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Abstract. Clustering is the problem of identifying the distribution of patterns and intrinsic correlations
in large data sets by partitioning the data points into similarity classes. This paper studies the problem of
clustering binary data. Binary data have been occupying a special place in the domain of data analysis. A
unified view of binary data clustering is presented by examining the connections among various clustering
criteria. Experimental studies are conducted to empirically verify the relationships.
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1. Introduction

The problem of clustering data arises in many disciplines and has a wide range of
applications. Intuitively, clustering is the problem of partitioning a finite set of points in
a multi-dimensional space into classes (called clusters) so that (i) the points belonging to
the same class are similar and (ii) the points belonging to different classes are dissimilar
(Hartigan, 1975; Kaufman & Rousseeuw, 1990). In this paper, we focus our attention
on binary datasets. Binary data have been occupying a special place in the domain of
data analysis. Typical applications for binary data clustering include market basket data
clustering and document clustering. For market basket data, each data transaction can
be represented as a binary vector where each element indicates whether or not any of the
corresponding item/product was purchased (Agrawal & Srikant, 1994). For document
clustering, each document can be represented as a binary vector where each element
indicates whether a given word/term was present or not (Li et al., 2004a; Li, 2005).

Generally clustering problems are determined by four basic components: a) the (phys-
ical) representation of the given data set; b) the distance/dissimilarity measures between
data points; c) the criterion/objective function which the clustering solutions should aim
to optimize; and, d) the optimization procedure. For a given data clustering problem,
the four components are tightly coupled. Various methods/criteria have been proposed
over the years from various perspectives and with various focuses (Barbara et al., 2002;
Gibson et al., 1998; Huang, 1998; Ganti et al., 1999; Guha et al., 2000; Gyllenberg
et al., 1997; Li et al., 2004b). However, few attempts have been made to establish
the connections between them while highlighting their differences. In this paper, we
aim to provide a unified view of binary data clustering by examining the connections
among various clustering criteria. In particular, we show the relationships among the
entropy criterion, dissimilarity coefficients, mixture models, matrix decomposition, and
minimum description length.
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Table 1. Notation.

n, number of data points p, number of features

K, number of clusters C = (C1, C2, . . . , CK ),
Clustering

X = (xi j )n×p , the dataset nk , the cardinality of the class Ck

N = n × p Nk = nk × p

N j1
k = ∑

i∈Ck
xi j N j0

k = nk − N j1
k

N j1 = ∑n
i=1 xi j N j0 = n − N j1

xt , a point variable y j , a feature variable

Ĥ , Estimated Entropy

The rest of the paper is organized as follows: Section 2 sets down some notations
used throughout the paper; Section 3 presents the unified view on binary data clus-
tering by examining the connections among various clustering criteria. In particular,
Section 3.1 introduces the traditional entropy-based clustering criterion; Section 3.2
establishes the relations between entropy-based criterion with dissimilarity coefficients;
Section 3.3 shows the equivalence between the entropy-based criterion with the classi-
fication likelihood; Section 3.4 illustrates the connections between a matrix perspective
and dissimilarity coefficients; Section 3.5 describes minimum description length ap-
proach and its relation with the matrix perspective. Section 4 presents experimental
studies to empirically verify the relationships and finally Section 5 concludes.

2. Notations

Given a binary dataset X = (xi j )n×p where xi j = 1 if the jth feature is present in
the ith instance and xi j = 0 otherwise, we want to find a partition of X into classes
C = (C1, C2, . . . , CK ) such that the points within each class are similar to each other.
Let nk be the cardinality of the class Ck, 1 ≤ k ≤ K . We will use N for np, Nk for
nk p, N j1

k for
∑

i∈Ck
xi j , N j0

k for nk − N j1
k , N j1 for

∑n
i=1 xi j , N j0 for n − N j1, and Ĥ

for the estimated entropy, where xt is a point variable and y j is a feature variable.
Table 1 summarizes the notation that will be used throughout the paper.
Consider a discrete random vector Y = (y1, y2, . . . , yp) with p independent com-

ponents yi where yi take its value from a finite set Vi . The entropy of Y is defined
as

