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Abstract
Frame semantics for negation on the Australian Plan accommodates many different
negations, but it falls short on accommodating subminimal negation when the
language contains conjunction and disjunction. In this paper, I will present a
multi-relational frame semantics –multi-incompatibility frame semantics– that can
accommodate subminimal negation. I will first argue that multi-incompatibility
frames are in accordance with the philosophical motivations behind negation on the
Australian Plan, namely its modal and exclusion-expressing nature. Then, I will prove
the soundness and completeness results of a subminimal logic that consists of the
multi-incompatibility semantics and a proof system with operational rules that char-
acterize subminimal negation, conjunction and disjunction. Lastly, I will prove some
key correspondence theorems that relate frame conditions to certain principles that
are associated with stronger negations, which will give rise to a new kite of negations
that includes subminimal negation.

Keywords Negation · Subminimal negation · Compatibility semantics ·
Multi-relational frames · Non-classical logics · Modal logics

1 Introduction

There are two different plans for the semantics of negation in relevant logics: namely
the American Plan and the Australian Plan. On the American Plan (Belnap-Dunn
semantics), negation is characterized truth functionally in a four-valued1 semantics
“not A is true just in case A is false” [1, 11], whereas on the Australian Plan (Routley-
Meyer semantics), negation is construed as a modal operator [20, 26, 27]. Even
though Routley-Meyer semantics is deemed to be unintuitive (or not a semantics at
all, see [5]), Berto and Restall present a frame semantics for the Australian negation

1These four values are taken to be true, false, neither true nor false, and both true and false.
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that can provide an intuitive reading of the Routley-Meyer semantics [3].2 In their
paper, negation on the Australian Plan not only refers to negation in relevant log-
ics but also refers to many other modal negations (more specifically negations of the
impossibility conception of negation), and it is motivated on philosophical grounds.
They argue that negation on the Australian Plan is based on two ideas: it is modal–
the truth value of a negated sentence (¬A) at a point depends on the truth value of
A in other points– and it expresses exclusion, it rules things out. They claim that we
explain both of these aspects of negation by grounding it in the incompatibility rela-
tion, where the grounding relation should be understood as an explanatory relation
rather than a definitional reduction [3, p. 1122–1126]. The modal aspect of negation
is explained in a very straightforward way for the reason that incompatibility is a
modal relation. We explain the exclusion-expressing aspect of negation by appeal to
negation’s role in conversations, that is to express the incompatibility of certain asser-
tions and denials or states of affairs.3 In other words, because the role of negation in
a conversation is to express incompatibilities, it expresses exclusion. So, Australian
negation finds its philosophical basis in being grounded in incompatibility.4

Berto and Restall show that their semantics can accommodate many different
negations, along with negation of relevant logics, by imposing different conditions
on the frames.5 One family of negations accommodated by their semantics is the
family of constructive negations in which negation is characterized by implication
of something repugnant or undesirable. One account of this family of negations can
be found in Curry’s conception of negation as refutability [6, p. 255]. According to
Curry, just as we define axioms to be the set of sentences that are taken to be prim-
itively true, we can also define, counteraxioms, a set of sentences that are taken to
be primitively false. In the way that the truths of a system are the formulas that are
deducible from the axioms; the falsities of a system are the formulas from which a
counteraxiom is deducible. In other words, a sentence A is refutable just in case a
counteraxiom is deducible from A.6 This entails that the refutations or negations of a
system are equivalent to implication of a counteraxiom on this conception. Moreover,

2Their work on the semantics of negation on the Australian Plan is not entirely new. For the earlier
developments of negation as a modal operator see [2, 9, 10, 12, 25].
3According to Berto and Restall, we can understand the incompatibility relation in two different ways:
pragmatically or metaphysically [3, p. 1122]. The former uses the primitive incompatibility of assertion
and denial, whereas the latter takes incompatibility to be a primitive metaphysical relation between worldly
things such as situations, worlds, facts etc. to explain the role of negation. (For the former see [22], and for
the latter see [2].) I will be silent about my interpretation of the philosophical account of incompatibility
because the arguments provided in this paper are consistent with both of the accounts.
4There are other semantic treatments of the modal negation of relevant logics such as the ones in [19]
and [13], and some of the issues we will discuss throughout the paper may also be discussed in these
alternative semantic treatments. However, we will only focus on the Australian Plan as construed by [3],
since investigating these alternative semantics is beyond the scope of this paper. This will also help us to
concentrate on how weaker modal negations are modeled when other connectives are modeled classically.
Thus, I leave the research on the weaker negations in other frameworks for future research.
5Most of these correspondence results can be found in the earlier work by Dunn [9, 10, 12] and Restall [23–25].
6Since in the system developed in [6] a formula B being deducible from a set of formulas ∪ {A} is
equivalent to A ⊃ B being deducible from , I take the liberty to use deducibility and implication inter-
changeably in contexts where they are equivalent. For details on Curry’s deducibility relation see [6, p.
185-189].
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we accommodate different negations according to the refutability conception, such
as minimal negation or intuitionist negation, depending on the conditions imposed on
the counteraxioms7 and, as mentioned above, many of them are also accommodated
by the Australian semantics. However, the weakest member of this family, submin-
imal negation, is not fully accommodated. To see why it is not fully accommodated
let us investigate the features of subminimal negation.8

Proof theoretically, subminimal negation can be characterized by Local Contrapo-
sition [LC]9:

A B

¬B ¬A
[LC]

It is easy to check the validity of [LC] on the refutability conception. Given that
we have characterized negation as a counteraxiom being deducible from a formula,
¬B means that a counteraxiom is deducible from B. Holding of the premiss-sequent
tells us that B is deducible from A. If a counteraxiom is deducible from B (¬B), we
can conclude that A implies the same counteraxiom by transitivity of the deducibility
relation. Consequently, ¬A is deducible from ¬B. Furthermore, a sentence can be
subminimally negated by implying different counteraxioms, and as a consequence,
the following DeMorgan law is subminimally invalid:

[∧¬] ¬A ∧ ¬B ¬(A ∨ B)

We can check its subminimal invalidity by considering the cases when A and B

imply two different counteraxioms. In these cases, even though we have ¬A ∧ ¬B,
we do not have any basis to conclude that a counteraxiom is implied by A∨B, given
that we have multiple counteraxioms that are not closed under disjunction.10 Hence,
we cannot infer ¬(A ∨ B) from ¬A ∧ ¬B.

