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Abstract We offer a new formal criterion for agent-centric learning in multi-agent systems,

that is, learning that maximizes one’s rewards in the presence of other agents who might also

be learning (using the same or other learning algorithms). This new criterion takes in as a

parameter the class of opponents. We then provide a modular approach for achieving effective

agent-centric learning; the approach consists of a number of basic algorithmic building blocks,

which can be instantiated and composed differently depending on the environment setting

(for example, 2- versus n-player games) as well as the target class of opponents. We then

provide several specific instances of the approach: an algorithm for stationary opponents,

and two algorithms for adaptive opponents with bounded memory, one algorithm for the n-

player case and another optimized for the 2-player case. We prove our algorithms correct with

respect to the formal criterion, and furthermore show the algorithms to be experimentally

effective via comprehensive computer testing.

Keywords Multi-agent systems . Machine learning . Game theory

1 Introduction

The past few years have seen a rapidly growing interest in multi-agent systems, and in

particular in learning algorithms for such systems. This interest has driven proposals for a

growing body of algorithms, and various arguments about their relative merits and domains
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of applicability (for example, Sen & Weiss (1998) and Stone & Veloso (2000)). In previous

work (Shoham, Powers, & Grenager, 2004) we surveyed this literature, and defined five

different coherent agendas one could adopt when concerned with learning in multi-agent

systems. We will not repeat the list in this paper, but instead we offer a contribution to one of

the learning agendas which we singled out as particularly relevant from the computer science

point of view.

The term ‘learning’ bears some discussion in the context of multi-agent systems. First,

let us be precise about the setting in which we will discuss learning, which is known, fully

observable (finitely or infinitely) repeated games. We give the formal definition in Section 2,

but, intuitively speaking, these consist of repeating some known matrix game (the ‘stage

game’), with each agent getting a reward after each play and observing the actions of the

other agent(s). We furthermore assume the agents are attempting to maximize average rewards

(or limit average in the case of infinite repetition), meaning that each agent’s overall reward is

the average of the stage-game rewards. While it would certainly be interesting to relax these

assumptions, most of the key issues arise already in the current setting. In the final section we

discuss possible extensions to unknown games, partially observable games, stochastic games,

and discounted rewards, and the additional challenges posed by each of these settings.

Note that even in the relatively simple environment of repeated games, the agent’s strategy

space is huge, encompassing all mappings from play histories to actions. Many of these

strategies are naturally viewed as incorporating a learning element. For example, in rational
learning (Kalai & Lehrer, 1993) an agent starts with some prior probability distribution over

its opponent’s repeated-game strategies, plays the (stage-game) best response, observes the

play of the opponents, updates the probability distribution, and repeats.

And so learning is inherent in repeated games. But it is also qualitatively more complex

than in single-agent learning, not the least because one cannot separate the process of learning
from the process of teaching. Consider what may happen when playing the Stackelberg game

of Fig. 1 repeatedly. Notice that Up is a strictly dominated strategy, so regardless of what

the opponent chooses the row agent would prefer to play Down. However, if the opponent is

also learning, this would presumably prompt it to learn to play Left, resulting in a payoff of

2 for the row agent. If the row agent instead played the seemingly suboptimal action of Up,

the opponent may learn to instead play Right, giving the row agent the higher payoff of 3.

We can see that in this instance, teaching can play as much of a role in achieving a desirable

outcome as learning.

So how does one think about learning (or, more precisely, learning and teaching) in this

setting? This is where we must be very precise about our goals in such learning. In this paper

we focus on what we termed the ‘agent-centric’ agenda in previous work. The agent-centric

learning agenda is a prescriptive one and asks how an agent should act in order to maximize

its reward in an environment containing other independent agents, who may also be learning

(possibly using a different algorithm). The intuition driving agent-centric learning is the

following. One cannot learn effectively against arbitrarily complex and strange opponents

(we use the term ‘opponent’ neutrally; we allow for competitive elements, but also cooperative

ones). In order to make any headway, one must make some informed guess against the target

class and optimize for it. At the same time, one cannot ignore the possibility that one’s guess

Fig. 1 The Stackelberg game
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was wrong about the target class, and should protect oneself against such a error. Finally, one

should allow for the fact that other agents may be using the same learning algorithm, and

should exploit this fact to coordinate with them when advantageous. The question is how to

effectively weave these three elements together.

We do this in two steps. First, in Section 3 we survey previous literature (from both AI

and game theory) that has provided formal criteria for agent-centric learning, including its

strengthes and limitations. Then in Section 4 we provide our own criterion, which we believe

strengthens and extends previous criteria (it also unifies and generalizes criteria we ourselves

proposed in the past (Powers & Shoham, 2005)). Despite a number of subtle technical details,

the new criterion is conceptually simple and applies broadly (in particular, to any n-player

repeated game). After presenting the criterion we discuss some of its properties, including

some potential concerns and its special properties in the 2-player case.

In Section 5 we begin to tackle the algorithmic question of how to meet our criterion. In

this section we set out an abstract modular system for agent-centric learning. The system

consists of several modules including a teaching module, a learning module, a coordination

module, and a security module. These modules can then be specialized and composed dif-

ferently, depending on the setting (2- versus n-player games) and class of opponents. Next

we proceed to give two concrete instantiations of the framework. In Section 6 we target

the class of stationary opponents, while Section 7 provides two algorithms for a class of

adaptive opponents with known memory bounds. In each case we start by proving that the

resulting algorithm is correct against our formal criterion. However, we believe that all for-

mal requirements—including our own—are merely baseline guarantees, and any proposed

algorithm must be subjected to empirical tests. We think it is fair to say that our level of

empirical validation is unprecedented in the literature. We show the results of tests of our

new algorithms with a number of major existing algorithms, using a recently-developed game

theoretic test-bed called GAMUT (Nudelman et al., 2004) to systematically sample a very

large space of games.

We conclude in Section 8 with a summary of our main messages, and a brief discussion

of some of the additional research avenues awaiting exploration.

2 The environment

In order to formally define the setting considered within this paper, we start with the standard

definition of a finite stage game (aka normal form game):

Definition 1. A stage game is a tuple G = (N , A1, . . . , An, u1, . . . , u2), where� N is a finite set of players, with n = |N |� Ai is a finite set of actions available to player i� ui : A1 × A2 × · · · × An → � is a utility function for player i

Figure 2 shows two well-known games from the literature, to which we’ll refer again later.

In a repeated game the stage game is repeated, finitely or infinitely. After each round,

each player is informed of the joint set of actions played by all the players and receives its

own reward. Each player is assumed to be interested in maximizing its average reward for

finitely repeated games and the limit average for infinite games (we ignore the subtlety that

arises when the limit does not exist, but this case does not present an essential problem).

We will restrict attention to games in which all of the payoffs in the game are within a finite

bounded range, [−b, b]. For our purposes, we assume all players have full knowledge about
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Fig. 2 Example stage games. The payoff for the row player is given first in each cell, with the payoff for the
column player following

the structure and payoffs of the game at all times, but are unaware of the strategies employed

by the other players.

Throughout this paper we will occasionally make reference to some terms and concepts

from game theory. For those readers wishing an introduction or refresher, we will devote

the rest of this section to defining those concepts used in the rest of this paper as well as

clarifying the notation used in our formal definitions.

In general, a strategy in a repeated game is a mapping from the history of the game

to a distribution over actions. In our setting, where the game structure is known and the

opponents’ actions are observable, the full history can be captured by recording the outcomes

of each stage game played by the players. A stage game outcome, o, is denoted as the single

action played by each player: o = 〈a1, . . . , an〉, where ai ∈ Ai . A repeated game outcome,

O , is a sequence (finite or infinite) of stage game outcomes: O = 〈o1, o2, . . . 〉. The value

of the outcome for player i, Vi (O), is then the average of the rewards the player received

from each stage game outcome in O . A history, h, of the game is a sequence of outcomes:

h = 〈o1, . . . , ot 〉, where t is the number of stage games the players have played so far in

the repeated game. A strategy, πi , for the repeated game is then a function mapping each

possible history to a distribution over actions for the given player, i , to play in the next

time period: πi : H → �Ai , where H is the set of possible histories and �Ai is the space

of probability distributions over the set Ai . If a player chooses its actions according to

the same distribution regardless of the history it is said to be using a ‘stationary strategy’,

πi ∈ �Ai .

Using π to indicate the joint strategies for all the players, we can define the expected

reward a player, i , would receive for a given set of strategies as Vi (π ). For simplicity in

later definitions we can also introduce π−i to indicate the strategies for all players except

player i and Vi (πi , π−i ) for the expected value to player i for playing strategy πi if all the

other players are playing according to π−i . �i will represent the space of possible strategies

for player i . One subtlety we need to be aware of is the question of whether the opponents

must choose their actions independently or can coordinate to randomize over joint actions.

For this paper we will assume the worst and define the opponents’ joint strategy space as

�−i : H → �(A1 × · · · × Ai−1 × Ai+1 × · · · × An).