H (Y ) = −
∑

p(Y ) log p(Y ) =
p∑

i=1

H (yi )

= −
p∑

i=1

∑

t∈Vi

p(yi = t) log p(yi = t)

3. A unified view

In summary, the connections between various methods/criteria for binary clustering are
presented in Figure 1. In the rest of the section, we will further illustrate the relationships
in detail.
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Matrix Perspective 

Encoding D and F

Minimum Description Length(MDL)

Code Length

Entropy Criterion

Maximum Likelihood

Bernoulli Mixture

Likelihood and Encoding

Disimilarity Coefficients

Generalized Entropy

Distance Definition

Figure 1. Summary of relations for various clustering criteria. The words beside the arrows describe
connections between the criteria.

3.1. Classical entropy criterion

As measures for uncertainty presented in random variables, entropy-type criteria for the
heterogeneity of object clusters have been used since the early times of cluster analysis
(Block, 1989). In this section, we first study the entropy-based criteria in categorical
clustering. In particular, we will show that the entropy-based clustering criteria can be
formally derived in the formal framework of probabilistic clustering models.

Entropy criterion The classical clustering criterion (Bock, 1989; Celeux & Govaert,
1991) is to find the partition C such that

O(C) =
K∑

k=1

p∑

j=1

1∑

t=0

N jt
k

N
log

N N jt
k

Nk N jt

=
K∑

k=1

p∑

j=1

1∑

t=0

N jt
k

N

(

log
N jt

k

nk
− log

N jt

n

)

= 1

N

K∑

k=1

p∑

j=1

1∑

t=0

nk
N jt

k

nk
log

N jt
k

nk
−

p∑

j=1

1∑

t=0

N jt

N
log

N jt

n

= 1

p

(

Ĥ (X ) − 1

n

K∑

k=1

nk Ĥ (Ck)

)

(1)

is maximized.1 Observe that 1
n

∑K
k=1 nk Ĥ (Ck) is the entropy measure of the partition,

i.e., the weighted sum of each cluster’s entropy. Given a dataset, Ĥ (X ) is then fixed, to
maximize O(C) is to minimize the expected entropy of the partition

1

n

K∑

k=1

nk Ĥ (Ck). (2)
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Intuitively, lower expected entropy means less uncertainty, and hence lead to better
clustering.

Kullback-Leibler measure The entropy criterion above can also be thought of as a
Kullback-Leibler (K-L) measure. The idea is as follows: suppose the observed dataset is
generated by a number of classes. We first model the unconditional probability density
function and then seek a number of partitions whose combination yields the density
function (Roberts et al., 1999; Roberts 2000). The K-L measure then tries to measure
the difference between the unconditional density and the partitional density.

Given two distributions p(y) and q(y),

K L(p(y)||q(y)) =
∫

p(y) log

(
p(y)

q(y)

)

dy.

For each t ∈ {0, 1}, let p(y j = t) = N jt

n and q(y j = t) = pk(y j = t) = N jt
k

nk
, t = {0, 1}.

Note that here p(y) represents the unconditional density while q(y) (or pk(y)) is the
partitional density. Then K L(p(y)||q(y)) ≈ ∑

p(y) log(p(y)) − ∑
p(y) log(q(y)).

Proposition 1. The entropy criterion O(C) given in Equation (1) can be approximated
by

1

p
[(1 − K )Ĥ (X ) −

K∑

k=1

K L(p(y)||pk(y))]

where p(y j = t) = N jt

n and q(y j = t) = pk(y j = t) = N jt
k

nk
, t = {0, 1}.

