
https://doi.org/10.1007/s10992-021-09639-z

Higher-level Inferences in the Strong-Kleene Setting:
A Proof-theoretic Approach

Pablo Cobreros1 Elio La Rosa2 Luca Tranchini3

© The Author(s) 2021

Abstract
Building on early work by Girard (1987) and using closely related techniques from
the proof theory of many-valued logics, we propose a sequent calculus capturing a
hierarchy of notions of satisfaction based on the Strong Kleene matrices introduced
by Barrio et al. (Journal of Philosophical Logic 49:93–120, 2020) and others. The
calculus allows one to establish and generalize in a very natural manner several recent
results, such as the coincidence of some of these notions with their classical counter-
parts, and the possibility of expressing some notions of satisfaction for higher-level
inferences using notions of satisfaction for inferences of lower level. We also show
that at each level all notions of satisfaction considered are pairwise distinct and we
address some remarks on the possible significance of this (huge) number of notions
of consequence.

Keywords Higher-level rules Labelled sequent calculus Three-valued logic
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1 Introduction

Three-valued semantic settings make room for the distinction between the truth and
the non-falsity of formula in a valuation. Famously, the distinction has been used
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to define—given the same way of assigning truth-values to formulas—two different
notions of validity of an inference: both the logic K3 and LP are based on the Strong
Kleene (henceforth SK) matrices, but whereas the K3-validity of an inference
is defined as the preservation of truth, its LP-validity is defined as the preservation
of non-falsity from to . Dubbing truth and non-falsity (respectively) as strict and
tolerant satisfaction, [6] showed how, by adopting different standards of satisfac-
tion between premises and conclusions, one can define two further “mixed” notions
of validity of inferences in the SK-setting: ST-validity (in every valuation in which
the premise is strictly satisfied, the conclusion must be tolerantly satisfied as well)
and TS-validity (in every valuation in which the premise is tolerantly satisfied, the
conclusion must be strictly satisfied as well).

Whereas the tolerant validity of a formula (i.e., its tolerant satisfaction in all val-
uations) coincides with its classical validity, it is not the case that preservation of
tolerant satisfaction in all valuations coincides with the classical validity of an infer-
ence. Surprisingly, the latter coincides with ST-validity.1 Dually, whereas the set of
strictly valid formulas is empty, it is the set of TS-valid inferences (and not that of
K3-valid inferences) that is empty.

In spite of ST’s “classicality” at the level of inferences, it has been observed that
ST fails to validate some classical meta-inferences, i.e. expressions of the form

in which and do not contain formulas, but inferences. A meta-inference is
said to be ST-valid iff whenever all inferences in are ST-satisfied in a valuation, so
is at least one of the inferences in [9]. Typical examples of meta-inferences which
are not ST-valid are instances of “the transitivity of the inferential arrow”, such as:

. Actually, as shown by [2], a meta-inference
is ST-valid iff what [9] calls its lowering (i.e., the result of replacing with

and each inference in both and with the formula ) is an
LP-valid inference, a fact sometimes referred to as ST being LP in sheep’s clothes.

As we recalled above, the adoption of different standards of satisfaction between
premises and conclusions allows us to define a notion of validity of inferences
that coincides with classical validity. As shown by [3], the same happens for meta-
inferences: a meta-inference is classically valid iff in every valuation in
which all inferences in are TS-satisfied, at least one inference in is ST-satisfied.
[17] and [3] moreover show how this phenomenon can be iterated, by considering
“meta-meta-inferences”, “meta-meta-meta-inferences” and so on, and by defining for
each of these notion a “mixed” notion of validity coinciding with the corresponding
classical notion.

These results have been “dualized” by [22] who defined a hierarchy of notions
of unsatisfiability for meta-. . . -meta-inferences, each of which coincides with an

1This was in fact already observed in the ’70s by Schütte, who used this fact to provide a semantic proof
of cut-elimination for second-order logic.
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appropriate generalization of the classical notion of unsatisfiability to meta-. . . -meta-
inferences.

All this seems to call for a general framework encompassing all these notions and
in which these results can be presented in a uniform fashion. In the present article
we propose a possible formulation of such a framework, mainly relying on tools
developed in the field of the proof theory of many-valued logics. As we will show,
this framework allows one to reprove and generalize several of the above results and
to establish new ones in a very natural and straightforward way. We therefore hope
that the proposed framework can help in getting a clearer grasp of the structure of the
SK-semantic setting, and can set the stage for further investigations.

The plan of the paper is as follows. In Section 2 we introduce the SK-semantic
setting by recalling the notions of strict and tolerant satisfaction, as well as the four
notions of satisfaction of an inference definable in their terms. We stress that these notions
come equipped with a natural ordering between them, and recall how the classical
notions of satisfaction of formulas and inferences can be recovered in this setting.

In Section 3 we present in an accessible way the sequent calculus G3SK—
essentially due to [12]—capable of capturing in a syntactic fashion the semantic
notions previously introduced. Thereby, we hope to bring to the attention of the philo-
sophical community at large Girard’s essential contribution to the understanding of
the SK-setting (which has been otherwise rather neglected in current literature, with
the notable exception of [9]). Girard’s system actually predates later development in
the proof theory of many valued logics that we detail separately in Section 10. In
Section 3 we clarify the relationship between G3SK and the standard sequent calculus
for classical logic G3C by introducing unlabeling and labeling procedures allowing
to go back and forth between the two systems.

After briefly introducing the notion of higher-level inference in Section 4, in
Section 5 we first show how the classical notion of satisfaction can be scaled so as
to apply to inferences of any level, and then how the sequent calculus G3C can be
generalized to a calculus G3C capable of capturing all these semantically defined
notions. In Section 6 we generalize in an analogous manner the SK-semantic frame-
work to obtain a hierarchy of SK-notions of satisfaction for inferences of any level,
and in Section 7 we generalize the sequent calculus G3SK to the calculus G3SK
capturing the SK -semantic framework by proof-theoretic means.

In Section 8 we establish a relationship between SK -notions of validity of different
levels by scaling the notion of lowering to the whole SK -setting. We moreover show
how to scale the notions of (un)labeling introduced in Section 3 to the whole SK -
setting and use them to relate the classical calculus G3C to the calculus G3SK .

Besides detailing the connection with the proof-theoretic study of many-valued
logics, in Section 10 we briefly discuss another proof-theoretic tool related to the
proposed framework: the systems of nested sequents.

In Section 11 we give some philosophical comments on the results presented and
hint at further directions of research.
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2 SK-semantics for Formulas and Inferences

Given a set V of propositional variables (possibly indexed) we consider
the propositional language2 L defined by the following grammar:

V .

Outermost parentheses will mostly be omitted. We call a formula structural iff
it contains no occurrences of and . An atomic formula (or simply atom) is an
element of V .

2.1 Strict, Tolerant and Classical Validity of Formulas

We call any function V 1 1
2 0 an SK-valuation or simply valuation. The

truth-value of a formula in a valuation , indicated with , is defined as follows:

for V 1 0

min max

1 max 1

Following [6], we say that a formula is strictly satisfied by a valuation , writ-
ten s , when 1 and that it is tolerantly satisfied, written t , when

0. A formula is strictly valid (resp. tolerantly valid), s ( t ), iff it is
strictly satisfied (tolerantly satisfied) by all valuations. A formula is strictly unsat-
isfiable (resp. tolerantly unsatisfiable), s ( t), iff it is not strictly satisfied
(tolerantly satisfied) by any valuation.

Observe that if a valuation maps no propositional variable on 1
2 , then the truth-

value of any formula in is either 0 or 1. Such valuations will be called classical,
or shortly C-valuations.3 Clearly, for C-valuations tolerant and strict satisfaction col-
lapse, i.e. s iff t , and in this case we will say that C-satisfies (or simply
satisfies) . We say that is classically valid, or C-valid, notation , iff it is sat-
isfied by all C-valuations. To single out the strict and tolerant notions of satisfaction
(resp. validity), we will refer to them as SK-notions of satisfaction (validity).

In general, however, strict satisfaction implies tolerant satisfaction but not the
other way around. Moreover, tolerant validity is implied but does not imply strict
validity, and dually strict unsatisfiability is implied but does not imply tolerant unsat-
isfiability. That is, the set of strictly valid formulas is a proper subset of the set of
tolerantly valid formulas and the set of tolerantly unsatisfiable formulas is a proper
subset of the set of strictly unsatisfiable formulas.

2For reasons of simplicity, we will not consider quantified extensions, although all results below could be
extended to the first-order setting in a straightforward manner.
3Also, observe that the truth-value of the constant formulas we consider (i.e., and ) is either 0 or 1 in
any SK-valuation.
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Remark 1 In fact, the set of strictly valid structural formulas is empty and the set
of tolerantly valid formulas coincides with that of C-valid formulas. Dually, the set
of strictly unsatisfiable formulas coincides with that of C-unsatisfiable formulas, and
the set of tolerantly unsatisfiable structural formulas is empty.4 Although these facts
may not be obvious from our semantic definitions, we will provide a simple argument
for them in Section 3 (see in particular, Section 3.2).

