
Mach Learn (2011) 82: 123–155
DOI 10.1007/s10994-010-5210-y

Multi-way set enumeration in weight tensors

Elisabeth Georgii · Koji Tsuda · Bernhard Schölkopf

Received: 1 June 2009 / Accepted: 1 May 2010 / Published online: 25 September 2010
© The Author(s) 2010. This article is published with open access at Springerlink.com

Abstract The analysis of n-ary relations receives attention in many different fields, for
instance biology, web mining, and social studies. In the basic setting, there are n sets of
instances, and each observation associates n instances, one from each set. A common ap-
proach to explore these n-way data is the search for n-set patterns, the n-way equivalent of
itemsets. More precisely, an n-set pattern consists of specific subsets of the n instance sets
such that all possible associations between the corresponding instances are observed in the
data. In contrast, traditional itemset mining approaches consider only two-way data, namely
items versus transactions. The n-set patterns provide a higher-level view of the data, reveal-
ing associative relationships between groups of instances. Here, we generalize this approach

Editors: S.V.N. Vishwanathan, Samuel Kaski, Jennifer Neville, and Stefan Wrobel.

E. Georgii
Department of Empirical Inference, Max Planck Institute for Biological Cybernetics, Tübingen,
Germany

E. Georgii
Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany

Present address:
E. Georgii (�)
Department of Information and Computer Science, Helsinki Institute for Information Technology, HIIT,
Aalto University School of Science and Technology, P.O. Box 15400, 00076 Aalto, Finland
e-mail: elisabeth.georgii@tkk.fi

K. Tsuda
Computational Biology Research Center, National Institute of Advanced Industrial Science
and Technology, AIST, Tokyo, Japan
e-mail: koji.tsuda@aist.go.jp

K. Tsuda
ERATO Minato Project, Japan Science and Technology Agency, Tokyo, Japan

B. Schölkopf
Department of Empirical Inference, Max Planck Institute for Biological Cybernetics, Tübingen,
Germany
e-mail: bernhard.schoelkopf@tuebingen.mpg.de

mailto:elisabeth.georgii@tkk.fi
mailto:koji.tsuda@aist.go.jp
mailto:bernhard.schoelkopf@tuebingen.mpg.de

124 Mach Learn (2011) 82: 123–155

in two respects. First, we tolerate missing observations to a certain degree, that means we
are also interested in n-sets where most (although not all) of the possible associations have
been recorded in the data. Second, we take association weights into account. In fact, we
propose a method to enumerate all n-sets that satisfy a minimum threshold with respect to
the average association weight. Technically, we solve the enumeration task using a reverse
search strategy, which allows for effective pruning of the search space. In addition, our al-
gorithm provides a ranking of the solutions and can consider further constraints. We show
experimental results on artificial and real-world datasets from different domains.

Keywords Tensor · Multi-way set · Dense pattern enumeration · Quasi-hyper-clique ·
N-ary relation · Graph mining

1 Introduction

Higher-order data analysis is an important subfield in modern pattern mining. Associations
relating multiple types of instances are often represented by multi-way arrays (also known as
tensors). As an example, let us consider sales data that contain information about the prod-
ucts, the regions, and the weeks of customer transactions. These data can be compiled into
a three-way array where the first dimension represents the products, the second dimension
represents the regions, and the third dimension represents the weeks. The array elements
can be arbitrary weight values. In the given example, different scenarios are conceivable.
For instance, we can consider binary values, setting an element to one if the product was
sold in the corresponding region during the given week, and otherwise to zero. Another
possibility would be to report the total number of customers who bought the product in the
given region and week (which results in non-negative integer values). Finally, one could
store average customer ratings, which could be arbitrary real values.

The analysis of such multi-way data becomes increasingly popular in the data mining
community. Tensor decomposition is one of the most prominent topics (see Kolda and
Bader 2007 for a review). This can serve as a basis for applications like clustering of the
instances in each dimension or anomaly detection (Kolda and Sun 2008). Furthermore, there
exist approaches to analyze dynamic changes in tensors (Sun et al. 2006). A common ap-
proach to investigate binary-valued n-way data comes from relational data mining. This
line of research focuses on the detection of n-sets (Cerf et al. 2008; Jaschke et al. 2006;
Ji et al. 2006), which generalize the concept of itemsets (Agrawal and Srikant 1994;
Han and Kamber 2006) to multi-way association data. More precisely, let V1, . . . , Vn be
instance sets (for example, products, regions, and weeks). Each association of individual
instances (v1, . . . , vn), vi ∈ Vi , has a value that is either 1 (if it actually has been observed)
or 0 (otherwise). Then, a combination of instance subsets (S1, . . . , Sn), Si ⊂ Vi is called an
n-set if all possible associations (v1, . . . , vn), vi ∈ Si , have value 1 (see Fig. 1a). The orig-
inal itemset mining approach considers only two-way data, involving a set of items and a
set of transactions (i.e., n = 2). In the tensor representation, an n-set corresponds to a sub-
tensor that contains only 1-elements. Such patterns reveal associations between groups of
instances and thereby yield insights into the higher-level association structure in the data. In
our above example, an n-set analysis would detect groups of products that were popular in
certain regions during a number of weeks.

In this paper, we propose a more general definition of n-set as well as an enumerative
mining algorithm for this kind of pattern. A preliminary version of this work has appeared in
Georgii et al. (2009b). Our criterion is the average value of the elements within a subtensor;

Mach Learn (2011) 82: 123–155 125

Example of an n-set for n = 3: ({a1, a2}, {b1, b2}, {c1, c2, c3})

(a) Relational approach (b) Our approach

Association Value

(a1, b1, c1) 1
(a1, b1, c2) 1
(a1, b1, c3) 1
(a1, b2, c1) 1
(a1, b2, c2) 1
(a1, b2, c3) 1
(a2, b1, c1) 1
(a2, b1, c2) 1
(a2, b1, c3) 1
(a2, b2, c1) 1
(a2, b2, c2) 1
(a2, b2, c3) 1

average =1

Association Value

(a1, b1, c1) 0.9
(a1, b1, c2) 1
(a1, b1, c3) 1
(a1, b2, c1) 0.8
(a1, b2, c2) 0.9
(a1, b2, c3) 1
(a2, b1, c1) 0.7
(a2, b1, c2) 1
(a2, b1, c3) 0.9
(a2, b2, c1) 1
(a2, b2, c2) 0
(a2, b2, c3) 0.9
average ≥ θ

Fig. 1 Illustration of the n-set properties in the relational approach and in our approach. While the relational
approach is based on binary values and requires that all associations within the n-set have value 1, we allow
for arbitrary weights and require that the overall average across the n-set associations is larger than a threshold

subtensors where this value exceeds a given threshold are considered as solutions. Here, the
tensor is not restricted to binary values, but may contain arbitrary real-valued association
weights (see Fig. 1b). Furthermore, a solution pattern might also contain some 0-elements,
so missing observations are tolerated to a certain degree. This can be advantageous in ap-
plications where data are sparse (i.e., where it is likely that some observations are missing)
and where the associations should be weighted differently (e.g., because the reliability or the
significance of the observations is subject to variation). Consequently, we can detect strong
associations between sets of instances in noisy data; such higher-level patterns strengthen
individual observations and can assist in making reliable predictions of missing values.

In the following, these subtensor patterns are called (multi-way) clusters, and the average
association value within a cluster is called the cluster density; a cluster that satisfies the min-
imum density threshold is called a dense cluster. We present a novel method to enumerate
all dense clusters in a general data matrix or tensor. It extends a dense cluster enumeration
approach for symmetric matrices (Uno 2007; Georgii et al. 2009a). Our contribution consists
in (1) the formulation of n-way dense cluster enumeration by means of reverse search (Avis
and Fukuda 1996), (2) implementation details to speed up the search, and (3) various exten-
sions of the basic scheme, including output reduction and ranking as well as the integration
of additional constraints. From a graph-theoretic point of view, an n-way tensor corresponds
to a weighted multi-partite hyper-graph, where each hyper-edge connects n nodes that repre-
sent instances of the n different dimensions. So our approach can also be seen as extracting
all densely connected subgraphs from such a hyper-graph.

The paper is organized as follows. Section 2 presents related work on pattern mining in
association data. In Sect. 3, we review the basic concepts of reverse search and the dense
cluster enumeration technique for symmetric matrices. In Sect. 4, we describe our algo-
rithmic approach for dense cluster enumeration in n-way tensors. Section 5 provides some

126 Mach Learn (2011) 82: 123–155

extensions, and Sect. 6 describes adaptations for tensors with inherent symmetries. Finally,
we present our experimental results in Sect. 7 and discuss the general applicability of our
approach in Sect. 8. The appendix contains the proofs of several lemmas.

2 Related work

The problem of identifying clusters (also called modules or communities) in symmetric pair-
wise association data, often represented as graphs or networks, has been studied extensively,
see Schaeffer (2007) for a survey. One fundamental approach is clique discovery, i.e., the
enumeration of fully connected subgraphs from an unweighted input graph (e.g., see Spirin
and Mirny 2003). As real-world datasets are usually incomplete, various methods relax
this criterion by tolerating missing edges to a certain extent (Haraguchi and Okubo 2006;
Palla et al. 2005; Farkas et al. 2007; Uno 2007; Zeng et al. 2006) or by explicitly con-
sidering edge weights (Georgii et al. 2009a; Ulitsky and Shamir 2009). Beside these
enumerative approaches to cluster detection, there exist a number of methods that em-
ploy local search techniques starting from a set of seed clusters (Everett et al. 2006;
Bader and Hogue 2003). Finally, the most commonly used class of methods is based on
graph partitioning (Newman 2006; Schaeffer 2007). In some approaches, clusters are not
defined as hard sets of instances, but describe continuous membership levels across all in-
stances (Höppner et al. 1999).

Furthermore, the coanalysis of multiple networks or graphs has received much atten-
tion, in particular in the context of computational biology and chemistry. While many ap-
proaches focus on the detection of frequently occurring subgraphs in large databases of
small graphs (Yan and Han 2002), methods for larger networks often use density criteria
combined with additional constraints (Hu et al. 2005; Jiang and Pei 2009; Robardet 2009;
Yan et al. 2005; Zeng et al. 2006).

Another popular cluster detection paradigm is bi-cluster analysis; it deals with general
data matrices. A bi-cluster pattern (also called bi-set) is defined by specifying a subset of
rows and a subset of columns of a given matrix, and various criteria have been used in
the literature to assess the interestingness of such patterns (Madeira and Oliveira 2004).
For instance, some methods consider the homogeneity of values within a bi-cluster (Besson
et al. 2006). In contrast, other approaches focus on the strength or density of the associa-
tion (Tanay et al. 2002; Mishra et al. 2004; Yan et al. 2005).

Finally, mining of higher-order association data has recently become an important area of
research. Multi-way arrays, known as tensors, arise in many different application fields, for
instance sales analysis (Cerf et al. 2008), web mining (Kolda et al. 2005; Acar et al. 2006;
Jaschke et al. 2006), neuroscience (Beckmann and Smith 2005), and computational bi-
ology (Zhao and Zaki 2005; Baranzini et al. 2004; Ji et al. 2006; Acar et al. 2007).
The goal of tensor clustering is to partition each dimension into a pre-defined number
of clusters such that the corresponding multi-way clusters are as homogeneous as pos-
sible. Current approaches include tensor decomposition methods (Kolda and Sun 2008;
Kolda and Bader 2007) and approximations by clustering each dimension individually
(Jegelka et al. 2009). Zhao and Zaki (2005) also mine for homogeneous clusters in three-way
data (i.e., tri-clusters), but instead of specifying the number of clusters, they fix thresholds
regarding the homogeneity of values along each dimension and detect overlapping clus-
ter patterns. Binary-valued tensors can be equivalently represented as relations, and there
exists a vast amount of data mining literature on extracting relevant patterns from such
data, to mention in particular itemset and n-set approaches (Agrawal and Srikant 1994;

Mach Learn (2011) 82: 123–155 127

Cerf et al. 2008; Jaschke et al. 2006; Ji et al. 2006; Han and Kamber 2006). Infinite rela-
tional models (Kemp et al. 2006) also focus on binary tensors, but in contrast to relational
mining methods, they aim at partitioning the tensor into blocks that contain either mostly
ones or mostly zeros.