We can now introduce the idea of the best response for a player given the strategies used

by the other players, BRi (π−i ) = argmaxπi ∈�i V (πi , π−i ). Note that the best response is

technically a set of strategies since the above equation may have multiple solutions in many

games. A Nash equilibrium, π , is then a set of strategies such that they are all a mutual best

response to one another, ∀iπi ∈ BRi (π−i ).

Note that calculating a best-response requires that a player know the actual strategies used

by all the other players. Often however we’re concerned with what to do if the other players’

policies are unknown. We then can define a security value (aka minimax value) for our player

which is the maximum reward it can guarantee regardless of what policies its opponents
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are using:

SVi = maxπ∈�i minπ−i ∈�−i Vi (πi , π−i ) (1)

A policy that is guaranteed to achieve this value on expectation is called a security policy or

maxmin policy.

Another situation that will be relevant for our work is the case in which multiple players are

attempting to cooperate in selecting a joint vector of payoffs. For our purposes we will define

a player to be ‘individually rational’ if it only considers accepting outcomes in which its

payoff is at least its security value. Given a set of possible outcomes, an individual outcome

(joint action profile), is considered Pareto efficient (PE) over that set if there is no other

outcome in the set that dominates it. In this context, one outcome dominates another if it is

at least as high for all players and strictly higher for at least one player. Formally, for a set of

players, X , and outcomes, O:

PEX (O) = (o ∈ O|¬∃o′∈O (∃i∈X Vi (o
′) > Vi (o) ∧ ∀ j∈X Vj (o

′) ≥ Vj (o))) (2)

3 Previous criteria for multi-agent learning

To our knowledge, Bowling and Veloso (2002b) were the first in the AI community to

explicitly put forth formal requirements. Specifically they proposed two criteria:

Rationality: If the other players’ policies converge to stationary policies then the learning
algorithm will converge to a stationary policy that is a best-response (in the stage game) to
the other players’ policies.

Convergence: The learner will necessarily converge to a stationary policy.

At first glance these criteria are reasonable, but a deeper look is less satisfying. First, note

that the property of convergence cannot be applied unconditionally, since one cannot ensure

that a learning procedure converges against all possible opponents in finite time without

sacrificing rationality. So implicit in that requirement is some limitation on the class of

opponents. And indeed Bowling and Veloso acknowledge this and choose to concentrate on

the case of self-play, that is, on opponents that are identical to the agent in question. Note that

when combined with the rationality criterion this is equivalent to requiring that an algorithm

converge to a Nash equilibrium in self-play. Given this constraint, Bowling and Veloso then

proposed an algorithm satisfying their criteria for the class of known repeated games with two

players and two actions per player. Later work by Conitzer and Sandholm (2003) proposed

a new algorithm meeting both criteria for arbitrary known repeated games.

Additionally, while it is fine to consider opponents playing stationary policies, there are

other classes of opponents that might be as relevant or even more relevant; this should be a

degree of freedom in the definition of the problem. For instance, one might be interested in

the classes of opponents that can be modelled by finite automata with at most k states; these

include both stationary and non-stationary strategies. Also these first proposals only apply

in very limited scenarios. The rationality criterion is only required when all the opponents

converge to stationary policies and the convergence criterion is only applicable when all the

agents are using the same algorithm. No guarantee at all is required if even one opponent is

using a non-stationary strategy or if there are a mix of agents with some using the proposed

algorithm and others using stationary strategies. The danger of lacking such a guarantee is that
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it leaves the algorithm vulnerable to potential exploitation by a clever opponent, such as one

using the approach shown by Chang and Kaelbling (2002) which capitalizes on algorithms

designed around policy hill-climbing.

We also find the property of requiring convergence to a stationary strategy particularly

hard to justify. Consider the Prisoner’s Dilemma game in Fig. 2. Prisoner’s Dilemma has

been extensively studied Axelrod (1984) and numerous algorithms proposed that allow two

agents to cooperate on the advantageous cooperation outcome without being exploited. The

simplest but perhaps most effective of these is the Tit-for-Tat algorithm. Tit-for-Tat starts by

cooperating and thereafter repeats whatever action the opponent played last. Note that any

approach that considers only stationary opponents must always play Defect, since this is the

unique best response to any stationary opponent. Against Tit-for-Tat this results in a payoff

of 1, but the strategy of always playing Cooperate would yield a payoff of 3. Similarly, in

the game of Chicken, also shown in Fig. 2, strategies that alternate daring while its opponent

yields and yielding while its opponent dares achieve higher expected payoffs in self-play

than any stationary policy could guarantee. This limitation of using stage game equilibria

was directly addressed by Brafman and Tennenholtz (2004) and a counter-proposal made for

how to consider equilibria in repeated games.

Our final point regarding these two criteria is that they express properties that hold in the

limit, with no requirements on the algorithm’s performance in any finite period.

While relatively new to the AI community, these issues have been addressed numerous

times in game theory, under the names of universal consistency, no-regret learning, and the

Bayes envelope, dating back to at least the work of Hannan (1957) (see a paper by Foster and

Vohra (1999) for an overview of this history). There is a fundamental similarity in approach

throughout, and we will take the two criteria proposed by Fudenberg and Levine (1995) as

being representative.

Safety: The learning rule must guarantee at least the minimax payoff of the game.

Consistency: The learning rule must guarantee that it does at least as well as the best
response (in the stage game) to the empirical distribution of play when playing against an
opponent whose play is governed by independent draws from any fixed distribution.

Fudenberg and Levine then define universal consistency as the requirement that a learning

rule do at least as well as the best response to the empirical distribution of play regardless

of the actual strategy the opponent is employing (this implies both safety and consistency)

and show that a modification of the fictitious play algorithm (Brown, 1951) achieves this

requirement. Fudenberg and Levine later strengthened their requirement by requiring that

the learning rule also adapt to simple patterns in the play of its opponent (Fudenberg &

Levine, 1998).

An equivalent requirement used by other researchers is that an algorithm should achieve

no regret in the limit against any opponent. The regret, r t
i (a j , si ), of agent i for playing

the sequence of actions si instead of playing action a j , given that the opponents played the

sequence s−i is defined as follows.

r t
i (a j , si |s−i ) =

t∑
k=1

R
(
a j , sk

−i

) − R
(
sk

i , sk
−i

)
The total regret for the agent is then the maximum regret for any action. Hart and Mas-

Colell proposed a regret matching algorithm (Hart & Mas-Colell, 2000) that provably achieves

at most zero regret in the limit (note that an algorithm could have negative regret against some

opponents).
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Recently, these ideas have also been adopted by researchers in the artificial intelligence

community (e.g., Jafari et al. (2001) & Zinkevich (2003)). In recent work (Bowling, 2005),

Bowling attempted to combine these criteria by proposing that an agent should both guarantee

a no-regret payoff and achieve convergence in self-play. He then put forth GIGA-WoLF, a no-

regret algorithm that provably achieves convergence in self-play for games with two players

and two actions per player.

In recent work, Banerjee and Peng (2005) have addressed our concern about only requiring

guarantees about the behavior in the limit. Their algorithm is guaranteed to achieve ε-no-

regret payoff guarantees with small polynomial bounds on initial exploration time and uses

only the agent’s ability to observe what payoff it receives for each action.

A limitation common to all these approaches is that the game theoretic basis they’re derived

from was initially focused on large-population games and therefore ignores the effect of the

agent’s play on the future play of the opponent. This can pose problems in smaller games.

Let us again consider the game of Prisoner’s Dilemma with a Tit-for-Tat opponent. The only

universally consistent strategy would be to defect at every time step, ruling out the higher

payoff achievable by cooperating. Clearly, a universally consistent (or no-regret) policy is

not the best response in this richer strategy space.

In principle it would be possible to derive a more powerful notion of regret in which one

calculates the regret against a richer strategy space than the set of pure stage-game strategies.

By including non-stationary strategies it would become possible to allow strategies that

would respond appropriately in a situation like that described above when facing a Tit-for-

Tat opponent. While there are a number of challenges involved in making this transition,

the first steps towards this stronger notion have been taken recently in both game theory

and artificial intelligence (Mannor & Shimkin, 2001; de Farias & Megiddo, 2004; Chang &

Kaelbling, 2005).

4 A new criterion

One thing to notice about most of the previous proposals is that they tend to enforce a con-

straint on how the agent should play. This constraint can either be direct, such as requiring

convergence to an equilibrium, or more subtle, such as the requirement in universal con-

sistency to never play an action that is dominated in the stage game. Going back to our

original statement of the problem for learning in multi-agent systems, we are really most

concerned with creating agents that receive a high payoff in their environment. The question

then becomes how high a payoff we can reasonably require. Notice that the payoff that can

be achieved varies with the strategies of the other agents. Intuitively, the criterion we are after

is rather straightforward: Given a target set of opponents, we would like all agents using our

algorithm to achieve at least the value of a joint best response against any opponents in the

target set, assuming the other opponents are colluding to lower their payoffs.