Remark 2 Let be the function mapping t to s and s to t. Strict and tolerant satisfac-
tion are duals in the sense that x iff x (and hence x iff x ).
For C-valuations, satisfaction is self-dual. (For a discussion of different notions of
duality in the SK -setting, see [7].)

2.2 Satisfaction and validity of inferences

Let and be finite (possibly empty) multisets of formulas. We call inference any
expression of the form (outer parenthesis will often be omitted), and we
call the antecedent and the succedent. An inference is structural iff at
least one among and is non empty and all formulas in and are structural.

Given the two SK-notions of formula satisfaction, we can define four different
SK-notions of inference satisfaction as follows (here and below we use w x y z as
variables ranging over t and s):

xy iff if x (for all ) then y (for some )

We say that is xy-valid, written xy , iff it is xy-satisfied by every
valuation, and that it is xy-unsatisfiable, written xy, iff it is not xy-satisfied
by any valuation.5 6

4The qualification “structural” here and in the previous sentence is essential, since obviously is strictly
valid and is tolerantly unsatisfiable.
5The definitions of the SK-notions of validity of an inference are “local”, i.e., these notions have been
defined from the notion of satisfaction of an inference by a valuation by prefixing it with a universal
quantification over all valuations. Alternative “global” notions of validity of an inference can be obtained,
e.g., in the case of the SK-notions of validity of an inference, from the following scheme:

xy iff x (for all ) then y (for some )

where both the antecedent and the consequent of the conditional to the right of the ‘iff’ are validity (and not
satisfaction) claims, i.e., they consist of a universal quantification over all valuations. The “swap” between
the quantifiers makes a lot of difference. For instance on the global definition, the inference would
be valid on any choice of and . The global notions of validity of an inference are therefore at odds
with any intuitive notion of validity of an inference (which, to us quite uncontroversially, does not allow
one to infer any propositional variable from any other). We therefore chose a local definition of validity
of an inference. Similar reasons will motivate local definitions of validity for inferences of higher-level in
Section 4. For the significance of global notions see, e.g., [8].
6In contrast to what happens for validity, in the case of unsatisfiability, the following “global” definition

xy iff x (for all ) and y (for all )

is equivalent to the local one.
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Fig. 1 The relationship between
the notions of inference
satisfaction

Remark 3 The four SK-notion of inference validity coincide respectively with the
notions of validity of an inference adopted in the logics known in the literature as
Strong Kleene logic (K3) for x y s, Logic of Paradox (LP) for x y t, Strict-
Tolerant logic (ST) for x s and for y t and Tolerant-Strict logic (TS) for x t
and for y s. In the following we will use K3 and ss interchangeably, and similarly
for LP, ST, TS.

As for C-valuations tolerant and strict satisfaction collapse, so do the four notions
of inference satisfaction, i.e., for all C-valuations , ss iff tt

iff ts iff st , and in this case we say that is C-
satisfied, or simply satisfied by . We say that an inference is classically valid, or
C-valid, notation , iff it is satisfied by all C-valuations, and similarly for
C-unsatisfiable.

The relationship between tolerant and strict satisfaction of formulas induces a
(partial) order between the four SK-notions of inference satisfaction, the Hasse dia-
gram of which is given in Fig. 1. More “tolerant” notions of satisfaction are obtained
either by setting more tolerant standards of satisfaction in the succedent or “stricter”
standards of satisfaction in the antecedent of the inference.

The order is strict and actually for any choice of x, y, w, z, if wz-satisfaction is
more tolerant than xy-satisfaction, then there are wz-valid inference which are not
xy-valid and there are xy-unsatisfiable inferences that are not wz-unsatisfiable.

Example 1 The inference is tt- (and hence st-) valid but neither ts- nor
ss-valid, and is ss- (and hence st-) valid but neither ts-nor tt-valid. Dually,
the inference is tt- (and hence ts-) unsatisfiable but neither st- nor ss-
unsatisfiable, and is ss- (and hence ts-) unsatisfiable but neither st- nor
tt-unsatisfiable.

Remark 4 In fact, the set of TS-valid structural inferences7 is empty and the set
of ST-valid inferences coincides with that of C-valid inferences. As for Remark 1,
although these facts may not be obvious from our semantic definitions, we will pro-
vide a simple argument for them in the next section (see, in particular, Section 3.2).

7The qualification is necessary for reasons analogous to those mentioned in footnote 4.
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3 Proof Theory of SK-inferences

Proof-theoretic investigations of many-valued logics (of which the SK-semantic set-
ting is a prominent example) have a long tradition dating back at least to the ’50s
(see [20, 25]) and today constitute one of the major research directions in the field
of non-classical logic. Independently of this tradition, the SK-semantic setting has
been investigated in the early ’60s by Schütte and Tait, who used it to establish
the cut-elimination theorem for second-order logic (Takeuti’s conjecture) by seman-
tic means. This line of research has been further pursued by Girard in the ’70s
[12, Ch. 3]. In particular, Girard proposed to capture the SK-semantic setting using a
labeled sequent calculus, which we present in this section in a slightly modified form
that will allow a more straightforward presentation of some of the results below.

The connections between the work of Girard in the Tait-Schütte tradition on the
SK-setting and the more general investigations in the proof theory on many-valued
logics will be reviewed in Section 10, and the reader familiar with the latter tradition
is invited to consult that Section already now.

3.1 The Calculus G3SK

A labeled formula is an expression of the form x , for L and x s t . A
labeled formula x is structural if is.

Remark 5 To avoid unnecessary proliferation of fonts, we use , , both for
finite multisets of formulas and of labeled formulas, the context always making clear
which is meant. Moreover, when is a multiset of formulas, we indicate with x
the multiset of labeled formulas x . We will use and for multisets
of labeled atoms, i.e., expressions x with V .

An SK-sequent is an expression of the form in which and are (finite,
possibly empty) multisets of labeled formulas called the antecedent and the succedent
respectively. An SK-sequent is structural (resp. constant) iff at least one among
and are non-empty and all labeled formulas in and are structural. The general
form of an SK-sequent can thus be depicted as follows:

s 1 t 2 s 1 t 2

(where 1, 2, 1, 2 are possibly empty). Semantically, we say that an SK-sequent
is satisfied by an SK-valuation iff if s for all 1 and t for all

2, then either s for some 1 or t for some 2. We say
that an SK-sequent is valid iff it is satisfied by all valuations.

Remark 6 When both one among 1 or 2 and one among 1 or 2 are empty, the
satisfaction/validity of an SK-sequent coincides with the satisfaction/validity of the
corresponding inference according to one of the SK-notions of satisfaction/validity
of an inference. For instance, if 1 and 2 are empty we have an SK-sequent of
the form t 2 s 1, and such a sequent is satisfied by iff the inference

2 1 is ts-satisfied by . Observe however that SK-sequents and inferences are
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Table 1 The rules of G3SK

Initial Sequents:

x x x

s t x

Propositional Rules:
x x

L
x

x x
R

x

x x
L

x

x x
R

x

x x
L

x

x x
R

x

x
L

x

x
R

x

distinct linguistic entities (the former contain labeled formulas, the latter just for-
mulas). Although this apparently unnecessary duplication may be irritating for the
reader at this point, in the following section it will enable us to develop a proof-
theoretic account of inferences of higher-level in a smooth manner. To stress the
connection between the satisfaction of an SK-sequent of the form x y and
the xy-satisfaction of we will refer to sequents of this form as xy-sequents.

We also remark that the x-satisfaction/x-validity (respectively non-x-satisfac-
tion/x-unsatisfiability) of a formula are equivalent to the satisfaction/validity of the
sequent x (resp. x ).

A G3SK-derivation, or shortly an SK-derivation, is a tree of SK-sequents con-
structed according to the propositional rules and whose leaves are the initial sequents
given in Table 1.

We say that an SK-sequent is G3SK-derivable (notation G3SK , where
the superscript will be omitted if clear from the context) iff there is a G3SK-derivation
whose end-sequent is .

The calculus is sound and complete with respect to the semantic interpretation of
SK-sequents, that is:

Theorem 1 (Soundness and completeness of G3SK, [12]) An SK-sequent is
G3SK-derivable iff it is valid.

Proof (sketch) The left-to-right direction (soundness) is easily established by check-
ing for each rule that if the premises are satisfied by a valuation so is the
conclusion (see [12] Proposition 3.3.4). Observe that the soundness of the negation
rules is justified by the duality holding between strict and tolerant satisfaction (see
Remark 2).
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The other direction (completeness) is established by showing that if the sequent
s 1 t 2 s 1 t 2 is not derivable, one can construct a counter-

model for , that is, a valuation such that s for all 1, t

for all 2, s for all 1 and t for all 2. One begins
by applying the rules “backwards”, i.e., bottom-up, starting from until all
formulas in all the leaves of the tree thereby obtained are labeled atoms. If all the
leaves of the derivations are initial sequents of G3SK, the tree is an SK-derivation
of the sequent. Otherwise, it contains at least one branch ending with an SK-sequent
containing only labeled atoms which is however not an initial sequent of G3SK, say

s 1 t 2 s 1 t 2. It is easy to establish that any function
such that 1 for all 1, 1

2 for all 2, 1
2 for all

1 and 0 for all 2 is a valuation with the required properties
(see, for a fully detailed proof, [12] Theorem 3.3.5).

