed point of the map Ψ : X → P(X) is a point x for which {x} = Ψ (x).

Many iterative algorithms in mathematical programming can be described using the no-
tion of point-to-set maps. Let X be a set and x0 ∈ X a given point. Then an algorithm,
A, with initial point x0 is a point-to-set map A : X → P(X) which generates a sequence
{xk}∞

k=1 via the rule xk+1 ∈ A(xk), k = 0,1, A is said to be globally convergent if for any
chosen initial point x0, the sequence {xk}∞

k=0 generated by xk+1 ∈ A(xk) (or a subsequence)
converges to a point for which a necessary condition of optimality holds: the Karush-Kuhn-
Tucker (KKT) conditions in the case of constrained optimization and stationarity in the case
of unconstrained optimization.

We now state the convergence result for (14) by Sriperumbudur and Lanckriet (2009),
using which we provide the proof of Theorem 1.

Theorem 2 (Sriperumbudur and Lanckriet 2009) Consider the program,

min{u(x) − v(x) : x ∈ Ω}, (DC)

where Ω = {x : ci(x) ≤ 0, i ∈ [m], dj (x) = 0, j ∈ [p]} and [m] := {1, . . . ,m}. Let u and v

be strictly convex, differentiable functions defined on R
n. Also assume ∇v is continuous. Let

{ci} be differentiable convex functions and {dj } be affine functions on R
n. Suppose (DC) is

solved iteratively as x(l+1) ∈ Adc(x
(l)), where Adc is the point-to-set map defined as

Adc(y) = arg min
x∈Ω

u(x) − xT ∇v(y). (DC-ALG)

36 Mach Learn (2011) 85:3–39

Let {x(l)}∞
l=0 be any sequence generated by Adc defined by (DC-ALG). Suppose Adc is uni-

formly compact on Ω and Adc(x) is nonempty for any x ∈ Ω . Then, assuming suitable
constraint qualification, all the limit points of {x(l)}∞

l=0 are fixed points of (DC-ALG), which
are stationary points of the d.c. program in (DC), u(x(l)) − v(x(l)) → u(x∗) − v(x∗) =: f ∗
as l → ∞, for some fixed point x∗, ‖x(l+1) − x(l)‖ → 0, and either {x(l)}∞

l=0 converges or
the set of limit points of {x(l)}∞

l=0 is a connected and compact subset of S (f ∗), where
S (a) := {x ∈ S : u(x) − v(x) = a} and S is the set of fixed points of (DC-ALG). If
S (f ∗) is finite, then any sequence {x(l)}∞

l=0 generated by Adc converges to some x∗ in
S (f ∗).

Proof (Theorem 1) Since Algorithm 1 and (ALG) are equivalent, let A correspond to the
point-to-set map in (ALG). As noted before, (ALG) is obtained by applying linear majoriza-
tion to (9), which is equivalent to (SGEV-A), with Ω = {(x,y) : xT Bx ≤ 1, −y � x � y},
u(x,y) = τ‖x‖2

2 and v(x,y) = xT (A + τI n)x − ρε

∑n

i=1 log(yi + ε). Let τ �= 0. It is
easy to check that u and v satisfy the conditions of Theorem 2. Define z := (xT ,yT)T .
Note that Ω = {z : zT Ãz ≤ 1, B̃z � 0, C̃z � 0}, where Ã = [

B 0
0 0

]
, B̃ = [I n − I n] and

C̃ = [I n I n]. Ω1 := {z : B̃z � 0} and Ω2 := {z : C̃z � 0} are closed sets in R
2n, while

Ω3 := {z : zT Ãz ≤ 1} is compact in R
2n. Note that Ω = Ω1 ∩ Ω2 ∩ Ω3. Since Ω1 and Ω2

are closed, Ω1 ∩ Ω2 is closed. Since Ω3 is compact, (Ω1 ∩ Ω2) ∩ Ω3 is also compact, i.e.,
Ω is compact and therefore A is uniformly compact. By the Weierstrass theorem10 (Minoux
1986), it is clear that A(z) is nonempty for any z ∈ Ω . The result therefore follows from
Theorem 2. When τ = 0, all the conditions of Theorem 2 hold except for u being strictly
convex. The strict convexity of u in Theorem 2 is mainly needed to ensure that (DC-ALG)
has a unique optimizer (for details, see the proof of Theorem 2). Since we showed in Ap-
pendix C how Algorithm 1 obtains a unique optimizer in every iteration, when τ = 0, the
convergence result also holds for the case of τ = 0. �

Proof (Corollary 1) The proof idea is as follows. First, we consider Algorithm 1 with τ = 0,
ρε = ρ = 0 and A ∈ S

n+ to show that it reduces to (21). Second, we consider the fixed points
of (21) and show that the fixed point of (21), which is a stationary point of (SGEV-A) with
ρ = 0, is indeed the generalized eigenvector associated with λmax(A,B). Therefore, by The-
orem 1, the sequence {x(l)}∞

l=0 generated by (21) converges to the generalized eigenvector
associated with λmax(A,B).

Consider Algorithm 1 with τ = 0, ρε = ρ = 0 and A ∈ S
n+, which reduces to

x(l+1) = arg min
x

{−xT Ax(l) : xT Bx ≤ 1
}
. (39)

Since the objective in (39) is linear in x, the minimum occurs at the boundary of the con-
straint set, i.e., {x : xT Bx = 1}. The corresponding Lagrangian is given by

L(x,μ) = −2xT Ax(l) + μ(xT Bx − 1),

where μ > 0 is the Lagrange multiplier. Differentiating L w.r.t. x and setting it to zero gives

x = μ−1B−1Ax(l),

10The Weierstrass theorem states: If f is a real continuous function on a compact set K ⊂ R
n, then the

problem min{f (x) : x ∈ K} has an optimal solution x∗ ∈ K .

Mach Learn (2011) 85:3–39 37

where solving for μ using xT Bx = 1 yields (21). So far, we have shown that (39) re-
duces to (21). Next, let us consider the fixed point, x∗ of (21). At x∗, (21) reduces to
x∗ = ([x∗]T AB−1Ax∗)− 1

2 B−1Ax∗, which can be written as Ax∗ = μ∗Bx∗, where μ∗ =
[x∗]T Ax∗. Note that x∗ is the stationary point of (SGEV-A), when ρ = 0. The objective
of (39) at x∗ is −[x∗]T Ax∗, which is minimized when x∗ is the generalized eigenvector
associated with λmax(A,B). Since S (−λmax(A,B)) = {±x∗}, the result follows from The-
orem 1. �

Proof (Corollary 2) When B = I n, (21) reduces to x(l+1) = Ax(l)

‖Ax(l)‖2
, which is the power

method for computing λmax(A). The rest of the result simply follows from Corollary 1. �

Proof (Corollary 3) It is easy to see that when B = I n and ρ = 0, Algorithm 1 reduces to

x(l+1) = arg min
x

{
τ‖x‖2

2 − 2xT (A + τI n)x
(l) : xT x ≤ 1

}
. (40)

The Lagrangian of (40) is given by

L(x,μ) = τ‖x‖2
2 − 2xT (A + τI n)x

(l) + μ(xT x − 1),

where μ ≥ 0 is the Lagrange multiplier. Differentiating L w.r.t. x and setting it zero gives
x = (μ + τ)−1(A + τI n)x

(l), i.e.,

x(l+1) = (μ(l+1) + τ)−1(A + τI n)x
(l),

where

μ(l+1)([x(l+1)]T x(l+1) − 1) = 0 and [x(l+1)]T x(l+1) ≤ 1.

At the fixed point, x∗, we have Ax∗ = μ∗x∗, where [x∗]T x∗ ≤ 1 and μ∗([x∗]T x∗ − 1) = 0.
Therefore, [x∗]T Ax∗ = μ∗. In addition, the objective of (40) at x∗ is given by

ψ(x∗) = −2[x∗]T Ax∗ − τ‖x∗‖2
2 = −2μ∗ − τ‖x∗‖2

2,

which is minimized when μ∗ = λmax(A), i.e., x∗ is the eigenvector associated with λmax(A).
The result therefore follows from Theorem 1 as S (−λmax(A)) = {±x∗}. �

References

Alon, U., Barkai, N., Notterman, D. A., Gish, K., Ybarra, S., Mack, D., & Levine, A. J. (1999). Broad
patterns of gene expression revealed by clustering analysis of tumor and normal colon cancer tissues.
Cell Biology, 96, 6745–6750.

