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Abstract
Free logics is a family of first-order logics which came about as a result of examin-
ing the existence assumptions of classical logic. What those assumptions are varies,
but the central ones are that (i) the domain of interpretation is not empty, (ii) every
name denotes exactly one object in the domain and (iii) the quantifiers have existen-
tial import. Free logics usually reject the claim that names need to denote in (ii), and
of the systems considered in this paper, the positive free logic concedes that some
atomic formulas containing non-denoting names (namely self-identity) are true, while
negative free logic rejects even the latter claim. Inclusive logics, which reject (i), are
likewise considered. These logics have complex and varied axiomatizations and seman-
tics, and the goal of this paper is to present an orderly examination of the various sys-
tems and their mutual relations. This is done by first offering a formalization, using
sequent calculi which possess all the desired structural properties of a good proof sys-
tem, including admissibility of contraction and cut, while streamlining free logics in
a way no other approach has. We then present a simple and unified system of abstract
semantics, which allows for a straightforward demonstration of the meta-theoretical
properties, and offers insights into the relationship between different logics (free
and classical). The final part of this paper is dedicated to extending the system with
modalities by using a labeled sequent calculus, and here we are again able to map out
the different approaches and their mutual relations using the same framework.
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Edi.Pavlovic@helsinki.fi

Extended author information available on the last page of the article.

Journal of Philosophical Logic (2021) 50:117–148

Published online: 17 August 2020

http://crossmark.crossref.org/dialog/?doi=10.1007/s10992-020-09564-7&domain=pdf
http://orcid.org/0000-0002-6331-4256
https://orcid.org/0000-0002-0660-6527
mailto: Edi.Pavlovic@helsinki.fi


E. Pavlović, N. Gratzl

1 Introduction

This is a paper in proof theory, specifically in sequent calculi. It has three main goals
– first to present a unified approach to the proof theory of free logics (with one caveat
to be mentioned shortly), second, to offer a unified, streamlined and above all fruitful
semantical approach to those free logics, and finally to extend the results of the first
two goals to applications to both inclusive and non-inclusive systems, and all of those
to modal logics.

Before we delve deeper let us briefly remind ourselves what a free logic is stan-
dardly understood to be. Free logics is a family of first-order logics which came about
as a result of examining the existence assumptions of classical logic [8, 9]. The term
is due to Karel Lambert [9–11] and is short for first order logic free of existential
assumptions, and we take a logic to be free iff (1) it is free of existential presuppo-
sitions with respect to its singular terms, (2) it is free of existential presuppositions
with respect to its general terms and finally (3) its quantifiers have existential import
(the last claim is expressed by the axioms A3 and A4 later in the paper) [6]. The three
(families of) free logics we will here distinguish depend on their decisions on the
truth values of (atomic) statements containing empty terms. If a free logic holds that
those can be true it is called positive, if it holds that they are false it is called negative
and if it holds they take a third value it is called neutral.

In the light of recent research on structural proof theory it seems timely to have
a fresh look at the family of free logics. Our focus is on positive and negative free
logics (according to our definitions above) and not on neutral free logics. Herein lies
the caveat mentioned in the beginning. Neutral free logics have been studied (see
[12]) but up to now still lack the rigorous systematicity the other two family members
enjoy. For us the main reasons for this is that there is some lack of formal intuitions or
even a clash of formal intuitions when it comes to, say, the relationship between the
semantics stati of sentences/formulas with empty singular terms in the contexts of the
existence predicate, and identity statements as well as to a philosophically satisfying
account of the conditional in this context.

For our proof-theoretic investigations we have chosen the popular G3-style systems.
This makes the presentations of the formal systems rather concise and dispenses with
structural rules at the core of the systems altogether. Furthermore it has the advantage
of putting the insights from [18, 19] on the identity predicate to full use.