Given Theorem 1 and Remark 6, the calculus G3SK allows to capture the four
SK-notions of validity of an inference as follows:

Corollary 1 xy iff G3SK x y

Example 2 To show that tt (i.e., that the conditional
of LP is not transitive) we extract a counter-model from a failed proof-search for the
tt-sequent t t t . Backwards application of the rules of
G3SK yields the following tree of SK-sequents:

s t s s t s t s
L

s t t s t s t t
L

s t t t
R

t t t

This is not a SK-derivation, since t s t s is not an initial sequent.
From this SK-sequent we extract a valuation assigning the values 1, 1

2 and 0 to ,
and respectively. The valuation tolerantly satisfies and , but not

.

We conclude this section by observing that SK-sequents of the form t
s cannot be taken as initial sequents, since they are unsound: when is only

tolerantly satisfied, it may not be strictly satisfied. In the sequel, it will be however
convenient to consider derivations with invalid initial sequents of this form. We call
G3SK the calculus obtained by extending G3SK with initial sequents of the form
t s . We will refer to these sequents as quasi-initial sequents, and to
derivations in G3SK as quasi-SK-derivations.

The failed proof-search in Example 2 yields a quasi-SK-derivation. This is how-
ever not always the case. For instance, by attempting to construct a derivation for the
sequent t s one obtains a tree of sequents whose only branch ends with
the sequent t s s , which is neither initial nor quasi-initial.
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3.2 From G3C to G3SK and back via (un)labeling

By removing all labels from the calculus G3SK we obtain (a minor variant of)8 the
standard calculus for classical logic G3C (see, e.g., [15]).

We call C-sequents all expressions of the form in which and are
multisets of formulas L.

A G3C-derivation, or shortly a C-derivation, is a tree of C-sequents constructed
according to the propositional rules obtained by removing all labels from those of
Table 1 and whose leaves are C-sequents obtained by removing all labels from the
initial sequents of G3SK.

We say that a C-sequent is G3C-derivable (notation G3C ), where
the superscript will be omitted if clear from the context) iff there is a G3C-derivation
whose end-sequent is .

The system G3C is sound and complete with respect to the classical interpretation
of sequents in terms of C-valuations:

Theorem 2 G3C iff for all C-valuations , if for all , then
for some .

We call unlabeling the operation of removing labels from SK-sequents and (quasi-)
SK-derivations. If is an SK-sequent, we indicate with its unlabeling,
i.e., the C-sequent obtained by removing all labels from . Analogously, if D is a
quasi-SK-derivation, we indicate with D its unlabeling, i.e., the result of removing
all labels from D .

Remark 7 Clearly, not only the unlabeling of any SK-derivation, but also of any
quasi-SK-derivations is a C-derivation.

We call labeling the operation of decorating each formula of a C-sequent and C-
derivation with a label. In particular, we call any function mapping each formula
occurrence in a C-sequent onto t s a labeling function for , and we
call the -labeling of (notation ) the SK-sequent obtained by replacing
each formula occurrence in the C-sequent with the labeled formula
(where is the value of on the formula occurrence ).

When ) is an st-sequent (i.e., s t ), we say that )
is the st-labeling of , and we indicate it as st ). Similarly for tt, ss and ts.

Example 3 The tt-labeling of the C-sequent is the
SK-sequent t t t

By reading the rules of G3SK backwards it is clear that the labels in the end-
sequent of a quasi-SK-derivation D uniquely determine the labels in all sequents in

8In usual formulations, one does not require atomic contexts , in initial sequents. This however does
not affect derivability, since initial sequents with arbitrary contexts are derivable from the restricted ones.
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D . Thus, a quasi-SK-derivation D with end-sequent s 1 t 2 s 1 t 2 is
uniquely determined by the C-derivation D obtained by unlabeling D , together
with the labeling function for the C-sequent 1 2 1 2 that assigns s to all
elements of 1 and 1 and t to all elements of 2 and 2.

Given a C-derivation D with end-sequent and a labeling function for
, we call the -labeling of D , notation D , the quasi-SK-derivation that is

uniquely determined by decorating each formula occurrence in D starting from the
end-sequent in accordance with the rules of G3SK.

Observe that, in general, a labeling for the end-sequent may not induce an SK-
derivation, but only a quasi-SK-derivation. In case D is an SK-derivation we say
that is a successful labeling of D or that D is successful.

The following example clarifies these definitions:

Example 4 Let D be the following C-derivation:

L
L

R

The tt-labeling of D , tt D is the quasi-SK-derivation of Example 2. Note that
tt D is only a quasi-SK-derivation, and thus it is not a successful labeling of D .

Although in general a labeling need not be successful, it is easy to see that the st-
labeling of any C-derivation is successful, and that the ts-labeling of any C-derivation
with a structural end-sequent is not successful:

Fact 1 For all C-derivations D , st D is successful.

Proof The fact is established by observing that the end-sequent of the quasi-SK-
derivation st D is an st-sequent (i.e., it is of the form s t ), and that if the
end-sequent of a quasi-SK-derivation D is an st-sequent, then every sequent in D
is an st-sequent, initial sequents included, and hence the quasi-SK-derivation is an
SK-derivation as well.

Fact 1 shows that the labeling introduced to capture st-validities can therefore be
seen as inducing an inessential (from a proof-theoretic point of view) decoration of a
classical C-derivation, from which we can conclude the following:

Corollary 2 [6, 12] An inference is st-valid iff it is C-valid.

As we observed above in Section 2.2, the other SK-notions of validity are stricter
than the notion of st- and hence of C-validity (i.e., the set of xy-valid inferences are
all proper subsets of the set of C-valid inference for xy st.) Proof-theoretically, this
is reflected by the fact that the labeling of a C-derivation according to the standards
of a SK-notion of validity other than st-validity needs not be successful. The limit
case is that of ts-validity, which is empty:
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Fact 2 There are no SK-derivable structural ts-sequents.

Proof Suppose by reductio that D is an SK-derivation of a ts-sequent. By inspecting
the rules, it is clear that every sequent in D is a ts-sequent, including the leaves. If

is structural, no sequent in the leaves contains either or and thus none of
them can be an initial sequent of G3SK (at best, a quasi-initial sequent), and hence
D is not an SK-derivation.

Fact 2 immediately implies that:

Corollary 3 [11] No structural inference is ts-valid.

Dually, concerning unsatisfiability, we have that:

Fact 3 [22] The following holds:

1. An inference is ts-unsatisfiable iff it is C-unsatisfiable.
2. No structural inference is st-unsatisfiable.9

Proof Given that an inference is xy-unsatisfiable iff all formulas in are
x-valid and all formulas in are y-unsatisfiable (see footnote 6 above), by complete-
ness it follows that xy iff for all and all sequents x
and y are SK-derivable. If xy ts, by Fact 1 this is the case iff the correspond-
ing sequents are C-derivable, and hence iff the inference is C-unsatisfiable.
If xy st and the inference is structural, then by Fact 2 no such sequent is
derivable.

3.3 On Cut-elimination

Given the interpretation of SK-sequents, the following form of cut is clearly sound:

x x
Cut

Moreover, the completeness of the cut-free calculus G3SK (Theorem 1) pro-
vides a (semantic) proof of its admissibility.10 Similarly for the other structural rules
such as generalized identity, i.e., initial sequents without limitations to propositional
variables (that we will employ in some examples below), weakening and contraction.

9Note that the “empty” inference is st-unsatisfiable, but it is not structural, since both its antecedent
and succedent are empty.
10A rule is admissible iff (for all instances of the rule) whenever the sequents in the premises are derivable
(i.e., valid) so is the conclusion sequent.
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Syntactic proofs of these results, as well as of the invertibility11 of all the rules of
the system could be given by standard12 methods (see, e.g., [15] p. 53 ff.).

We observe moreover that the following form of cut

t s
Cutst

is neither sound nor admissible with respect to the semantic interpretation of SK-
sequents, since it would allow one to infer from the valid sequents t t and
s s the invalid sequent t s . Not even the restriction of this form of
cut to st-sequents is sound:

s t t s s t
CutST

s s t t

which is the way in which the unsoundness of Cut for ST is reflected in G3SK.13

Remark 8 All the mentioned results, in particular completeness and admissibility of
structural rules could also be established for a first-order version of the calculus. In
this case, however, to obtain the admissibility of contraction the principal formula in
the left rule for the universal quantifer, L, and in the right rule for the existential
quantifier, R, have to be repeated in the premises, e.g.,:

x x .

x .

This induces some (minor) complication in the completeness proof (in particular,
termination is no more obvious, nor can initial sequents be restricted to atoms as
we did in G3SK). In the case of G3SK however no repetition of this kind is needed
(like in the calculus for classical propositional logic) and hence the simplified proof
of completeness sketched above suffices, and the admissibility of structural rules
follows literally the one given by [15, p. 53 ff.] (since the rules of G3SK are just a
decoration of the G3 rules for propositional classical logic, with labels playing no
particular role in the proofs of admissibility). We also remark that Girard’s extended
his system (as well as the proof of completeness) to a second-order language.