Bioucas-Dias, J., Figueiredo, M., & Oliveira, J. (2006). Total-variation image deconvolution: a majorization-
minimization approach. In: Proc. IEEE international conference on acoustics, speech, and signal
processing, Toulouse, France.

Böhning, D., & Lindsay, B. G. (1988). Monotonicity of quadratic-approximation algorithms. Annals of the
Institute of Statistical Mathematics, 40(4), 641–663.

Bonnans, J. F., Gilbert, J. C., Lemaréchal, C., & Sagastizábal, C. A. (2006). Numerical optimization: theoret-
ical and practical aspects. Berlin: Springer.

Boyd, S. P., & Vandenberghe, L. (2004). Convex optimization. Cambridge: Cambridge University Press.
Bradley, P. S., & Mangasarian, O. L. (1998). Feature selection via concave minimization and support vector

machines. In Proc. 15th international conf. on machine learning (pp. 82–90). San Francisco: Kaufmann.
Cadima, J., & Jolliffe, I. (1995). Loadings and correlations in the interpretation of principal components.

Applied Statistics, 22, 203–214.

38 Mach Learn (2011) 85:3–39

Candes, E. J., Wakin, M., & Boyd, S. (2007). Enhancing sparsity by reweighted �1 minimization. The Journal
of Fourier Analysis and Applications, 14, 877–905.

d’Aspremont, A., El Ghaoui, L., Jordan, M. I., & Lanckriet, G. R. G. (2005). A direct formulation for sparse
PCA using semidefinite programming. In L. K. Saul, Y. Weiss, & L. Bottou (Eds.), Advances in neural
information processing systems (Vol. 17, pp. 41–48). Cambridge: MIT Press.

d’Aspremont, A., El Ghaoui, L., Jordan, M. I., & Lanckriet, G. R. G. (2007). A direct formulation for sparse
PCA using semidefinite programming. SIAM Review, 49(3), 434–448.

d’Aspremont, A., Bach, F. R., & El Ghaoui, L. (2008). Optimal solutions for sparse principal component
analysis. Journal of Machine Learning Research, 9, 1269–1294.

Daubechies, I., Defrise, M., & Mol, C. D. (2004). An iterative thresholding algorithm for linear inverse
problems with a sparsity constraint. Communications on Pure and Applied Mathematics, 57, 1413–
1457.

de Leeuw, J. (1977). Applications of convex analysis to multidimensional scaling. In J. R. Barra, F. Brodeau,
G. Romier, & B. V. Cutsem (Eds.), Recent advantages in statistics (pp. 133–146). Amsterdam: North
Holland.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM
algorithm. Journal of the Royal Statistical Society, Series B, 39, 1–38.

Efron, B., Hastie, T., Johnstone, I., & Tibshirani, R. (2004). Least angle regression. Annals of Statistics, 32(2),
407–499.

Fazel, M., Hindi, H., & Boyd, S. (2003). Log-det heuristic for matrix rank minimization with applications to
Hankel and Euclidean distance matrices. In: Proc. American control conference, Denver, Colorado.

Figueiredo, M. A. T., Bioucas-Dias, J. M., & Nowak, R. D. (2007). Majorization-minimization algorithms
for wavelet-based image restoration. IEEE Transactions on Image Processing, 16, 2980–2991.

Germann, U. (2001) Aligned Hansards of the 36th parliament of Canada. http://www.isi.edu/natural-
language/download/hansard/.

Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J., Coller, H., Loh, M. K.,
Downing, J. R., Caligiuri, M. A., Bloomfield, C. D., & Lander, E. (1999). Molecular classification of
cancer: class discovery and class prediction by gene expression monitoring. Science, 286, 531–537.

Heiser, W. J. (1987). Correspondence analysis with least absolute residuals. Computational Statistics and
Data Analysis, 5, 337–356.

Horst, R., & Thoai, N. V. (1999). D.c. programming: overview. Journal of Optimization Theory and Applica-
tions, 103, 1–43.

Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components. Journal of
Educational Psychology, 24, 417–441.