It turns out that capturing this condition precisely raises a number of subtleties. For

instance, note that while we would ideally like to require that an agent achieve the highest

possible value given the actual strategies of the opponents in a given game, this is clearly

impossible if we allow arbitrarily complex opponent agents. If the opponents can choose

different actions for every possible past history of the game, we may never be able to learn how

to optimize our agent’s action to account for the opponent’s strategy since past observations

about the opponent may have no correlation with its future play. We propose to instead require

that the agents achieve a jointly optimal best response against a predefined “target” set of

possible opponent strategies while still maintaining a security value guarantee against any

possible opponent.
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Besides the problem of opponents with arbitrary complexity, we can have an additional

problem when requiring best-response against any possible opponent from a set. If we assume

that the agent may only play a single repeated game against an opponent, the agent may be

forced to play actions with irrecoverable consequences before it has any chance to learn the

true best response. As an example, consider the prisoner’s dilemma game again, only this

time the agent is faced with one of two possible opponents. One opponent plays cooperate

until the agent defects even once and then plays defect forever (the so-called ‘grim trigger’

strategy), while the other plays cooperate until the agent cooperates even once and then plays

defect forever. No agent could achieve the best possible payoff against both opponents. We

propose to address this by only requiring that an agent achieve the value of the best-response

that is possible after an initial period of exploration at the beginning of the game. cleanly and

instead define a strategy as being a best response against a class of opponent strategies if there

is no other strategy that weakly dominates it over the set of consistent possible opponents in

the target set.

We also need to consider the issues of coordination between the agents when selecting

random actions. Although other researchers may find different assumptions appropriate for

particular settings, we have chosen to focus on the most pessimistic/conservative assumptions:� All agents using the algorithms under consideration select their action independently from

one another.� There may exist opponents that are capable of selecting actions according to a distribution

over joint actions.

To assemble these requirements and intuitions into a formal criterion we need the following

definitions in which the set of players is partitioned into three sets:� The set of “designed players”, denoted by X , who adopt the learning algorithm under

consideration.� The set of opponents in the target set, denoted by Y .� The set of opponents playing in an unconstrained fashion, denoted by Z .

Definition 2. Given:� an n-player repeated game G� a history H� a 3-way partition (X, Y, Z ) of the n players� a specification C of repeated-game strategy for each player in Y

The set of payoff profiles enforceable by X given C and H consist of all P ∈ R|X |, such that:� ∀i∈X Pi ≥ SVi , where SVi is the security value for the i th player in X given history H and

the assumption that players in Y play according to C .� There exist a set of strategies for the players in X that have an expected payoff, over all

outcomes with an initial history of H , of at least Pi for all players, i , in X regardless of

what strategy players in Z use as long as players in Y play according to C .

The set of such payoff profiles is denoted by ENF(X ,C ,H )

Definition 3. Given G, H , (X, Y, Z ), and C as indicated above, an outcome O of the repeated

game is said to be ε-Pareto-efficient enforceable for X given C and H if there is no profile

p ∈ ENF(X, C, H ) such that p minus ε dominates VX (O), where VX (O) is the vector of

payoffs to players in X for outcome O .
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We combine these definitions to specify a property for a given learning algorithm and set

of target opponent strategies.

Definition 4. Given an n-player repeated game G and a set of target opponent strategies S,

an algorithm A is said to be (ε, δ)-guardedly optimal for G given S if there exists a t such

that for any partition (X , Y , Z ) of the n players, any specification C : Y → S, and any set of

strategies for Z , if players in X play according to A, after any initial history H of length t (the

“initial experimentation period”), the outcome of the game is ε-Pareto-efficient enforceable
for X given C and H with probability at least 1 − δ.

With these definitions we can specify our formal criterion for a learning algorithm A(S),

where S is the target set of opponent strategies:

Definition 5 (Guarded Optimality). Given a class S of possible opponent strategies, an al-

gorithm is guardedly optimal if for any choice of ε > 0, δ > 0, and any n-player repeated

game G, the algorithm is (ε, δ)-guardedly optimal for G given S.

As mentioned earlier, this criterion is somewhat complex because of the various subtleties

involved. And so it is instructive to look at it in the special case of two player games. In this

case it simplifies to the set of criteria shown below. Note that these are similar to criteria

we’ve previously proposed for two-player games (Powers & Shoham, 2005), although the

new Auto-Compatibility criteria is stronger since it now applies to the joint payoffs of the

two agents.

Definition 6 (Targeted Optimality). When the opponent is a member of the target set, the

average payoff is at least VB R − ε, where VB R is the expected value of the best response in

terms of average payoff against the actual opponent.

Definition 7 ( Auto-Compatibility). During self-play, the average payoff is Pareto efficient

over the set of outcomes in the game.

Definition 8 ( Safety). Against any opponent, the average payoff is at least SV − ε.

Remark 1. For any two-player repeated game, an algorithm is guardedly optimal if and only

if it satisfies targeted optimality, auto-compatibility, and safety.

Finally, let us step back and see how this proposal compares with the past criteria dis-

cussed in Section 3. Considering universal consistency, we can see that our criterion implies

the safety condition and the consistency condition for any target class that includes all sta-

tionary opponents, but is incomparable with the general concept of universal consistency

(or, equivalently, no-regret). Note that while no-regret is a strictly stronger requirement than

security value for a single player, it can be incompatible with other desirable requirements

(such as best-response to adaptive opponents or Pareto-efficient self-play) as described in

the previous section. While it would be possible to address these conflicts as special cases

in a combined criterion, there may exist additional incompatible properties one would want

to require for particular applications. Another possible way of reconciling these properties

would be to consider stronger notions of regret as discussed at the end of the last section.

Requiring that a player instead attain a payoff at least as high as any strategy in a broader

set of adaptive strategies would require additional constraints on the play of the agent, but
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could resolve the inconsistencies between no-regret guarantees and some of the desirable

properties referenced earlier. We leave this for future work.

A possible complaint about our approach would be that by specifying our target set of

opponents, we leave ourselves open to exploitation by other algorithms outside the target

set. While it is true that by knowing the details of our approach it might be possible to craft

algorithms that do well in response, this is not necessarily disadvantageous. In many games

where cooperation is possible this could encourage the hypothetical algorithm to coordinate

in order to achieve a desirable joint outcome. At the same time, in more adversarial games,

we still have the default guarantee of the security value for the game to avoid getting taken

advantage of arbitrarily.

Another issue that has been raised about the guarded-optimality criterion involves our

focus on requiring that multiple agents using the same algorithm collude with one another

to achieve a PE outcome. In particular, if an agent knows that other agents are using an

algorithm meeting this criterion, would it also wish to adopt such an algorithm? A tempting

solution to this question would be to add an additional criterion requiring that the proposed

learning algorithms form a learning equilibrium (Brafman & Tennenholtz, 2004) with one

another in self-play. Unfortunately this requirement is incompatible with having a security

value guarantee against any opponent. To see this, let’s once again consider an agent playing a

repeated game of Chicken from Fig. 2. If the agent knows its opponent must secure at least its

security value against any player, then the agent’s optimal strategy is to always play “Dare”,

guaranteeing the agent the highest possible payoff. Therefore two algorithms satisfying the

safety criterion could never form a learning equilibrium with one another in this repeated

game.

5 Algorithmic framework

Besides proposing a novel criterion, we also want to provide algorithms that can provably

achieve the criterion for particular target sets and perform well in practice against other

opponents. One of the main challenges we face is that the algorithm needs to behave differently

depending on the types of opponents it is dealing with. In order to deal with this in a

general fashion, we propose a modular design based on general building blocks. The key is

determining the types of the opponent players (members of the target set, other players using

the same algorithm, or unconstrained players) and then selecting the appropriate algorithm

to use.

We propose five main building blocks for various settings:

� Learn Best Response: Using observations about the opponents’ play, estimate the actual

strategies of the opponents and play a best-response strategy.� Coordinate: Select a single, common joint strategy for all the self-play players from among

a set of Pareto-efficient possibilities.� Secure Value: Play a strategy that ensures that the player receives at least the security value

against any possible set of opponents.� Signal: In some settings it may be necessary to play such as to explicitly signal that the

player is a member of a certain class or not a member of another possible class.� Teach: Play so as to produce a particular desired behavior in the actions of an adaptive

player.
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Additionally, the algorithm will need to observe the opponents’ play in order to choose

an appropriate component. Depending on the exact implementation of each of these blocks,

this may require an additional component for explicit observation and sampling.

In order to create an algorithm for a given target class, we need to follow a number of

steps:

1. Choose an appropriate set of building blocks for the setting.

2. Decide on an instantiation for each building block (e.g., determine how to calculate the

best-response against a member of the target class).

3. Design the flow of control for calling each building block at the appropriate time given

the observations in the game.

In the next section we use this framework to build an algorithm that provably meets

the guarded optimality criterion for the target class of stationary opponents. The following

section then extends and alters the algorithm to meet the criterion for a class of adaptive

strategies with bounded recall.

6 First instantiation: stationary opponents

Even though stationary opponents constitute one of the simplest target classes, there are

still many subtleties and complexities involved. While stationary opponents have been dealt

with frequently in the literature, relatively little work has addressed situations in which

there is a mixture of stationary opponents and other non-stationary players. In this section,

we address these cases by discussing the construction of a new algorithm that satisfies

guarded optimality by instantiating the building blocks put forth in the previous section. We

will call this algorithm PCM(S) (Partition, Coordinate, and Monitor for the target class of

stationary opponents (S)). All the players conforming to the designed algorithm will be called

cooperating players (coop players), while other players that do not belong to the target set

will be called non-cooperating players (non-coop players). Note that a coop player does not

have to use the designed algorithm but only needs to follow the protocol for cooperating.