11A rule is invertible iff whenever the sequent in the conclusion is derivable so are the sequents in the
premises.
12One of the referees objected that the methods employed by Negri and von Plato are not standard, in that
they rely on a more subtle analysis of derivations than the methods underlying Gentzen’s original proof
of cut elimination. It is certainly true that what deserves the label standard is (to some extent at least)
a subjective issue. It is however also true that the methods referred to are by now widely used. See also
Section 10 for further discussion.
13Note that although the rule is unsound, it is admissible as a consequence of the fact that the unlabeling
of an SK-derivation is a C-derivation, of the admissibility of cut in G3C and of Fact 1. However, the rule
ceases to be admissible when the language of G3SK is extended for instance with a formula, say , which
takes value 1

2 in all interpretations. In the extension G3SK to this language both t and s are valid,
but not the empty sequent.
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4 From Inferences to Higher-level Inferences

Following [3], we generalize the notion of inference discussed in the previous sec-
tions by introducing for each natural number the notion of inference of level . In
this hierarchy of notions, the inferences discussed in the previous sections play the
role of inferences of level 1, and formulas can be seen as the “degenerate case” of
inferences, i.e., inferences of level 0. The idea at the basis of this generalization of
the notion of inference can be made precise by defining the notion of inference of
level , short -inference, as follows:

Definition 1 By induction on .14

• For all L, is a 0-inference;
• If and are finite multisets of -inferences, then is a 1-inference.

Remark 9 We will use capital Greek letters not just for multisets of formulas, but for
multisets of inferences as well. Below we will use them also for multisets of labeled
inferences (to be introduced below). As we will stress, the context will always make
clear what kind of multiset is meant, and thus with a little care, no confusion should
arise for the reader. Moreover, for ease of presentation it will be convenient to use
capital roman letters not only for formulas but also for inferences of any
level.

Remark 10 To increase readability, we will sometimes use instead of for the
(main) arrow of an inference of level 2.

Example 5 We thus have that:

(i) is an inference of level 1
(ii) is an inference of level 2.

Remark 11 Inferences of level 2 are often referred to as “meta-inferences”, and some
authors refers to inferences of level 2 as meta-. . . -meta

1 times

-inferences. We prefer to

talk about inferences of different levels since, besides allowing for a more straightfor-
ward definition of the hierarchy of notions that includes both formulas and inferences
as limit cases, it also avoids the impression that a semantic ascent from the object
language to the meta-language is taking place (an inference of any level is an object
language entity as much as a formula). Object language entities of different levels are
well-known in proof theory (see, e.g., Schroeder-Heister’s higher-level rules [24], or
Kosta Došen’s higher-level sequents [10]).

14Here and below, the final clauses of inductive definitions, e.g., “Nothing else is an -inference.” will be
omitted.
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5 Higher-level Inferences, Classically

A natural way of scaling the notion of C-validity to inferences of level 2 is by saying
that a 2-inference is C-satisfied by a C-valuation iff does not C-satisfies a
1-inference or it C-satisfies a 1-inference . A 2-inference
is C-valid, when it is C-satisfied by every C-valuation, and C-unsatisfiable when it is
C-satisfied by no valuation.15

Clearly, the same definition can be lifted to inferences of any level. A bit more
formally, one can define by induction on a hierarchy of notions of satisfaction (we
indicate each of them as C-satisfaction for some , notation ): the base of the
hierarchy is the notion of C-satisfaction0 being just the definition of C-satisfaction
for formulas of Section 2.1 above; the notion of C-satisfaction 1 for inferences of
level 1 is defined in terms of the notion of C-satisfaction for inferences of level

as follows:

1 iff if for all then for some

The generalization of the standard notion of inference by allowing inferences of
higher-levels does not seem to enrich the classical setting in a substantial way. To clar-
ify the sense in which in the classical setting higher-level inferences can be reduced
to inferences of level 1, and in turn to those of level 0, we recall the idea of “lower-
ing of an inference” i.e., of mapping an inference of level 1 onto an inference of
level 1:16

Definition 2 The lowering of an inference 1 1 of level
1 , indicated as low 1 1 is defined by induction

on as follows:

• If 0, then if 0 and 0 every and (for 1 and
1 ) are formulas, and we define

low 1 1

1 1

(where 1 1 if 1, and 1 otherwise;
and 1 1 if 1, and 1 otherwise)

• If 0, then

low 1 1 low 1 low low 1 low

15These definitions and those of the following section are adapted from [9] and are also used in [3]. The
idea of validity for a meta-inference is also present in [2], although in a slightly different (“global”) sense.
16This terminology was introduced by Dicher and Paoli for inferences of level 1, and the notion has been
generalized by Barrio et al. to (single-conclusion) inferences of higher level. Here we generalize it to
multiple-conclusions higher-level inferences in the obvious way.
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Moreover, the -lowering of an inference of level , to be indicated with
low is defined by induction on as follows (note that if is of level the

-lowering of is undefined):

• low0

• low 1 low low

Clearly, if is an -inference and , low is an -inference (and
if 1 then low is an ( 1)-inference).

The following holds:

Fact 4 For all -inferences , iff 0 low

That is, in the classical setting the notion of validity for inferences of higher-level
can always be reduced to those of level 0, and thus inferential arrows of any level are
just a notational variant of the conditional. As we will see later, this is not the case
in the SK-setting, and thus the addition of inferences of higher-level is a substantial
enrichment of that setting.

Before turning to inferences of higher-level in the SK-setting, we wish to briefly
show how the classical sequent calculus G3C discussed in the previous section can
be generalized to a calculus G3C capable of capturing not only the validity of
1-inferences, but of inferences of any arbitrary level. Although in the light of the pre-
vious result this extension is not very interesting per se, we believe that it will help
the reader in better understanding the functioning of the analogous generalization of
G3SK that we will introduce later on.

The basic idea yielding the calculus G3C is that of allowing not only formulas,
but also inferences of arbitrary level to occur to the left and to the right of the sequent
symbol. Let us first describe the form and the semantic interpretation of the sequents
of the fragment G3C1 of G3C in which we allow only inferences of level 1 to
occur within sequents.

We call a C1-sequent any expression of the form , where and are finite
multisets of inferences of level 1. In general a C1-sequent can be depicted as:

0 1 0 1

where 0 and 0 are (possibly empty) finite multisets of formulas (i.e., of
0-inferences) and 1 and 1 are (possibly empty) multisets of 1-inferences. Seman-
tically, we say that such a sequent is satisfied in a C-valuation 0- iff if all formulas
in 0 are C-satisfied0 by and all inferences in 1 are C-satisfied1 by , then either
at least one of the formulas in 0 is C-satisfied0 by or at least one of the inferences
in 1 are C-satisfied1 by . A sequent is valid iff it is satisfied in all C-valuations.

Remark 12 From the notion of satisfaction (resp. validity) of a C1-sequent, we can
recover both that of C-satisfaction1 (C-validity1) of a 1-inference (when 1 and 1
are empty, a sequent of the above is satisfied by iff the 1-inference 0 0 is C-
satisfied1 by ), as well as that of C-satisfaction2 (C-validity2) of a 2-inference (when
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0 and 0 are both empty, a sequent of the above form is satisfied by iff so the 2-
inference 1 1 is C-satisfied2 by ). Similarly for the corresponding notions of
unsatisfiability.

Note that the C1-satisfaction/validity (resp. non-satisfaction/unsatisfiability) of a
1-inference are equivalent to the satisfaction/validity of the C1-sequent

(resp. ).

In the case of the full calculus G3C , a C -sequent is any expression of the form
, where and are finite multisets of inferences of any level. In general a

C -sequent can be depicted as:

0 1 2 0 1 2

where and are (possibly empty) finite multisets of -inferences for all .17

Remark 13 The notion of satisfaction for C -sequents is the obvious generalization
of that for C1-sequents, and Remark 12 also scales to higher-level inferences.

The sequent calculus G3C is obtained from the sequent calculus G3C by adding
a left and right rule to introduce inferences of level 1 in the succedent of a sequent:

R

and in the antecedent of a sequent (the rule has premises):

1 1
L

1 1

(Clearly, applications of the right rule are subject to the restriction that both and
can contain only inferences of a given level , otherwise the conclusion of the rule

would not be a well formed sequent; similarly, in applications of the left rule all
and (for 1 and 1 ) must all be inferences of the same level.
Observe also that the Greek letters in these rules, as well as in those of G3C now
stand for multisets containing inferences of any level.)

The notion of derivability in G3C , which we indicate with G3C , captures that
of validity of C -sequents in the following way:

Theorem 3 A C -sequent is G3C -derivable iff it is valid.

Proof The proof of this statement is a straightforward generalization of the proof of
completeness for G3C.

Corollary 4 For any -inference :

iff G3C iff G3C

17Note that since the antecedent and the succedent are finite multisets, only finitely many among the
and are non-empty.
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Corollary 5 For any -inference :

iff G3C

Proof The corollaries follows from Remarks 12 and 13.

Remark 14 Similarly to what we have already seen for G3C, it is easy to show that
the calculus syntactically admits structural rules such as generalized identity and cut
as well as invertibility of the L and R rules.