Subminimal invalidity of [∧¬] reveals that subminimal negation is not fully
accommodated by the Australian Plan, because, [∧¬] is valid according to the

7For the correspondence between the conditions on the counteraxioms and inference rules see [6, p. 257–
261], [17, p. 1259].
8Subminimal negation is not studied in depth by Curry, but it has been studied by many others. See [4, 9,
10, 14, 15, 17].
9There is a difference between the way some of the constructive negations are characterized in [6] (and in
the literature related to Curry’s account such as [14, 15]) and how they are characterized on the Australian
Plan because of a difference in their respective deducibility relations. In Curry’s account, deducibility
relation holds between a set of formulas and a formula, it is monotonic, transitive and as mentioned in
footnote 6 it enjoys an equivalence with the implication connective. However, these properties of Curry’s
deducibility relation combined with the refutability conception of negation makes the relevantly unaccept-
able rule of selective contraposition [SC] the characteristic rule of subminimal negation: ,A B

,¬B ¬A
[SC].

(Observe that in the presence of thinning A,¬A ¬B is provable using [SC].) Hence, accommodating
subminimal negation in a relevantly acceptable context requires us to drop one of the properties of Curry’s
deducibility relation.

In negation on the Australian Plan literature, i.e., in [3] and [9, 10, 12], structural properties of the
deducibility relation are preserved but its connection to the implication connective is dropped out. This
results in [LC] (Observe that we omit the context formula set.) becoming the rule that proof theoretically
characterizes subminimal negation, and in this paper, I will keep the Australian Plan convention. As a
consequence of this difference, A,¬A ¬B is now subminimally invalid on the Australian Plan and it is
associated with stronger negations such as minimal negation. (See Dunn’s kite of negations in [9, 12] and
[10].)
10For a discussion of this property of subminimal negation in particular see [17, p. 1265-1266] and [15].
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semantics presented by Berto and Restall as it will be shown in the next section.
However, when the language is ∧ and ∨-free, incompatibility frames can accom-
modate subminimal negation as briefly discussed by [9, 12]. Consequently, in the
∧ and ∨-free fragment of the language subminimal negation can be grounded in
incompatibility, and this indicates that it can be accommodated on the Australian
Plan. In this paper I will present a multi-relational frame semantics, which I will
call multi-incompatibility frames, where we can fully accommodate subminimal
negation on the Australian Plan. I will show this by proving the completeness and
soundness results for a subminimal logic and by proving the correspondence theo-
rems of stronger principles. I will also argue that the multi-incompatibility semantics
preserve the philosophical merits of negation on the Australian Plan by grounding
negation in incompatibility. As a consequence, multi-incompatibility frames will also
be philosophically motivated and it will accommodate more negations.

2 Australian Plan Semantics

In this section, I will present the frame semantics of negation on the Australian
Plan and show that it cannot accommodate subminimal negation when ∧ and ∨ are
present. I will then provide two reasons, one semantic and one proof theoretic, for
wanting to accommodate subminimal negation on the Australian Plan.

Let me start by introducing our language L. It consists of atomic sentences
p1, p2, . . . , pn, . . ., (The first three of which I will abbreviate to p, q, r), two binary
connectives, ∧ and ∨ and one singulary connective ¬. I will use A1, A2, . . . , An, . . .

as metavariables (The first three of which I will abbreviate to A, B, C) for formulas.
The well-formed-formulas (wffs) are the atomic sentences and if Ai and Aj are wffs,
then, ¬Ai , Ai ∧ Aj and Ai ∨ Aj are wffs. I will use the capital Greek letters for sets
of formulas. I will use not, and, or, only if, iff, and universal and existential quanti-
fiers with their usual meaning in the metalanguage, and I will also use the notations
&, ⊃, ∀, ∃ when expressing the frame conditions. Lastly, L¬ denotes the pure nega-
tion fragment of our language, i.e., the sublanguage of L that consists of the atomic
sentences and wffs generated only by ¬.

An incompatibility-frame is a triple F = U, , ⊥ , where U is a non-empty set
(of states),11 is a partial order on U , and ⊥ is a binary relation of incompatibility
on U .12 Incompatibility frames satisfy the Forwards condition:

11It is important to note that the elements of U are not to be interpreted as maximally-consistent worlds
as they are in the Kripke semantics for normal modal logics. One can interpret them as mere information
states, situations, or parts of worlds instead of complete worlds.
12We can present the formal semantics of negation on the Australian Plan in two different ways. One way
would be using the compatibility relation as the accessibility relation in the semantic clause for negation
as Berto and Restall do [2, 3, 23, 25], the other way would be using the incompatibility relation (perp
relation) as Dunn does [9, 10]. Since they are interdefinable, the choice among the two does not affect the
merits of Australian negation. I will use the incompatibility relation because it illustrates the similarities
between the frame semantics and negation as refutability more vividly. Because of this choice, I will use
the name “incompatibility frames” to refer to our frames as opposed to other common names such as perp
frames or compatibility frames.
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Forwards: (x ⊥ y and x x and y y ) implies x ⊥ y

An incompatibility frame becomes a model M when we add the function v to
our frame, M = U, , ⊥, v , where v is a function that associates every atomic
sentence with a set of states. We assume that v satisfies the Heredity Constraint (HC)
for atoms:

(HC) x ∈ v(p) and x y implies y ∈ v(p)

We define the relation of truth-at-a-state in a model ( ) inductively as follows:

(S-AT) x p iff x ∈ v(p)

(S∧) x A ∧ B iff x A and x B.
(S∨) x A ∨ B iff x A or x B.
(S¬) x ¬A iff for all y ∈ U(y A only if x ⊥ y)

Given our inductive definitions, (HC) holds for every formula.13 Moreover, we say
that an argument from to A holds in a model M ( M A) just in case for every
x ∈ U if x B for all B ∈ , then x A. We say that the argument from to A is
valid in a frame F ( F A) iff it holds for every model M built on F. An argument
from to A is valid with respect to a class of incompatibility frames F ( F A)
just in case it is valid in every frame F ∈ F .