Proof: Observe that

K L(p(y) ‖ q(y)) ≈
∑

p(y) log(p(y)) −
∑

p(y) log(q(y))

=
p∑

j=1

∑

t∈{0,1}
p(y j = t) log(p(y j = t))

−
p∑

j=1

∑

t∈{0,1}
p(y j = t) log(q(y j = t))

= −Ĥ (X ) −
p∑

j=1

∑

t∈{0,1}

N jt

n
log

(
N jt

k

nk

)

= −Ĥ (X ) + nk

n
Ĥ (Ck)

Thus, using Equation (1), O(C) is equal to

1

p

[

(1 − K )Ĥ (X ) −
K∑

k=1

K L(p(y) ‖ pk(y))

]

. (3)

�

Hence, minimizing the K-L measure is equivalent to minimizing the expected entropy
of partition over the observed data.
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3.2. Entropy and dissimilarity coefficients

In this section, we show the relationship between the entropy criterion and the
dissimilarity coefficients. A popular partition-based criterion (within-cluster) for
clustering is to minimize the summation of dissimilarities inside the cluster. Let
C = (C1, . . . , CK ) be the partition, then the within-cluster criterion can be described as
minimizing

D(C) =
K∑

k=1

1

nk

∑

xi ,x j ∈Ck

d(xi , x j ), (4)

where d(xi , x j ) is the distance measure between xi and x j and nk is the size of cluster k.
In general, the distance function can be defined using L p norm. For binary clustering,
however, the dissimilarity coefficients are popular measures of the distances.

Dissimilarity coefficients Let a set X of n data points and a set A of p binary attributes
be given. Given two data points x1 and x2, there are four fundamental quantities that
can be used to define the similarity between the two (Baulieu, 1997):

• a = card(x1 j = x2 j = 1),
• b = card(x1 j = 1&x2 j = 0),
• c = card(x1 j = 0&x2 j = 1),
• d = card(x1 j = x2 j = 0),

where j = 1, . . . , p and card represents cardinality. The presence/absence based dis-
similarity measure that satisfies a set of axioms (such as non-negative, range in [0, 1],
rationality whose numerator and denominator are linear and symmetric) can be gener-
ally written as D(a, b, c, d) = b+c

αa+b+c+δd , α > 0, δ ≥ 0 (Baulieu, 1997). Dissimilarity
measures can be transformed into a similarity function by simple transformations such
as adding 1 and inverting, dividing by 2 and subtracting from 1 etc. (Jardine & Sibson,
1971). If the joint absence of the attribute is ignored2, i.e., setting δ = 0, then the binary
dissimilarity measure can be generally written as D(a, b, c, d) = b+c

αa+b+c , α > 0. Ta-
ble 2 listed several common dissimilarity coefficients and the corresponding similarity
coefficients.

Global equivalence on coefficients In cluster applications, the ranking based on a
dissimilarity coefficient is often of more interest than the actual value of the dissim-
ilarity coefficient. The following propositions proved in Baulieu (1997) establish the
equivalence results among dissimilarity coefficients.

Definition 1. Two dissimilarity coefficients D and D′ are said to be glob-
ally order equivalent provided ∀(a1, b1, c1, d1), (a2, b2, c2, d2) ∈ (Z+)4, we have
D(a2, b2, c2, d2) < D(a1, b1, c1, d1) if and only if D′(a2, b2, c2, d2) < D′(a1, b1, c1, d1).
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Table 2. Binary dissimilarity and similarity coefficients. The “Metric” column indicates whether the given
dissimilarity coefficient is a metric or not. A ‘Y’ stands for ‘YES’ while an ‘N’ stands for ‘No’.

Name Similarity Dissimilarity Metric

Simple matching Coeff.
a + d

a + b + c + d

b + c

a + b + c + d
Y

Jaccard’s Coeff.
a

a + b + c

b + c

a + b + c
Y

Dice’s Coeff.
2a

2a + b + c

b + c

2a + b + c
N

Russel & Rao’s Coeff.
a

a + b + c + d

b + c + d

a + b + c + d
Y

Rogers & Tanimoto’s Coeff.
1
2 (a + d)

1
2 (a + d) + b + c

b + c
1
2 (a + d) + b + c

Y

Sokal & Sneath’s Coeff. I
1
2 a

1
2 a + b + c

b + c
1
2 a + b + c

Y

Sokal & Sneath’s Coeff. II
2(a + d)

2(a + d) + b + c

b + c

2(a + d) + b + c
N

Proposition 2. Given two dissimilarity coefficients D = b+c
αa+b+c+δd and D′ =

b+c
α′a+b+c+δ′d . If αδ′ = α′δ, then D and D′ are globally order equivalent.