6 Higher-level Inferences in the SK-setting

In the SK-setting, a “simple-minded” way of defining SK-notions of satisfaction for
inferences of level 2 is by saying that a 2-inference is xy-satisfied by a
valuation iff if xy-satisfies all inferences , then it xy-satisfies at least
one inference , and the xy-validity/unsatisfiability of a 2-inference can
be defined as usual by quantifying over all valuations.

Remark 15 The notions of validity resulting by these four simple-minded notions of
satisfaction of inferences of level 2 are commonly referred to in the literature as K3-,
LP- ST- and TS-validity of metainferences.

As first observed by [3], one can define more SK-notions of satisfaction for 2-
inferences by setting different standards of satisfaction on the 1-inferences in the
antecedent and in the consequent (in the same way in which one can consider, besides
ss- and tt-satisfaction, also st- and ts-satisfaction for 1-inferences). For instance, we
may say that a valuation stts-satisfies a 2-inference iff if all the inference in

are st-satisfied by then at least one inference in is ts-satisfied by . In general,
we will define the notion of a 2-inference being xywz-satisfied by a valuation

, written xywz , as follows:

xywz iff if xy (for all )

then wz (for some )

The four simple-minded notions of xy-satisfaction of 2-inferences are hence just
limit cases of this more general notion in which x w and y z.

A quick count shows that we have in general 16 different notions of SK-
satisfaction (and hence of validity and unsatisfiability) for 2-inferences. As the
different standards of the SK-notions of satisfaction of formulas induces a partial
order on the SK-notions of satisfaction of 1-inferences (see above Fig. 1), the lat-
ter order induces one among the 16 SK-notions of satisfaction for 2-inferences, the
Hasse diagram of which is depicted in Fig. 2. As before, an SK-notion of satisfaction
is more tolerant than another iff it requires either more tolerant standards of satisfac-
tion on the succedent or stricter standards on the antecedent (for an investigation of
the structural properties of these notions of satisfaction, see [16]).
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Fig. 2 Relationships between the notions of satisfaction for 2-inferences

As [22] observed, these considerations scale straightforwardly to inferences of any
level (for analogous definitions see also [16, 17, 23] the latter for a generalization
into the transfinite). Observe that we have two notions of satisfaction—tolerant and
strict—for formulas, (i.e., 0-inferences); for 1-inferences (of level 1) we have four
(22) and for 2-inferences we have 16 (222

) notions of satisfaction. In general, for

inferences of level we can define 22
2

1-times

notions of satisfaction (and hence of

validity and unsatisfiability). Each such notion is identified by a pair of labels iden-
tifying the notions of satisfaction to be applied to the inferences in the antecedent
and in the succedent. We thus define the notion of label of level , short -label, as
follows:

Definition 3 By induction on .

• t and s are the only 0-labels;
• If l and l are -labels then ll is a 1-label.

For every label ll of level 1 we have a corresponding SK-notion of sat-
isfaction for -inferences defined in terms of the two notions of satisfaction for

1 -inferences corresponding to the 1 -labels l and l :

ll iff if l (for all ) then l (for some )
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The ordering between strict and tolerant satisfaction of formulas induces an
ordering on the notions of satisfaction, validity and unsatisfiability for -inferences
for any level . Formally, we define a partial ordering on labels, so that l l
expresses the fact that l -satisfaction is more tolerant than l-satisfaction, i.e., that if an
inference of the appropriate level is l-satisfied by a valuation then it is l -satisfied
by as well and hence that l-validity entails l -validity and l -unsatisfiability entails
l-unsatisfiability.

Definition 4 The relation is the transitive closure of the relation that we define
by induction on as follows:

•
• l1l2 l1l2 iff

– either l1 l1 and l2 l2;
– or l2 l2 and l1 l1.

In Section 9 we will give a proof that all these notions of validity and unsatisfia-
bility (and hence of satisfaction as well) are pairwise distinct.

7 The System G3SK

In order to capture the SK-notions of validity for higher-level inferences in a proof-
theoretic fashion, in this section we introduce an extension of Girard’s system G3SK,
to be called G3SK , in a way analogous to the one in which we extended G3C to
G3C in the previous section. As formulas occur in SK-sequents accompanied by a
label, so do -inferences occur in the sequents of G3SK together with an -label. For

1, a labeled -inference is an expression of the form l , where
is an -inference and l is an -label. To save space, we will often write a labeled

inference of level 1 l as
l

.18 When is a multiset of inferences,

we indicate with l the multiset of labeled inferences
l

. An
SK -sequent is an expression of the form , where and are finite multisets
containing labeled inferences of any level.

As we did for G3C , in order to get familiar with G3SK we first briefly discuss its
fragment G3SK1 in which only labeled inferences of level 1 are allowed to occur
in sequents. The general form of an SK1-sequent is thus the following (we separate
the sequent into its antecedent and succedent, which are displayed in separate lines):

t 1 s 2 tt 1 ts 2 st 3 ss 4

t 1 s 2 tt 1 ts 2 st 3 ss 4
where and are (possibly empty) finite multisets of formulas (for 1 2) and

and are multisets of inferences of level 1 (for 1 2 3 4). We say that a

18To avoid confusion, let us stress that in a labeled ( 1-)inference
l

, only the main inference
arrow carries a label whereas the -inferences in and are unlabeled.
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SK1-sequent is satisfied by iff if all the formulas in 1 are tolerantly satisfied by ,
. . . and all the inferences in 1 are tt-satisfied by , . . . then either one of the formulas
in 1 is tolerantly satisfied by . . . or one of the inferences in 1 is tt-satisfied by

. Validity is defined as usual.

Remark 16 As for the previously discussed notions of satisfaction, validity and
unsatisfiability of a sequent, from the notion of satisfaction (resp. validity and unsat-
isfiability) of a SK1-sequent we can recover all SK-notions of satisfaction (validity)
of 1-inferences and of 2-inferences. For instance, when in a sequent of the above form
all multisets of labeled inferences but 1 and 2 are empty, we have a sequent of the
form t 1 s 2 that is satisfied by iff the 1-inference 1 2 is ts-satisfied
by ; or when all multisets but 4 and 2 are empty, we have a sequent of the form
ss 4 ts 2 that is satisfied by iff the 2-inference 4 2 is ssts-satisfied
by .

Note that the xy-satisfaction/xy-validity (respectively non-xy-satisfaction/ xy-
unsatisfiability) of a 1-inference are equivalent to the xy-satisfaction/ validity

of the SK1-sequent
xy

(resp.
xy

).

The notion of satisfaction of an SK -sequent is obtained by appropriately scal-
ing that of satisfaction of an SK1-sequent. Remark 16 scales accordingly to all
SK-notions of satisfaction and validity of inferences of any level.

Remark 17 To stress the connection between the satisfaction of an SK -sequent of
the form l l (where l and l are labels of the same level ) and the ll -
satisfaction of we will refer to a sequent of this form as an ll -sequent.

The system G3SK is obtained by adding to G3SK rules to introduce labeled infer-
ences of level to the right of the sequent symbol (here and must both consist
of inferences of the same level 1):

l l
R

ll

and to the left of the sequent symbol (the rule has premises, and all s and
s must be inferences of the same level 1):

l 1 l l 1 l
L

1
ll

1

The system G3SK is sound and complete with respect to the notion of validity of
SK -sequents:

Theorem 4 An SK -sequent is derivable iff it is valid.

The proof of this statement is a straightforward extension of that of Theorem 3:
from a failed proof-search for a sequent we can extract a counter-model.
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Corollary 6 For any -inference :

ll iff G3SK l l iff G3SK ll

Corollary 7 For any -inference :

ll iff G3SK ll

We conclude this section with a short remark on the admissibility of structural
rules and three examples which we will discuss in the next section.

Remark 18 As for G3C , the calculus syntactically admits structural rules such as
generalized identity (to be used in the examples below) and a schema for cut at differ-
ent inference levels, as well as the invertibility of all rules. Again, the admissibility of
these forms of Cut does not contradict the fact that some SK -notions of satisfaction
may not be closed under transitivity.

l l
Cut

Example 6 tttt

t t t t t t t t
L

t
tt

t t t t
tt

t
L

t
tt tt

t
R

tt tt tt

Example 7 tsst .

s t t t s s t t
L

s
ts

t t s s
ts

t
L

s
ts ts

t
R

ts ts st

Example 8 stst , i.e., transitivity for ST-inferences is
not valid.

s t s s t s t s
L

s
st

t s t s
st

t
L

s
st st

t
R

st st st

From the quasi-initial sequent t s t s we construct a valuation
assigning 1 to , 1

2 to and 0 to . The valuation st-satisfies and
and it does not ST-satisfy .
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8 Lowering and (un)labeling in the SK-setting

As anticipated in Section 5, in the SK -setting the relationship between an inference
and its lowering is not as straightforward as in the classical case.

For instance, we know that for any choice of formulas , , , the expressions
are tttt-valid 2-inferences, i.e., the notion

of tt-satisfaction in a valuation is closed under transitivity (see above Example 6).
However, it is not the case that their lowering, that is all 1-inferences of the form

are tt-valid, i.e., in LP the conditional is not
transitive (see above Example 2).

At the same time, the quasi-SK-derivation of
in Example 2 can be obtained from the quasi-SK -derivation of Example 8, by

uniformly replacing applications of the L/R rules by applications of the L/R

rules, and by replacing labeled inferences of level 1 of the form
st

with labeled
inferences of level 0 of the form t .