Before getting into the issues surrounding subminimal negation, let us look into
our semantics to see how it manifests the aforementioned philosophical merits of the
Australian Plan, namely the relationship between negation and incompatibility. We
interpret the ⊥ relation in (S¬) as an incompatibility relation, a relation that holds
between two information states x, y where x rules y out. For instance, if “The table is
brown.” is true at x and “The table is green.” is true at y, then x and y are incompatible
(x ⊥ y). Moreover, we read the semantic clause for this particular example as follows
“It is not the case that the table is green.” is true at x just in case all green-table states
are incompatible with x. This example illustrates how the incompatibility relation
between states is related to negation in our semantics: the implication from the truth
of a sentence at a state to its incompatibility with x is necessary and sufficient for the
truth of the sentence’s negation at x. Hence, truth value of the negated sentence at a
state x is dependent on the truth value of the sentence at a state that is incompatible
with x.

As mentioned above, different conditions on the frames, such as the symmetry or
irreflexivity of the incompatibility relation, correspond to (are all and only frames
that validate) different negation principles, so we can obtain different negations
from incompatibility frames. For instance, double negation introduction [DNI] corre-
sponds to frames with symmetric incompatibility relations (Fs), i.e., (A Fs ¬¬A).
Given that quasi-minimal negation is characterized by [DNI], the negation deter-
mined by the symmetric incompatibility frames is quasi-minimal negation.14 There
are many more negations we can get from our incompatibility frames (including

13We prove this claim (also known as the persistence lemma) by induction on the complexity of formulas.
The proofs for the cases of ∧ and ∨ are straightforward and the proof for ¬ appeals to the Forwards
condition. Since the proof is very similar to the proof of Theorem 1 in Section 3, I will not prove it here.
14I will be using the more recent naming convention associated with each negation used by Dunn and
Zhou [12] and Horn and Wansing [16].

1123



S.K. Tabakci

Fig. 1 Countermodel to [DNI]— Normal arrows represent ⊥-related states and dashed arrows represent
the crucial not-⊥ related states. I will use the same convention throughout the paper

negation of relevant logics), but I will not provide a detailed account of the other
negations in incompatibility frames because they are well-studied in the literature [3,
9, 10, 12, 23, 25].15

The negation determined by the class of all incompatibility frames (F ) is quite
interesting. First, the rule [LC] preserves the property of holding in a model with
respect to F .16 Second, the negation determined by F is weaker than quasi-minimal
negation because [DNI] is invalid with respect to F , i.e., A F ¬¬A. The coun-
termodel consists of M = U, , ⊥ v , where U = {x, y}, ⊥= { y, x }, =
{ x, x , y, y }, and x p and y ¬p. (See Fig. 1.)

This countermodel has a state, x, where x p but x ¬¬p. Having x ¬¬p

only forces us to have a state (y) where ¬p is verified (y ¬p) that is not incom-
patible with x (not-x ⊥ y) and having x p and y ¬p only forces y to be
incompatible with x (y ⊥ x). Since we do not end up with a contradiction, this is a
countermodel to [DNI]. It is easy to see that [DNI] would be valid if the incompati-
bility relation were to be symmetric, since y ⊥ x would entail x ⊥ y which would
contradict with not-x ⊥ y.

Lastly, even though the negation determined by F is weaker than quasi-minimal
negation, it is also not as weak as subminimal negation, because the submini-
mally invalid DeMorgan Law [∧¬] is valid with respect to F , i.e., (¬A ∧ ¬B F
¬(A ∨ B)).

Proof Suppose x ¬A∧¬B for an arbitrary x ∈ U in an arbitrary model M built on
an arbitrary frame F ∈ F . We need to prove that for each y(y A∨B only if x ⊥ y)

in order to obtain y ¬(A ∨ B). To prove it, we will suppose y A ∨ B and
apply proof by cases to the disjunction we obtain from (S∨). Suppose y A. Since
for every y(y A only if x ⊥ y) follows from x ¬A ∧ ¬B by (S∧) and (S¬),
we obtain x ⊥ y by eliminating the quantifier and Modus Ponens. We similarly
obtain x ⊥ y from the other disjunct y B as well. So, we can conclude that (y
A ∨ B only if x ⊥ y) by conditional introduction, and consequently, x ¬(A ∨ B)

by universal quantifier introduction on y and (S¬). Therefore, ¬A ∧ ¬B F ¬(A ∨
B).

15Conditions in some of the referred works are provided with the compatibility relation. Given that
incompatibility and compatibility are interdefinable those conditions can be easily translated to the
incompatibility frames.
16Since its proof is similar to the [LC] case in the proof of Theorem 3 in Section 3 I will not repeat it here.
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This negation is known as preminimal negation in the literature and proof the-
oretically characterized by [LC] and [∧¬] (or its rule version). Consequently,
subminimal negation is not accommodated by the Australian Plan because the nega-
tion determined by the class of all incompatibility frames is preminimal negation,
i.e., preminimal negation is the weakest negation of the Australian Plan.

However, there are good reasons for wanting to have subminimal negation on the
Australian Plan. One reason is that preminimal negation and subminimal negation
coincide in L¬ [9, 12]. This is because the problem is caused by [∧¬] which is absent
in the ∧ and ∨-free fragment in the language. The negation determined by the class
of all incompatibility frames in L¬ only validates [LC] and nothing stronger. This
implies that the incompatibility frames can accommodate subminimal negation in
the ∧ and ∨-free fragment of our language L because subminimal negation is char-
acterized proof theoretically by validating only [LC]. As a consequence of this, we
can claim that subminimal negation is a modal exclusion-expressing operator as well
because it can also be grounded in incompatibility, as other negations we discussed so
far. Since it is also a modal-exclusion expressing operator, accommodating submini-
mal negation in an incompatibility frame where we have ∧ and ∨ in our language is
desirable.

Another reason for wanting to accommodate subminimal negation on the Aus-
tralian Plan is proof theoretic. If we want to have a proof system that is sound and
complete with respect to the validities determined by the class of all incompatibility
frames, we will have to use the rule version of [∧¬] as a sequent to sequent rule or
an axiom, since the weakest negation determined by it is preminimal negation.17 But,
this means that one of the primitive rules for negation in this proof system will con-
tain ∧ and ∨, and consequently, our proof system will end up having primitive impure
rules.18 Given that having pure rules over impure rules is more desirable–because
only by pure rules are we able to proof theoretically provide a meaning to the connec-
tive independently from other connectives– a proof system that consists of pure rules
for the weakest negation on the Australian Plan is also more desirable.19 Hence, we
might want to have a weaker negation than preminimal negation in order to have a
proof system that consists of only pure rules. Therefore, there are both philosophical
and proof theoretic motivations for wanting to accommodate subminimal negation
on the Australian Plan.