Corollary 1. If two dissimilarity coefficients can be expressed as D = b+c
αa+b+c and

D′ = b+c
α′a+b+c , then D and D′ are globally order equivalent. �

In other words, if the paired absences are to be ignored in the calculation of dissimi-
larity values, then there is only one single dissimilarity coefficient up to the global order
equivalence: b+c

a+b+c . With the equivalence results, our following discussion is then based
on the single dissimilarity coefficient.

Entropy and dissimilarity coefficients Consider the coefficient b+c
a+b+c . Note that b + c

in the numerator is the number of mismatches between binary vectors.
Now let’s take a closer look at the within-cluster criterion in Equation 4 defined by

the dissimilarity coefficients.

D(C) =
K∑

k=1

1

nk

∑

xt1 ,xt2 ∈Ck

d(xt1 , xt2 )

=
K∑

k=1

∑

xt1 ,xt2 ∈Ck

p∑

j=1

1

nk
d(xt1 j , xt2 j )

= 1

p

K∑

k=1

p∑

j=1

∑

xt1 ,xt2 ∈Ck

1

nk
|xt1 j − xt2 j |
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= 1

p

K∑

k=1

p∑

j=1

1

nk
nk p j

k nk(1 − p j
k )

= 1

p

K∑

k=1

p∑

j=1

nk p j
k (1 − p j

k ) (5)

where p j
k is the probability that the jth attribute is 1 in cluster k.

Havrda and Charvat (1967) proposed a generalized entropy of degree s for a discrete
probability distribution P = (p1, p2, . . . , pn)

H s(P) = (2(1−s) − 1)−1

(
n∑

i=1

ps
i − 1

)

, s > 0, s > 1

and

lim
s→1

H s(P) = −
n∑

i=1

pi log pi .

Degree s, as a scalar parameter, appears on the exponent in the expression equation and
controls the sensitivity of the uncertainty calculation.

In the case s = 2, then

H 2(P) = −2

(
n∑

i=1

p2
i − 1

)

. (6)

Proposition 3. With the generalized entropy defined in Equation (6), D(C) =
1
n

∑K
k=1 nk Ĥ (Ck).

Proof: Note that, with the generalized entropy defined in Equation (6), we have

1

n

K∑

k=1

nk Ĥ (Ck) = −2

n

K∑

k=1

p∑

j=1

nk[(p j
k )2 + (1 − p j

k )2 − 1]

= 2

n

K∑

k=1

p∑

j=1

nk p j
k (1 − p j

k )

= 2p

n
D(C)(Based on Equation (5).)

�

Thus we have established the connections between the entropy-criterion and the
dissimilarity coefficients.

3.3. Entropy and mixture models

In this section, we show that the entropy-based clustering criterion can be formally
derived using the likelihood principle based on Bernoulli mixture models. The basic
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idea of the mixture model is that the observed data are generated by several different
latent classes (McLachlan & Peel, 2000). In our setting, the observed data, characterized
by the {0, 1}p valued data vectors, can be viewed as a mixture of multivariate Bernoulli
distributions. In general, there will be many data points: X = {xt }n

t=1. Each xt is a
p-dimensional binary vector denoted as xt = (xt1, xt2, . . . , xtp). Viewing {xt }n

t=1 as
sample values of a random vector whose probability distribution function is:

p(xt ) =
∑

i

π (i)p(xt |i)

=
∑

i

π (i)
p∏

j=1

[a j
i ]xt j [1 − a j

i ](1−xt j )

where π (i) denotes the probability of selecting the ith latent class and
∑

i π (i) = 1. a j
i

gives the probability that attribute j is exhibited in class i. Let ai = (a1
i , . . . , a p

i ), i =
1, . . . , K and use a to denote the parameters ai , i = 1, . . . , K .