In the case of unsatisfiability, the situation is similar.
These remarks can be made precise and turned into a general analysis of the

relationship between SK -notions of satisfaction (and hence of validity and unsat-
isfiability) of different levels. To do this, we identify the subset of these notions
that will be dubbed lowerable. Semantically, we say that a notion of satisfaction for

-inferences l is lowerable iff there is an SK -notion of satisfaction for 1 -
inferences l such that for all -inferences and valuations , l iff l

low (where low is the lowering of as we defined it in Section 5).

Remark 19 To avoid possible misunderstanding, we stress that a different notion of
lowerability (as a predicate applying to sequents) could be defined by saying that
a G3SK -sequent is lowerable iff there is a set of G3SK-sequents such
that the G3SK sequent is satisfied in iff all G3SK-sequents are. On this under-
standing of “lowerable”, every G3SK sequent is lowerable: by applying the rules of
G3SK backwards (as in the construction of a counter-model in the proof of com-
pleteness) one can progressively eliminate all higher-level inferences from a given
G3SK sequent and thereby obtain a set of SK-sequents which are jointly satisfied
iff the given SK -sequent is.

The notion of lowerability we consider (following e.g., [3, 9]) applies to notions of
satisfaction, and it is much more restricted than the alternative just considered. In this
section, (“our”) notion will be used to define the notion of -lowerability (applying
again to notions of satisfaction), which applies to those notions of satisfaction for -
inferences that can be expressed in terms of the t or s satisfaction of a single formula.

The results about (our notion of) lowerability clearly depend on the chosen log-
ical vocabulary. If the language were expanded with a conditional mirroring ss- or
tt-satisfaction of inferences, more notions of satisfaction would be lowerable. Our
results however are not ad hoc, since there are very good reasons for not adding such
alternative conditionals to the language (in the case of LP, see e.g., [5] and references
therein).
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Clearly, for any level , the number of lowerable SK -notions of satisfaction for
-inferences can at most be equal to the number of SK -notions of satisfaction for

1 -inferences. In fact, we show that this is the exact number of lowerable notions,
that is for every SK -notion of satisfaction l for -inferences, there is one 1-
label l such that l iff l low for all 1 -inferences . We establish
these facts by syntactic means.

We begin by explicitly defining the notion of lowerable label and of lowering of
a label.19 We will then show that for all lowerable l, the notions of l-satisfaction are
lowerable in the semantic sense just introduced.

Definition 5 For all levels 1 the notion of lowerable -label and of lowering of
a label l, notation low l , are defined by induction on as follows:

• st and ts are the lowerable 1-labels, and low st t and low ts s;
• If l and l are lowerable -labels, then ll is a lowerable 1-label, and low ll

low l low l .

Remark 20 Observe that l being lowerable does not always imply low l being low-
erable. For instance low stts ts and ts is lowerable, but stst is lowerable and
low stst tt is not lowerable. More on this below.

Theorem 5 For all lowerable -labels l and -inferences :

G3SK low l low l G3SK l low l low

Proof By induction on the level of l.
If l is a 0-label, the theorem is obvious (since no 0-label is lowerable).
If l is a 1-label and a 1-inference, say , we have two sub-cases to con-

sider, l st and l ts. The theorem is established by observing that derivations of
the following four sequents can be obtained by backwards applications of the rules
for , , and (or and if and are empty):

t
st st

t

s
ts ts

s

If l is a lowerable -label with 2, then l l l with l and l lowerable labels
of level 1 , and 1 1 . By induction hypothesis
for all 1 and 1 , there is a derivation of each of the sequents
l low l low and of each of the sequents low l low l ,
from which by an application of L (using the admissibility of weakening to obtain
derivations sharing the context) followed by one of R we obtain a derivation of

19We will indicate the lowering of a label using the same notation we introduced to indicate the lower-
ing of an inference. The two notions are however distinct, and the different meta-variable for labels and
inferences should prevent the confusion between the two notions.
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low l low l . A derivation of the other sequent needed to establish the
theorem can be obtained in an analogous way.

Corollary 8 If l is lowerable, an inference is l-valid iff low is
low l -valid, and is l-unsatisfiable iff low is low l -unsatisfiable.

Proof Immediate from Theorem 5 together with Corollary 6 and 7 using the
admissibility of cut in G3SK .

This corollary encompasses some recent results concerning specific SK -notions,
such as the observation of [2] that ST is LP in sheep’s clothing (in our terminology
that a 2-inference is stst-valid iff low is LP-valid), as well as an analogous cor-
respondence connecting tsts-valid 2-inferences to ss-valid inferences. It is however,
far more general, in that, for instance, it entails that the 3-inferences (i.e., meta-
meta-inferences) that are tssttsst-valid are those whose lowerings are the stst-valid
2-inferences (which in turn are those whose lowering are the LP-valid 1-inferences).
Moreover, the hierarchy of lowerable notions of satisfaction contributes to clarifying
the distinguished role played by the hierarchy of SK -notions of satisfaction intro-
duced by [3] in the SK -setting. To this aim we introduce a refinement of the notion
of lowerable label, capturing “how many times” a lowerable notion can be lowered:

Definition 6 By induction on :

• t and s are 0-lowerable;
• if l is lowerable and low l is -lowerable then l is 1-lowerable.

A label l is ground lowerable iff it is of level and it is -lowerable.

Starting from t and s respectively, we define two sequences of labels
t0 t1 t2 and s0 s1 such that t and s are the two ground-lowerable
labels of level , for every . The definition relies on the duality function (see
Remark 2) that we define on labels of arbitrary levels in the following way: for
0-labels, s t and t s; for -labels with 1, l1l2 l2l1.

Definition 7 The sequence of labels t0 t1 and s0 s1 are defined
as follows:• t0 t;

• for 1, t t 1t 1

• s0 s;
• for 1, s s 1s 1

It is easily verified that:

Fact 5 For all 1, low t t 1 and low s s 1.
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Hence for all , t and s are ground lowerable. It is also not difficult to establish
that the notion of validity determined by the -th element of coincide with the clas-
sical notion of C-validity for -inferences, and that the no structural -inference20

is valid on any of the notion of validity determined by the elements of :

Fact 6 [3, 17] For all and all -inferences , t iff .

Proof The sequence was introduced by [17] (called there CM ) and it is referred
to by [3] as and by [22] as T. In all three articles the Fact was shown by semantic
means. A syntactic route to the fact arises by combining Fact 5 with Fact 4 and
Corollary 2.

Fact 7 [22] For all , there is no structural inference such that s .

Proof [22] indicates the sequence as S and proves the fact by semantic means. A
syntactic proof follows from Fact 5 together with Corollary 3.

A more direct proof of these two facts can be obtained by scaling the notions
of (un)labeling to G3SK . Whereas the notion of unlabeling need no change, we
generalize the notion of labeling by replacing in the definition of labeling given in
Section 3.2 “formula” with “ -inference” and “label” with “ -label”.

As for G3SK, each derivation D in G3SK is uniquely determined by the G3C -
derivation D and the appropriate labeling function mapping each -inference
occurrence in the end-sequent of D onto the label of the corresponding labeled

-inference occurrence in the end-sequent of D .
As we did for labels of level 1, when l1 l2 , we write

l1l2 for and similarly l1l2 D for D .
Fact 1 scales to G3SK in the following way :

Fact 8 If D is a G3C -derivation with end-sequent and all elements of and
are inferences of the same level , then:

1. t D is successful;
2. If the end-sequent of D is structural, then s D is not successful.

Proof It is easily established by induction that given a G3C-derivation D , in the
labeling t D each -inference of level is labeled by the -th element t
of if occurs in the succedent, and by the -th element s of if occurs in
the antecedent. Dually, in the labeling s D each -inference of level is
labeled by the -th element t of if occurs in the antecedent, and by the -th
element s of if occurs in the succedent. The fact can thus be proved as Fact 1
and Fact 2.

20Structural -inference are defined in the same way as structural inferences.
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Fact 6 and 7 can thus be proved in the same way as Corollary 2 and 3 above.

9 Discriminating among Different Notions of Satisfaction

We finally turn to the issue of showing that all notions of satisfaction, validity and
unsatisfiability of a given level are different from each other. To this aim we define
for every level two sets, VAL and UNS , each containing 2 -inferences. We then
show that for every label l among the 2 1 -labels, l-validity (resp. l-unsatisfiability)
is uniquely characterized by one of the subsets of VAL (resp. UNS ), namely the
maximum among those whose elements are l-valid (resp. l-unsatisfiable).

We begin by defining the two families of sets VAL and UNS :

Definition 8 By induction on :

• VAL0 and UNS0

• For 0:

– VAL VAL 1 UNS 1 ;
– UNS UNS 1 VAL 1 .

Example 9 For 2 we have that

• VAL2

• UNS2

In order to establish our result, it is convenient to regard labels as words (i.e.,
strings of symbols) over the alphabet t s . From the definition of label (Definition 3
above), it follows immediately that the length len l of an -label (regarded as a
word) is 2 . For all , let 2 1 2 be the set of “positions” in a -
label. To each -label l there is associated a function which we indicate simply with
l (the context always allowing to disambiguate between the label and the associated
function), such that l 2 t s and where l is the -th symbol of l.