6.1 Algorithm description

Our main goal is to design as simple an algorithm as possible that can achieve the guarded

optimality criterion for the target class of stationary opponents. For our purpose, the four

modules “Signal”, “Learn Best Response”, “Coordinate”, and “Secure Value” will suffice to

achieve this. In Fig. 3, we show how these four blocks can be put together. The four bolded

rectangles represent these four blocks. To preserve clarity, the figure only shows a detailed

view of the most complex block, “Coordinate”. The full pseudocode for the algorithm is

provided in Appendix A.

Within the “Signal” block, the coop players will play a pure strategy for τ1 rounds and

then switch to a different pure strategy for another τ1 rounds. By the end of this block, the

coop players will be able to correctly partition all coop players and stationary opponents into

two different sets with high probability (the probability that a stationary opponent, i , would

generate the two sequences of pure strategies goes to zero at the rate ( 1
|Ai | )

τ1 ).

Each coop player can now essentially reduce the current game to a smaller game by

removing all stationary opponents and using the expected payoffs for each of the remaining

outcomes instead. If there is only one remaining player in the reduced game, it can make

the transition to the “Learn Best Response” block to find the best response to the stationary
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Fig. 3 Flow of control for PCM(S) algorithm

opponents. Using the reduced game, finding a BR strategy against stationary opponents is

straightforward, since the player can simply choose the action that gives the highest expected

payoff.

If there are multiple non-stationary players left in the reduced game, the PCM(S) players

will tentatively mark other players as coop and switch to the “Coordinate” block to synchro-

nize with each other on a joint profile that they should adopt to achieve the guarded optimality

criterion. This joint profile maximizes the sum of the rewards for the coop players among

enforceable outcomes while still guaranteeing individual rationality for each of them. This

Pareto-efficient enforceable outcome is the solution of the optimization problem:

max
πX ∈�X

(
min

πZ ∈�Z
�

i∈X
Vi (πX , πZ )

)
(3)

In the above equation X is the set of players using PCM(S), and �X = �X1
× · · · × �Xm ,

for all Xi ∈ X , subject to the constraint that ∀i (∀πZ ∈�Z Vi (πX , πZ ) ≥ SVi ). Z are the other

players, with �Z = H → �(AZ1
× · · · × AZ p ), with Z = {Z1, . . . , Z p}. SVi is the maxmin

value of coop player i in the reduced game as defined in Section 2.

The coop players can approximate this outcome by limiting the �X in the equation above to

be sequences of mixed strategies of length L . The solution of the corresponding optimization

problem is then a cycle of length L specifying a mixed strategy for each player in X to

follow at each step. For any given ε′ > 0 and feasible payoff profile in the infinitely repeated

game, we can find a sequence of length L polynomial in n and 1
ε′ such that this sequence

approximates the target payoff profile within ε′. We give the proof for this in a later section.
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Since there are possibly many different correlated sequences that can satisfy the guarded

optimality criterion, the coop players need to agree on the same sequence. The “Coordinate”

block consists of several coordinating processes between the coop players. Each process will

last for τ2 rounds in which the coop players try to converge to the same sequence. Each coop

player will pick one such sequence at the beginning of the process and then with probability

γ switch to a different sequence that is being used by more coop players. At the end of

each process, they will either succeed by achieving a payoff profile at most ε away from

the expected payoffs for all the coop players or they will be able to detect at least one non-

coop player. In the later case, they will mark the detected player as non-coop and restart the

coordinating process.

If all other players are marked as non-coop, the remaining coop player can now make

the transition to the “Secure Value” block. Within this block, the player will calculate the

maxmin strategy as defined in Section 2 by solving the corresponding linear program for the

reduced game with the strategies of the stationary opponents fixed. This is the best payoff the

player can guarantee for itself since the non-coop players could force its payoff arbitrarily

close to its security value for the reduced game.

For any given ε > 0 and δ > 0, we can choose appropriate values for τ1, τ2, γ , and ε′ that

allow the player to guarantee it achieves the guarded optimality criterion with probability at

least 1 − δ. We give a formal proof of this fact in the following section.

6.2 Formal properties

Theorem 1. For any given ε > 0 and δ > 0, PCM(S) is (ε, δ)-guardedly optimal for the
class of stationary opponents given an initial experimentation period with length polynomial
in M, n, 1

ε
, and 1

δ
.

The above theorem holds for repeated games where n is the number of players and each

player has at most M actions. Since we are only considering games with bounded payoffs,

we can assume, without loss of generality, that all the payoffs are normalized to lie between

0 and 1.

Proof: The proof can be constructed naturally from the following lemmas which are proved

in Appendix B:

Lemma 1. For any given δ1 > 0, 0.5 > ε1 > 0, there exists a τ1 polynomial in n, M, 1
ε1

, and
1
δ1

such that if a player uses a full action history of length at least 2τ1, and a recent action
history of length τ1, the probability for all coop players to correctly partition stationary and
coop players into two different sets is at least 1 − δ1.

Lemma 2. Within the “Coordinate” block, for any given ε2 > 0 and δ2 > 0 there exists a
τ2 polynomial in n, M, 1

ε2
, and 1

δ2
such that with probability at least 1 − δ2, after at most

τ2 rounds, either all cooperating players will converge to an ε2-Pareto-efficient enforceable
outcome or a new non-cooperating player will be identified.

From Lemma 1, by the end of the “Signal” block, after 2τ1 rounds, the coop players have

correctly partitioned stationary players and coop players into two different sets with probabil-

ity at least 1 − δ1. From Lemma 2, after each coordinating process of τ2 rounds, the players

will either achieve an ε2-Pareto-efficient enforceable outcome or identify a new non-coop
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player with probability at least 1 − δ2. Thus they only need to repeat the coordinating pro-

cess at most n times. The probability that they will correctly partition all coop players and

non-coop players into two different sets and converge to an ε2-Pareto-efficient enforceable

outcome after at most n ∗ τ2 rounds is at least 1 − nδ2. Therefore the agents will converge

to an ε2-Pareto-efficient enforceable outcome with probability at least 1 − δ1 − nδ2. Setting

ε1 = ε2 = ε, δ1 = δ
2
, δ2 = δ

2n we can guarantee that the players will achieve the guarded op-

timality criterion with probability at least 1 − δ after a learning period, τ , that is polynomial

in M, n, 1
ε
, and 1

δ
.

Moreover, note that before converging to an ε-Pareto-efficient enforceable outcome, a

coop player might suffer loss of payoff during the experimentation period. However, since

the payoff is bounded between [0,1], the total loss over this period is at most τ . To take this

into account, we can set ε2 = ε
2

and allow an additional 2τ
ε

rounds to pass. The actual payoffs

of the coop players after this period will be at most τ
2τ
ε

= ε
2

away from an ε
2
-Pareto-efficient

enforceable outcome. �

Theorem 1 provides the bound on the number of iterations required by the algorithm for

the initial experimentation period before the desired outcome is achieved. This leaves open

the question of how much computation is required by the algorithm at each iteration of the

game. The answer is given by the following proposition:

Proposition 2. For any n-player repeated game G, let T be the complexity of solving the
optimization problem defined in Eq. (3) in Section 6.1 and τ3 be the length of the test for
non-cooperative agents. The computational complexity of PCM(S) for one iteration of G is
O(Mn ∗ max(T, τ3)) in the worst case.

Proof: Let M be the maximum number of actions for one player. To find the worst case

complexity for one iteration, we can calculate the complexity for each block of the algorithm

as presented in Fig. 3:� Within the “Signal” block, each step can be done in constant time.� Within the “Learn Best Response” block, the worst step can be done in O(Mn).� Within the “Secure Value” block, the worst step can be done in O(Mn).� Within the “Coordinate” block, in the worst step the agent has to find the largest group

to join and then tries to detect non-coop opponents. To find the largest group, it has to go

through all different subsets of coop players and solve the optimization problem in Eq. 3

for each subset. The complexity of this operation is O(2n ∗ T ).� The operation to detect non-coop opponents may need to check all subsets for τ3 steps each

taking total time proportional to O(2n ∗ τ3).