Maximum likelihood and classification likelihood Recall that for Maximum Likeli-
hood Principle, the best model is the one that has the highest likelihood of generating
the observed data. In the mixture approach, since the data points are independent and
identically distributed, the maximum likelihood of getting the entire sample X can be
expressed as:

L(a) = log p(X |a) = log
n∏

t=1

πp(xt |a)

=
n∑

t=1

log

(
k∑

i=1

πi p(xt |ai)

)

=
n∑

t=1

log




K∑

i=1

πi

p∏

j=1

[a j
i ]xt j [1 − a j

i ](1−xt j )





We introduce auxiliary vectors ut = (ui
t , i = 1, . . . , K ) which indicate the ori-

gin/generation of the points: ui
t is equal to 1 or 0 accordingly as xt comes from the

cluster Ci or not. These vectors are the missing variables. The classification likelihood
(Symons, 1981) is then:

C L(a, u) =
n∑

t=1

K∑

i=1

ui
t log p(xt |ai)

=
n∑

t=1

K∑

i=1

ui
t log

p∏

j=1

[a j
i ]xt j [1 − a j

i ](1−xt j ) (7)

Note that

C L(a, u) = L(a) − L P(a, u)
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where

L P(a, u) = −
n∑

t=1

K∑

i=1

ui
t log

(
πi p(x |ai)

∑K
j=1 π j p(x |aj)

)

.

and L(a) is given in Equation 7. Observe that L P(a, u) ≥ 0 and it can be thought as
corresponding to the logarithm of the probability of the partition induced by u. Hence
the classification likelihood is the standard maximum likelihood penalized by a term
measuring the quality of the partition.

Maximizing the likelihood It holds that

C L(a, u) =
n∑

t=1

K∑

i=1

ui
t log p(xt |ai)

=
n∑

t=1

K∑

i=1

ui
t log

p∏

j=1

[a j
i ]xt j [1 − a j

i ](1−xt j )

=
K∑

i=1

log
∏

t∈Ci

p∏

j=1

[a j
i ]xt j [1 − a j

i ](1−xt j )

=
K∑

i=1

p∑

j=1

(N j1
k log a j

i + N j0
k log[1 − a j

i ]) (8)

Proposition 4. Maximizing C L(a, u) in Equation 8 is equivalent to maximizing O(C)
in Equation 1.

Proof: If u is fixed, maximizing C L(a, u) over a is then reduced to, for each i =
1, . . . , K ; j = 1, . . . , p, choosing a j

i to maximize C Li j (a
j
i ) = N j1

k log a j
i +N j0

k log[1−
a j

i ].
Since 0 < a j

i < 1 and N j0
k + N j1

k = nk , we have

∂C Li j

∂a j
i

= 0

⇐⇒ N j1
k

a j
i

− N j0
k

1 − a j
i

= 0

⇐⇒ (
N j1

k + N j0
k

)
a j

i = N j1
k

⇐⇒ a j
i = N j1

k

nk
.

Observe that ∂2(C Li j )

∂(a j
i )2

< 0. By plugging a j
i = N j1

k
nk

, we have

C L(a, u) = −
K∑

i=1

ni Ĥ (Ci ) (9)
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Given a dataset, n, p, and Ĥ (X ) are then fixed. Hence the criterion C L(a, u) is then
equivalent to O(C) in Equation 1 since both of them aim at minimizing the expected
entropy over the partition. �

Note that ai can be viewed as a “center” for the cluster Ci .

3.4. A matrix perspective

Recently, a number of authors (Anod & Lee, 2001; Dhillon & Modha, 2001; Li et al.,
2004a; Soete & Douglas Carroll, 1994; Xu & Gong, 2004; Xu et al., 2003; Zha et al.,
2001; Dhillon et al., 2003) have suggested clustering methods based on matrix computa-
tions and have demonstrated good performance on various datasets. These methods are
attractive as they utilize many existing numerical algorithms in matrix computations. In
our following discussions, we use the cluster model for binary data clustering based on
a matrix perspective presented in (Li et al., 2004a; Li & Ma, 2004). In the cluster model,
the problem of clustering is formulated as matrix approximations and the clustering
objective is minimizing the approximation error between the original data matrix and
the reconstructed matrix based on the cluster structures. In this section, we show the
relations between the matrix perspective and other clustering approaches.