The main idea to establish the result of this section is that for every level and
for every position 2 there is exactly one element of VAL (resp. UNS which
is l-valid (resp. l-unsatisfiable) iff l has a particular value (among s and t) that
depends of what we call the polarity of the position . Dwelling on Example 9, for

2 we will show that the first, second, third and fourth 2-inference in VAL2 above
are l-valid iff l is (respectively) of the form xywt, xysz, tywz, xswz (and similarly for
unsatisfiability). Thus, the notion of ttss-validity (which is both of the form xysz and
tywz but neither of the form xywt nor xswz) is characterized as the only among the 16
notions of validity for 2-inferences on which both the 2-inferences
and but neither nor are valid.

In order to motivate the notion of polarity, we first observe that, given Definition 4,
if l1 l2 then l1 and l2 differ exactly for one symbol, i.e., there is a unique such
that l1 l2 and l1 l2 for all . Moreover, we observe
that whether one obtains a more tolerant or more strict label when one replaces s
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with t or t with s exclusively depends on the position of the replaced symbol in the
label. For example (as will be established below in full generality), in the case of
2-labels, whenever s is replaced by t in first and fourth position, and whenever t is
replaced by s in second and third position, one obtains a more tolerant notion of
validity (respectively, a stricter notion of unsatisfiability).

We spell this out by defining a notion of polarity for positions relative to levels as
follows:

Definition 9 For every , the polarity of a position relative to is the value of
the function pol 2 defined by induction on as follows (where
switches and , i.e and ):

• pol0 1
• For 0,

– if 1 2
2 then pol pol 1

– if 2
2 1 2 then pol pol 1 2

2

Example 10 The polarity of the positions in 2-labels can be described as follows:

As anticipated, the definition is justified by the following fact, that shows that
replacing s for t in positive position and t for s in negative positions yields more
tolerant labels, whereas replacing t for s in positive position and s for t in negative
positions yield stricter labels:

Fact 9 For all -labels l1, l2, if l1 s, l2 t and for all l1
l2 then

• l1 l2 iff pol
• l2 l1 iff pol

Proof By straightforward induction on using Definitions 4 and 9.

Remark 21 With reference to Definition 7, for any

• if pol then t t and s s
• if pol then t s and s t.

From the previous fact and remark, it follows that each label of level distinct
from the one belonging to can be reached from this one by successively replacing
occurrences of s in positive position with t and occurrences of t in negative positions
with s.

The characterization of the different labels of level using subsets of VAL and
UNS is established with following fact:

1444 P. Cobreros et al.



Fact 10 For all , 2 there is an VAL and UNS such that for all
-labels l:• if pol then

– l iff l t and
– l iff l s

• if pol then

– l iff l s and
– l iff l t

Proof By induction on .
If 0, 2 1 , pol 1 and by completeness, the following two

derivations and two quasi-derivations verify the fact:

s t
t t
t

t s
s s
s

s t
s s
s

t s
t t
t

If 1, then for every -label l, l l1l2 and we consider two cases:
Case 1: 1 2

2 . By induction hypothesis, there are VAL 1 and
UNS 1 satisfying the fact for , 1 and l1, that is, for every 1 -label l1:

• if pol 1 then

– l1 iff l1 t and
– l1 iff l1 s

• pol 1

– l1 iff l1 s and
– l1 iff l1 t

The fact is established by taking and by observing that

there is an SK -derivation of l1 iff there is one of
l1 l2 and that there is

one of l1 iff there is one of
l1 l2 :

D
l1

l1 l2

D
l1

l1 l2

The conditions on the labels required in the fact are easily verified keeping in mind

that by Definition 9 pol pol 1 .
Case 2: 2

2 1 2 . By induction hypothesis, there are VAL 1 and

UNS 1 satisfying the fact for 2
2 and 1 and l2. The fact is verified

as in Case 1 by taking and , where the conditions on the
labels required in the fact are easily verified keeping in mind that by Definition 9
pol pol 1 2

2 .

In general the question of which are the weakest SK -notions of validity val-
idating a given C-valid -inference is not obvious. We can answer this
question by specifying a simple algorithm using labeling. The algorithm takes as
input a G3C -derivation D with end-sequent and it tests the validity of the
inference according to different SK -notions of validity for -inferences by checking
whether the corresponding labelings of D are successful. More precisely, the algo-
rithm starts by testing whether the labeling corresponding to s (which we know to
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be the weakest notion, being empty for structural inference) is successul. If it is, then
the algorithm stops, otherwise it tests the labelings corresponding to the -notions of
validity immediately more tolerant than s . The algorithm proceeds until either all
notions still to be tested are more tolerant than one that already gave rise to a suc-
cessful labeling; or until the last notion to be left is t (which we know to coincide
with the classical notion of validity for -inferences).

10 RelatedWork

As remarked at the beginning of Section 3, the calculus G3SK is a minor modification
of the calculi developed by Girard building on previous work by Tait and Schütte. In
particular, Girard’s calculus has been modified by “absorbing” the structural rules by
mixing additive and multiplicative formulations of the rules of each connective. This
is a standard technique and the calculi following this pattern are usually labeled “g3”
calculi [26], whence the choice of the name for the system here presented.21

At the same time, the calculus G3SK is also (a “g3” version of) a particular
instance of a general template to obtain sequent calculi for many-valued logics. The
proof theory of many-valued logic is a large field of research (see [1] for a survey)
and one among the most straightforward approaches to obtain sequent calculi for
many-valued logics is the one based on -formulas. A signed formula is an
expression of the form where is a formula and is an element of the set of
truth-values . A signed formula is satisfied by a valuation iff has value

in . A (one-sided) sequent is a multi-set of signed formulas and it is satisfied by
a valuation if at least one of its elements is satisfied in .22

A sequent calculus for a logic with a semantics based on a finite set of truth values
1 can be obtained by associating distinct rules with each logical

constant †. For all 1 , the -th rule for a connective allows to “introduce”
in the conclusion a signed formula of the form where is the -th element
of the set and is a logically complex formula governed by †. The rules are
“read off” from the many-valued truth table of the connective. To give an example,

21The possibility of absorbing all structural rules relies on the fact that all the rules for the logical
connectives are invertible. Whereas this is straightforward in the case of the rule for classical proposi-
tional connectives, some care has to be taken in handling the quantifiers or non-classical logics, such as
intuitionistic logic. See [26] or [15] for a detailed treatment of these and related issues.
22An inessential alternative arises by considering many-sided sequents instead of multi-sets of signed
formulas, where a many-sided sequent is an expression 1 , where is the number of truth-values
of the logic in question and is a multiset of formulas for all 0 . A many-sided sequent is said to
be satisfied in if for some 0 there is an element of with truth value in .
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consider the truth table describing the assignments of truth-values for conjunctions
in SK-valuations:

1 1 1
1 1 2 1 2

1 2 1 1 2
1 2 1 2 1 2
1 0 0
0 1 0

1 2 0 0
1 2 0 0
0 0 0

The table tells us that 1 2 iff the following three conditions are
jointly satisfied 1 or 1 2; 1 or 1 2; 1 2
or 1 2, which we can turn into the following rule to introduce a conjunction
labeled by the truth-value 1/2:

1 2 0 1 2 0 1 2 1 2
1 2

1 2

Like in the standard classical case, the table tells us that 1 iff both
1 and 1; and that 0 iff 0 or 0, yielding

two further rules:

1 1
1

0 0
0

In the mid-90s several authors (see among others [13, 21, 27]) realized that “opti-
mized” sequent calculi (i.e., calculi with fewer rules and/or fewer branching in some
rules) could be obtained by labeling formulas with sub-sets (instead of elements) of
the set of truth-values (so that a multi-set of labeled formulas 1 1
is satisfied in iff there is an 1 such that the value of in is included in

). The calculus G3SK can be seen as a two-sided variant of such calculi with t and
s being short for 1 2 1 and 1 .

The generalization of G3SK to G3SK by the addition of inferences of higher-level
suggests a connection with at least another strand of research, this time in the proof-
theory of modal logic. In order to obtain well-behaved sequent calculi for different
propositional modal logics, the notion of sequent has been generalized by allowing
some form of nesting of sequents inside sequents (different authors introduced this
idea independently and under different names, see [4, 10, 14, 18]). What is common
to the different formulations of nested sequent calculi is the possibility of applying
the operational rules (i.e., the rules introducing logical connectives in the antecedent
or succedent of sequents) at different “depths”. Although our calculus combines nest-
ing of inferential arrows and labels, some “nested versions” of some inference rules
(namely all those in which the principal formulas occur on the same side of the
sequent separator) are admissible in G3SK. For instances, it is not difficult to show
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that the following rules are admissible in G3SK :

L -nested R -nested

(where the left rule is to be understood as allowing the replacement of one occurrence
of and of one occurrence of with one of , provided the occurrences of
and of figure on the left of the arrow symbol of a 1-inference in ; and the right
rule is to be understood so that its premises are two copies of the same sequent in
which one occurrence of to the right of the arrow symbol of a 1-inference in has
been replaced by , and whose conclusion is obtained from one of the premises by
replacing the indicated occurrence of or with ): As the reader can easily

verify, whenever, e.g.,
xywz

is derivable, so is
xywz

.
Analogous nested versions of the rules for and are not admissible, due to the

fact that the rules involve shifting formulas from one side to the other of inferences.