Since the agent can only be executing one block at a time the complexity for one iteration in

the worst case is O(Mn ∗ max(T, τ3)), where τ3 is polynomial in M, n, 1
ε
, 1

δ
�

Even though PCM(S) has an exponential worst-case complexity, it is efficient in practice

since for most of the iterations, PCM(S) requires only computation that is linear in M ∗ n
and T is usually relatively small. In our experiments, on a 2.4 Ghz machine, PCM(S) takes

under 1 second when playing a 4-player game for 200,000 iterations with 3 actions for each

player.
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6.3 Empirical validation and discussion

Even though our algorithm has been theoretically proven to correctly achieve our formal cri-

terion, we want to demonstrate empirically that the algorithm performs well against a variety

of opponents, including those outside the target class. We will use the testing environment

first described in prior work (Powers & Shoham, 2005) by testing against a number of ex-

isting approaches from the multi-agent learning literature over a wide variety of repeated

games from GAMUT (Nudelman et al., 2004). GAMUT is the result of a project to develop

a comprehensive collection of game theoretic matrix games that have been described by

researchers in either game theory or artificial intelligence. It contains generators for creat-

ing random instances of 34 individual base game classes as well as numerous additional

variants and specialized parameter settings (more information and downloads are available

at gamut.stanford.edu). The existing algorithms we tested against include Local Q-

learning (Watkins & Dayan, 1992), a stochastic version of IGA (Singh, Kearns & Mansour,

2000), WoLF-PHC (Bowling & Veloso, 2002a), JointQ-Max (Claus & Boutilier, 1998),

GIGA (Zinkevich, 2003), GIGA-WoLF (Bowling, 2005), a version of NoRA (Banerjee &

Peng, 2005) using GIGA as its base class, and smooth fictitious play (Fudenberg and Levine,

1995). We also tested all the algorithms against random stationary strategies (Random), the

security value strategy (MiniMax), and random strategies that condition their actions on the

past outcome (CondStrat).

We want to focus our attention on settings with more than two players. As the first test

we measured the average performance of one pair of players playing against another pair of

players. The players in each pair use the same algorithm though it can be different from the

one used by the other pair. In Fig. 4, we show the average payoffs achieved by each player

averaged across the set of possible opponents for a selection of games in GAMUT listed

across the x-axis. The y-axis shows the payoff for each algorithm as a percentage of the

highest average payoff achieved by any algorithm for the selected game. In order to preserve

Fig. 4 2 vs. 2: Percent of best reward for last 20 K rounds (of 200 K) averaged across all opponents for
selected games in GAMUT. The rewards were divided by the maximum reward achieved by any player
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Fig. 5 2 vs. 1: The performance of PCM(S) is even stronger when it outnumbers its opponents

clarity, we only show the results for four algorithms representative of those with the best

performance. PCM(S) achieves the highest or close to the highest payoffs in every game.

Unlike other algorithms, PCM(S) has no pitfalls in which its payoffs are significantly worse

than those achievable by other approaches in a given game. This is at least partly due to the

fact that two players using PCM(S) can cooperate with each other against other players to

possibly achieve a higher security value than each individual player could achieve alone.

To further demonstrate this advantage of PCM(S), we slightly adjusted the setting of the

experiments to show two players using the same algorithm playing against another algorithm

(can be the same or not) and we show the results in Fig. 5. In this setting, PCM(S) shows an

even greater advantage over the other algorithms. The reasons behind the difference in the

performance of PCM(S) in the two different settings are the generosity and cooperativeness

of PCM(S). PCM(S) will be more likely to cooperate as long as the outcome is PE for all

players it considers cooperating. Thus when there are more players using other different

algorithms, there are more situations in which PCM(S) will compromise its payoff.

We also measure the performance of PCM(S) when playing against two opponents us-

ing an identical algorithm. We show the result in Fig. 6. In this setting, PCM(S) has two

disadvantages. The first disadvantage was mentioned above: PCM(S) will be more likely to

compromise its payoff if there are more opponents. The second disadvantage is that PCM(S)

was designed exclusively to satisfy the criterion for stationary opponents. It does not have

the capability to take advantage of adaptive players. When the other two players do not co-

operate, PCM(S) will have to resort to the security strategy. In this setting of 1 vs. 2, there

is no other player using PCM(S) that it can cooperate with to increase its security values.

However, PCM(S) is still able to achieve high payoffs in several games in which there exists

a beneficial cooperative outcome due to its flexibility in cooperating with players using other

algorithms as long as it still achieves its security guarantee. Note that in this setup, PCM(S)

is regularly forced to play its individual security strategy. Given the modular nature of our

design, we can easily substitute a different algorithm, such as GIGA, for the security portion

that attains the same guarantees for the single PCM(S) agent case. Although we achieve only
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Fig. 6 1 vs. 2: The performance of PCM(S) is weakened by the lack of cooperation opportunities

Fig. 7 1 vs. 2: Some empirical gains can be gained by replacing the default security strategy

moderate gains from this augmentation, as seen in Fig. 7, this simple change rarely hurts the

performance. One could extend this approach to add different default behaviors for individual

games and then use the methods proposed by McCracken and Bowling (2004) to guarantee

that the security value is always achieved.

In Table 1 we show the payoff for different algorithms in self-play, that is, when all players

use the same algorithm. With an explicit mechanism for signaling and coordinating, players

using PCM(S) are able to achieve a payoff significantly higher than any other algorithm.

As the number of players increases, the gap between the performance of PCM(S) and other
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Table 1 Average payoff in
self-play by algorithm, as a
function of the number of players

N = 2 N = 3 N = 4

PCM(S) 0.496 0.675 0.559

LocalQ 0.400 0.550 0.340

WoLF-PHC 0.389 0.449 0.292

StochIGA 0.385 0.422 0.257

GIGA-WoLF 0.374 0.411 0.255

SmoothFP 0.118 0.254 0.027

MiniMax 0.103 0.111 0.023

Table 2 Average payoff over all
4-player environments and
opponents as a function of the
number of total rounds

5 K 10 K 25 K 50 K 100 K 200 K

PCM(S) 0.259 0.266 0.266 0.268 0.269 0.272

GIGA-WoLF 0.223 0.227 0.228 0.227 0.229 0.230

algorithms grows larger since those players are much less likely to come across a cooperative

beneficial outcome by chance.

A final analysis we conducted was to address the question of how dependent the empirical

performance of the algorithm was on having a long initial training period. While we have

formal guarantees that only a polynomial amount of training is necessary, this can still be

a long period in practice if we wish small values for ε and δ. For instance, selecting an ε

of 1% will impose a multiple of 10,000 on the amount of training required. In Table 2 we

compare the performance given various lengths of training for PCM(S) with GIGA-WoLF.

The numbers shown are the average value attained during the last 10% of the rounds. We

can see that the performance of PCM(S) degrades gracefully at least down to a range of

10,000 rounds and maintains a significant margin over GIGA-WoLF throughout. Note that

the variance is inherently higher for the smallest training periods, so significance becomes

harder to estimate.

7 Second instantiation: Adaptive opponents

Although the PCM(s) algorithm demonstrates desirable formal properties and promising

empirical performance, it still fails to address our concerns about the focus in prior work on

stationary opponents, since PCM(s) has only weak security-level guarantees for its payoff

against opponents whose strategy can depend on the past history of the games. We are aware

of very little work to date that deals with adaptive opponents explicitly, although (de Farias

& Megiddo, 2004) address it in the design of their experts algorithm and the rational learning

approach of Kalai and Lehrer (1993) can in principle handle adaptive algorithms of arbitrary

complexity as long as they are assigned positive probability in the prior.

One way we could attain better performance against adaptive opponents would be to

expand the target set against which we can guarantee a best-response. Note however that

we still need to limit the capabilities of the opponents in some way. If we were to consider

opponents whose future behavior could depend arbitrarily on the entire history of play, we

would lose the ability to learn anything about them in a single repeated game, since we would

only ever see a given history once and an opponent’s past strategy may have no relation to

its future play.
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We therefore assume a limit on each opponent’s ability to condition on the history. We

propose directly limiting the amount of history available, by requiring that each opponent

play a conditional strategy (aka bounded recall strategy) where its distribution over actions

can only depend on the most recent k periods of past history, Fi : o−1 × · · · × o−k → �Ai ,

where o−t is the outcome of the game t periods ago. Additionally, the opponents have a

default past history they assume at the start of the game. Note that even this simple model

allows us to capture many methods, such as Tit-for-Tat, that most current approaches are

unable to properly handle.

7.1 The PCM(A) algorithm

By capitalizing on the modular design of PCM(S), we can design a variant, PCM(A), that

achieves our Guarded Optimality criterion against this new class of opponents with only

minor conceptual modifications. We will be able to use the same flow of control and modules

shown in Fig. 3 except for the following changes:� We have replaced the instantiation of the Learn BR module with a new strategy, MemBR,

which calculates a best response against conditional strategies. This approach maintains

counts of the opponent’s actions after each history of length k, which it uses to calculate

the optimal set of conditional strategies for each coop player to use.1 This lets us guarantee

that we achieve an ε-best response against any members of our target opponent set given

that the algorithm observes each length k history a sufficient number of times. This will be

satisfied as long as the initial exploration phase continues for a length of time exponential

in k. This exponential exploration period is unavoidable since we need to consider the

possibility of opponents that only play a desirable action distribution for a single one of

the exponentially many possible histories.� In order to tell if an opponent is a member of the target class we can now calculate the

probability that each opponent’s play is consistent with our target set by comparing the

observed distribution of play for each history at separate times and measuring the deviation

in action profiles.� When there are multiple coop agents and opponents in both the target and unconstrained

class, the optimization problem in the coordinate module needs to take into account the

distribution over histories generated by the coop and non-coop agents when calculating the

achievable payoff profiles.

Theorem 3. PCM(A) satisfies guarded optimality for the target class of conditional strate-
gies with bounded memory k.