The approach to semantics we utilize in this paper - which we label generalized
semantics - is a purely syntactic representation of semantics, with the main goal
being to simplify comparisons between logical systems. Given how predictable (cut-
free) derivations are in a G3 systems, the comparison can be achieved simply by
noting that the semantics of one system require comparatively higher restrictions
(and those are captured in a systematic way in a sequent calculus). So we are able
to focus on the presence and absence of individual semantic restrictions. These in
turn allow for descriptions of different systems in terms of a series of binary choices,
and thus significantly streamline the way in which they can be systematized. In a
nutshell, this allows for a comparisons between whole systems in a point-by-point
manner.
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Plan of the paper: in the following section we present a G3-style sequent cal-
culus for both positive and negative free logic, and then demonstrate a range of
desirable structural properties, including being cut- and contraction free. We estab-
lish the connection to previous sequent calculi for free logics and moreover we
also show that our formalization of positive and negative free logic is adequate
by showing that all the axioms of their standard representations are derivable. In
Section 3 we present a generalized version of the semantics for positive and neg-
ative free logic, which allows for a systematic representation of a wide range of
logics and their relations, primarily positive and negative free logic, as well as
classical logic, on both inclusive and non-inclusive versions. Moreover, this gener-
alized semantics has further uses in the discussion of modal logic. That, however,
is left for a later section and we first utilize the general semantics to prove the
soundness and completeness of our calculi in Section 4. After a discussion of some
further logics captured by our systematization in Section 5, in Section 6 we examine
the modal extension of both the calculi and the generalized semantics, again show
they possess the structural and metatheoretic properties, and discuss the different
approaches to identity that our formalization allows for. Finally in Section 7 we look
at further avenues of research that this paper opens. The appendices contain some
useful technical results that have been omitted from the main body of the paper for
conciseness.

2 The Formal Systems G3pf and G3nf

In formulating the rules for the free logics discussed here we take as our starting
point the sequent calculus for the negative variety first introduced in [6]. We then
streamline it by transforming it into a G3-style calculus along the lines of [19], and
to a lesser extent, [16, 20]. Specifically, we replace multiple types of initial sequents
with only a single one, and we simplify the quantifier rules. We defer showing that
the new versions of the rules are adequate and deductively equivalent to the previous
ones, as well as their comparative advantages, for after the discussion of the structural
properties of the new systems.

2.1 Language of Free Logics

The language L utilized in this paper is a standard first order language without
functions, adapted from [6], with the vocabulary defined as

Definition 2.1 (Alphabet L) The alphabet of the language L consists of:

1. Denumerable list of free individual variables (names): a, b, c, . . .,
2. Denumerable list of bound individual variables: x, y, z, . . .,
3. Denumerable list of n-ary predicate variables, including a unary predicate E!

and a binary predicate =,
4. ¬, ∧, ∨, →, ∀, ∃, (, ).
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The metalinguistic variables we use in this paper are as follows:

Definition 2.2 (Metalinguistic variables) 1. Free individual variables: t , s, d ,
2. Bound individual variables: x, y, z,
3. Terms (free or bound individual variables): t̄ , s̄,
4. n-ary predicates: P n,
5. Atoms: P ,
6. Formulas:A,B, whereA[t̄] denotes formulaA containing the term t̄ ,A[t̄//s̄] the

result of substituting (any number of) s̄ by t̄ inA,A[t̄/s̄] the result of substituting
every s̄ by t̄ in A, and A[t/x] the result of a substitution of all the free instances
of x by t in A.

A formula of our language L is defined as

Definition 2.3 (Formula of L)

A ::= P n(t̄1, ..., t̄n) | ¬A | A ◦ A | ∀xA | ∃xA

where ◦ ∈ {∧, ∨, →}.

In the rest of the paper, unless otherwise specified we use variables to refer to
bound individual variables, names to refer to free individual variables, and formulas
to refer to closed formulas (i.e. formulas in which every free occurrence of a term is
a name).

2.2 Positive Free Logic G3pf

The base from which we will develop the system of positive free logic G3pf (and
shortly also the negative version) is quantified classical calculus G3c [19] in Fig. 1.
The basic unit of a sequent calculus is a sequent ⇒ , where and are finite
multisets of (closed) formulas. All the formulas except and are called active
formulas of the rule if they occur only in the upper sequent(s) and principal if they
occur in the lower sequent of the rule.

The positive free logic G3pf (Fig. 2) is then obtained by replacing the quantifier
rules in G3c with the rules below, i.e. by adding the condition that E!t . This approach
from [16, 20] was explicitly used in [14] to simplify the quantifier rules of intuition-
istic logic with existence predicate. However, in the more general framework of this
paper, E! is for left undefined and open to multiple interpretations (cf. [1, 4]).

2.3 Negative Free Logic G3nf

The negative free logic G3nf (Fig. 3) is obtained by replacing the rule =Ref

(reflexivity of identity) in G3pf by the rules:
We can demonstrate a few simple facts about these systems. Full proofs can be

found in Appendix A, and here we just note that
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Fig. 1 G3c

Fig. 2 G3pf

Fig. 3 G3nf
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Lemma 2.4 (α-converison) A derivation (in either G3pf or G3nf ), where n denotes
derivability with height bounded by n, of n ⇒ can be converted into a deriva-
tion of n ⇒ , where and differ from and , respectively, only in
namings of bound variables.