3 Multi-Incompatibility Frames

In this section, I will introduce a multi-relational frame semantics of negation that
can accommodate subminimal negation as well as all the other negations that can

17An axiomatic system that has preminimal negation can be found in [7].
18For a discussion on the purity of inference rules see [8, p.245–274], [17, 519–521].
19Note that although [LC] is pure, it violates another desirable proof theoretic property, simplicity, since
it mentions negation twice.
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be obtained from incompatibility frames. I will then argue that our new semantics is
also in accordance with the philosophical motivations behind the Australian Plan and
it can be construed as an improvement on the incompatibility semantics. Then I will
prove the soundness and completeness results of the logic N that consists of a proof
system that only has [LC] and the usual rules of inference for ∧ and ∨. Lastly, I will
prove some key correspondence results of our new semantics in order to show that
the negations that can be obtained from incompatibility frames can also be obtained
from our multi-incompatibility frames, and I will present a more fine-grained kite of
negations.

But before the formal presentation, I want to emphasize two different points that
have already been mentioned above to motivate our semantics. First, as Hazen also
points out, the subminimal invalidity of [∧¬] is due to having multiple counter-
axioms rather than having a single counteraxiom: “P and Q might both be false,
but by implying different counteraxioms, without there being a single counteraxiom
implied by both . . . ” [15, p. 106] But, it is important to note that if the set of our
counteraxioms were to be closed under disjunction, there would be a single counter-
axiom (the disjunctive counteraxiom that is composed of the counteraxioms implied
by P and Q) implied by both and [∧¬] would be valid [17, p. 1266]. So, in order
to have subminimal negation on the refutability conception, we need the set of mul-
tiple counteraxioms to not be closed under disjunction. Second, (S¬) and negation
on the refutability conception are structurally similar, both of them take negation of
a formula to be the implication of something undesirable. We construe negation on
the refutability reading as an implication to something undesirable such as a counter-
axiom. In (S¬), a formula is negated at a state x just in case the truth of a sentence
at a state y implies something undesirable, i.e., incompatibility of the states x and
y. Combining these two points provides us a way to solve our problem. If we have
multiple incompatibility relations that are not closed under union, as we have mul-
tiple counteraxioms that are not closed under disjunction, we can invalidate [∧¬];
because [∧¬] would be invalid when a state verifying A and B were to imply differ-
ent incompatibilities without there being a single incompatibility implied by both. We
can illustrate this idea more rigorously by revising (S¬) where A’s truth-at-y implies
an incompatibility relation that holds between states, rather than implying the incom-
patibility relation between states. Since we want to negate a formula when and only
when its truth-at-a-state implies an incompatibility, any one of the incompatibility
relations is supposed to be necessary and sufficient to negate a formula:20

x ¬A iff for all y(y A only if x ⊥1 y) ∨ for all y (y A only if x ⊥2 y)
∨ . . .∨ for all y (y A only if x ⊥i y)

When we generalize this clause with an existential quantifier over different
incompatibility relations, we get our new semantic clause for negation:

(S ¬) x ¬A is true iff there is a ⊥n such that for all y (y A only if x ⊥n y)

20This disjunctive approach is inspired by Humberstone’s discussion on subminimal negation [17, p. 1265-
1269]. For a different frame semantics for subminimal negation that is based on a similar idea also see
[14, p. 6].
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We will use multi-relational frames to implement the multiple incompatibility
relations in our semantics.21 In multi-relational frames, we have a set of multiple
accessibility relations rather than having a unique accessibility relation. A multi-
incompatibility frame is a triple FM = U, , Q where U is a non-empty set of
states, is a partial order relation on U , and Q is a non-empty set of ⊥i relations on
U .22 Forwards is also a condition on FM:

Forwards: (x ⊥i y and x x and y y ) only if x ⊥i y

A multi-incompatibility frame FM becomes a model M when we add the function
v that assigns atomic sentences to sets of states in U . We assume that v satisfies the
Heredity Constraint (HC) for atoms:

(HC) x ∈ v(p) and x y implies y ∈ v(p)

We define the relation of truth-at-a-state in a model ( ) inductively as follows:

(S-AT) x p iff x ∈ v(p)

(S∧) x A ∧ B iff x A and x B.
(S∨) x A ∨ B iff x A or x B.
(S ¬) x ¬A iff there is a ⊥i∈ Q for all y(y A only if x ⊥i y)

Given our inductive definitions, (HC) holds for every formula.

Theorem 1 x A and x y implies y A.

Proof We will prove this theorem by doing induction on the complexity of formulas.
The basis case directly follows from (HC). For the inductive cases, we will only
provide the case for ∧ and ¬ and leave the case for ∨ to the reader.

(Case for ∧) Suppose x A ∧ B and x y. We have x A and x B by
(S∧). We get y A and y B by the inductive hypothesis and we conclude that
y A ∧ B by (S∧).

(Case for ¬)Suppose x ¬A and x y. We need to prove there is a ⊥i∈ Q such
that for all z (z A only if y ⊥i z) to get y ¬A. Suppose z A for conditional
introduction for an arbitrary z. By (S ¬), we get there is a ⊥i∈ Q for all y (y A

only if x ⊥i y) from x ¬A. We eliminate the quantifiers and get x ⊥i z by Modus
Ponens with z A. Since we have x y by assumption, z z by the reflexivity
of , and x ⊥i z, we get y ⊥i z by Forwards. So, we have (z A only if y ⊥i z)
by conditional introduction. By appropriate quantifier introductions, we get there is
a ⊥i∈ Q for all z (z A only if y ⊥i z).