The outline for the proof of this theorem is included in Appendix C. The initial experi-

mentation period required in satisfying guarded optimality could unfortunately now depend

on ( 1
λ

)(Mnk ), where λ is the minimum probability the opponent assigns to any action (λ = 1

for opponents that condition only on the coop player’s actions). Note that our worst case

time complexity also grows similarly as we may now need to solve an optimization problem

with up to Mnk variables. This has caused us to focus on two-player games in our empirical

results, although both of these bounds (computational complexity and amount of training)

1 Note that if the opponents condition only on the coop players’ actions, we can instead just choose the optimal
cycle of player actions with the highest expected reward out of all possible unique player action sequences
(those that don’t contain a length k repeated subsequence).
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are based on extremely pessimistic assumptions and are likely to be tractable in practice for

larger games with small values of k.

7.2 TPCM(A): A teaching algorithm

While the basic modifications described in PCM(A) achieve our formal guarantees against

the set of conditional strategies it ignores our intuitions in regards to the importance of

teaching as part of an effective strategy against adaptive players. In order to incorporate this

idea, notice that we have significant freedom both in how we conduct our initial exploration

period and also what default strategy to employ against opponents outside our target class.

By restricting our attention to the class of two player games, we can define a new algorithm:

Teach, Partition, Coordinate, and Monitor (TPCM(A)), shown in Fig. 8. It is based on the

PCM(A) algorithm but we have added a new initial block before the signalling step that uses

a teaching strategy based on the Godfather algorithm first proposed by Littman and Stone

(2001). Godfather selects an outcome in the game matrix which maximizes its own payoff

and gives the opponent player at least its security value. Godfather then plays its portion of

the target outcome. If the opponent ever plays an action other than the matching action for the

target outcome, the player plays a strategy that forces the opponent to achieve no more than

its security value until the opponent again plays its target action. TPCM(A) uses a stochastic

variation of Godfather that selects a mixed strategy for the player and a target action for

the opponent such that the joint strategy gives the opponent a higher expected value than

its security value. The stochastic version has two advantages over the deterministic original.

First, it can sometimes attain strictly higher payoffs by considering a larger set of outcomes.

Secondly, if we additionally require that each action is played with some minimal probability

in the player’s mixed strategy, we can attain our observation requirements for MemBR while

teaching the opponent. After this initial phase of teaching, TPCM(A) behaves identically to

PCM(A) unless it detects that the other agent is not cooperating. When PCM(A) would play

the Secure Value module, TPCM(A) instead adopts either MemBR or Godfather as a default

strategy depending on its payoff in the initial teaching period. If this payoff was close to the

target payoff for the outcome Godfather selected it reverts to Godfather, otherwise it plays

Fig. 8 Flow of control for TPCM(A) algorithm
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MemBR. In either case, it continues to observe its own payoffs and reverts to the security

policy if its average payoffs drop below its security value.

Since the only modification has been to add an initial step of fixed length and replace

the Secure Value module with a new module with the same guarantees, it is easy to see

that TPCM(A) still satisfies guarded optimality for the class of conditional strategies. Note

however that the algorithm is restricted to the set of environments with only two players.

7.3 Experimental results

In addition to a selection of the opponents that were used for testing PCM(S), we also

include random conditional strategies (CondStrat), MemBR, and an implementation of the

Godfather algorithm (Littman & Stone, 2001). In Fig. 9, we can see that our new algorithm

TCPM(A) achieves consistently higher performance than any of the other algorithms in

nearly every game. The particular versions of PCM(A) and TCPM(A) shown in the graph

take conditional opponents with memory of length 1 as their targets. Results showed a slight

improvement when considering opponents with a memory of 2, but training time grows

significantly.

In order to understand the source of this performance, let’s consider the results against

individual opponents. Figure 10 shows results for all three of our new algorithms and two of

the most successful previous algorithms for the class of two-player games.

We can see that both PCM(A) and TPCM(A) are able to achieve significant gains in average

reward against the non-stationary opponents in their target set, CondStrat and Godfather.

Moreover, TPCM(A) shows significantly better performance against the opponents outside

its target set. The combination of this improved performance against out of target class

opponents and the strong performance in self-play common to all the PCM variants results

in the uniformly strong performance we saw in Fig. 9.

Fig. 9 2 player games: The value of teaching
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Fig. 10 Average value for last 20 K rounds (of 200 K) by opponent across 2-player games in GAMUT. Game
payoffs range from −1 to 1

8 Conclusions and future work

We have argued for a new criterion for agent-centric learning in multi-agent systems, one

that is more goal oriented than previous proposals, emphasizing high return for the players

with fewer constraints on their actual behavior. The criterion also offers the advantage of

allowing designers to specify a particular opponent class that an algorithm should perform

especially well against.

In order to aid in designing algorithms that meet this criterion, we put forth a general

algorithmic framework. The modular nature of our approach allows easy adaptation of suc-

cessful algorithms to different environments and sets of opponents. Using the framework as

a basis we offered three concrete instantiations. The first is optimized to perform well against

stationary opponents in n-player repeated games, while the other two focus on opponents

whose distribution of play is a function of the recent history of the game. One of these ap-

plies generally in n-player repeated games, while the other is specialized for games with two

players. All three of these algorithms meet our formal guarantees and fare well in different

environments against a wide variety of opponents.

Going forward, there are many promising areas for future work. One fairly straightforward

extension would be to consider other models of adaptive opponents. A common approach used

in the literature on bounded rationality (Neyman, 1985; Papadimitriou & Yannakakis, 1994) is

to assume the players can be modeled by finite automata with k states. Note that the automata

model is more comprehensive than the set of conditional strategies since any conditional

strategy opponent with bounded memory can be modeled by an automata with Mk states if

we allow stochastic outputs, but there exist automata that cannot be modeled by any function

on a finite fixed history. In the case of automata with deterministic transitions, we can modify

our PCM(A) and TPCM(A) algorithms to handle this new class by replacing the best response

function. Note that learning a best response to an opponent modeled by an unknown finite

automata is equivalent to finding the best policy for an unknown Partially Observable Markov
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Decision Process, investigated in several papers (Chrisman, 1992; Nikovski & Nourbakhsh,

2000). While it is a difficult computational problem, we should be able to achieve the same

theoretical properties for this alternate set of opponents given similar concerns and caveats to

those we encountered in the proof for PCM(A) when ensuring that we get enough observations

of the entire state space to calculate an accurate best-response.

Another interesting question to address going forward is whether there is a disciplined

way to extend the concept of teaching an opponent to the situation in which there may be

multiple opponents. A more general teaching algorithm would allow the TPCM(A) algorithm

to be extended to environments with more than two players.

Finally, we are also looking at several ways to expand the set of environments these

algorithms can be employed within. Of particular concern is looking for ways to weaken

the requirement of full prior knowledge about the payoffs of the game. The major challenge

seems to lie in creating the capability to cooperate without knowing or being able to observe

the space of payoffs available to the other players. An additional area for further consideration

would be the assumption of perfect observability. How could one design an effective algorithm

when the players receive only partial information about the past actions of their opponents?

Other possible extensions include extending the algorithms to handle stochastic games with

multiple states and considering games in which the players care about the discounted sum of

the stage game rewards instead of the average.

Appendix A: PCM(S) implementation details

∀i oppT ype[i] ← STATIONARY
for τ1 time steps: Play one action
for τ1 time steps: Play another action
while (∀i oppT ype[i] = STATIONARY)
Play BR strategy to all other agents
For each opponent i, if player i's action distribution for

the last τ1 rounds deviates by more than ε1 from their
distribution for the full history

oppT ype[i] ← COOP
For all stationary opponents i, stat(i) ← observed distribution
Loop

Use a plug-in solver to solve equation 3 in Section 4
seq ← the sequence of mixed strategies in solution
Vsum ← sum of the payoffs

for τ2 time steps: \* Coordinating process *\
Play next mixed strategy in seq
With probability γ

For each subset X ′ of coop agents by decreasing size
V ′

sum ← recalculate the optimal solution with the
distributions of agents in X ′ set to the observed
distributions over the last H ∗ L periods

seq ← the sequence of mixed strategies in new solution
If Vsum − V ′

sum ≤ ε2 then this is a valid group
Vsum ← V ′

sum; break
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If any coop player i switched to the wrong group during above
oppT ype[i] ← NON − COOP; f ound NonCoop ← TRUE

For all coop players i
V(i) ←expected payoff for i if all coop players follow seq

For τ3 rounds, play according to seq, recording payoffs in V̂
While (¬ f ound NonCoop) \* Monitor for non coop players *\

If ∃ coop player i such that V̂ (i) < V (i) − ε then
f ound NonCoop ← TRUE
For each subset, Y, of coop and stationary players

ordered by increasing size
V ′←Recalculate payoffs for last τ3 periods using the
target distribution (seq or stat) for players in Y

If ∃ coop player i such that V̂ (i) < V ′(i) − ε|Y |
n then

For all j ∈ Y, oppT ype( j) ← NON − COOP
Else play next mixed strategy in seq, update V̂
While (# coop players = 1) play secure value strategy

Appendix B: Supporting proofs for PCM(S)