Hotelling, H. (1936). Relations between two sets of variates. Biometrika, 28, 321–377.
Huber, P. J. (1981). Robust statistics. New York: Wiley.
Hunter, D. R., & Lange, K. (2004). A tutorial on MM algorithms. The American Statistician, 58, 30–37.
Hunter, D. R., & Li, R. (2005). Variable selection using MM algorithms. The Annals of Statistics, 33, 1617–

1642.
Jeffers, J. (1967). Two case studies in the application of principal components. Applied Statistics, 16, 225–

236.
Jolliffe, I. (1986). Principal component analysis. New York: Springer.
Jolliffe, I. T., Trendafilov, N. T., & Uddin, M. (2003). A modified principal component technique based on

the LASSO. Journal of Computational and Graphical Statistics, 12, 531–547.
Journée, M., Nesterov, Y., Richtárik, P., & Sepulchre, R. (2010). Generalized power method for sparse prin-

cipal component analysis. Journal of Machine Learning Research, 11, 517–553.
Lange, K., Hunter, D. R., & Yang, I. (2000). Optimization transfer using surrogate objective functions with

discussion. Journal of Computational and Graphical Statistics, 9(1), 1–59.
Lee, D. D., & Seung, H. S. (2001). Algorithms for non-negative matrix factorization. In T. Leen, T. Diet-

terich, & V. Tresp (Eds.), Advances in neural information processing systems (Vol. 13, pp. 556–562).
Cambridge: MIT Press.

Lemaréchal, C., & Oustry, F. (1999). Semidefinite relaxations and Lagrangian duality with application to
combinatorial optimization (Tech. Rep. RR3710). INRIA.

Littman, M. L., Dumais, S. T., & Landauer, T. K. (1998). Automatic cross-language information retrieval
using latent semantic indexing. In G. Grefenstette (Ed.), Cross-language information retrieval (pp. 51–
62). Norwell: Kluwer Academic.

Mackey, L. (2009). Deflation methods for sparse PCA. In D. Koller, D. Schuurmans, Y. Bengio, & L. Bottou
(Eds.), Advances in neural information processing systems (Vol. 21, pp. 1017–1024). Cambridge: MIT
Press.

McCabe, G. (1984). Principal variables. Technometrics, 26, 137–144.

http://www.isi.edu/natural-language/download/hansard/
http://www.isi.edu/natural-language/download/hansard/

Mach Learn (2011) 85:3–39 39

Mckinney, M. F. (2003). Features for audio and music classification. In Proc. of the international symposium
on music information retrieval (pp. 151–158).

Meng, X. L. (2000). Discussion on “optimization transfer using surrogate objective functions”. Journal of
Computational and Graphical Statistics, 9(1), 35–43.

Mika, S., Rätsch, G., & Müller, K. R. (2001). A mathematical programming approach to the kernel Fisher
algorithm. In T. Leen, T. Dietterich, & V. Tresp (Eds.), Advances in neural information processing
systems (Vol. 13). Cambridge: MIT Press.

Minoux, M. (1986). Mathematical programming: theory and algorithms. New York: Wiley.
Moghaddam, B., Weiss, Y., & Avidan, S. (2007a). Generalized spectral bounds for sparse LDA. In: Proc. of

international conference on machine learning.
Moghaddam, B., Weiss, Y., & Avidan, S. (2007b). Spectral bounds for sparse PCA: exact and greedy al-

gorithms. In B. Schölkopf, J. Platt, & T. Hoffman (Eds.), Advances in neural information processing
systems (Vol. 19). Cambridge: MIT Press.

Nesterov, Y. (2005). Smooth minimization of non-smooth functions. Mathematical Programming, Series A,
103, 127–152.

Ortega, J. M., & Rheinboldt, W. C. (1970). Iterative solution of nonlinear equations in several variables.
New York: Academic Press.

Ramaswamy, S., Tamayo, P., Rifkin, R., Mukherjee, S., Yeang, C., Angelo, M., Ladd, C., Reich, M., Lat-
ulippe, E., Mesirov, J., Poggio, T., Gerald, W., Loda, M., Lander, E., & Golub, T. (2001). Multiclass
cancer diagnosis using tumor gene expression signature. Proceedings of the National Academy of Sci-
ences, 98, 15,149–15,154.

Rockafellar, R. T. (1970). Convex analysis. Princeton: Princeton University Press.
Shawe-Taylor, J., & Cristianini, N. (2004). Kernel methods for pattern analysis. Cambridge: Cambridge

University Press.
Sriperumbudur, B. K., & Lanckriet, G. R. G. (2009). On the convergence of the concave-convex procedure.