21The use of multi-relational frames is inspired by Schotch and Jenning’s multi-relational approach in
deontic logic [28]. For a brief discussion of Schotch and Jennings’s system see [18, p. 245-247].
22Allowing an empty set of ⊥ relations would make every negated formula false, which does not have
any impact on subminimal negation in our language L, since [LC] still preserves the property of holding
in a model in those frames as well. But, we will have to impose this restriction to our frames for every
negation stronger than subminimal negation given that they all validate [DNI]. Since I want to single
out the properties of the incompatibility relation when proving the correspondence results between the
frame conditions and stronger negation principles, I will restrict Q to be non-empty for all of our frames.
However, there will be a discussion below on the impact of allowing an empty Q for subminimal negation
when nullary connectives are added to the language.
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We say that an argument from to A holds in a model M ( M A) just in case
for every x ∈ U if x B for all B ∈ , then x A. We say that the argument from

to A is valid in a multi-incompatibility frame FM ( FM A) iff it holds in every
model M built on FM. An argument from to A is valid with respect to a class
of multi-incompatibility frames FM , ( FM A) just in case it is valid in every
FM ∈ FM .

We can interpret (S ¬) similar to how we interpreted (S¬) above, but we first
need to have a better understanding of having multiple incompatibility relations in
order to claim that (S¬) and (S ¬) have similar interpretations. One way to inter-
pret them is that each incompatibility relation is a different way to be incompatible.
For instance, the incompatibility between the states where “Sherlock Holmes is a
fictional character.” is true and where “Sherlock Holmes exists.” is true denotes one
way to be incompatible, and the incompatibility between a state where “The table
is green.” is true and where “The table is brown.” is true denotes another way to be
incompatible. Having different ways to be incompatible can further be explained by
the reasons why states are incompatible. Going back to our example, the first two
are incompatible because one thing cannot exist and be fictional at the same time,
whereas the other two are incompatible because an object cannot instantiate different
color properties.23 In other words, we can have a philosophically plausible reading of
multiple incompatibility relations by showing that different ways to be incompatible
can model the difference in reasons for being incompatible. Moreover, since (S ¬)
also uses an incompatibility relation to define the truth of a negated sentence and we
at least have a plausible reading of the multiple incompatible relations, we can retain
Berto and Restall’s argument for the modality and exclusion-expressing aspect of
negation as well, and consequently claim that multi-incompatibility frames preserve
the philosophical merits of incompatibility frames.

Now, we should check whether this semantics can accommodate subminimal
negation, and then check whether multi-incompatibility frames accommodate all the
other negations that incompatibility frames accommodate. We can check that [∧¬]
is invalid with respect to the class of all multi-incompatibility frames FM by the
following countermodel M = U, , Q, v where U = {x, y, z}, Q = {⊥a=
{ x, y }, ⊥b= { x, z }}, = { x, x , y, y , z, z } and x ¬p, x ¬q, y p, z

q (Fig. 2).
This countermodel shows that there is a state x such that x ¬p ∧ ¬q while

x ¬(p ∨ q). By having the state y where y p and x ⊥a y, we satisfy the
conditions for x ¬p and since also y p ∨ q and not-x ⊥b y we satisfy the
conditions for x ¬(p ∨ q) . Similarly, by having the state z where z q and
x ⊥b z, we satisfy the conditions for x ¬q and since also z p ∨ q and not-
x ⊥a z we satisfy the conditions for x ¬(p ∨ q). It is important to note that if
we did not have different multiple incompatibility relations such as ⊥a and ⊥b, we

23As I have mentioned, I am not taking a stance on whether incompatibility is a pragmatic relation
between assertion and denials, or a metaphysical relation between things. So, I take multiple ways to be
incompatible to apply to both of these readings.

1128



Subminimal Negation on the Australian Plan

Fig. 2 Countermodel to [∧¬]

would end up with a contradiction, since we need to have x to be both ⊥ related and
not-⊥ related to y and z.

Invalidity of the De Morgan law [∧¬] is the first step towards our goal to fully
accommodate subminimal negation. We need to show that this semantics only validates
[LC] and does not extend beyond that. We can show this by providing the soundness
and completeness results of a logic N that has the proof system in Fig. 3.24

Definition 1 There is a derivation of A just in case there is a tree of sequents
where its root is A and the leaves of which are the instances of [R] and where
each sequent on the tree is a direct consequence of one of the rules applied to the
sequents which are immediately above them it in the tree.

Definition 2 A is derivable from in N ( N A) just in case there is a derivation
of A.

Theorem 2 (Variable sharing property) Let V ar(A) denote the set of atomic sen-
tences occurring in the formula A and denote the conjunction of formulas in .
If N B, then V ar( ) ∩ V ar(B) = ∅.

Proof Consider the lattice L4 = V = {t,b,n, f}, ≤, ∧, ∨, ¬ where V is the set of
objects, ≤ is a partial order on V that goes upwards on the Hasse diagram in Table 1,
and ∧, ∨ and ¬ are operators on V that behave according to the matrices in Table 1.
We define s to be a function from L to V.

We will try to establish two conditionals to prove our theorem. First, we will show
that if N A, then s( ) ≤ s(A). Second, we will show that if s( ) ≤ s(A),
then V ar( ) ∩ V ar(B) = ∅.

Establishing our first conditional is quite straightforward and well-known since
our logic is a sublogic of first degree entailment (FDE) and FDE is sound with respect
to L4. (See [1] and [21].) We only need to show that our rules preserve the ≤ ordering,
given that ≤ is reflexive, ∧ and ∨ are meet an join, and ¬ behaves according to the
matrix above showing it is trivial and left to the reader.

24The comma denotes the set union in the context where uppercase Greek letters stand for sets of formulas
and a formula occuring alone is, in this context, standing for its singleton.
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Fig. 3 Structural and operational rules of N

Our next step will be to establish that if s( ) ≤ s(A), then V ar( ) ∩
V ar(A) = ∅. We prove this by contraposition, i.e., we will show how to con-
struct a L4-countermodel for cases where V ar( ) ∩ V ar(A) = ∅. Suppose
V ar( ) ∩ V ar(p) = ∅, then take a function s where s(p) = n for every atomic
variable p ∈ V ar(A) and s(q) = b for every atomic variable q ∈ V ar( ). By
inspection of the matrices we can establish that s( ) = b and s(A) = n, and as a
consequence s( ) = b s(A) = n

Theorem 3 (Soundness) N A only if FM A for all multi-incompatibility
frames FM .