For example, it is not the case that if
xywz

is

derivable then
xywz

is derivable as well, at
least not for every choice of x and y. This is due to the fact that in order to introduce
an implication to the right of a sequent its sub-formulas in the premises must have
distinct labels and this induces certain restrictions on the possibility of applying a
nested version of the rules (in the example just given, x and y must be distinct).

This of course does not exclude the possibility of formulating appropriate restric-
tions on nested versions of the rules that may yield a proof system in which complex
formulas can be introduced even inside nested inferences. We leave the exploration
of this direction of investigation (and related ones, see below in Section 11) for future
work.

We conclude this section by stressing that although all elements of the proof sys-
tem G3SK introduced in the paper have appeared in some form or another in the
literature, the way in which we combined these elements is new. Although the results
presented are not particularly difficult and could have been worked out using other
background systems, we believe that they allow a smooth reconstruction of several
results concerning the SK-setting that have appeared in piecemeal form in the recent
literature. Moreover, most of the above mentioned works in the proof theory of many
valued and modal logic have focused on the generality of the results (in particular
applicability to the widest range of logical system possible) with the consequence
of making them less accessible for the more philosophically oriented community
interested in the classes of logics that arise in the SK-setting.

11 Concluding Philosophical Remarks

Implicit in the philosophical discussions of early results about the SK-setting, and
explicitly argued by [3], is the claim that a “logic” is determined neither by a notion
of validity for formulas, nor by a notion of validity for formulas and inferences:
The set of classically valid formulas, of LP-valid formulas and of ST-valid formulas
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coincide. In the case of ST, not even looking at the validity of inferences is enough to
distinguish it from classical logic. Thus—so argue Barrio, Pailos and Szmuc—a logic
should be determined by laying down neither one nor two notions of satisfaction, but
a countable sequence of notions of satisfaction, one for each level of the hierarchy
arising in the SK setting.

A natural question that these considerations suggest is whether any sequence of
countably many labels l0 l1 (such that l is a label of level for all 0) can
be taken to determine a logic. Or should one rather say that only sequences satisfying
some additional conditions really determine a logic?

It seems that two distinct conditions have been implicitly acknowledged as being
sufficient for a sequence of labels to identify a logic.

The first condition could be dubbed uniformity. Uniformity is the requirement
that in the sequence of notions determining a logic, the -th notion of satisfaction in
the sequence is obtained by evaluating both antecedent and succedent of inferences
according to the standards of the 1 -th notion of satisfaction in the sequence.
Uniformity is implicitly endorsed when one identifies e.g., LP-satisfaction of formu-
las, inferences (and more recently “meta-inferences”) with t-, tt- and tttt-satisfaction
respectively.

The recent interest in “mixed” notions of satisfaction (such as e.g., st-satisfaction
of inferences) suggests that uniformity should not be regarded as a necessary condi-
tion for a sequence of labels to constitute a logic. Remarkably, however, even those
authors who advocated a “mixed” notion of satisfaction for inferences, implicitly
endorsed uniformity as the criterion to choose the notion of satisfaction for 2-
inferences, as testified by the fact that “st-satisfaction of a meta-inference” is usually
taken to mean “stst-satisfaction” (see Remark 15 above).

Nonetheless, by seriously adopting uniformity as the guiding principle to define a
sequence of notions of satisfaction, one would end up with only two possible “logics”
in the SK-setting, namely those identified by the two sequences of labels t tt tttt
and s ss ssss .

Underlying the criterion of uniformity is the idea that the higher-level notions
of satisfaction conceptually depend on the lower ones. This is not the only way to
look at the relationship between lower-level and higher-level notions of satisfaction,
but it is certainly very plausible. It is true that any notion of satisfaction of level

1 automatically determines a notion of satisfaction of level 23, and thus that
lower-level notions are dependent on the higher-level ones. However, the notions of
lower level are motivated by certain intuitions which we seem to lack for higher-level
notions (at least, as soon as one goes beyond level 2, but see more on this below) and
this might be taken as a reason for assigning conceptual priority to the former ones.

At any rate, there seem to be different ways to express the conceptual dependency
of higher-level notions on lower-level ones. Beside uniformity, another possibility
is offered by the notion of lowerability we discussed in Section 8. The sequences
of notions of satisfaction described by the sequences of labels t0 t1 and

s0 s1 are constituted by labels which are all ground lowerable, that is the

23An inference is l1 l2-satisfied by iff is l2-satisfied by .
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t - (resp. s )-satisfaction of an -inference in a valuation can be expressed as the t-
(resp. s)-satisfaction of a formula in .

Also in this case, however, by taking lowerability as the guiding principle to define
a sequence of notions of satisfaction, one would end up with only two possible “log-
ics” in the SK-setting, namely those identified by the two sequences of labels and

.
It is worth stressing that the two conditions of uniformity and lowerability are at

odds in the SK-setting, so that there is no sequence of notions of satisfaction that com-
plies with both. In contrast, the hierarchy of classical notions satisfies both uniformity
and lowerability. Therefore, anyone who is willing to acknowledge uniformity and
lowerability as “desirable features” of a logic, must accord to classical logic (under-
stood as the sequence of classical notions of satisfaction for all inferential levels) a
distinguished status over any of the “logics” arising by any sequence of notions of
satisfaction in the SK-setting.

In order to argue against the idea that either uniformity or lowerability play any
distinctive role in characterizing a logic as a sequence of notions of satisfaction, the
advocate of the SK-setting should provide some intuitions for the plethora of different
notions of satisfaction that we encounter on each level of the SK-setting. Whereas
this has been done for the notion of st-satisfaction (and to some extent, for that of ts-
satisfaction), nothing has been said so far of all notions of higher-level (except those
of level 2, see [16] and the few ones which could be justified by appealing to either
uniformity or lowerability).

We conclude this section by suggesting a possible reading of higher-level infer-
ences which could provide the basis for developing some intuitions about at least
some of the higher-level notions of satisfaction in the SK-setting. According to a cer-
tain formulation of bilateralism (see e.g., [19]), an inference expresses the
inconsistency of accepting all formulas in the antecedent and rejecting all those in
the succedent.24 The four SK-notions of validity of an inference can be distinguished
considering the inferences and , i.e. according to whether
they take it to be inconsistent to accept or to reject (on st-standards
both are inconsistent; on ss-standards the former but not the latter is inconsistent; on
tt-standards the latter but not the former is inconsistent, and on ts-standard neither is
inconsistent).

The bilateral reading of inferences generalizes straightforwardly to inferences of
higher-level, so that e.g., the 2-inference expresses that it is inconsistent
to reject that it is inconsistent to reject , and the 2-inference expresses
that it is inconsistent to accept that it is inconsistent to reject , and so on.

From a bilateral perspective, paraconsistency and paracompleteness can be under-
stood as general features of the notions of acceptance and rejection of propositions,
so that paraconsistency is the claim that for some proposition it is not incon-
sistent to accept both it and its negation, and paracompleteness is the thesis that
for some proposition it is not inconsistent to reject both it and its negation. By

24We choose to speak of acceptance and rejection rather than assertion and denial, and thereby to focus on
subjects’ attitudes towards propositions rather than on the linguistic manifestations of these attitudes by
means of speech acts.
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considering higher-level inferences, paraconsistency and paracompleteness can be
scaled to acceptance and rejection “of higher-level”. At level 2, we might speak of 2-
paraconsistency and 2-paracompleteness, where each comes in two possible forms:
2-paraconsistency can be equated with endorsing either of the following two thesis
(or both):

• it is not inconsistent to accept that it is inconsistent to reject both and its
negation (such a thesis corresponds to the non-validity of the 2-inference

);
• it is not inconsistent to accept that it is inconsistent to accept either or its

negation (such a thesis corresponds to the non-validity of the 2-inference
);

Although the formulations are pretty involved already at level 2, they suggest
the possibility of drawing fine-grained distinctions between more and less permis-
sive understanding of the (higher-level) attitudes of acceptance and rejection of the
inconsistency of combinations of lower-level acceptance and rejection. The sets of
inferences VAL and UNS introduced in Section 9 to discriminate among the differ-
ent notions of satisfaction at each level suggest a general pattern for describing the
different forms that paraconsistency and paracompleteness might take at each level.

Finally, we remark that the notion of higher-level inference might also be endowed
with a modal flavor (by therefore thinking of as a sort of higher-level strict con-
ditional rather than material conditional). Although the formal development of this
idea would require substantial changes to the calculus G3SK (e.g., by applying
appropriate restrictions on the contexts of the rules R and L), the resulting set-
ting might offer a more plausible reading of higher-level inference. In particular,
the properties of higher-level inferences and the relationship between different levels
could be investigated using tools developed in the study of modal logic (in particular,
the study of different properties of higher-level inferences might be captured using
syntactic devices mimicking the different frame conditions underlying modalized
conditionals).

This and further directions of investigation will be explored in further work.
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