Introduction In Li et al. (2004a) and Li and Ma (2004), a new cluster model is
introduced from a matrix perspective. Given the dataset X = (xi j )n×p, the cluster
model is determined by two sets of coefficients: data coefficients D = (di j ) and feature
coefficients F = ( fi j ). The data (respectively, feature) coefficients denote the degree
to which the corresponding data (respectively, feature) is associated with the clusters.
Note that X can be viewed as a subset of R p as well as a member of Rn×p. Suppose X
has k clusters. Then the data (respectively, feature) coefficients can be represented as a
matrix Dn×k (respectively Fp×k) where di j ( fi j ) indicates the degree to which data point
i (respectively, feature i) is associated with cluster j.

Given representation (D, F), basically, D denotes the likelihood of data points as-
sociated with clusters and F indicates the feature representations of clusters. It should
be noted that the number of clusters is determined by the number of columns of D
(or F). The ijth entry of DF T then indicates the possibility that the jth feature will be
present in the ith instance, computed by the dot product of the ith row of D and the jth
row of F. Hence after thresholding operations3, DF T Sour can be interpreted as the
approximation of the original data X. The goal is then to find a D and F that minimizes
the squared error between X and its approximation DF T .

arg min
D,F

O(D, F) = 1

2
||X − DF T ||2F , (10)

where ‖X‖F is the Frobenius norm of the matrix X, i.e.,
√∑

i, j x2
i j . With the formulation

in Equation 10, we transform the data clustering problem into the computation of D and
F that minimize the criterion O.

Matrix perspective and dissimilarity coefficients Given the representation (D, F),
basically, D denotes the assignments of data points associated into clusters and F
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indicates the feature representations of clusters. Observe that

O(D, F) = 1

2
||X − DF T ||2F

= 1

2

√∑

i, j

(xi j − (DF T )i j )2

= 1

2

√∑

i

∑

j

|xi j − (DF T )i j |2

= 1

2

√
√
√
√

K∑

k

∑

i∈Ck

|xi j − ek j |2

= 1

2

√
√
√
√

K∑

k

∑

i∈Ck

d(xi , ek), (11)

where ek = ( fk1, . . . , fkr ), i = 1, . . . , K is the cluster “representative” of cluster Ci .
Thus minimizing Equation 11 is the same as minimizing Equation 4 where the distance
is defined as d(xi , ek) = ∑

j |xi j − (ek)i j |2 = ∑
j |xi j − (ek)i j | (the last equation holds

since xi j and (ek)i j are all binary.) In fact, given two binary vectors X and Y,
∑

i |Xi −Yi |
calculates the number of their mismatches, which is the numerator of their dissimilarity
coefficients.

3.5. Minimum description length

Minimum Description length (MDL) aims at searching for a model that provides the
most compact encoding for data transmission (Rissanen, 1978) and is conceptually
similar to minimum message length (MML) (Oliver & Baxter, 1994; Baxter & Oliver,
1994) and stochastic complexity minimization (Rissanen, 1989). The MDL approach
can be viewed in the Bayesian perspective (Mumford, 1996; Mitchell, 1997): the code
lengths and the code structure in the coding model are equivalent to the negative log
probabilities and probability structure assumptions in the Bayesian approach.

As described in Section 3.4, in matrix perspective, the original matrix X can be
approximated by the matrix product of DF T . It should be noted that the number of
clusters is determined by the number of columns of D (or F). Instead of encoding the
elements of X alone, we then encode the model, D, F , and the data given the model,
(X |DF T ). The overall code length can be expressed as

L(X, D, F) = L(D) + L(F) + L(X |DF T ).