In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, & A. Culotta (Eds.), Advances in neural
information processing systems (Vol. 22, pp. 1759–1767). Cambridge: MIT Press.

Sriperumbudur, B. K., Torres, D. A., & Lanckriet, G. R. G. (2007). Sparse eigen methods by d.c. program-
ming. In: Proc. of the 24th annual international conference on machine learning.

Sriperumbudur, B. K., Torres, D. A., & Lanckriet, G. R. G. (2009). A d.c. programming approach to the
sparse generalized eigenvalue problem. In: Optimization for machine learning workshop, NIPS.

Strang, G. (1986). Introduction to applied mathematics. Wellesley: Cambridge Press.
Suykens, J. A. K., Gestel, T. V., Brabanter, J. D., Moor, B. D., & Vandewalle, J. (2002). Least squares support

vector machines. Singapore: World Scientific.
Tibshirani, R. (1996). Regression shrinkage and selection via the LASSO. Journal of Royal Statistical Society,

Series B, 58(1), 267–288.
Tipping, M. E. (2001). Sparse Bayesian learning and the relevance vector machine. Journal of Machine

Learning Research, 1, 211–244.
Torres, D., Turnbull, D., Barrington, L., & Lanckriet, G. R. G. (2007a). Identifying words that are musically

meaningful. In: Proc. of international symposium on music information and retrieval.
Torres, D. A., Turnbull, D., Sriperumbudur, B. K., Barrington, L., & Lanckriet, G. R. G. (2007b). Finding

musically meaningful words using sparse CCA. In: Music brain & cognition workshop, NIPS.
Turnbull, D., Barrington, L., Torres, D., & Lanckriet, G. R. G. (2008). Semantic annotation and retrieval of

music and sound effects. IEEE Transactions on Audio, Speech and Language Processing, 16, 467–476.
Vandenberghe, L., & Boyd, S. (1996). Semidefinite programming. SIAM Review, 38, 49–95.
Vinokourov, A., Shawe-Taylor, J., & Cristianini, N. (2003). Inferring a semantic representation of text via

cross-language correlation analysis. In S. Becker, S. Thrun, & K. Obermayer (Eds.), Advances in neural
information processing systems (Vol. 15, pp. 1473–1480). Cambridge: MIT Press.

Weston, J., Elisseeff, A., Schölkopf, B., & Tipping, M. (2003). Use of the zero-norm with linear models and
kernel methods. Journal of Machine Learning Research, 3, 1439–1461.

Yuille, A. L., & Rangarajan, A. (2003). The concave-convex procedure. Neural Computation, 15, 915–936.
Zangwill, W. I. (1969). Nonlinear programming: a unified approach. Englewood Cliffs: Prentice-Hall.
Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal

Statistical Society, Series B, 67, 301–320.
Zou, H., Hastie, T., & Tibshirani, R. (2006). Sparse principal component analysis. Journal of Computational

and Graphical Statistics, 15, 265–286.

	A majorization-minimization approach to the sparse generalized eigenvalue problem
	Abstract
	Introduction
	Notation
	Sparse generalized eigenvalue problem
	Intractability of (SGEV-P)
	Non-convex approximation to ||x||0 and d.c. formulation
	Approximation to ||x||0
	Behavior of the solution to (SGEV-A) as epsilon->0

	Majorization-minimization method
	Sparse GEV algorithm
	Special case 1 (ASn+, BSn++, tau=0)
	Special case 2 (ASn+, BSn++ diagonal, tau=0)
	Interpretation of (ALG)
	Choice of rho, tau and epsilon
	Post-processing

	Convergence analysis

	Experimental results
	Sparse principal component analysis
	Pit props data
	Random test problems
	Trade-off curves
	Computational complexity vs. cardinality
	Computational complexity vs. problem size

	Gene expression data
	Datasets
	Trade-off curves
	Computational complexity

	Sparse canonical correlation analysis
	Cross-language document retrieval
	Experimental details

	Vocabulary selection for music information retrieval

	Sparse fisher discriminant analysis

	Conclusion and discussion
	Acknowledgements
	Open Access
	Appendix A: Semidefinite programming relaxation for (SGEV-P)
	Appendix B: Approximation to ||x||0
	Appendix C: Derivation of (ALG-R) and (ALG-S)
	Appendix D: Proofs of results in Sect. 3.4
	References