Note that this result justifies the decision to keep the free and bound individual
variables separate.

Lemma 2.5 (Substitution) If n ⇒ is derivable in G3pf (G3nf ), then n

[t/s] ⇒ [t/s] is derivable.

2.4 Structural Properties

The systems G3pf and G3nf possess a range of desirable proof-theoretic properties.
Again these proofs are left for Appendix A, where important parts are shown. Here
we simply state that

Lemma 2.6 (Axiom generalization) Any sequent of the form ⇒ is
derivable in G3pf and G3nf .

Lemma 2.7 (Weakening) Weakening is height-preserving admissible in G3pf and
G3nf :

i) If n ⇒ then n ⇒ .
ii) If n ⇒ then n ⇒ .

Lemma 2.8 (Invertibility) All the rules of G3pf and G3nf are height-preserving
invertible.

Lemma 2.9 (Contraction) Contraction is height-preserving admissible in G3pf and
G3nf :

i) If n ⇒ then n ⇒ .
ii) If n ⇒ then n ⇒ .

Theorem 2.10 Cut is admissible in G3pf and G3nf .

The proofs of all of these become routine, following a general pattern of demon-
stration from [19], once appropriate modifications are made to account for the
specificities of the system discussed here.

From the last theorem it immediately follows that

Corollary 2.11 (Weak subformula property) Every formula occurring in a deriva-
tion of ⇒ is either a subformula (under standard definition) of some formula
occurring in , , or atomic.

and from there
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Corollary 2.12 (Consistency) The calculi G3pf and G3nf are consistent.

2.5 Relation to Previous Systems of Free Logic

The sequent calculi for free logics offered so far, e.g. for either version of free logics
in [2] (here simplified to be context-sharing) or specifically for negative free logic in
[6] use the following versions of the quantifier rules for L∀ and R∃:

∀ ⇒ !t A[t/x], ∀ ⇒
L∀†∀ ⇒

⇒ ∃xA, E! ⇒ ∃xA, A[t/x]
R∃†⇒ ∃xA

Notably, these are both two-premise rules, whereas the rules we use are one-
premise. The approaches are deductively equivalent, but ours has multiple advan-
tages. We first demonstrate the former claim:

Lemma 2.13 The rules L∀† and R∃† are admissible in G3pf and G3nf .

Proof We illustrate on the example of L∀†, with the other being nearly identical, and
make use of the structural properties of G3pf and G3nf .

∀ ⇒ !t

A[t/x], ∀ ⇒
Lemma 2.7

E!t, A[t/x], ∀ ⇒
L∀

E!t, ∀ ⇒
Theorem 2.10, Lemma 2.9∀ ⇒

Lemma 2.14 The quantifier rules of G3pf and G3nf are admissible in a system with
L∀† and R∃†.

Proof We again illustrate on the example of L∀. Note that the upper left sequent is
initial.

E!t, ∀ ⇒ !t A[t/x], E!t, ∀ ⇒
L∀†

E!t, ∀ ⇒

The case for the rulesE! and=Ref is straightforward as they replace initial sequents.

2.5.1 Advantages of the Present Approach

The first advantage of our approach is that it simplifies both proof-search and meta-
theory by virtue of not creating a branching when the rules are read bottom-up. The
second is that in this formulation, the rules exhibit a perfect symmetry with the modal
operator rules in their typical formulation, as in [16, 20]. Finally, the rules do not
tacitly rely on an implicit conditional and conjunction introduction, respectively for
L∀ and R∃, as had been the case with previous iterations. For example, this was the
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case with the free logic rules in [24, pp. 200-201], where the definitions make this
reliance explicit, while here the quantifiers are restored to being independent of other
operators (see also [22]).

2.5.2 Adequacy of the Systems G3pf and G3nf

In this section we demonstrate the adequacy of the formalization in the systemsG3pf

and G3nf by showing that each proves (one version of) an axiomatization [15, 21]
of their respective system. In addition to the admissibility of modus ponens, this also
serves as an indirect proof of completeness of the systems, but we will not focus on
that as a direct proof of it will be presented in a later section.

An axiomatization of positive free logic is the following.