3 Reverse search

This section reviews the reverse search paradigm (Avis and Fukuda 1996). We illustrate
the basic idea for the application of enumerating dense sets (clusters) in a symmetric ma-
trix (Georgii et al. 2009a; Uno 2007), which we will extend to n-way cluster enumeration in
the following section.

3.1 Dense set enumeration problem

Let us consider a symmetric association matrix, which can be seen as the adjacency matrix of
a weighted graph. We denote by wij the matrix element representing the association weight
between instance i and instance j . Furthermore, we define the density of an instance subset
U as

ρ(U) =
∑

i,j∈U, i<j

wij

/ |U |(|U | − 1)

2
.

The task is to enumerate all subsets U with ρ(U) ≥ θ , where θ is a pre-specified constant.
From the graph-theoretic point of view, ρ(U) corresponds to the weighted edge density of
the subgraph induced by U .

3.2 Search space

All possible subsets form a natural graph-shaped search space with multiple levels, where
one can move one level downwards or upwards by adding or removing an instance, respec-
tively; the root node of the search space corresponds to the empty set. Figure 2b shows the
search space corresponding to the association matrix in Fig. 2a. For an efficient search pro-
cedure, it is crucial to avoid duplicate traversals of subspaces. This is usually achieved by
defining a tree structure that spans the original graph-shaped search space. In many pat-
tern mining approaches it is common to use lexicographical set enumeration trees (Ry-
mon 1992) (Fig. 2c). Pruning of such a tree is straightforward if the search criterion sat-
isfies the downward closure property: any subset of a solution is a solution, i.e., if a child
is a solution, its parent is a solution as well. This is the case for frequent itemset min-
ing (Han and Kamber 2006) because subsets have at least the same frequency as their su-
persets. However, in contrast to the frequency criterion, the density is generally not anti-
monotonic. For example, while {1,3,4} has a lower density than {1,3} (ρ({1,3}) = 1.0,
ρ({1,3,4}) = 0.93), the density increases when going from {1,2} to {1,2,3} (from 0.1
to 0.53). Consequently, the lexicographical tree cannot provide guarantees regarding the
maximum density in certain subtrees, which makes it impossible to define effective prun-
ing rules. However, there exists a search tree that shows the anti-monotonicity property
with respect to the density (Fig. 2d), i.e., when following any path from the root to a
leaf, the density of the visited sets is monotonically decreasing (the root has maximum
density by definition). In the next subsection, we explain how such a tree can be con-
structed.

128 Mach Learn (2011) 82: 123–155

Fig. 2 Motivating example for the reverse search enumeration strategy

3.3 Reduction map

In the reverse search approach, the search tree is specified by defining a reduction map f (U),
which transforms an instance subset U into its parent. In our case, the parent is obtained by
removing from the child the instance with minimum degree. Here, the degree of an instance
is defined as the sum of its association weights to the other instances in U . If there are
multiple instances with minimum degree, the one with the smallest index is removed. In
Georgii et al. (2009a), it is proven that the parent constructed in this way has at least the
same density as the original set U . For unweighted graphs (i.e., binary-valued matrices),
the corresponding result has been stated in Uno (2007). This ensures the anti-monotonicity
of the search tree that is induced by the reduction map; in particular, any instance set that
satisfies the density threshold descends from a subset that also satisfies the density threshold.
This property has also been exploited in other mining approaches, for instance as additional
pruning criterion in graph pattern mining (Zhu et al. 2007); furthermore, iterative removal
of minimum degree instances has been used to approximate dense subgraphs (Asahiro et al.
2000). In addition to the anti-monotonicity, a valid reduction map must satisfy the following
reachability condition: starting from any node of the search space, we can reach the root
node after applying the reduction map a finite number of times. This condition ensures that
each possible solution can be reached from the root node, i.e., the induced search tree is
indeed spanning. For the reduction map stated above, this is trivial, because any cluster is
reduced to the empty set by iteratively removing instances.

Mach Learn (2011) 82: 123–155 129

3.4 Search strategy

To enumerate all clusters (subsets) with density ≥ θ , one has to traverse the implicitly de-
fined search tree in a depth-first or breadth-first manner. During the traversal, children are
generated on demand if the density threshold is satisfied. As the reduction map defines how
to get from children to parents and not vice versa, we cannot directly derive the children
from a given parent. Instead, to generate the children of a cluster U , we have to consider
all candidates U ∪ {i}, i /∈ U , and apply the reduction map to every candidate; candidates
with f (U ∪ {i}) = U are the actual children (reverse search principle). Due to the anti-
monotonicity, one can prune the search tree as soon as the density threshold is violated. To
conclude, reverse search provides a systematic way of obtaining anti-monotonic search trees
based on reduction maps. This is helpful for score functions where the anti-monotonicity of
level-wise search is not given in general, but can be achieved by a well-defined reduction
map, like in the case of cluster density.

4 Multi-way dense cluster enumeration

This section presents a novel n-way cluster enumeration method based on reverse search. In
order to develop a reverse search algorithm, we have to (1) define a search space, (2) design
a reduction map, and (3) engineer the child generation process for efficiency. After defining
the problem, we proceed in this order.

4.1 Problem definition

Our goal is to detect all dense clusters from a multi-way data array (tensor). To formalize
the problem, we first introduce some notation. Let n > 0 be the number of dimensions in the
given array (also called ways or modes). Then we write the input data in the following form,

W = (wk1,...,kn)ki∈Vi , i=1,...,n. (1)

The index ki is used to access the ith dimension and takes values from a finite index set
Vi = {1, . . . , Ii}, where Ii is a natural number that can differ from dimension to dimension.
Vi is also called the instance set or range for the ith dimension; the cardinality of the set
is denoted by |Vi | and equals Ii . The elements (entries) of W are weights indicating the
association strength between the n instances. Negative values are generally possible, but
non-negative input data allow for additional speed-up techniques during the search, as de-
scribed in Sects. 4.6 and 5.4. For convenience, we normalize the array such that wk1,...,kn ≤ 1
for all ki ∈ Vi , i = 1, . . . , n. An n-way cluster U is defined by specifying for each dimension
a non-empty subset of the corresponding index set,

U = (U1, . . . ,Un), Ui ⊂ Vi, |Ui | ≥ 1, i = 1, . . . , n. (2)

The induced subarray is given by

W |U = (wk1,...,kn)ki∈Ui , i=1,...,n. (3)

Let us define the cardinality of a cluster as the sum of the cardinalities of the index subsets
in all n dimensions, i.e., the total number of instances involved in the cluster:

card(U) =
n∑

i=1

|Ui |.

130 Mach Learn (2011) 82: 123–155

This is not to be confused with the cluster size, which corresponds to the number of elements
in the induced subarray,

size(U) =
n∏

i=1

|Ui |.

Our cluster definition implies size(U) ≥ 1. The density of a cluster U is defined as the
average value of the elements in the induced subarray,

ρW(U) = 1

size(U)

∑

ki∈Ui

wk1,...,kn . (4)

Due to our normalization of the data array W , the largest possible cluster density is 1. Using
the above definitions, we state the problem of dense cluster enumeration as follows.

Definition 1 (Dense cluster enumeration) Given an n-way data array W and a minimum
density threshold θ with 0 < θ ≤ 1, find all clusters U such that ρW(U) ≥ θ .

Note that different clusters are allowed to overlap. For θ = 1, the problem is equivalent to
n-set or hyper-clique enumeration (Cerf et al. 2008; Jaschke et al. 2006; Ji et al. 2006).

4.2 Global index representation

As defined in (1), an n-way array is represented using multiple index sets V1, . . . , Vn. To
identify the vth element of set Vi in a concise way, we map it to a global index as follows:

C(v, i) = v +
i−1∑

j=1

|Vj |.

For i = 1, the summation term is zero, i.e., C(v,1) = v. Then the global index set is given
by

V =
{

1, . . . ,

n∑

i=1

|Vi |
}

.

The array dimension to which v ∈ V belongs is denoted by d(v).
A cluster U = (U1, . . . ,Un) can also be represented as a subset of V ,

U =
n⋃

i=1

⋃

u∈Ui

{C(u, i)}.

Note that U and U are alternative representations of a uniquely determined cluster and can
easily be transformed into each other. In the following, we will use the representation that is
more convenient in the particular context.

4.3 Search space

The search space for our dense cluster enumeration problem consists of all possible clusters.
Similarly to Sect. 3, it can be organized as a lattice, i.e., a graph with multiple levels where
each node corresponds to a cluster. The root level consists of trivial clusters.

Mach Learn (2011) 82: 123–155 131

Definition 2 (Trivial cluster) A cluster U is called trivial if it corresponds to exactly one
array element, i.e., size(U) = 1.

Consequently, |Ui | = 1 for i = 1, . . . , n and card(U) = n. In the subsequent levels of the
search lattice, the cluster cardinality is incrementally increased. Each cluster U is connected
to the clusters from the next level that can be obtained by adding exactly one index to one
particular set Ui , 1 ≤ i ≤ n; in other words, we reach the next level when extending U by
exactly one instance. Next, we define a reduction map for the search space.

4.4 Reduction map

A reduction map specifies an anti-monotonic search scheme, which is the core component
of the reverse search framework. Our reduction map for multi-way cluster enumeration re-
sembles the approach for symmetric matrices described in Sect. 3. However, in our case the
search space has multiple root nodes, so the reduction map defines a spanning forest instead
of a single spanning tree. In the following, we give its precise definition. First of all, the
degree in an n-way array is computed as follows.

Definition 3 (Degree) Given a cluster U , the degree of v ∈ Uj with respect to U is defined
as

degU(v, j) =
∑

ki∈Ui , i �=j

wk1,...,kj−1,v,kj+1,...,kn . (5)

In the global index representation, there is no ambiguity for instances of different dimen-
sions, so we simply write degU (v) for v ∈ U . Furthermore, W is not included as an explicit
parameter of deg because our method deals with one given data array at a time; likewise, we
often write ρ instead of ρW . To illustrate this definition, we consider the three-way cluster
in Fig. 3. Fixing the j th dimension to a specific value v defines a slice of the cluster. The
degree of v corresponds to the sum of all array elements that fall within this slice. In the
following, we will use the term slice also for the general n-way case; the v-slice of a given
cluster is the slice specified by the instance v. Using the global index representation, the
reduction map is defined as follows.

Definition 4 (Reduction map) Let U be a cluster and let v be the smallest among the mini-
mum degree elements in U . Then, f (U) = U \ {v}.

Fig. 3 Visualization of a
three-way cluster. A particular
instance v specifies a slice of the
cluster

132 Mach Learn (2011) 82: 123–155

Algorithm 1 Pseudocode of DCE. W is the given n-dimensional data array with global
index set V (and corresponding mapping C), and θ denotes the minimum density threshold

1: DCE (V, C,W, θ) :
2: for each (k1, . . . , kn) with wk1,...,kn ≥ θ do
3: DCE_Rec(V,W, θ,

⋃n

i=1{C(ki, i)})
4: end for

1: DCE_Rec (V,W, θ, U) :
2: for each v ∈ V \ U do
3: if ρW(U ∪ {v}) ≥ θ then
4: if U ∪ {v} is child of U then
5: DCE_Rec (V,W, θ, U ∪ {v})
6: end if
7: end if
8: end for
9: output U

This induces the following parent-child relationship between clusters.