Proof [R] is valid and the structural rules [Th] and [CUT] preserve the property of
holding in a model given that FM is a reflexive, transitive and a monotonic relation.
The proofs for the rules that govern ∧ and ∨ are well-known, so I will not provide
their proofs here. We only need to prove that [LC] preserves the property of holding
in a model:

[LC] Suppose A M B and suppose x ¬B. From x ¬B, we have there is
a ⊥i∈ Q such that for each y (y B only if x ⊥i y) by (S ¬). From A M B ,

Table 1 Lattice L4 and matrices for ∧, ∨ and ¬ on V
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we have for each y (if y A, then y B). By transitivity, for all y (if y A, then
x ⊥i y) which gives us x ¬A by existential generalization on x ⊥i y and (S ¬).

Since all of our inference rules preserve the property of holding in a model and
[R] is valid, every provable sequent in our proof system is valid.

Now we will prove the completeness direction. But, we will need to prove a couple
of theorems and lemmas before. First, we will prove the pair extension theorem. The
proofs of the pair extension theorem (Theorem 4) and Lemmas 1-3 presented here
can be found in [23, p. 92–95] with slight differences.

Definition 3 A set of formulas is

– non-trivial iff = ∅ and = L.
– a -theory iff A1, . . . , An ∈ and A1, . . . , An N B only if B ∈ .
– prime iff A ∨ B ∈ only if A ∈ or B ∈ .

Definition 4 An ordered pair , of sets of formulas is a -pair iff there are no
formulas A1, . . . , An ∈ and B1, . . . , Bn ∈ where A1, ∧ . . .∧An N B1∨. . .∨Bn

Definition 5 A -pair , extends , iff ⊆ and ⊆ .

Definition 6 A -pair , is full iff ∪ = L

Lemma 1 If is a non-trivial set of formulas such that N A, then , {A} is a
-pair.

Proof Suppose N A and , {A} is not a -pair. From , {A} not being a -
pair we get that there are formulas Bi . . . Bj ∈ where Bi ∧ . . . ∧ Bj N A by
Definition 4. Since we also have N Bi ∧ . . . ∧ Bj by [R], [Th] and [∧R], we get

N A by [CUT] giving us a contradiction.

Lemma 2 If , is a full -pair, then is a prime -theory.

Proof Suppose , is a full -pair. Suppose A ∈ and A N B. Given that
B /∈ by Definition 4 and ∪ = L by Definition 6, B must be an element of .
So, is a -theory.

Now let us prove its primeness. Suppose A ∨ B ∈ but A /∈ and B /∈ . So,
both A, B ∈ because ∪ = L. But, since A ∨ B N A ∨ B and , is
a -pair, this leads to contradiction because there is a formula in and formulas in

, namely A ∨ B and A, B, where A ∨ B N A ∨ B which contradicts with the
Definition 4 of a -pair. So either A or B must be in . And consequently, is also
prime.

Lemma 3 Any -pair , can be extended by some full -pair , .
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Proof Let , be a -pair. We start by showing that at least one of ∪ {C},
and , ∪ {C} is a -pair. Suppose ∪ {C}, is not a -pair, then there is a
formula A in the conjunction of formulas A1 ∧ . . . ∧ An in and a formula B in the
disjunction of formulas B1 ∨ . . . ∨ Bn in such that A ∧ C N B. If , ∪ {C}
also were not to be a -pair we would have had A N B ∨ C where A is in the
conjunction and B is in the disjunction. From A ∧ C N B and A N B ∨ C We
can derive A ∧ A N B ∨ B by the derivations π1 and π2 and π3 and applications
of [CUT], but this contradicts with our assumption that , is a -pair. Hence, we
prove that at least one of them should be a -pair.

π1

π2

π3

We define the series of -pairs n, n as follows. Let 0, 0 be , and if
n, n , then

n+1, n+1 = n ∪ {Cn}, n If n ∪ {Cn}, n is a -pair

n, n ∪ {Cn} Otherwise

If n, n is a -pair, then so is the n+1, n+1 because, as shown in the
previous paragraph, at least one of ∪ {C}, and , ∪ {C} is a -pair. We
reiterate this process until we put every formula in our language L to either left or
right. Given that at the end of the process the union set of the sets in the pair is
going to be identical to L and the pair will be a -pair, we will have a full -pair by
Definition 6. Hence, there is a full -pair , that extends the -pair , .

Theorem 4 (Pair Extension) If N A, then there is a prime -theory ⊇ such
that A /∈ .
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Proof Suppose N A, so by Lemma 1, , {A} is a -pair. Then, by Lemma 3,
there is a full -pair , s.t., ⊇ and ⊇ {A}, that extends , {A} . By
Lemma 2, is a prime -theory . Now, we only need to show that A /∈ . Suppose
A ∈ , then N A, but this contradicts with , being a full -pair because
by Definition 4 there are no formulae B ∈ and C ∈ where B N C. Hence,
A /∈

Definition 7 The canonical frame FMc is a triple FMc = U, ⊆,Q . U is the set of
all non-trivial prime -theories where non-trivial prime -theories in P are ordered
by the subset relation ⊆. Q is the non-empty finite set of canonical ⊥A relations for
A ∈ L where x ⊥A y iff ¬A ∈ x and A ∈ y.25 We get the the Canonical Model Mc

by adding the function V to FMc where V (p) = {x ∈ U | p ∈ x}. The valuation
function V assigns atomic formulas to upward closed subsets of U, i.e., x ∈ V (p)

and x ⊆ y implies y ∈ V (p). We define the canonical truth-at-a-state relation x c p

as x ∈ V (p).

In order to show that our Canonical Model is actually a model we need to show
that (1) accessibility relations in the canonical model satisfy the Forwards condition,
(2) semantic clauses are satisfied in the canonical model, (3) the relation c can
be generalized to all formulas, and (4) (HC) holds for all formulas in the canonical
model.

Lemma 4 Every ⊥i∈ Q on the Canonical ModelMc satisfies Forwards.

Proof (Forwards)
Suppose x ⊥A y and x ⊆ x and y ⊆ y for an arbitrary ⊥A. Given x ⊥A y and

Definition 7, ¬A ∈ x and A ∈ y. Consequently, ¬A ∈ x and A ∈ y by x ⊆ x and
y ⊆ y . Therefore, x ⊥A y by Definition 7.

Corollary 1 FMc is a canonical frame.