Definition 2.15 (Positive free logic, PFL)

1. ∀x(A → B) → (∀xA → ∀xB)

2. A → ∀xA (x not free in A)
3. ∀xA → (E!t → A[t/x])
4. ∀xE!x
5. s = t → (A → A[t//s])
6. t = t

An axiomatization of negative free logic is:

Definition 2.16 (Negative free logic, NFL)

1. ∀x(A → B) → (∀xA → ∀xB)

2. A → ∀xA (x not free in A)
3. ∀xA → (E!t → A[t/x])
4. ∀xE!x
5. s = t → (A → A[t//s])
6. ∀x(x = x)

7. P t1, . . . , tn → E!ti , 1 ≤ i ≤ n

In either system the only rule of inference is modus ponens.
We first proceed to establish two auxiliary results, namely the admissibility of

modus ponens and generalization of =Repl . The former is simple but it will help with
the legibility of the proofs later on.

Lemma 2.17 (Modus ponens) The rule modus ponens is admissible in G3pf and
G3nf .

Proof From the following derivation, by using Theorem 2.10.

A, A → B ⇒ B, A B, A, A → B ⇒ B
L→

A, A → B ⇒ B
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Lemma 2.18 (Replacement generalization) For any formula A it is derivable that
s = ⇒ [t//s].

Proof By induction on the weight of A. Note that when A does not contain s this
is an instance of Lemma 2.6, that (C ◦ D)[t//s] is the same as C[t//s] ◦ D[t//s]
(straightforward), and that (∀xA)[t//s] is the same as ∀x(A[t//s]) (given that by
Lemma 2.4 we can keep free and bound individual variables separate).

Basic case.

s = t, P , P [t//s] ⇒ [t//s] =Repl
s = ⇒ [t//s]

Inductive case. We illustrate for one case of a connective and one case of a
quantified sentence, since all the cases are fairly similar.

...
i.h.

s = ⇒ [t//s], D[t//s]
R∨

s = ⇒ [t//s] ∨ D[t//s]

...
i.h.

s = ⇒ [t//s], D[t//s]
R∨

s = ⇒ [t//s] ∨ D[t//s]
L∨

s = t, C ∨ ⇒ [t//s] ∨ D[t//s]
...

i.h.
A[d/x], E!d, s = t, ∀ ⇒ [t//s][d/x]

L∀
E!d, s = t, ∀ ⇒ [t//s][d/x]

R∀
s = t, ∀ ⇒ ∀xA[t//s]

Note that due to the freshness condition and Lemma 2.4, A[t//s][d/x] is the same
as A[d/x][t//s].

We can show that it holds for G3pf that

Theorem 2.19 All of the PFL axioms A1-A6 are derivable in G3pf .

And then for G3nf that

Theorem 2.20 All of the NFL axioms A1-A7 are derivable in G3nf .

We demonstrate these for each axiom. Since none of the proofs are particularly
involved, their presentation is deferred to Appendix B. Instead, we proceed to prove
a few interesting results specific to NFL. We start by showing that the axiom A6 of
PFL does not hold in G3nf :

Lemma 2.21 ⇒ t = t is not derivable in G3nf .

Proof By Corollary 2.11, every formula occurring in the derivation of ⇒ t = t is
either t = t or atomic. But no application of the rules will remove every instance of
those from the antecedent. Therefore, there is no derivation of ⇒ t = t in G3nf .
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Lemma 2.22 In G3nf the sentences E!t and t = t are equivalent.

Proof We show this by two simple derivations:

t = t, E!t ⇒ t = t = Ref
E!t ⇒ t = t

E!t, t = t ⇒ E!t
E!

t = t ⇒ E!t

Lemma 2.23 Indiscernibility of non-existents, ¬E!t ∧ ¬E!s ⇒ A → A[t//s], is
derivable in G3nf .

Proof By induction on the weight of A (note that A[s] and A[t//s] always have the
same weight) we show that ¬E!t ∧¬E!s, A ⇒ A[t//s]. If A does not contain s, this
is just an instance of Lemma 2.6.

Basic case.

E!s, ¬E!t, P [s] ⇒ P [t//s], E!s
E!¬E!t, P [s] ⇒ P [t//s], E!s

L¬¬E!t, ¬E!s, P [s] ⇒ P [t//s]
L∧¬E!t ∧ ¬E!s, P [s] ⇒ P [t//s]

Inductive case. Whenever some subformula B does not contain s, an instance
of the inductive hypothesis for it becomes an instance of Lemma 2.6. Note for the
following proof that C[s] is C[t//s][s/t], which is a special case of C[t//s][s//t].