Definition 5 (Parent-child relationship) Let U ∗ be a cluster and v ∈ V \ U ∗. U = U ∗ ∪ {v} is
a child of U ∗ if and only if

∀u ∈ U ∗ (degU (v) < degU (u)) ∨ ((degU (v) = degU (u)) ∧ (v < u)).

It remains to show that this parent-child relationship guarantees the anti-monotonicity and
cluster reachability during the search.

Lemma 1 Let U be a non-trivial cluster and ρ(U) > 0. Then for all v ∈ U with minimum
degree, i.e.,

v ∈ argmin
u∈U

degU (u),

the following properties hold:

1. size(U \ {v}) ≥ 1;
2. ρ(U \ {v}) ≥ ρ(U).

Proof See Appendix A. �

The first statement of the lemma refers to the cluster reachability; it ensures that, by iterative
application of the reduction map in Definition 4, any cluster with positive density shrinks to
a trivial cluster, i.e., a root of the search space; that means, there do not occur degenerate
constructs where some dimension-specific instance sets are empty. The second property
implies anti-monotonicity, i.e., a parent cluster is at least as dense as any child cluster. Note
that these properties hold for any minimum degree instance; however, to ensure that each
cluster has a unique parent, the reduction map has to specify which of them is selected
(in our case, the one with the smallest index). The definition of the reduction map directly
suggests the following algorithm.

Mach Learn (2011) 82: 123–155 133

4.5 Enumeration algorithm

To enumerate all clusters in an n-dimensional data array W that satisfy a minimum density
threshold θ , we perform the procedure shown in Algorithm 1, which is in the following
referred to as DCE (dense cluster enumeration algorithm). The first step consists in finding
trivial clusters that serve as roots for further expansion. These are simply the elements ≥ θ

of the data array. For each of them, we perform a depth-first traversal of the corresponding
cluster tree, generating descendants of increasing cardinality according to the parent-child
relationship specified in Definition 5. Note that this is done by reverse search, that means
it involves the production of child candidates, among which the actual children are selected
and further expanded. As soon as a cluster violates the density threshold, the current branch
of the search tree is pruned. The correctness of the algorithm follows from Lemma 1.

4.6 Implementation details

To be able to deal with an arbitrary number of dimensions, the input is represented in a sparse
format. For each non-zero entry, we create a data object that contains the n-dimensional in-
dex vector and the corresponding value. To facilitate the access to entries during the search,
we generate for each v ∈ V a list of pointers to the objects containing v (also called ad-
jacency list of v). For efficient checking of the density and the child conditions during the
search, we maintain an array of length |V| that contains degree values with respect to the cur-
rent cluster U . More specifically, it contains for v ∈ U the value degU (v), and for v ∈ V \ U
the value degU ∪{v}(v). In some cases, it is possible to decide in constant time whether the
parent-child relationship holds, without updating the degree values of cluster instances and
checking the conditions given in Definition 5. The following lemma states two simple rules;
similar rules handling degree equalities are omitted for conciseness.

Lemma 2 Given a cluster U in the data array W , let u∗ ∈ U be the previously added in-
stance and v ∈ V \ U .

1. If W is non-negative and degU ∪{v}(v) < degU (u∗), then U ∪ {v} is a child of U .
2. Let gU (u∗, v) be the number of elements that the u∗-slice gains by adding v to the clus-

ter U . If degU ∪{v}(v) > degU (u∗) + gU (u∗, v), then U ∪ {v} is not a child of U .

Proof See Appendix B. �

4.7 Complexity

Depending on the choice of the density parameter θ and the structure of the dataset, the dense
cluster enumeration algorithm can produce a large number of solution patterns. Already the
problem of finding dense subgraphs, which can be solved by the procedure described in
Sect. 3, is hard (Uno 2007). As combinatorial enumeration problems can generally have an
exponential number of solutions, a conventional complexity measure is the delay, which is
defined as the computation time needed to reach the subsequent solution (Goldberg 1992).
While straightforward enumeration strategies for dense cluster detection have exponential
delay (Uno 2007), DCE is a polynomial-delay algorithm. To see this, let us first consider a
single iteration of the subroutine DCE_Rec (see Algorithm 1), which corresponds to finding
all children of a given cluster. In the implementation described above, this needs O(|V| ×
(l · n + |U |)) operations, where V is the global index set, l is the average length of an

134 Mach Learn (2011) 82: 123–155

adjacency list, n is the number of dimensions, and U is the current cluster; for non-sparse
input arrays, l is roughly O(|V|n−1). In the worst case, we go for each v ∈ V \ U through
the whole adjacency list in order to determine the updated degree values for the members of
U , and then check all conditions in Definition 5. In practice, the density check will already
discard many candidates; furthermore, we can avoid the traversal of the adjacency list in
the cases where Lemma 2 can be applied. Finally, when traversing an adjacency list, only
objects that are relevant for the update have to be fully processed. Usually, the l · n term
will dominate the |U | term, so the complexity of one iteration is approximately linear in the
input size (i.e., the adjacency list representation of the data array W).

Using data representations that allow for constant-time access to specific entries of W ,
the complexity of one iteration is given by

O

(n∑

i=1

|Vi \ Ui |
n∏

j=1, j �=i

|Uj |
)

= O

(n∏

i=1

|Vi |
)

,

which reflects the costs of traversing the entries of each slice that can be added to the cluster;
here, Vi and Ui denote dimension-specific instance sets as introduced in Sect. 4.1. That
means, also in this representation the complexity is linear in the size of the input tensor. If we
apply the odd-even trick for solution output in recursive calls (Uno 2007), we obtain at least
one solution during three executions of DCE_Rec. Thus, the delay between two consecutive
solutions within the same search tree is in the order of the input size. Furthermore, the
traversal of irrelevant entries between two successful search trees (i.e., the time between
two calls of DCE_Rec from the routine DCE in Algorithm 1) is bounded by the size of
the input array. Consequently, the proposed method needs polynomial delay to enumerate
dense clusters in an n-dimensional array. As different search trees or different branches of
the same search tree can be investigated independently, distributed computation is possible.
Concerning memory, the described implementation has moderate requirements: it stores
the input data and in addition needs O(|V|) space for each recursive step; the maximum
recursion depth is equal to |Umax| − n + 1, where Umax is the solution cluster with the largest
cardinality.

5 Extensions

Now we treat several extensions that aim at facilitating the cluster analysis; in particular, we
define additional criteria to direct the search or to filter the output.

5.1 Locally maximal clusters

Usually, the user is not interested in clusters that are subsets of other cluster solutions.
A straightforward approach to tackle this problem would be to go for each newly detected
cluster through all previous solutions, checking for inclusions. However, the structure of our
reverse search algorithm allows us to reduce the number of solutions in the output in a mean-
ingful way without any additional costs. We can set a flag that indicates whether there exists
a direct extension (i.e., a cluster with one additional instance) that also satisfies the mini-
mum density threshold. If that is the case, we do not output the current cluster, otherwise we
do. This yields us the set of all locally maximal clusters. If the density parameter θ is equal
to 1, a locally maximal cluster is also maximal, i.e., it is not contained in any other solution.

Mach Learn (2011) 82: 123–155 135

Trivial clusters (i.e., single-element clusters) are excluded by default. In addition to the den-
sity, the output filtering can take minimum degree constraints into account; in that case, the
output consists of all clusters U such that ρW(U) ≥ θ , minu∈U degU (u) > t , size(U) > 1, and
for all v ∈ V \ U : ρW(U ∪ {v}) < θ ∨ minu∈U ∪{v} degU ∪{v}(u) ≤ t . By default, we set t = 0,
i.e., all instances in a solution pattern must have positive degree values.

5.2 Balance constraints

While our density parameter controls the overall weight average across the whole cluster, in
many applications it might be desirable to ensure a certain balance between the contributions
of individual instances. In the previous section, we mentioned the possibility of minimum
degree constraints. Beyond that, we can look at relative degree values, i.e., the ratio of the
actual degree and the maximum possible degree. This criterion has the advantage that the
threshold can be specified independently of the cluster size, whereas in the other case, a large
threshold a priori excludes smaller solution clusters. In the following, we introduce a balance
criterion that is based on the minimum relative degree.

Definition 6 (Balanced cluster) Given a threshold θ > 0, a cluster U is called balanced if for
each u ∈ U , degU (u)/size(U , u) ≥ θ . Here, size(U , u) denotes the size of the u-slice of U .

The relative degree of an instance can be seen as the density of the corresponding cluster
slice. Clearly, a balanced cluster is also a dense cluster with respect to θ , but not vice versa.
For the specific case of a binary-valued symmetric input matrix, i.e., a graph, the balance
criterion is equivalent to the concept of quasi-cliques (Zeng et al. 2006): a γ -quasi-clique
is defined as a set of nodes U such that each of them has edges to at least �γ (|U | − 1)

other nodes in U . As our implementation stores the degree of each instance with respect to
the current cluster, it is straightforward to integrate a filtering step that checks the balance
criterion. If the input array contains non-binary weights, it can also make sense to define
separate criteria for the relative number of observed entries of a slice or a cluster and for
its density; furthermore, one could constrain the density of lower-order slices or fibers of a
cluster.

While the described filtering step excludes imbalanced clusters from the results, it does
not contribute to speed up the search. Unfortunately, our search framework cannot be di-
rectly applied to the balance criterion. Indeed, there does not exist a reduction map that
yields anti-monotonicity with respect to the minimum slice density in a cluster. This is illus-
trated by the following counter example:

b1 b2 b3

a1 0 1 1
a2 1 0 1
a3 1 1 0

In the shown two-way cluster, each slice has density 2
3 . But, no matter which instance is

removed, the minimum slice density in the reduced cluster is shrinking to 1
2 . However, in

conjunction with additional criteria like size constraints for the cluster (Sect. 5.5), it is con-
ceivable to define balance-based pruning rules.

136 Mach Learn (2011) 82: 123–155

5.3 Cluster ranking

In spite of using additional criteria to filter the output, the result set might get large. Con-
sequently, it is important to provide a meaningful ranking criterion for clusters. Due to
the exhaustiveness of our approach, it is possible to calculate for each cluster an exact
p-value, i.e., the probability that random selection produces a cluster with at least the
same density (Bejerano et al. 2004). For a cluster U = (U1, . . . ,Un) from a data array
W = (wk1,...,kn)ki∈Vi , i=1,...,n, the exact p-value is given by

|{U ′ = (U ′
1, . . . ,U

′
n) : ρW(U ′) ≥ ρW(U) ∧ ∀ i = 1, . . . , n : (U ′

i ⊂ Vi ∧ |U ′
i | = |Ui |)}|

∏n

i=1

(|Vi |
|Ui |

) .

To obtain the numerator, we have to keep track of the densities and the dimension-specific
set cardinalities for all the solutions we pass during the execution of the algorithm (not only
the locally maximal ones). This can be done by storing for each occurring combination of
cardinalities an individual list of density values. Then we group the output clusters according
to their dimension-specific cardinalities. For each group, we sort the corresponding density
list and traverse it once to obtain the p-values for the output clusters. Finally, we sort the
whole set of output clusters according to their p-values, where the lowest p-values are
ranked first. By this, we can compare the statistical significance of patterns without having to
rely on simplified data models (Koyutürk et al. 2007) or to perform multiple randomization
tests.