Lemma 5 For any non-trivial prime -theory x and a formula A

p ∈ x iff x ∈ V (p)

A ∧ B ∈ x iff A ∈ x and B ∈ x

A ∨ B ∈ x iff A ∈ x or B ∈ x

¬A ∈ x iff there is a ⊥i∈ Q, for each y(A ∈ y only if x ⊥i y)

Proof Cases for ∧ and ∨ are satisfied by definition of non-trivial prime -theories.
(LTR): Suppose ¬A ∈ x and A ∈ y for arbitrary x, y. We have x ⊥A y by

Definition 7. Then, we get A ∈ y implies x ⊥A y by conditional introduction. Lastly,
by universal generalization on y, and existential generalization on ⊥A, we prove the
left to right direction.

25Note that there are many canonical incompatibility relations, given that it is not difficult to satisfy the
definition. This fact comes handy when proving Lemma 5.
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(RTL) We will prove this direction by contraposition. Suppose ¬A /∈ x. We will
prove ∀ ⊥i ∃y(A ∈ y and not-x ⊥i y). For every formula B either A N B or
A N B. We will proceed by proof by cases. Suppose A N B. Let y be the
set {A}. Then there is a non-trivial prime theory y where y ⊇ y and B /∈ y by
Theorem 4 and by Definition 3. So, we have A ∈ y for a non-trivial prime theory. It
is straightforward to show that not-x ⊥B y because B /∈ y is sufficient to show that
not-x ⊥B y by definition of the canonical ⊥ relation (Definition 7). Hence we get
∃y(A ∈ y & not-x ⊥B y).

Now suppose the other disjunct (A N B) and let y be the set {A}. First, by The-
orem 2, there is a propositional variable p such that A N p where p /∈ V ar(A).
Consequently, we can show that y can be extended to a non-trivial prime y by The-
orem 4 where p /∈ y , hence y is a non-trivial prime theory. Now we need to show
not−x ⊥B y. Given that A N B we get that ¬B N ¬A by [LC]. From this we
can infer that ¬B /∈ x because otherwise ¬A would be an element of x which contra-
dicts with our assumption ¬A /∈ x. Given the definition of the canonical ⊥ relation
(Definition 7), ¬B /∈ x is sufficient for us to show that not-x ⊥B y . So, we also
get ∃y(A ∈ y & not-x ⊥B y). Hence, ∃y(A ∈ y & not-x ⊥B y) holds for every
B given that we get it from both of the disjuncts, and consequently we get for every
⊥i∈ Q∃y(A ∈ y & not-x ⊥i y).

Lemma 6 x c A iff A ∈ x.

Proof The proof is by induction on complexity for each direction. Cases for ∧
and ∨ are trivial. For negation, we adapt the proof in [12] to our canonical model.
(RTL)Suppose ¬A ∈ x. We have there is a ⊥i∈ Q, for each y(A ∈ y only if x ⊥i

y) by Lemma 5. By induction hypothesis we have there is a ⊥i∈ Q, for each y(x

A only if x ⊥i y). Hence, we have x c ¬A.
(LTR) The other direction is proved with the reverse order of the proof above.

Lemma 7 (HC) generalizes to all formulas, i.e., x c A and x ⊆ y implies y c A

Proof Its proof is trivial from Lemma 6 and the set theoretic properties of ∈ and ⊆
relations.

Theorem 5 (Completeness) N A if FM A for all multi-incompatibility
frames FM .

Proof Given Lemmas 4,5,6,7, we conclude that our canonical model Mc is a model.
Suppose N A, then we can conclude that there is a non-trivial prime theory x

in our canonical countermodel such that C ∈ x for every C ∈ and A /∈ x from
Theorem 4.

Soundness and Completeness Theorems (Theorems 3 and 5) show us that multi-
incompatibility frames can accommodate subminimal negation since [LC] is the only
rule that governs negation in the proof system of N . As discussed, we also pre-
serve the philosophical motivations of the Australian Plan in multi-incompatibility
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Fig. 4 New Kite of Negations

semantics. So, we have a semantics for subminimal negation on the Australian Plan.
Lastly, we need to show that our multi-incompatibility frames can accommodate
other negations already encompassed in incompatibility frames in order to claim that
the multi-incompatibility frame semantics is in accordance with the Australian Plan.
It is quite easy to show this. We can impose a condition like the following to restrict
our frames to have a unique relation, i.e., making them identical to incompatibility
frames:

(U-⊥)∀x∀y∀ ⊥m ∀ ⊥n (x ⊥m y iff x ⊥n y)

Once we have the incompatibility frames, we have the preminimal negation and
consequently we can get the rest of the negations by imposing the well-known con-
ditions on our frames [9, 10, 12]. However, even though the uniqueness condition
validates [∧¬] it does not correspond to it, because it is stronger than needed. This
means that the conditions that correspond to principles that characterize stronger
negations are different from the conditions in incompatibility frames. If we look back
on our discussion of submiminal negation on the refutability conception, we can see
that there is a weaker condition that can get us stronger negations. We claimed that we
get subminimal negation when we have multiple counteraxioms that are not closed
under disjunction. So, if the set of counteraxioms is closed under disjunction, we
can get stronger negations without imposing a uniqueness condition. Similarly, if we
close our set of incompatibility relations under union, we can get stronger negations
without having to impose a stronger condition such as (U-⊥). This idea gives rise to
novel frame conditions and a new kite of negations (See Fig. 4) where we associate
well-known valid inferences (See Fig. 5) with frame conditions.

Following theorems are the correspondence results of these new conditions. I
only provide the completeness directions given that the soundness directions are
straightforward:

Fig. 5 Stronger Negation Inferences
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Fig. 6 Rules for T and F

Theorem 6 [DNI] is valid in a frame FM (A FM ¬¬A) iff FM satisfies Multi-
Sym:
∀x∃ ⊥i ∀ ⊥m ∀y(y ⊥m x ⊃ x ⊥i y).

Proof Consider a frame where Multi-Sym does not hold, i.e. (y ⊥m x & not-x ⊥i y)

for some x, an arbitrary ⊥i , some ⊥m and some y. Let us define our valuation as
v(p) = {w | x w}. Now, suppose z p for an arbitrary z to show that y ¬p.
From z p we get x z from v(p). Since we have y ⊥m x, x z and y y, we
get y ⊥m z by Forwards which gives us y ¬p. Lastly, since not-(x ⊥i y), we get
x ¬¬p. Since we also have x p by v(p), we have A ¬¬A.26

Theorem 7 [DNE] is valid in a frame FM (¬¬A FM A) iff it satisfies Multi-
Convergence:
∀x∀ ⊥i ∃y(not-x ⊥i y & ∃ ⊥j ∀z((not − y ⊥j z) ⊃ z x))

Proof The proof of this theorem is very similar to the proof in [24, p. 858] where
the only difference lies in having multiple incompatibility relations and is left to the
reader.