In the Bayesian framework, L(D) and L(F) are negative log priors for D and F and
L(X |DF T ) is a negative log likelihood of X given D and F. If we assume that the
prior probabilities of all the elements of D and F are uniform (i.e., 1

2 ), then L(D) and
L(F) are fixed given the dataset X. In other words, we need to use one bit to represent
each element of D and F irrespective of the number of 1’s and 0’s. Hence, minimizing
L(X, D, F) reduces to minimizing L(X |DF T ).
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Proposition 5. Minimizing L(X |DF T ) is equivalent to minimizing O(D, F) = 1
2 ||X−

DF T ||2F .

Proof: Use X̂ to denote the data matrix generated by D and F. For all i, 1 ≤ i ≤
n, j, 1 ≤ j ≤ p, b ∈ {0, 1}, and c ∈ {0, 1}, we consider p(xi j = b | x̂i j (D, F) = c),
the probability of the original data Xi j = b conditioned upon the generated data (x̂)i j ,
via DF T , is c. Note that

p(xi j = b|X̂i j (D, F) = c) = Nbc

N.c
.

Here Nbc is the number of elements of X which have value b where the corresponding
value for X̂ is c, and N.c is the number of elements of X̂ which have value c. Then the
code length for L(X, D, F) is

L(X, D, F) = −
∑

b,c

Nbc log P(xi j = b | x̂i j (D, F) = c)

= −np
∑

b,c

Nbc

np
log

Nbc

N.c

= npH (X |X̂ (D, F))

So minimizing the coding length is equivalent to minimizing the conditional entropy.
Denote pbc = p(xi j = b | x̂i j (D, F) = c). We wish to find the probability vectors
p = (p00, p01, p10, p11) that minimize

H (X |X̂ (D, F)) = −
∑

i, j∈{0,1}
pi j log pi j (12)

Since −pi j log pi j ≥ 0, with the equality holding at pi j = 0 or 1, the only possible
probability vectors which minimize H (X |X̂ (D, F)) are those with pi j = 1 for some
i, j and pi1 j1 = 0, (i1, j1) �= (i, j). Since X̂ is an approximation of X, it is natural
to require that p00 and p11 be close to 1 and p01 and p10 be close to 0. This is
equivalent to minimizing the mismatches between X and X̂ , i.e., minimizing O(D, F) =
1
2 ||X − DF T ||2F . �

4. Experiments

In this section, we present several experiments to show that the relationships described
in the paper is also observed in practice.

4.1. Methods

The relationships among entropy, mixture models as well as minimum description
length have been experimentally studied and evaluated in the machine learning literature
(Mitchell, 1997; Celeux & Soromenho, 1996; Cover & Thomas, 1991). Here we conduct
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Table 3 Document Data Set Descriptions.

Datasets # documents # classes

CSTR 476 4

WebKB4 4199 4

WebKB 8,280 7

Reuters 2,900 10

experiments to compare the following criteria: entropy, dissimilarity coefficient, and the
matrix perspective. To minimize the entropy criterion defined in Equation 1, we use the
optimization procedure introduced in (Li et al.,2004b). For minimizing the dissimilarity
coefficient criterion defined in Equation 4, we use the popular K-means algorithm (Jain
& Dubes, 1988). For the matrix perspective, we use the clustering method described in
(Li & Ma, 2004).

4.2. Datasets

We perform our experiments on document datasets. In our experiments, documents are
represented using binary vector-space model where each document is a binary vector in
the term space and each element of the vector indicates the presence of the corresponding
term.

We use a variety of datasets, most of which are frequently used in the data mining
information retrieval research. The range of the number of classes is from 4 to 10 and
the range of the number of documents is from 476 to 8280, which seem varied enough
to obtain good insights on the comparison.

The descriptions of the datasets are listed as follows and their characteristics are
summarized in Table 3.

• CSTR: This is the dataset of the abstracts of technical reports published in the Depart-
ment of Computer Science at the University of Rochester between 1991 and 2002. The
TRs are available at http://www.cs.rochester.edu/trs. It has been first used in (Li et al.,
2003) for text categorization. The dataset contained 476 abstracts, which were di-
vided into four research areas: Natural Language Processing (NLP), Robotics/Vision,
Systems, and Theory.