5.4 Isolation-based pruning

The basic cluster density criterion we use (Definition 4) does not include any restrictions
regarding the associativity of individual member instances. For example, a dense subgraph
as defined in Sect. 3 is not necessarily connected. In particular, larger clusters can tolerate
instances that have a degree of zero; in the following, such instances are called isolated. In
principle, if the input array contains negative weights, instances can also have degree values
below zero; however, for simplicity, we focus here on the case of non-negative input arrays.
Usually, clusters with isolated instances are not desired as outputs; we eliminate them by
a simple degree-based filtering step, as mentioned in Sect. 5.1. Nevertheless, the search
procedure has to include such clusters in order to guarantee the completeness of the solution
set. Indeed, a connected cluster can descend from a cluster that contains an isolated instance:

b1 b2

a1 1.0 0
a2 0 0.9
a3 0.4 0.4

This two-way cluster corresponds to a connected bipartite graph. Assuming a lexico-
graphical order for the instances, the cluster is reduced as follows: {a1, a2, a3, b1, b2} →
{a1, a2, b1, b2} → {a1, b1, b2}. In the latter cluster, b2 is isolated. Similar examples can also
be constructed for binary-valued data arrays.

However, the ancestors of connected clusters cannot contain an arbitrary number of iso-
lated instances:

Mach Learn (2011) 82: 123–155 137

Lemma 3 Let us consider a non-negative n-dimensional data array. If a cluster contains
only non-isolated instances, its ancestors have at most one isolated instance per dimension.

Proof See Appendix C. �

That means, a search tree can be pruned if the current cluster contains two isolated in-
stances that are members of the same dimension. Similarly, one can show that clusters with
at least one zero-degree instance in each dimension cannot have a descendant that contains
only non-isolated instances. Note that the non-existence of isolated instances does not im-
ply the connectivity of clusters in a graph-theoretic sense; they could in principle consist
of several connected components. However, in practice this happens only for low density
thresholds or large clusters.

5.5 Size and branching restrictions

Sometimes it might be useful to restrict the cluster size by pre-defining an upper limit for
the number of instances in each dimension. As our search strategy extends the clusters by
one instance of one particular dimension in each step, it can naturally incorporate such
cardinality constraints and prune as soon as they are violated. On the other hand, minimum
cardinality constraints are popular to focus on significant results. They can be exploited for
discarding low-degree instances.

Due to the completeness of the dense cluster enumeration, the method might produce a
large number of overlapping clusters, in particular it will visit all dense subclusters of a large
dense cluster. A simple way to control the generation of similar clusters during the search is
to restrict the maximum number of children (branches) per cluster to k. By this, the number
of clusters sharing the same ancestor is limited, and decreases with increasing cardinality
of the ancestor. Of course, this leads to the loss of the completeness guarantee. However,
if we carefully select in each step the most promising children, we are likely to obtain in
the end a substantial fraction of the most significant clusters. For that purpose, we propose
the following procedure. Among all instances v that produce children U ∪ {v} of the current
cluster U , we select the k instances with the largest degree. The motivation behind this is
that they are most likely to have dense descendants. Among instances with equal degree, we
prefer those with the largest (global) indices because according to our reduction map, they
are removed last if there exist equally qualified instances.

Further possibilities to restrict the search include the selection of starting entries (i.e.,
roots of search trees) and the explicit control of instance reusage in different clusters. Apart
from these heuristic restrictions, we can exploit external data sources by defining appropriate
constraints (Georgii et al. 2009a). Finally, symmetry structure in the data can impose specific
requirements on the cluster analysis, which are explained in detail in the next section.

6 Symmetry adaptations

So far, we considered multi-way data with distinct instance sets in each dimension. Here, we
discuss how to deal with partial symmetries in the input data and include cluster symmetry
constraints. This extension of the dense cluster enumeration formalism will restore the dense
subgraph mining task from Sect. 3 as a special case. As a motivating example for the multi-
way setting, let us consider a set of weighted undirected networks that share the same set of
nodes. They can be represented by a three-way tensor where an entry wijk corresponds to the

138 Mach Learn (2011) 82: 123–155

weight of the edge between the ith and the j th node in the kth network. It has the following
characteristics: (a) the first two dimensions contain identical instance sets (i.e., the same
global indices); (b) as the networks are undirected, the entries wijk and wjik are equivalent;
we say that the tensor is symmetric with respect to the first two dimensions; (c) “diagonal”
entries wiik correspond to self-edges. Now we are interested in finding subsets of nodes that
induce dense subgraphs in a subset of networks. We can tackle this problem in the tensor
framework by extracting dense three-way clusters that have identical instance sets in the
first two dimensions; i.e., the clusters are symmetric with respect to these dimensions. In
analogy to Sect. 3, the density criterion ignores self-edges (loops). In the following, we
introduce definitions for multi-way clusters that respect symmetry constraints.

6.1 Definitions

Our dense cluster enumeration framework is suitable to handle arbitrary symmetry relation-
ships among dimensions; there may exist multiple symmetry groups of different size. For
instance, a six-way tensor could be symmetric with respect to dimensions 1 and 2, and also
symmetric with respect to dimensions 3, 4, and 6. To keep the notation simple, we illustrate
the concept for the case where we have symmetry with respect to the first j dimensions
(j ≤ n) and all other dimensions are not involved in symmetry relationships. That means,
given a tensor entry wk1,...,kn with distinct indices k1, . . . , kj , all entries that can be obtained
by permutation of the first j indices are equivalent, so it is sufficient to store only one of the
j ! possibilities. Then, a cluster U = (U1, . . . ,Un) is called symmetric (with respect to the
first j dimensions) if U1 = · · · = Uj . Its size is given by

sizej (U) =
(|U1|

j

) n∏

i=j+1

|Ui |, (6)

and its density is calculated as follows:

ρW,j (U) = 1

sizej (U)

∑

ki∈Ui , k1<···<kj

wk1,...,kn . (7)

Like in Sect. 3, we count equivalent entries only once and we do not take self-relationships
into account (i.e., we only consider entries with distinct indices k1, . . . , kj). This leads us to
a modified definition for the degree of an instance u ∈ Ul :

degU(u, l) =
{∑

ki∈Ui , kl=u, k1<···<kj
wk1,...,kn if l > j,

∑
ki∈Ui ,u∈{k1,...,kj }, k1<···<kj

wk1,...,kn if l ≤ j .
(8)

Now, reduction is again performed by removing the minimum degree instance that has the
smallest global index. In analogy to Lemma 1, it can be shown that this reduction map is
valid, i.e., it provides anti-monotonicity and cluster reachability.

6.2 Remarks

To perform the dense cluster enumeration, we can use similar data structures and speed-up
rules as described in Sect. 4.6. However, we have to adapt the update procedures as well as
the computation of gU(u∗, v), which is the number of new entries in the u∗-slice of the clus-
ter U after adding v. Here, we consider the general case, allowing for an arbitrary number of

Mach Learn (2011) 82: 123–155 139

symmetry groups among the n dimensions. In contrast to the setting without symmetry, an
instance v may belong to several dimensions, namely all dimensions involved in the same
symmetry relation. For convenience, we define d(v) to be the smallest dimension v belongs
to (the representative dimension of each symmetry group). Further, let si denote the total
number of dimensions belonging to the same symmetry group as the ith dimension, i.e.,
si > 1 if the ith dimension has a symmetry relationship with respect to other dimensions,
and si = 1 otherwise. Then, gU(u∗, v) = rU (u∗, v) · size(U), where size(U) is the num-
ber of distinct cluster entries (i.e., excluding entries that are equivalent due to symmetry)
and

rU (u∗, v) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
|Ud(v)|·|Ud(u∗)| if d(v) �= d(u∗) ∧ sd(v) = 1 ∧ sd(u∗) = 1,

sd(u∗)

|Ud(v)|·|Ud(u∗)| if d(v) �= d(u∗) ∧ sd(v) = 1 ∧ sd(u∗) > 1,

sd(v)

(|Ud(v)|−sd(v)+1)·|Ud(u∗)| if d(v) �= d(u∗) ∧ sd(v) > 1 ∧ sd(u∗) = 1,

sd(v)sd(u∗)

(|Ud(v)|−sd(v)+1)·|Ud(u∗)| if d(v) �= d(u∗) ∧ sd(v) > 1 ∧ sd(u∗) > 1,

sd(v)(sd(v)−1)

|Ud(v)|·(|Ud(v)|−sd(v)+1)
if d(v) = d(u∗) ∧ sd(v) > 1,

0 otherwise.

These equations follow directly from the definition of gU(u∗, v). The extensions de-
scribed in Sect. 5 are, with small modifications, also applicable in the case of symme-
try constraints; the difference is that dimensions involved in symmetry relationships can-
not be treated separately anymore, but have to be considered simultaneously. This af-
fects for instance the computation of the ranking criterion and the isolation-based pruning
rules.

In this section, we discussed how to extend our enumeration method to extract partially
symmetric clusters from partially symmetric data. Apart from that, other application scenar-
ios are conceivable, which can be solved similarly. For example, searching for asymmetric
clusters in symmetric tensors can be meaningful if there exist groups of instances with strong
inter-group connections, but not necessarily strong inner-group connections. On the other
hand, one might be interested in clusters that contain the same set of instances in several
dimensions although the data are not symmetric.

7 Experimental results

We implemented our DCE algorithm in C++1. In the following, we describe our experi-
ments on synthetic and real-world datasets. If not indicated otherwise, we applied DCE with
the output filtering explained in Sect. 5.1.

7.1 Scalability experiments

First we tested the performance of our method on artificial datasets. For that purpose,
we generated sparse tensors with hidden clusters. For simplicity, we used binary values,

1Implementation available at http://www.kyb.tuebingen.mpg.de/~georgii/dce.html.

http://www.kyb.tuebingen.mpg.de/~georgii/dce.html

140 Mach Learn (2011) 82: 123–155

i.e., each tensor element is either 0 or 1. Let n be the number of dimensions, and m

the number of clusters. Furthermore, we assumed a hypercubic model where each dimen-
sion has the same index set size d and each hidden cluster contains exactly s instances
in each dimension. The clusters were allowed to overlap without any restriction. In ad-
dition, we imposed different levels of noise onto the data. Here, the noise corresponds
to random 0–1 flips. Initially, all tensor elements within clusters were set to 1. Given
a noise level p, we randomly selected p% of all 1-elements and the same number of
0-elements. Then the selected elements were flipped, i.e., the 1-elements were set to 0 and
vice versa.

Given this model for data generation, we investigated the scalability of DCE with re-
spect to the different model parameters d , m, n, and s. Our basic setting was d = 100,
m = 20, n = 3, and s = 3; this corresponds to a total of 540 non-zero associations
(1-elements) among 300 different instances (from 3 dimensions). Starting from that, we
did four series of experiments, varying one of the parameters while keeping the oth-
ers fixed. The maximum number of 1-elements was 540, 810, 4860, and 2500 in the
four series, respectively; the maximum number of instances was 450, 300, 500, and
300, respectively. For each parameter configuration, we generated ten random datasets
and considered noise levels from 0% to 30%. The density threshold for the DCE algo-
rithm was chosen in dependence of the noise level, θ = (100 − p)%. Figure 4 shows
the resulting runtime curves for each parameter. In addition to the total runtime, we re-
port the empirical delay, i.e., the average runtime per solution. The values are averages
across the ten random datasets. All measurements were performed on a 3.0 GHz ma-
chine.