The proofs of the correspondence theorems for [ECQ] and [NA] require us to
extend our language to L+ by adding the nullary connectives T and F. We add the
usual truth conditions to include them in our semantics, where x T and x F for
every x and the rules in Fig. 6 to include them in our proof theory.

Theorem 8 [NA] is valid in a frame FM (A ∧ ¬A FM ¬B) iff FM satisfies the
condition Multi-Weak Reflexivity:
∀x∀ ⊥m ∃ ⊥i ∀y(x ⊥m x ⊃ x ⊥i y)

Proof We have (x ⊥m x & not-x ⊥i y) for some ⊥m and for some x, y and an
arbitrary ⊥i . Let us set our valuation as v(p) = {x ⊥m x}. This gives us x p∧¬p.
From this we can prove that x ¬T given that [NA] is valid. However, since y T
and not-x ⊥i y, we can get for each ⊥i ∃y(y T & not-x ⊥i y) which gives us
x ¬T.

Theorem 9 [ECQ] is valid in a frame FM (A ∧ ¬A FM B) iff it satisfies
Irreflexivity: ∀x∀ ⊥i not-x ⊥i x.

Proof Suppose x ⊥i x for some ⊥i and x. We set out valuation v(p) = {x | x ⊥i x}.
This gives us x A ∧ ¬A, and consequently, x F. But this contradicts with our
definition of in a model of FM, where x F.

26The proof of this direction for incompatibility frames can be found in [23, p. 263].
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There are two different interesting issues with respect to the addition of the nullary
connectives. The first one is related to the non-emptiness of the set of incompatibility
relations in our frames and the rules mentioned above. If we were to allow an empty
set of incompatibility relations, [NOR] rule would be invalidated, since in a model
where there is no incompatibility relation all the negated formulas are false in every
point. But, all the other rules of N along with [FE] and [TI] would still be valid. As
a consequence, it is reasonable to think that there are two different candidates for a
subminimal logic in the language L+, one where [NOR] is a primitive rule and we
have non-empty set of incompatibility relations, and the other does not have [NOR]
and allows for an empty set of incompatibility relations.27 However, there are two
different reasons to favor non-empty set of incompatibility relations. The first one is
a technical reason. Note that in our proof of Lemma 5, we make an essential use of
the variable sharing property, but when we extend our language to L+ we lose that
property. In the absence of a different proof we will have to rely on the rule [NOR]
to prove the Lemma 5, similar to the way it is implicitly used in [12, p. 240].28 Our
second reason to have [NOR] as a subminimally valid rule is conceptual. The ques-
tion whether [NOR] is a subminimally valid rule amounts to asking whether ¬F is
a theorem of a subminimal logic. Since on the refutability conception every coun-
teraxiom is deducible from itself, every counteraxiom is refutable. In our language,
we can express this fact with ¬F. This provides some additional reason to suppose
non-emptiness of Q on our frames.

Second, we had to extend our language to L+ to prove Theorems 8 and 9. This
is quite expected, because the principles [NA] and [ECQ] characterize minimal and
intuitionistic negations which on the refutability conception require expressions of
theorems and anti-theorems, and in our language we express them with T and F.
However, this yields an interesting consequence about subminimal negation in the
multi-incompatibility frames, namely, we do not have to use L+ to have a sound
and complete logic with subminimal negation, yet, they are required for intuitionist
and minimal negations. Hence, subminimal negation shows features that are differ-
ent from its cousins on the refutability conception when it is accommodated on the
Australian Plan.

27In fact, one can prove that [NOR] corresponds to the non-emptiness restriction. For the completeness
direction, consider a frame that allows for an empty set of incompatibility relations. A model built on
that frame will have v(T) = U and for every x ∈ U . But, we will also have x ¬F, since there is no
incompatibility relation. Hence, there will be a point where x T but x ¬F. Soundness direction is left
to the reader.
28Also note that [NOR] is provable for every negation that validates [DNI], [LC], [FE] and [CUT]:

This shows us that (1) intuitionist and minimal negation should have non-empty set of incompatibility
relations given the correspondence result and (2) the lack of variable sharing property in these logics will
not affect our completeness theorem since [NOR] is available.
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4 Conclusion and FutureWork

The problem we tried to tackle in this paper was to fully accommodate submini-
mal negation on the Australian Plan. We showed that multi-incompatibility frames
can accommodate subminimal negation by providing the soundness and complete-
ness results of N . We also argued that multi-incompatibility frames preserve all the
philosophical motivations behind the negation on the Australian Plan and showed
that they accommodate the negations of incompatibility frames. Hence, we success-
fully solved the problem of accommodating subminimal negation on the Australian
Plan. However, there is more work to be done with multi-incompatibility frames in
future work. For instance, it may be interesting to investigate whether we can use
multi-incompatibility frames to account for another closely related type of modal
negation–negation as unnecessity [12]– and provide similar results for dual submini-
mal negation (and all the other dual negations). In other words, we can investigate the
limitations of the multi-incompatibility approach when modeling negation. One issue
is whether we can preserve the relationship between compatibility and incompatibil-
ity relations while holding the philosophical interpretation of multi-incompatibility
relations. Even though we provided a plausible reading of having multiple incom-
patibilities, we have not investigated whether that reading can translate to having
multiple compatibility relations. In other words, we justify using multiple incompati-
bility relations by associating them with having different reasons to be incompatible,
but can we use a similar justification for compatibility relations? This would be a
highly desirable translation in case one wants to hold the interdefinability of incom-
patibility and compatibility. Moreover, one can further investigate the pragmatic
and metaphysical interpretations of incompatibility with respect to the multiple-
incompatibility frames. Throughout the paper, we have not favored one interpretation
over the other and assumed that both of the accounts are suitable for multi-
incompatibility frames. However, a fully developed account of multi-incompatibility
frames for either of the interpretations may lead to fruitful theories in philosophy of
language or metaphysics.
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