• WebKB: The WebKB dataset contains webpages gathered from university computer
science departments. There are about 8280 documents and they are divided into 7
categories: student, faculty, staff, course, project, department and other. The raw
text is about 27MB. Among these 7 categories, student, faculty, course and project
are the four most populous entity-representing categories. The associated subset is
typically called WebKB4. In this paper, we perform experiments on both 7-category
and 4-category datasets.

• Reuters: The Reuters-21578 Text Categorization collection contains documents col-
lected from the Reuters newswire in 1987. It is a standard text categorization bench-
mark and contains 135 categories. In our experiments, we use a subset of the data
collection which include the 10 most frequent categories.
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Figure 2. Purity comparison for various clustering criteria.

4.3. Result analysis

To pre-process the datasets, we remove the stop words using a standard stop list and
perform stemming using a porter stemmer. All HTML tags are skipped and all header
fields except subject and organization of the posted article are ignored. In all our
experiments, we first select the top 200 words by mutual information with class labels.
The feature selection is done with the rainbow package (McCallum, 1996).

All the datasets we use are standard labelled corpus and we can use the labels of
the dataset as the objective knowledge to evaluate clustering. Since the goal of the
experiments is to empirically reveal the relationships among the clustering criteria,
hence we use the purity as the performance measure. Purity is an external subjective
evaluation measure and it is intuitive to understand. The purity (Zhao & Karypis, 2001)
aims at measuring the extent to which each cluster contained data points from primarily
one class. The purity of a clustering solution is obtained as a weighted sum of individual
cluster purities and is given by Purity = ∑K

i=1
ni
n P(Si ), P(Si ) = 1

ni
max j (n

j
i ) where

Si is a particular cluster of size ni , n j
i is the number of points of the ith input class that

were assigned to the jth cluster, K is the number of clusters and n is the total number of
points4. If two criteria are essentially optimizing equivalent functions up to some extent,
then they should lead to similar clustering results and have similar purity values.

Figure 2 shows the purity comparisons of various criteria. The results are obtained
by averaging 10 trials. We can observe that they lead to similar clustering results. For
example, on CSTR dataset, the purity values for entropy-based criterion, dissimilarity
coefficients and matrix perspective are 0.730, 0.697 and 0.740 respectively. On WebKB4
dataset, the values are 0.574, 0.533 and 0.534 respectively. On WebKB7 dataset, the
values are 0.503, 0.489 and 0.501. On Reuters dataset, they are 0.622, 0.591 and 0.643.
In summary, the purity results among the clustering criteria are close and the maximum
difference is less than 4%. The differences are resulted from the subtle distinctions
among various criteria as well as the inherent random nature of stochastic learning
methods. The experimental study provides the empirical evidence on the relationships
among various clustering criteria.
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5. Conclusion

Binary data have been occupying a special place in the domain of data analysis. In
this paper, we aim to provide a unified view of binary data clustering by examining
the connections among various clustering criteria. In particular, we show the relation-
ships among the entropy criterion, dissimilarity coefficients, mixture models, the matrix
decomposition, and minimum description length.

The unified view provides an elegant base to compare and understand various clus-
tering methods. In addition, the connections can provide many insights and motivations
for designing binary clustering algorithms. For example, the equivalence between the
information theoretical criterion and the maximum likelihood criterion suggests a way
to assess the number of clusters when using the entropy criterion: to look at various
techniques used in model-based approaches such as likelihood ratio tests, penalty meth-
ods, Bayesian methods, cross-validation (Biernacki & Govaert, 1997; Smyth, 1997).
Moreover, the connections motivate us to explore the integration of various clustering
methods.
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Notes

1. We adopt the convention that 0log0 = 0 if necessary.
2. This can be found in many popular coefficients such as Jaccard’s coefficients and Dice coefficients.
3. Thresholding operations make sure that each entry of DFT is either 0 or 1. It can be performed as: if

DFT
i j > 1

2 , then set DFT
i j = 1, otherwise DFT

i j = 0, for i, j .
4. P(Si ) is also called the individual cluster purity.
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