DCE scales favorably with d , the number of instances per dimension (Fig. 4a). For
noise levels from 0% to 20%, the runtime remains approximately constant with increas-
ing d , for 30% noise it increases linearly. In the 30% noise case, the noise elements cover
more instances and, due to the lowered density threshold, there exist more cluster so-
lutions; consequently, the 30% noise curve depends much stronger on d than the other
curves. The delay shows a linear increase in all cases. Regarding the number of hidden
clusters, the total runtime increases linearly at all noise levels (Fig. 4b). The delay in-
creases only very slightly; in fact, the higher number of clusters makes cluster overlaps
more likely, so some instances may have longer adjacency lists, which can lead to an in-
creased computational effort per solution. Actually, the 0% curve is on top because the
cluster instances have longer adjacency lists than in the noisy cases. The number of sub-
cluster solutions per hidden cluster increases exponentially with the number of dimen-
sions n, which is reflected by the total runtime (Fig. 4c). In contrast, the increase of the
delay is much more moderate. Likewise, when increasing the number of instances per di-
mension in the hidden clusters, the delay grows very slowly, although the total runtime
of DCE increases significantly (Fig. 4d). Again, this can be explained by the increased
number of subcluster solutions. Also, the effect is much stronger for higher noise lev-
els.

To conclude, DCE is appropriate for finding dense clusters in sparse settings; however,
the number of solutions may grow considerably with the dimensionality and the cardinality
of the clusters. Remarkably, the computational effort per solution scales very well in the
latter case, even though we use the adjacency list representation of the tensor and therefore
do not have constant-time access to elements. This indicates that our methods to speed up
the search process are effective. Furthermore, it encourages to combine the DCE search with
heuristics that restrict the generation of overlapping clusters while trying to catch the most
significant ones, which is investigated in the next section.

Mach Learn (2011) 82: 123–155 141

Fig. 4 DCE runtime measurements for artificial data in dependence of different parameters

142 Mach Learn (2011) 82: 123–155

7.2 Evaluation of branching-restricted search

In the following, we used the search strategy proposed in Sect. 5.5. The idea is to control
the number of branches descending from a cluster. That means, in each iteration of the
algorithm, we select the k most promising children (if available). Obviously, this restriction
leads to a loss of the completeness property. We analyzed the behavior of DCE for different
values of k in the context of the artificial datasets from the previous section. Table 1 shows
our results for varying dimension-wise cluster cardinality s at noise levels 0% and 30%. We
used the same datasets as for Fig. 4d and compared k-values from 1 to 4 with the unrestricted
(complete) DCE version. As can be seen, the overall runtime was drastically reduced by
introducing the branching restriction, in particular in the high noise case.

In order to evaluate the quality of the results, we used the following precision and recall
measures. The precision is given by the fraction of hidden cluster elements among all DCE
cluster elements, and the recall is given by the fraction of DCE cluster elements among all
hidden cluster elements. Formally, let D be the set of all tensor elements that belong to
clusters detected by DCE, and let H be the set of all tensor elements that belong to hidden
clusters. Then, recall and precision are defined as follows:

Recall = |D ∩ H |
|H | ,

Precision = |D ∩ H |
|D| .

The averages across the ten random datasets were determined by

Recallavg =
∑10

i=1 |Di ∩ Hi |∑10
i=1 |Hi |

,

Precisionavg =
∑10

i=1 |Di ∩ Hi |∑10
i=1 |Di |

.

Note that in our experiments, all hidden clusters had the same number of elements
(|Hi | = sn). Since we knew the size of our hidden clusters, we also evaluated recall and
precision based on the predicted clusters that have at least this size (i.e., at least s instances
in each dimension); these clusters are called size-restricted. In addition, we report recall and
precision of the results satisfying the balance criterion described in Sect. 5.2.

Trivially, DCE achieved perfect precision and recall for 0% noise (see Table 1). This
still held true if the branching was controled. But if we restricted the analysis to results
satisfying the size constraint, we lost recall in some cases. However, the recall level was
still quite high, and it was perfect for k = 4. Furthermore, for 0% noise (density threshold
100%), any predicted cluster trivially satisfies the balance criterion. In contrast, the bal-
ance constraint made a big difference in the 30% noise case. While we obtained 100%
recall and approximately 29.84% precision for s = 5 using the unconstrained DCE algo-
rithm, the balanced DCE clusters achieved 98.57% recall and 91.58% precision. Larger
hidden clusters (i.e., higher values of s) generally led to higher recall and lower preci-

Mach Learn (2011) 82: 123–155 143

Table 1 Performance analysis of DCE and its extensions for artificial data with varying dimension-wise
cluster cardinality s at 0% and 30% noise. For each setting, we took the average across ten random datasets.
The parameter k refers to the optional branching restriction. For noise level 0%, the clusters are trivially
balanced. See text for details

Noise level 0% Noise level 30%

s = 2 s = 3 s = 4 s = 5 s = 2 s = 3 s = 4 s = 5

Time (s) – 0.00 0.07 0.79 7.91 0.00 0.41 6.26 58.01

k = 4 0.00 0.07 0.74 6.83 0.00 0.06 0.63 5.08

k = 3 0.00 0.07 0.62 5.10 0.00 0.05 0.47 3.17

k = 2 0.00 0.05 0.36 2.22 0.00 0.04 0.24 1.17

k = 1 0.00 0.02 0.08 0.26 0.00 0.02 0.06 0.16

Recall (%) – 100.00 100.00 100.00 100.00 88.19 98.91 99.96 100.00

k = 4 100.00 100.00 100.00 100.00 88.19 98.89 99.94 100.00

k = 3 100.00 100.00 100.00 100.00 88.19 98.78 99.90 100.00

k = 2 100.00 100.00 100.00 100.00 88.19 98.28 99.80 100.00

k = 1 100.00 100.00 100.00 100.00 84.81 95.24 98.41 99.78

Precision (%) – 100.00 100.00 100.00 100.00 95.21 80.26 54.28 29.84

k = 4 100.00 100.00 100.00 100.00 95.21 82.02 58.37 34.45

k = 3 100.00 100.00 100.00 100.00 95.21 83.73 61.25 38.75

k = 2 100.00 100.00 100.00 100.00 95.53 86.60 69.69 51.47

k = 1 100.00 100.00 100.00 100.00 97.07 94.07 89.07 84.67

Recall for – 100.00 100.00 100.00 100.00 57.00 59.50 54.03 48.51

size-restricted k = 4 100.00 100.00 100.00 100.00 57.00 59.50 54.03 48.51

clusters (%) k = 3 100.00 100.00 99.50 100.00 57.00 59.50 53.53 48.51

k = 2 100.00 100.00 99.00 99.00 57.00 59.00 48.52 44.01

k = 1 100.00 99.52 97.50 98.00 56.50 39.01 22.01 10.50

Precision for – 100.00 100.00 100.00 100.00 99.35 99.72 100.00 100.00

size-restricted k = 4 100.00 100.00 100.00 100.00 99.35 99.72 100.00 100.00

clusters (%) k = 3 100.00 100.00 100.00 100.00 99.35 99.72 100.00 100.00

k = 2 100.00 100.00 100.00 100.00 99.35 99.72 100.00 100.00

k = 1 100.00 100.00 100.00 100.00 99.67 100.00 100.00 100.00

Recall for – See above 71.94 84.62 94.14 98.57

balanced k = 4 71.94 84.55 93.93 98.41

clusters (%) k = 3 71.94 84.49 93.70 98.15

k = 2 71.81 83.99 92.42 97.07

k = 1 69.87 78.42 84.43 89.02

Precision for – 98.38 96.72 94.31 91.58

balanced k = 4 98.38 96.72 94.32 91.61

clusters (%) k = 3 98.38 96.71 94.33 91.67

k = 2 98.37 96.72 94.38 91.73

k = 1 98.42 96.58 94.08 91.27

Recall for – 27.50 1.50 0.00 0.50

balanced k = 4 27.50 1.50 0.00 0.50

size-restricted k = 3 27.50 1.50 0.00 0.50

clusters (%) k = 2 27.50 1.50 0.00 0.50

k = 1 27.50 1.50 0.00 0.50

144 Mach Learn (2011) 82: 123–155

Table 1 (Continued)

Noise level 0% Noise level 30%

s = 2 s = 3 s = 4 s = 5 s = 2 s = 3 s = 4 s = 5

Precision for – 100.00 100.00 – 100.00

balanced k = 4 100.00 100.00 – 100.00

size-restricted k = 3 100.00 100.00 – 100.00

clusters (%) k = 2 100.00 100.00 – 100.00

k = 1 100.00 100.00 – 100.00

sion in the noisy case because they allow for more cluster variants. In conjunction with
the minimum size constraint, DCE produced 48.51% recall at 100% precision (in the s = 5
setting). Note that DCE would always recover 100% of the hidden clusters if we applied
during the data generation the same fraction of flips to each individual cluster. In our ex-
periments, we just fixed the overall fraction of flips across all clusters, which is a more
realistic setting. After adding 30% noise, only a small fraction of the hidden clusters satis-
fied both size and balance constraints; the average recall was 0.5% for s = 5 and 27.5% for
s = 2.

Regarding the influence of the parameter k, our empirical results suggest the following
tendencies. Naturally, the recall increased for higher values of k. Remarkably, for k = 3
or k = 4 the recall was in most cases very close or equal to the recall obtained without
branching constraints, although the runtime was significantly reduced. Sometimes, the recall
level was already reached with k = 2. The precision of DCE clusters was higher for small k,
which indicates that the heuristics is indeed successful in focusing on significant solutions.
With respect to size or balance constraints, the precision remained approximately the same
for all k and the unrestricted branching. In summary, the branching restriction is an effective
technique to speed up the search procedure while maintaining the precision and recall levels
of the complete algorithm.

7.3 Efficiency of reverse search

In order to investigate the efficiency of the reverse search approach, we compared its per-
formance with other set enumeration strategies. Here, we restricted our studies to two-
dimensional binary-valued data arrays. On the one hand, we downloaded gene signatures
for mouse and rat from GeneSigDB (Culhane et al. 2010); they contain a set of references
to biological experiments, each of which is associated with a list of genes. Combining this
information in a data matrix allows to do a meta-analysis on results from different biological
publications. The size of the data is 122 × 917 and 12 × 182 for mouse and rat, respectively;
the densities of the whole datasets are 5% and 19%, respectively. On the other hand, we
reused artificial data from Sect. 7.1 the previous section, with a size of 100 × 100 (m = 20,
s = 3, noise level 30%) and an overall density of 2%.

For comparison with DCE, we implemented two straightforward set enumeration ap-
proaches, which we call BruteForce and BruteNeigh. They use exactly the same data
structures for tensor access and incremental density calculation as DCE (see descrip-

Mach Learn (2011) 82: 123–155 145

tion in Sect. 4.6), the only difference is in the traversal of the search space. Brute-
Force enumerates all possible pairs of subsets with respect to the two dimensions; this
is done by two nested loops, each of which constructs subsets incrementally by the aid
of a lexicographical search tree. BruteNeigh is a more clever variant that is particularly
suited for size-imbalanced datasets. For the dimension with fewer instances, it enumer-
ates all subsets of instances in the same way as BruteForce; for each of these subsets,
it exploits neighborhood relationships in order to determine the subsets in the other di-
mension. More precisely, if U1 is the subset in the first dimension and V2 is the to-
tal set of instances in the second dimension, it collects a set S of all instances in V2

that are associated with at least one instance in U1 (i.e., neighbors in the correspond-
ing bipartite graph); then, all possible subsets of S are generated as before. This re-
sembles mining approaches on bipartite graphs described in Tanay et al. (2002) and ba-
sically avoids clusters with isolated instances (Sect. 5.4). In addition, we looked at a
combined version, BruteDCE, which enumerates all subsets in the smaller dimension
and performs for each of them a separate reverse search on the corresponding neigh-
bor set, in order to enumerate its dense subsets (leaving the subset in the first dimension
fixed).