Proof of Lemma 1: Since all coop agents have the same perfect observation of other agents’

actions, the probability for all coop agents to correctly partition stationary and coop agents

into two sets is equal to the probability for one agent to achieve it. Let d f be the distribution

of the actions of an agent calculated from the full history, dr be the distribution from the

recent history, and dt be the true distribution of the actions. Let d(k) be the distribution of

action k in d . An opponent is assumed to be stationary if ‖d f , dr‖∞ ≤ ε1, where ‖d1, d2‖∞ =
maxi=1..M |d1(i) − d2(i)|. For a stationary opponent we have:

Prob(‖d f , dr‖∞ ≤ ε1) ≥ Prob

(
‖d f , dt‖∞ ≤ ε1

2
& ‖dr , dt‖∞ ≤ ε1

2

)
≥ Prob

(
‖d f , dt‖∞ ≤ ε1

2

)
∗ Prob

(
‖dr , dt‖∞ ≤ ε1

2

)
Using the Hoeffding inequality we know,

Prob(|dt (i) − d f (i)| > ε1) ≤ 2 exp

(
− 4

(
ε1

2

)2

τ1

)

Prob(|dt (i) − dr (i)| > ε1) ≤ 2 exp

(
− 2

(
ε1

2

)2

τ1

)
From the Union Bound Axiom, we get,

Prob(∀i, |dt (i) − d f (i)| < ε1) ≥ 1 − 2M exp

(
− 4

(
ε1

2

)2

τ1

)

Prob(∀i, |dt (i) − dr (i)| < ε1) ≥ 1 − 2M exp

(
− 2

(
ε1

2

)2

τ1

)
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And therefore,

Prob(‖d f , dr‖∞ ≤ ε1) ≥
(

1 − 2M exp

(
− 4

(
ε1

2

)2

τ1

))(
1 − 2M exp

(
− 2

(
ε1

2

)2

τ1

))

≥ 1 − 4M exp

(
− 2

(
ε1

2

)2

τ1

)

From the result for one agent, we again apply the union bound to obtain a lower-bound for

the probability of checking multiple stationary agents correctly:

Prob(∃k : Agent k stationary, ‖d f (k), dr (k)‖∞ ≥ ε1) ≤ n ∗ 4M exp

(
− ε2

1τ1

2

)
Prob(∀k : Agent k stationary, ‖d f (k), dr (k)‖∞ ≤ ε1) ≥ 1 − 4Mn exp

(
− ε2

1τ1

2

)

For any τ1 ≥ 2
ε2

1

log 4Mn
δ1

,

Prob(∀k : Agent k stationary, ‖d f (k), dr (k)‖∞ ≤ ε1) ≥ 1 − δ1

For coop agents, ‖d f , dr‖∞ = 1
2

from the algorithm description. So for all ε1 < 1
2
, no coop

agents will be assumed to be stationary and all stationary agents will be correctly identified

with probability at least 1 − δ3. �

Before giving the proof for Lemma 2, we need to prove four more lemmas.

Lemma 3. For any given ε3 > 0 and δ3 > 0 there exists an H polynomial in M, 1
ε3

, and 1
δ3

such that if the opponent plays according to a stationary strategy the observed distribution
of a sequence of at least H actions will be within ε3 of the true distribution for each action
with probability at least 1 − δ3. This implies that the expected payoff for a strategy will be
within Mε3 of the actual payoff with probability at least 1 − δ3.

Proof: Let d̂ be the observed distribution of actions for an agent observed using a history

of length H , and d be the true distribution of actions. Let d(k) be the probability for action

k in distribution d .

Using Hoeffding’s inequality we obtain the result:

∀i ∈ [1, M], Prob(|d̂(i) − d(i)| ≥ ε3) ≤ 2 exp(−2(ε3)2 H )

Prob(∃i ∈ [1, M] : |d̂(i) − d(i)| ≥ ε3) = Prob(∪i=1..M : |d̂(i) − d(i)| ≥ ε3)

≤
M∑

i=1

Prob(|d̂(i) − d(i)| ≥ ε3)

≤ 2M exp(−2(ε3)2 H )

Prob(∀i ∈ [1, M], |d̂(i) − d(i)| ≤ ε3) ≥ 1 − 2M exp(−2(ε3)2 H )
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Setting H = 1
2(ε3)2 ln 2M

δ3
we obtain:

Prob(∀i ∈ [1, M], |d̂(i) − d(i)| ≤ ε3) ≥ 1 − δ3

Since the payoff of the agents is bounded by 0 and 1, the difference between actual and

expected payoff is at most
∑M

i=1 |po(i) − pt (i)|. Therefore expected payoffs will be within

Mε3 of actual payoffs with probability at least 1 − δ3. �

Lemma 4. For any given ε4 > 0, δ4 > 0, and subset of players, X, any feasible payoff profile,
p, in the infinitely repeated game can be approximated by a sequence S, with length L, of
joint mixed strategies such that with probability at least 1 − δ4, the difference between p and
the actual average payoff achieved by each player using S repeatedly for at least H times is
at most ε4. L and H are both polynomial in M, n, 1

ε4
, and 1

δ4
.

Proof: Any feasible payoff profile, p, in an infinite repeated game can be thought of as

the expected payoff profile from a distribution, d, over feasible payoff profiles in the stage

game. We will now show the existence of a polynomial-length sequence, S, with expected

payoff profile approximating that of d. We generate S by taking L random draws from the

distribution d. Let pi be the expected payoff to player i from playing d and p̂i be the actual

payoff achieved after L draws from d . For any given ε′ > 0 we can use Hoeffding’s inequality

to bound the probability that the difference in payoffs exceeds ε′:

∀i ∈ X, Prob(| p̂i − pi | ≥ ε′) ≤ 2 exp(−2(ε′)2 L)

Prob(∃i ∈ X : | p̂i − pi | ≥ ε′) = Prob(∪i∈X | p̂i − pi | ≥ ε′)

≤
∑
i∈X

Prob(| p̂i − pi | ≥ ε′)

≤ 2n exp(−2(ε′)2 L)

Prob(∀i ∈ X, | p̂i − pi | ≤ ε′) ≥ 1 − 2n exp(−2(ε′)2 L)

Prob(∀i ∈ X, | p̂i − pi | ≤ ε′) ≥ 1 − δ′

when L is at least 1
2(ε′)2 (ln 2n

δ′ ).

If we let ε′ = ε4

2
and δ′ = δ4

2
, the expected payoff of S will be within ε4

4
of p with

probability at least 1 − δ4

2
. Using Lemma 3, with ε3 = ε4

2M and δ3 = δ4

2L , we can show that

the actual payoff achieved for each step in S after H repetitions is within ε4

2
of the expected

payoff with probability at least δ4

2L . Thus the payoffs achieved from using S for H times will

be at most ε4 from p with probability at least 1 − δ4

2
− L ∗ δ3 = 1 − δ4.

Substituting in the new values for ε′, δ′, ε3, and δ3 we have:

L = 2

ε2
4

ln
4n

δ4

, H ≥ 2M2

ε2
4

ln
4M L

δ4

Thus L and H are polynomial in M, n, 1
ε4

, and 1
δ4

. �

Lemma 5. Let K be the number of times the players change their distributions of actions.
Within the “Coordinate” block, for any given δ5 > 0, T > 0, and γ ≤ 1 − (1 − δ5)

1
K nT , if
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each cooperating player attempts to change its distribution of actions on each round with
probability γ , the probability that no two players will make the attempt within T rounds of
each other is at least 1 − δ5.

Proof:

Prob(No agent changes within T turns after another) ≥ (1 − γ )nT

Prob(No agent changes within T turns after K changes) ≥ (1 − γ )K nT

Solving for γ given (1 − γ )K nT ≥ 1 − δ5 we obtain: γ ≤ 1 − (1 − δ5)
1

K nT . �

Lemma 6. Within the “Coordinate” block, for any given δ6 > 0, and the same δ5, T, γ ,
and K as in Lemma 5, there exists a τ ′ polynomial in n, K , T, 1

δ5
and 1

δ6
such that if each

cooperating player tries to change the distribution of its actions with probability γ , the
probability for all players to do so at least once after τ ′ rounds is at least 1 − δ6.

Proof:

Prob(One agent has not tried by τ ′) = (1 − γ )τ
′

Prob(∃i ∈ [1, n] : Agent i has not tried by τ ′) ≤ n(1 − γ )τ
′

≤ n(1 − (1 − (1 − δ5)
1

K nT ))τ
′

≤ n(1 − δ5)
τ ′

K nT

Setting τ ′ = K nT log1−δ5
( δ6

n ) we have,

Prob(All agents have tried by τ ′) ≥ 1 − n(1 − δ5)
τ ′

K nT

≥ 1 − n(1 − δ5)log1−δ5
(

δ6
n )

≥ 1 − δ6

Moreover,

τ ′ = K nT log1−δ5

(
δ6

n

)
= KnT

log
(

δ6

n

)
log(1 − δ5)

= KnT
log

(
n
δ6

)
log

(
1

1−δ5

) = KnT
log(n) + log

(
1
δ6

)
log

(
1 + δ5

1−δ5

)
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We can assume w.l.o.g. that δ5 < 1
2
, and that therefore δ5

1−δ5
< 1. Performing a power series

expansion, with |x | < 1, we have:

log(1 + x) = x − x2

2
+ x3

3
− x4

4
+ · · ·

≥ x − x2

2

log

(
1 + δ5

1 − δ5

)
≥ δ5

1 − δ5

− δ2
5

2(1 − δ5)2

τ ′ ≤ K nT

(
log(n) + log

(
1

δ6

))
1

δ5

1−δ5
− δ2

5

2(1−δ5)2

τ ′ ≤ K nT

(
log(n) + log

(
1

δ6

))
2(1 − δ5)2

2δ5 − 2δ2
5 − δ2

5

τ ′ ≤ 2K nT

(
log(n) + log

(
1

δ6

))(
1 − 1

δ5

)2

2
δ5

− 3

τ ′ ≤ 2K nT

(
log(n) + log

(
1

δ6

))(
1 − 1

δ5

)2

Thus τ ′ is polynomial in n, K , T, 1
δ5

and 1
δ6

. �

With the additional lemmas above, we can now prove Lemma 2.