We applied the different search techniques on the three datasets, using maximum car-
dinality constraints for the dimension-specific instance sets (Sect. 5.5) in order to make
the BruteForce approach feasible; the maximum cardinality (denoted as max) was set to
the same value for both dimensions and ranged from 2 to 4. Figure 5 shows the result-
ing time curves for different density thresholds. The measurements were performed on a
2.8 GHz processor. We observed some general trends across the experiments. First of all,
the neighborhood-based technique greatly payed off for straightforward set enumeration
methods: BruteNeigh improved the performance of BruteForce by approximately one order
of magnitude. Second, DCE showed an exponential runtime increase for decreasing density
thresholds, but in the upper threshold range from 100% to 60% density, it outperformed
BruteNeigh in most cases by a wide margin. Furthermore, considering fixed density thresh-
olds, the performance gain of DCE increased with increasing levels of (maximum) cardinal-
ity. For density thresholds close to the overall density of the dataset, DCE was visibly worse
than BruteForce (see rat plots); this is due to the overhead of the child generation process
in the reverse search, which has to select the true children among all possible candidates
(Sects. 4.4 and 4.5).

Regarding the behavior of BruteDCE, there were major differences between the datasets.
While the combined enumeration strategy was beneficial for the highly size-imbalanced
rat dataset, consistently achieving lower runtimes than DCE, it had mainly a negative ef-
fect for the artificial dataset, where the number of rows equals the number of columns.
For the mouse dataset, it outperformed DCE only for medium and low density thresholds.
Note that the shape of the BruteDCE curve differs heavily between rat and artificial exper-
iments, resembling the DCE curve and the BruteNeigh curve, respectively. This indicates
that in the latter case, the brute force enumeration part dominated the computation time of
BruteDCE, whereas in the former case the reverse search part played the main role. Over-
all, the empirical results show that in comparison with straightforward search approaches,
the reverse search strategy considerably improves the efficiency of dense cluster enumera-
tion.

7.4 Email traffic analysis

We applied DCE to a subset of the ENRON email dataset (Klimt and Yang 2004) taken
from Borgwardt et al. (2006). It records information about the sender, the recipients, and the

146 Mach Learn (2011) 82: 123–155

Fig. 5 Runtime comparison of DCE and other set enumeration strategies in dependence of the minimum
density threshold. The time axis is logarithmic. See text for details

Mach Learn (2011) 82: 123–155 147

Senders: 155, 162, 169
Recipients: 114, 155, 165, 169
Weeks: 103, 108, 118, 120

Sender Recipient No. of emails in week
103 108 118 120

155 114 ≥10 ≥10 ≥10 ≥10
155 155 0 0 0 0
155 165 ≥10 ≥10 ≥10 8
155 169 ≥10 ≥10 ≥10 8
162 114 ≥10 ≥10 ≥10 ≥10
162 155 ≥10 ≥10 ≥10 ≥10
162 165 ≥10 ≥10 ≥10 ≥10
162 169 ≥10 ≥10 ≥10 ≥10
169 114 ≥10 ≥10 ≥10 ≥10
169 155 ≥10 ≥10 ≥10 ≥10
169 165 8 ≥10 ≥10 8
169 169 0 0 0 0

Fig. 6 Top-ranking cluster for email traffic data

time stamp of emails. From this, we generated a three-way tensor as follows. We mapped
each time stamp to the corresponding week and then determined the number of emails a
certain sender sent to a certain recipient in a certain week. This yielded a 120 × 143 × 123
tensor with 6995 non-zero elements. We were interested in groups of persons that regularly
exchange a large number of emails. The individual frequency values ranged from 1 to 202,
however 81% of them were lower than or equal to 10; we set elements with values greater
than 10 to 10, in order to avoid results that are dominated by one or very few outlier el-
ements and consequently do not reliably describe associations between sets of instances.
After the pre-processing, we ran DCE with a density threshold of 80%. That means, for a
cluster solution, each sender sends in each week on average at least 8 emails to each recip-
ient.

Restricting the maximum number of instances per dimension for each cluster to 4, we
obtained approximately 3.5 × 107 clusters in total. This seems to be a large number of clus-
ters, but it is reasonably small compared to the number of cluster candidates for the tensor
at hand, which is 2.0 × 1022 for the given maximum size constraint. Focusing on locally
maximal patterns with at least two instances in each dimension, the size of the result set
shrinks to 240675, and among them, there are only 142 clusters with at least three instances
in each dimension. The top-ranking cluster (density: 82%, p-value: 4.7 × 10−20) is shown
in Fig. 6. It contains three senders, four recipients and four weeks. Senders and recipients
are given by personal identifiers. Two persons appear as both senders and recipients, one
person appears only as sender, and two persons only as recipients. The only zero elements
of the cluster are due to the absence of self-emails for the two persons in the overlap. This
cluster remains the top-ranking cluster even if we drop the maximum cardinality constraints
for senders and recipients, which means that there do not exist such dense clusters involving
more people.

7.5 Coexpression analysis

To illustrate dense cluster enumeration in the case of partially symmetric data, we analyzed
coexpression networks from multiple gene expression experiments in yeast.

148 Mach Learn (2011) 82: 123–155

7.5.1 Data

We took the gene expression dataset from Gasch et al. (2000) and pre-processed it similarly
as described in Hu et al. (2005): first, we selected the experiments with at least 6 individual
measurements; then we calculated for each experiment the Pearson correlation coefficients
between the expression profiles of all genes; if the correlation was positive and significant at
a level of 10−5, we connected the corresponding genes by an edge (weight 1). This resulted
in 17 different coexpression networks on the same set of genes; there were 6152 genes in to-
tal, and each network contained 9237 edges on average. The networks can be represented as
a three-dimensional tensor with the genes in the first two dimensions and the identifier of the
experiment (i.e., the network type) in the third dimension. As the networks are undirected,
the tensor is symmetric with respect to the first two dimensions.

7.5.2 Experimental setup

Our goal was to analyze the set of networks for cooccurring dense substructures. There exist
several competitive approaches that deal with sets of unweighted networks. We compared
our DCE approach with Cocain (COC) (Zeng et al. 2006) and Codense (COD) (Hu et al.
2005). Cocain is an enumerative method that detects frequent quasi-cliques. This criterion
is stricter than our criterion, even if we require balance constraints (Sect. 5.2); in fact, each
frequent quasi-clique is a balanced dense cluster, but not vice versa. The Codense algorithm
is a non-enumerative approach that searches for dense subgraphs in a summary network and
then extracts subsets with correlated edge occurrence across the original networks. Rela-
tional data mining approaches (Ji et al. 2006) are equivalent to DCE with density thresh-
old 100%, so we did not consider them separately in our biological evaluation. The COC
code was obtained from the original authors (Zeng et al. 2006), and COD was downloaded
from http://zhoulab.usc.edu/CODENSE/. The minimum network frequency and the mini-
mum number of genes per cluster were set in all approaches to 3 and 6, respectively; there
were 4745 frequent edges involving 411 nodes. The p-value threshold required by COD was
set to 0.01.

7.5.3 Evaluation measures

To evaluate clusters of genes, we performed a functional enrichment analysis with respect to
Gene Ontology annotations. The Gene Ontology (Ashburner et al. 2000) provides a frame-
work for functional categorization of genes; it is organized in a hierarchical way. We used
the Expander tool (Shamir et al. 2005) to detect functional categories that are significantly
overrepresented in the predicted clusters; for this, we used the default parameters with a
p-value threshold of 0.05 after correction for multiple testing. In addition to the number
of functionally enriched clusters, we report the average gene-wise reliability, the average
pair-wise reliability, as well as the overall precision and recall. These measures are defined
as follows. Given a cluster with one or several significantly enriched functional categories,
genes that belong to the same enriched category are called homogeneous. Let hgi be the size
of the largest group of homogeneous genes in the ith cluster, and let gi be the total number
of genes in the cluster. Then, the gene-wise reliability of the cluster is given by

hgi

gi

.

http://zhoulab.usc.edu/CODENSE/

Mach Learn (2011) 82: 123–155 149

Further, let hgpi be the number of homogeneous gene pairs and gpi the total number of gene
pairs. The pair-wise reliability of the cluster is defined as

hgpi

gpi

.

Compared to the gene-wise reliability, this measure takes into account all different enriched
categories of a cluster. It can be seen as the probability that an arbitrary gene pair taken
from the cluster is homogeneous. For each of the two reliability measures, we determine
the average across all clusters. Finally, the precision and recall measures refer to unique
(homogeneous) gene pairs across all clusters. That means, each gene pair is only counted
once even if it occurs in more than one predicted cluster. Note that all methods applied in
this comparison predict overlapping clusters. We report the number of homogeneous pairs
relative to the number of all within-cluster pairs (precision) as well as the absolute number
of recalled homogeneous pairs.

7.5.4 Results

Table 2 summarizes the results of DCE, COC, and COD for different density thresholds. For
DCE, we also list the results with balance constraints (bal.) and with branching restrictions
(k = 1,2). These constrained DCE versions do not allow to do the local maximality check
described in Sect. 5.1; instead, they return all clusters at leaf nodes of the search trees, which
can produce larger cluster numbers.

For 100% density, DCE, DCE (bal.), and COC are all equivalent and therefore yield
the same results. However, for lower density values DCE and DCE (bal.) are more flexible
than the quasi-clique approach used by COC, so they achieve much higher recall, while
precision and reliability remain in a comparable range. Interestingly, both for DCE and
COC, the average cluster reliability with density threshold 85% is larger than with density
threshold 100%. This can be explained by the fact that, at sufficiently high density levels,
larger clusters are more likely to be biologically significant than small ones (note that the
average number of genes per cluster is increased). On the other hand, a decreasing density
threshold allows the clusters to include less related genes. Therefore, the overall precision of
DCE was slightly reduced when going from 100% to 85% density. In contrast, COC, which
applies the more rigid quasi-clique criterion, kept the precision level. The criterion required
by COD is generally more restrictive and its search is not exhaustive, so the recall is lower.
However, while the precision and reliability values are perfect for a density threshold of
95%, they are considerably behind the other approaches at 85% density.

For density thresholds below 85%, the number of solutions returned by DCE increases
drastically, which comes along with an exponential increase of the runtime (the measure-
ments were performed on a 2.8 GHz processor). The reason for that is the increasing flex-
ibility of patterns, which leads to strongly overlapping solutions. This is even the case if
we consider balanced clusters. Clearly, such an overwhelming set of results is not suitable
for user inspection (also, the Expander tool for enrichment analysis failed); therefore, fur-
ther criteria to restrict the search are needed. For comparison purposes, we again used the
heuristic branching restriction introduced in Sect. 5.5 with values 1 and 2. With this, the per-
formance was competitive with COC and COD. The branching restriction produced lower
recall than the complete search (considering balanced clusters in both cases), but it can
still compete with the recall values achieved by COC and COD. Furthermore, although our
cluster criterion is less restrictive than the criteria for COC or COD, the clusters were bio-
logically meaningful, achieving similar levels of reliability and precision. Beside that, DCE

150 Mach Learn (2011) 82: 123–155

Table 2 Comparative evaluation on coexpression data. Abbreviations: max. (maximum), avg. (average), rel.
(reliability), bal. (balanced). The parameter k refers to the optional branching restriction of DCE. See text for
details

Den- No. of No. of Max. Avg. Gene- Pair- Pre- No. of Time

sity clusters enriched no. of no. of wise wise cision recalled (s)

(%) clusters genes genes rel. rel. (%) pairs

(%) (%)

DCE 100 53 52 9 6.7 95.2 92.6 84.3 215 2.9

95 239 238 11 7.8 95.9 93.1 84.2 388 5.4

90 1057 1048 13 8.6 95.6 92.9 81.7 642 25.7

85 3269 3240 16 10.7 96.3 94.1 82.6 1041 179.2

80 16982 n/a 18 11.8 n/a n/a n/a n/a 2245.0

75 95869 n/a 20 13.9 n/a n/a n/a n/a 30011.2

DCE 100 53 52 9 6.7 95.2 92.6 84.3 215 2.9

(bal.) 95 425 416 9 6.5 96.3 94.9 83.3 219 5.4

90 1288 1277 11 6.6 97.5 96.0 81.9 303 25.6

85 3705 3684 11 7.0 98.0 96.9 82.6 409 179.7

80 10697 n/a 13 7.2 n/a n/a n/a n/a 2271.8

75 24200 n/a 14 8.3 n/a n/a n/a n/a 29968.1

DCE 100 17 16 9 6.7 92.1 90.4 83.6 117 0.6

(bal., 95 17 16 9 6.8 91.4 88.8 82.5 118 0.6

k=1) 90 28 27 11 6.8 92.1 88.6 81.4 162 0.7

85 38 37 11 7.0 94.0 91.4 82.9 194 0.7

80 66 64 12 7.1 93.8 91.0 80.9 284 0.9

75 71 69 14 8.0 94.9 92.9 82.2 332 1.0

DCE 100 133 130 9 6.7 95.7 94.0 83.0 176 1.1

(bal., 95 136 133 9 6.8 95.8 94.2 83.3 185 1.4

k=2) 90 296 291 11 6.9 95.9 94.1 83.9 260 2.3

85 590 584 11 7.4 97.3 96.1 82.6 338 4.2

80 1247 1237 13 7.7 97.1 95.4 81.9 456 9.8

75 2198 2192 14 8.9 97.7 96.0 82.8 521 23.5

COC 100 53 52 9 6.7 95.2 92.6 84.3 215 1.3

95 53 52 9 6.7 95.2 92.6 84.3 215 1.3

90 53 52 9 6.7 95.2 92.6 84.3 215 2.3

85 109 108 10 8.2 97.2 95.4 85.0 260 7.2

80 200 199 12 7.6 96.3 93.4 83.3 329 14.0

75 520 512 13 8.2 95.7 93.2 82.9 474 54.2

COD 100 0 – – – – – – – 0.2

95 3 3 11 9.7 100.0 100.0 100.0 80 1.6

90 10 9 11 7.5 90.7 91.7 83.6 107 1.5

85 9 8 10 7.9 84.5 81.3 76.1 140 1.6

80 10 9 18 8.9 85.4 82.8 79.0 245 2.0

75 8 7 21 11.2 85.6 84.3 80.9 314 1.6

Mach Learn (2011) 82: 123–155 151

is applicable to more general settings, namely data with an arbitrary number of dimensions,
binary or weighted values, including symmetries or not.

8 Discussion

We presented a general framework for the systematic extraction of dense patterns from
higher-order association data. It extends conventional relational set mining approaches (Cerf
et al. 2008; Jaschke et al. 2006; Ji et al. 2006) and clique-related network analysis (Palla et al.
2005; Jiang and Pei 2009; Zeng et al. 2006). The proposed reverse search algorithm allows
for an effective pruning of the search space without missing any solutions. Remarkably, the
complexity of the delay between two consecutive solutions is in the order of the input size.
This property distinguishes the reverse search approach from straightforward set enumer-
ation algorithms and makes it applicable in cases where they are infeasible. However, for
large datasets or low density thresholds, the number of solutions is prohibitive (even if only
maximal solutions are considered); consequently, the search method does not scale well.

There are several remedies for this problem. The first possibility is to maintain the enu-
merative search, but add further constraints based on additional criteria, prior knowledge,
or external data. Often, it is possible to define anti-monotonic constraints, which contribute
actively to pruning of the search space (Zhu et al. 2007; Georgii et al. 2009a). Or, if relevant
subsets are pre-specified for some dimensions (for instance, windows of consecutive time
intervals), reverse search with respect to the other dimensions can be performed for each of
these subsets individually. On the other hand, one can use the reverse search strategy, but ap-
ply heuristic criteria or sampling techniques to control the number and overlap of solutions;
this allows to directly trade off the runtime and the completeness of the solution set, which
we illustrated in the experiments with a simple branching heuristic. Even if it is not used
for exhaustive exploration, the definition of the anti-monotonic search space has a value by
itself, as solutions are visited with polynomial delay.

Finally, instead of applying the method to the whole dataset at once, it can be combined
with different strategies of pre-partitioning or pre-aggregation of the data (Kolda and Bader
2007; Hu et al. 2005). Furthermore, the reverse search strategy is compatible with distributed
computation, and its efficiency can be further improved by adapting the data structures and
pruning techniques to the specific task at hand.

Acknowledgements We are very grateful to G. Rätsch for his encouragement and support and to the
anonymous reviewers for their helpful comments. We thank K. Borgwardt for interesting discussions and
for providing the email dataset; we thank Z. Zeng and J. Wang as well as H. Hu and X.J. Zhou for making
their implementations available. This work was supported in part by TEKES 40141/07 (partly to EG), JSPS
Kakenhi 21680025 and FIRST (partly to KT), and the IST Programme of the European Community, under
the PASCAL2 Network of Excellence, IST-2007-216886 (partly to EG, KT, and BS). This publication only
reflects the authors’ views.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommer-
cial License which permits any noncommercial use, distribution, and reproduction in any medium, provided
the original author(s) and source are credited.

Appendix A: Proof of Lemma 1

We consider the case where the minimum degree instance belongs to the j th dimen-
sion. For convenience, we use the subarray representation of clusters, U = (U1, . . . ,Un),

152 Mach Learn (2011) 82: 123–155

and denote by v the corresponding element in Uj . First we show that (U1, . . . ,Uj−1,

Uj \ {v},Uj+1, . . . ,Un) is a valid cluster where all index sets are non-empty. For that pur-
pose, let us assume that |Uj | = 1. Then, Uj = {v} and degU(v, j) = ∑

ki∈Ui
wk1,...,kn =: T ,

that means the degree of v ∈ Uj is equal to the sum of all elements in the subtensor in-
duced by U . Furthermore, T is positive because ρ(U) > 0. As U is non-trivial, there exists
a j ′ ∈ {1, . . . , n}, j ′ �= j , such that |Uj ′ | > 1. Let u′ be an instance of minimum degree in
Uj ′ , i.e., u′ ∈ argminu∈Uj ′ degU(u, j ′). Then, T > degU(u′, j ′):

– for degU(u′, j ′) > 0: T = ∑
u∈Uj ′ degU(u, j ′) ≥ |Uj ′ | · degU(u′, j ′) > degU(u′, j ′);

– for degU(u′, j ′) ≤ 0: obvious because T > 0.

So we have found a u′ ∈ Uj ′ with degU(u′, j ′) < degU(v, j), which contradicts the assump-
tion of the lemma. Consequently, |Uj | > 1, and therefore |Uj \ {v}| > 0. Thus, the size of
the reduced cluster is at least 1.

The second part of the lemma is shown by simple algebra:

ρ(U1, . . . ,Uj−1,Uj \ {v},Uj+1, . . . ,Un) − ρ(U1, . . . ,Un)

= 1

size(U)

(|Uj |
|Uj | − 1

∑

u∈Uj \{v}
degU(u, j) −

∑

u∈Uj

degU(u, j)

)

= |Uj |
(|Uj | − 1) size(U)

(
1

|Uj |
∑

u∈Uj

degU(u, j) − degU(v, j)

)

≥ 0.

The inequality holds due to the choice of v and the first part of the proof.

Appendix B: Proof of Lemma 2

1. By definition, u∗ is a minimum degree instance in U . Due to the non-negativity of W , the
degree values of instances in U cannot decrease when adding the instance v. Thus, v is
the minimum degree instance in U ∪ {v}.

2. The quantity gU (u∗, v) is easily computed as follows:

gU (u∗, v) =
{

0 ifd(u∗) = d(v),

size(U)/(|Ud(u∗)| · |Ud(v)|) otherwise.

Here, U is the subarray representation corresponding to U , and d(v) denotes the dimen-
sion to which v belongs. As the maximum value in W is 1 due to our normalization (see
Sect. 4.1), gU (u∗, v) corresponds to the maximum increase of the degree of u∗ after ad-
dition of v. So if the degree of v exceeds the maximum possible degree of u∗, v cannot
be minimum degree instance in U ∪ {v}.

Appendix C: Proof of Lemma 3

Let U be a non-trivial cluster that contains only non-isolated instances. Its ancestors are ob-
tained by iterative reduction until a trivial cluster is reached. First, we show that a single

Mach Learn (2011) 82: 123–155 153

reduction step cannot turn U into a cluster with (at least) two isolated instances in a dimen-
sion. Assume that this would be possible. Let u∗ ∈ U denote the instance that is removed in
the reduction step; further, let u1, u2 ∈ U \{u∗} be the isolated instances in the resulting clus-
ter, i.e., degU \{u∗}(u1) = degU \{u∗}(u2) = 0. The instances u1 and u2 belong to the same di-
mension, u∗ belongs to a different dimension. Together with the non-negativity assumption
for the data array, it follows that degU (u∗) ≥ degU (u1) + degU (u2). By the definition of U ,
degU (u1) > 0 and degU (u1) > 0. Thus, degU (u∗) > degU (u1) and degU (u∗) > degU (u2),
contradicting the fact that u∗ is a minimum degree node. Second, also by using multiple
reduction steps we cannot generate a cluster with (at least) two isolated instances from a
cluster without isolated instances because isolated instances cannot be accumulated dur-
ing reduction: whenever the reduction procedure generates a cluster where one or several
dimensions contain an isolated instance, these instances have minimum degree and are con-
sequently removed in the subsequent reduction steps; the elimination of an isolated instance
does not affect the degree of other instances, so it cannot generate new isolated instances.

References

Acar, E., Aykut-Bingol, C., Bingol, H., Bro, R., & Yener, B. (2007). Multiway analysis of epilepsy tensors.
Bioinformatics, 23(13), i10–i18.

Acar, E., Çamtepe, S., & Yener, B. (2006). Collective sampling and analysis of high order tensors for chat-
room communications. In Intelligence and security informatics (pp. 213–224). Berlin: Springer.

Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association rules in large databases. In VLDB
’94: Proceedings of the 20th international conference on very large data bases (pp. 487–499). San Ma-
teo: Morgan Kaufmann.

Asahiro, Y., Iwama, K., Tamaki, H., & Tokuyama, T. (2000). Greedily finding a dense subgraph. Journal of
Algorithms, 34(2), 203–221.

Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., Davis, A. P., Dolinski, K.,
Dwight, S. S., Eppig, J. T., Harris, M. A., Hill, D. P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese,
J. C., Richardson, J. E., Ringwald, M., Rubin, G. M., & Sherlock, G. (2000). Gene ontology: tool for
the unification of biology. Nature Genetics, 25(1), 25–29.