Proof of Lemma 2: Let’s consider first the case in which all agents are partitioned correctly

into three sets: target agents, coop agents, and non-coop agents. All coop agents have the

same partitions since they all have the same perfect observation of the actions of the agents.

From Lemma 6, we can find τ ′ such that all coop agents will attempt to switch group at least

once with probability at least 1 − δ6 after τ ′ rounds. Every time an agent attempts to switch

group, it will either join another group of the same or larger size (thereby increasing the size

of that group) or remain in the current group if all the others are smaller.

When an agent joins a new group, it has to recalculate the optimal solution to the opti-

mization problem shown in Eq. (3) in Section 4 given the observed distributions the actions

for the other agents in the group. If we choose ε4 in Lemma 4 to be ε2

2n , then H ∗ L periods

later, after going through the sequence S for H times, the actual payoff each agent received

can only be at most ε2

2n away from the targeted Pareto-efficient enforceable outcome. This

lets us derive two things. First, if a player is thought to be within the largest group at the time

another player switches to that group, then setting T = H ∗ L and using Lemma 5 we can

show that T periods later no other agents have switched and the payoff will have changed

by less than ε2

n so the player will still be observed to be within the largest group (since the

allowable error for determining the largest group is ε2

n times the number of players in the

group). Since once a player switches groups it will remain in the largest group, no player

will change groups more than once, and thus the value of K in Lemma 6 will be bounded

by n. Second, since an error of at most ε2

2n is introduced each time an agent switches groups,

once all agents have switched the total error from the optimal Pareto-efficient enforceable
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outcome is less than ε2

2
. Finally we need to show that the observed payoffs of all coop agents,

X , are within ε2

2
of the expected payoffs for all periods after τ3.

∀i ∈ X, Prob

(
∃t > τ3 : |V̂ (i) − V (i)| ≥ ε2

2

)
≤

∞∑
t=τ3

2 exp

(
− 2

(
ε2

2

)2

t

)

∀i ∈ X, Prob

(
∃t > τ3 : |V̂ (i) − V (i)| ≥ ε2

2

)
≤ 2 exp

(
− ε2

2

2

) ∞∑
t=τ3

(
1

e

)t

∀i ∈ X, Prob

(
∃t > τ3 : |V̂ (i) − V (i)| ≥ ε2

2

)
≤ 2 exp

(
− ε2

2

2
τ3

)
e

e − 1

Prob

(
∃i ∈ X, t > τ3 : |V̂ (i) − V (i)| ≥ ε2

2

)
≤ 4n exp

(
− ε2

2

2
τ3

)
Prob

(
∀i ∈ X, t > τ3 : |V̂ (i) − V (i)| ≤ ε

2

)
≤ 1 − 4n exp

(
− ε2

2

2
τ3

)
Prob

(
∀i ∈ X, t > τ3 : |V̂ (i) − V (i)| ≤ ε

2

)
≥ 1 − δ′

In the equation above τ3 has been set to 2
ε2

2

ln( 2n
δ′ ).

We have now shown that the agents will converge for all time when the conditions in

Lemmas 4, 5, and 6 hold for all coop agents. Therefore:

Prob(All coop-agents have converged by τ ′)

≥ Prob((No two agents changed distribution within T) &

(All agents attempted to switch groups) &

(∀ players i : when i switches groups, all other agents

observed play is within ε2

2n of their actual distributions)

(All payoffs stay within ε2

2
of expected payoffs for all time t past τ3))

≥ 1 − δ5 − δ6 − n ∗ δ4 − δ′

We can assign δ4 = δ2

4n , δ5 = δ2

4
, δ6 = δ2

4
, and δ′ = δ2

4
so that the above hold with probability

at least 1 − δ2. Thus τ ′ is the value for τ2 that we are looking for and τ ′ is polynomial in

M, n, 1
ε2

, and 1
δ2

since we know from Lemma 6 that τ ′ is polynomial in n, K , T, 1
δ5

, and 1
δ6

,

and we know from Lemma 4 that T = L ∗ H is polynomial in M, n, 1
ε4

, and 1
δ4

.

Now let us consider the case in which there are non-cooperating agents. In order to alter

the payoffs they will need to pretend to be either coop or stationary agents. If they conform

to the coordination process in PCM(S), then the payoff constraints will be satisfied and the

lemma will hold regardless. PCM(S) checks to make sure all agents it thinks are cooperating

followed the switching policy by switched at most once and only to the largest group. So

any non-cooperating agents will need to make it appear that all agents have coordinated on a

single group in order to avoid giving themselves away. They can still change the other agent’s

payoffs by either altering their distribution later or correlating in a way that influences the

payoffs while leaving each individual distribution the same. However, whenever the payoffs
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vary by more than ε from the expected values, PCM(S) tries recalculating payoffs using the

target distributions instead of the actual plays. Clearly if a group, Y , containing all the non-

cooperating agents is checked the payoffs must deviate by more than ε|Y |
n , since for τ3 greater

than H ∗ L , we know that the cooperating and stationary agents contribute no more than ε|Y |
n

error each. Similarly we don’t need to worry about finding a group with both non-cooperating

agents and a coop or stationary one. If the group had a deviation of at least ε|Y |
n , the group

without the coop or stationary agent must have had an error of at least ε|Y |−1
n at would have

been detected first. Therefore whenever the payoff is more than ε below the target profile

at least one non-cooperating agent will be found and no coop or stationary agents will be

misclassified. �

Appendix C: Proof outline for PCM(A)

The proof of Theorem 3 follows from the proof framework of Theorem 1 with only a few

modifications. First, we will need to observe the opponents for a longer period of time.

We now need to show that after a period of H , the observed distribution for a conditional

strategy player is within ε′ of the true distribution for all actions and all possible histories. To

show this, we can use the proof for Lemma 3, but with the number of different probability

distributions set to M ∗ Mnk instead of M , giving us:

H ≥ 1

2ε′2 log
2Mnk+1

δ1

ε′ = ε

4nMnk+1

H ≥ 8n2 M2nk+2

ε2
log

2Mnk+1

δ1

An additional complexity arises if the opponents play can depend on their own past actions.

In this case we don’t have the ability to take samples at will for the different histories, but

may instead need to follow a chain of different histories in order to manipulate the opponent’s

play so that we can observe a particular outcome. In the worst case the length of this chain

of histories may approach the size of the full set of unique histories, Mnk and each desired

transition may occur with a probability as small as λ, where λ is the minimum non-zero

probability any opponent in our target class assigns to any action in some history. Therefore,

the average amount of exploration to get even one observation of a particular history could

require time proportional to ( 1
λ

)Mnk
. We can think of this term as the mixing time of agents’

exploration policy in the stochastic game defined by letting each k-length history be a state

with the opponents’ conditional strategies as their policies.

Unfortunately this factor for the time to achieve a desired history can also affect the

maximum length, L , of the sequence we need to approximate any possible PE solution of the

repeated game. To see this, consider an environment in which the players can only achieve

a Pareto-efficient enforceable outcome by mixing over the outcomes of playing a particular

strategy for two different starting histories. In order to approximate the mix, the player may

need to spend an exponential amount of time moving between the two histories. In particular

we can replace the proof of Lemma 4 with a symmetric proof approximating the feasible

payoff profile by a distribution over conditional strategies with bounded memory k. However,
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since the short-term payoff of a conditional strategy is dependent on the starting history, in

order to get a guarantee that the empirical payoffs are near the expected payoff, we will need

to play each strategy for a time proportional to its mixing time in the stochastic game formed

by the play of the opponents in the target class. Therefore in the worst-case the T in the proof

of Lemma 4 will also include a factor of ( 1
λ

)Mnk
.

Finally, we need to address the issue that unconstrained opponents can potentially prevent

the agents from observing particular histories. However, the self-play agents can safely

assume the most advantageous member from their payoff point of view out of the set of

target opponents consistent with the other observations. In order to prove this assumption

wrong and negatively affect the payoffs, the unconstrained agents would need to allow this

history to be played with positive probability, thereby allowing it be observed. Once it has

been observed sufficiently often, the agents can replan. This can happen at most once for

each history so the agents would need to coordinate at most Mnk times.
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