Avis, D., & Fukuda, K. (1996). Reverse search for enumeration. Discrete Applied Mathematics, 65, 21–46.
Bader, G. D., & Hogue, C. W. (2003). An automated method for finding molecular complexes in large protein

interaction networks. BMC Bioinformatics, 4, 2.
Baranzini, S. E., Mousavi, P., Rio, J., Caillier, S. J., Stillman, A., Villoslada, P., Wyatt, M. M., Comabella, M.,

Greller, L. D., Somogyi, R., Montalban, X., & Oksenberg, J. R. (2004). Transcription-based prediction
of response to IFNβ using supervised computational methods. PLoS Biology, 3(1), e2.

Beckmann, C. F., & Smith, S. M. (2005). Tensorial extensions of independent component analysis for multi-
subject FMRI analysis. Neuroimage, 25(1), 294–311.

Bejerano, G., Friedman, N., & Tishby, N. (2004). Efficient exact p-value computation for small sample,
sparse, and surprising categorical data. Journal of Computational Biology, 11(5), 867–886.

Besson, J., Robardet, C., De Raedt, L., & Boulicaut, J. F. (2006). Mining bi-sets in numerical data. In Lecture
notes in computer science: Vol. 4747. KDID ’06: Knowledge discovery in inductive databases, fifth
international workshop (pp. 11–23). Berlin: Springer.

Borgwardt, K. M., Kriegel, H. P., & Wackersreuther, P. (2006). Pattern mining in frequent dynamic sub-
graphs. In ICDM ’06: Proceedings of the sixth international conference on data mining (pp. 818–822).
Los Alamitos: IEEE Comput. Soc.

Cerf, L., Besson, J., Robardet, C., & Boulicaut, J. F. (2008). Data peeler: contraint-based closed pattern
mining in n-ary relations. In SDM ’08: Proceedings of the SIAM international conference on data mining
(pp. 37–48).

Culhane, A. C., Schwarzl, T., Sultana, R., Picard, K. C., Picard, S. C., Lu, T. H., Franklin, K. R., French,
S. J., Papenhausen, G., Correll, M., & Quackenbush, J. (2010). GeneSigDB—a curated database of
gene expression signatures. Nucleic Acids Research 38(suppl_1), D716–D725.

Everett, L., Wang, L. S., & Hannenhalli, S. (2006). Dense subgraph computation via stochastic search: appli-
cation to detect transcriptional modules. Bioinformatics, 22(14), e117–e123.

Farkas, I. J., Abel, D., Palla, G., & Vicsek, T. (2007). Weighted network modules. New Journal of Physics, 9,
180.

154 Mach Learn (2011) 82: 123–155

Gasch, A. P., Spellman, P. T., Kao, C. M., Carmel-Harel, O., Eisen, M. B., Storz, G., Botstein, D., & Brown,
P. O. (2000). Genomic expression programs in the response of yeast cells to environmental changes.
Molecular Biology of the Cell, 11(12), 4241–4257.

Georgii, E., Dietmann, S., Uno, T., Pagel, P., & Tsuda, K. (2009a). Enumeration of condition-dependent dense
modules in protein interaction networks. Bioinformatics, 25(7), 933–940.

Georgii, E., Tsuda, K., & Schölkopf, B. (2009b). Multi-way set enumeration in real-valued tensors. In DMMT
’09: Proceedings of the second workshop on data mining using matrices and tensors (pp. 32–41). New
York: ACM.

Goldberg, L. A. (1992). Efficient algorithms for listing unlabeled graphs. Journal of Algorithms, 13(1), 128–
143.

Han, J., & Kamber, M. (2006). The Morgan Kaufmann series data management systems. Data mining: con-
cepts and techniques. San Mateo: Morgan Kaufmann.

Haraguchi, M., & Okubo, Y. (2006). A method for pinpoint clustering of web pages with pseudo-clique
search. In Lecture notes in computer science: Vol. 3847. Federation over the Web (pp. 59–78). Berlin:
Springer.

Höppner, F., Klawonn, F., Kruse, R., & Runkler, T. (1999). Fuzzy cluster analysis: methods for classification,
data analysis and image recognition. New York: Wiley.

Hu, H., Yan, X., Huang, Y., Han, J., & Zhou, X. J. (2005). Mining coherent dense subgraphs across massive
biological networks for functional discovery. Bioinformatics, 21(suppl_1), i213–i221.

Jaschke, R., Hotho, A., Schmitz, C., Ganter, B., & Stumme, G. (2006). TRIAS—an algorithm for mining
iceberg tri-lattices. In ICDM ’06: Proceedings of the sixth international conference on data mining (pp.
907–911). Los Alamitos: IEEE Comput. Soc.

Jegelka, S., Sra, S., & Banerjee, A. (2009). Approximation algorithms for tensor clustering. In Algorithmic
learning theory (pp. 368–383).

Ji, L., Tan, K. L., & Tung, A. K. H. (2006). Mining frequent closed cubes in 3D datasets. In
VLDB ’06: Proceedings of the thirty-second international conference on very large data bases
(pp. 811–822). VLDB Endowment/ACM, New York. http://portal.acm.org/citation.cfm?id=1164197,
http://dblp.uni-trier.de/rec/bibtex/conf/vldb/JiTT06.

Jiang, D., & Pei, J. (2009). Mining frequent cross-graph quasi-cliques. ACM Transactions on Knowledge
Discovery Data, 2(4), 1–42.

Kemp, C., Tenenbaum, J. B., Griffiths, T. L., Yamada, T., & Ueda, N. (2006). Learning systems of concepts
with an infinite relational model. In AAAI ’06: Proceedings of the twenty-first national conference on
artificial intelligence (pp. 381–388). Menlo Park: AAAI Press.

Klimt, B., & Yang, Y. (2004). The Enron corpus: a new dataset for email classification research. In ECML
’04: Proceedings of the 15th european conference on machine learning (pp. 217–226). Berlin: Springer.

Kolda, T. G., & Bader, B. W. (2007). Tensor decompositions and applications. Technical Report SAND2007-
6702, Sandia National Laboratories.

Kolda, T. G., Bader, B. W., & Kenny, J. P. (2005). Higher-order web link analysis using multilinear algebra.
In ICDM ’05: Proceedings of the fifth IEEE international conference on data mining (pp. 242–249).
Los Alamitos: IEEE Comput. Soc.

Kolda, T. G., & Sun, J. (2008). Scalable tensor decompositions for multi-aspect data mining. In ICDM ’08:
Proceedings of the eighth IEEE international conference on data mining (pp. 363–372).

Koyutürk, M., Szpankowski, W., & Grama, A. (2007). Assessing significance of connectivity and conserva-
tion in protein interaction networks. Journal of Computational Biology, 14(6), 747–764.

Madeira, S. C., & Oliveira, A. L. (2004). Biclustering algorithms for biological data analysis: a survey.
IEEE/ACM Transactions on Computational Biology of Bioinformatics, 1(1), 24–45.

Mishra, N., Ron, D., & Swaminathan, R. (2004). A new conceptual clustering framework. Machine Learning,
56(1–3), 115–151.

Newman, M. E. (2006). Modularity and community structure in networks. Proceedings of the National Acad-
emy of Sciences of United States of America, 103(23), 8577–8582.

Palla, G., Derenyi, I., Farkas, I., & Vicsek, T. (2005). Uncovering the overlapping community structure of
complex networks in nature and society. Nature, 435(7043), 814–818.

Robardet, C. (2009). Constraint-based pattern mining in dynamic graphs. In ICDM ’09: Proceedings of the
ninth IEEE international conference on data mining (pp. 950–955). Los Alamitos: IEEE Comput. Soc.

Rymon, R. (1992). Search through systematic set enumeration. In Proceedings of the third international
conference on principles of knowledge representation and reasoning (pp. 539–550).

Schaeffer, S. E. (2007). Graph clustering. Computer Science Review, 1(1), 27–64.
Shamir, R., Maron-Katz, A., Tanay, A., Linhart, C., Steinfeld, I., Sharan, R., Shiloh, Y., & Elkon, R. (2005).

EXPANDER—an integrative program suite for microarray data analysis. BMC Bioinformatics, 6(1),
232.

http://portal.acm.org/citation.cfm?id=1164197
http://dblp.uni-trier.de/rec/bibtex/conf/vldb/JiTT06

Mach Learn (2011) 82: 123–155 155

Spirin, V., & Mirny, L. A. (2003). Protein complexes and functional modules in molecular networks. Pro-
ceedings of the National Academy of Sciences of United States of America, 100(21), 12123–12128.

Sun, J., Tao, D., & Faloutsos, C. (2006). Beyond streams and graphs: dynamic tensor analysis. In KDD ’06:
Proceedings of the twelfth ACM SIGKDD international conference on knowledge discovery and data
mining (pp. 374–383). New York: ACM.

Tanay, A., Sharan, R., & Shamir, R. (2002). Discovering statistically significant biclusters in gene expression
data. Bioinformatics, 18(Suppl 1), S136–S144.

Ulitsky, I., & Shamir, R. (2009). Identifying functional modules using expression profiles and confidence-
scored protein interactions. Bioinformatics, 25(9), 1158–1164.

Uno, T. (2007). An efficient algorithm for enumerating pseudo cliques. In ISAAC ’07: Algorithms and com-
putation, eighteenth international symposium (pp. 402–414).

Yan, C., Burleigh, J. G., & Eulenstein, O. (2005). Identifying optimal incomplete phylogenetic data sets from
sequence databases. Molecular Phylogenetics and Evolution, 35(3), 528–535.

Yan, X., & Han, J. (2002). gSpan: graph-based substructure pattern mining. In ICDM ’02: Proceedings of
the second IEEE international conference on data mining (pp. 721–724). Los Alamitos: IEEE Comput.
Soc.

Yan, X., Zhou, X. J., & Han, J. (2005). Mining closed relational graphs with connectivity constraints. In
KDD ’05: Proceedings of the eleventh ACM SIGKDD international conference on knowledge discovery
and data mining (pp. 324–333). New York: ACM.

Zeng, Z., Wang, J., Zhou, L., & Karypis, G. (2006). Coherent closed quasi-clique discovery from large dense
graph databases. In KDD ’06: Proceedings of the twelfth ACM SIGKDD international conference on
knowledge discovery and data mining (pp. 797–802). New York: ACM.

Zhao, L., & Zaki, M. J. (2005). TRICLUSTER: an effective algorithm for mining coherent clusters in 3D
microarray data. In SIGMOD ’05: Proceedings of the 2005 ACM SIGMOD international conference on
management of data (pp. 694–705). New York: ACM.

Zhu, F., Yan, X., Han, J., & Yu, P. S. (2007). gPrune: a constraint pushing framework for graph pattern
mining. In PAKDD ’07: Proceedings of the eleventh Pacific-Asia conference on advances in knowledge
discovery and data mining (pp. 388–400). Berlin: Springer.

	Multi-way set enumeration in weight tensors
	Abstract
	Introduction
	Related work
	Reverse search
	Dense set enumeration problem
	Search space
	Reduction map
	Search strategy

	Multi-way dense cluster enumeration
	Problem definition
	Global index representation
	Search space
	Reduction map
	Enumeration algorithm
	Implementation details
	Complexity

	Extensions
	Locally maximal clusters
	Balance constraints
	Cluster ranking
	Isolation-based pruning
	Size and branching restrictions

	Symmetry adaptations
	Definitions
	Remarks

	Experimental results
	Scalability experiments
	Evaluation of branching-restricted search
	Efficiency of reverse search
	Email traffic analysis
	Coexpression analysis
	Data
	Experimental setup
	Evaluation measures
	Results

	Discussion
	Acknowledgements
	Open Access
	Appendix A: Proof of Lemma 1
	Appendix B: Proof of Lemma 2
	Appendix C: Proof of Lemma 3
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