...
i.h.¬E!t ∧ ¬E!s, C[t//s] ⇒ C[s]
L¬,R¬¬E!t ∧ ¬E!s, ¬C[s] ⇒ ¬C[t//s]

...
i.h.¬E!t ∧ ¬E!s, C[s], D[s] ⇒ C[t//s]
L∧¬E!t ∧ ¬E!s, C[s] ∧ D[s] ⇒ C[t//s]

...
i.h.¬E!t ∧ ¬E!s, C[s], D[s] ⇒ D[t//s]
L∧¬E!t ∧ ¬E!s, C[s] ∧ D[s] ⇒ D[t//s]
R∧¬E!t ∧ ¬E!s, C[s] ∧ D[s] ⇒ C[t//s] ∧ D[t//s]

Similar for other connectives.

...
i.h.

C[s][d/x], E!d, ¬E!t ∧ ¬E!s, ∀xC[s] ⇒ C[t//s][d/x]
L∀

E!d, ¬E!t ∧ ¬E!s, ∀xC[s] ⇒ C[t//s][d/x]
R∀¬E!t ∧ ¬E!s, ∀xC[s] ⇒ ∀xC[t//s]

Similar for ∃xC.

This, and Lemmas 2.13 and 2.14, suffice to show that our formalization constitutes
an adequate representation of the two systems of free logics, both in what is and what
is not (in particular in the case of NFL) derivable.
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3 Semantics

Naturally, since we do not intend to use the axioms as semantics, we will in this
section present a system of semantics. The central idea is to separate two distinct ele-
ments of semantics, namely the assignment of truth-values to atoms and to complex
formulas, and abstract away from the former. In this way, we represent the semantics
in purely syntactic terms, which allows us to achieve the required meta-theoretical
properties in a streamlined manner.

3.1 Generalized Semantics

The usual exposition of semantics consists of two steps - giving a decision procedure
for the assignment of truth values to atoms, and inductive rules for assignments of
truth values to any other formula. However, since we ever only deal with descriptions
of semantic models, i.e. their syntactic superstructure, here we will employ general-
ized semantics, which will suffice for the meta-theoretic proofs. We simply assume
the existence of a method for assigning values to atoms, while focusing on the second
step of the exposition (cf. [19, p. 81]).

Definition 3.1 (Negative structure Sn) A negative structure Sn is a pair D, ϕ ,
where D = a1, . . . , b1, . . . countable list of free individual variables, and ϕ an
interpretation function on L:
– ϕ(t) = t , where t ∈ D (to emphasize its dual role we will abuse the notation

slightly and write D as ϕ(D))
– ϕ(E!) ⊆ D
– ϕ(=) = Ref ∪ Id , closed under symmetry and transitivity, where

– Ref t, t t ∈ ϕ(E!)}
– Id ⊆ ϕ(E!) × ϕ(E!)

– ϕ(P n) ⊆ ϕ(E!)n such that if s, t ϕ(=), then . . . , si , . . . ϕ(P n) iff
. . . , ti , . . . ϕ(P n), for any n and any 1 ≤ i ≤ n.

A positive structure is defined as

Definition 3.2 (Positive structure Sp) The positive structure Sp differs from Sn only
in that

– Ref t, t t ∈ ϕ(D)},
– Id ⊆ ϕ(D) × ϕ(D) and
– ϕ(P n) ⊆ ϕ(D)n.

We omit the clause ϕ(E!) ⊆ D.

The reason we can omit ϕ(E!) ⊆ D is that E! is defined like any other unary pred-
icate by the last clause of the definition. This means that E! could here be regarded
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as a non-logical predicate. As another consequence of this definition, if s = t then
E!s iff E!t .

From these two structures we can likewise define a classical structure:

Definition 3.3 (Structure Sc) A classical structure Sc is any structure such that it is
both an Sp and an Sn.

Definition 3.4 (Valuation V) The truth-value assignment V on the structure D, ϕ

is defined as

– V(P n(t1, . . . , tn)) iff t1, . . . , tn ϕ(P n), and ⊥ otherwise.
– Standard for connectives.
– V(∀xA) iff for every t ∈ ϕ(E!) it holds that V(A[t/x]) , and ⊥

otherwise.
– V(∃xA) iff for some t ∈ ϕ(E!) it holds that V(A[t/x]) , and ⊥

otherwise.

Definition 3.5 (Validity) A formula is valid on a structure iff it is true on that
structure. A formula is valid iff it is valid on any structure.

3.2 Relationship Between PFL, NFL and Classical Logic

In any of the three definitions above we can further specify that they are non-inclusive
by the addition of the condition ϕ(E!) = ∅. In this way, the generalized semantics
systematizes the relation between classical, negative and positive structures (marked
below as C, N and P respectively) on both inclusive and non-inclusive versions
(marked below with subscripts i and n respectively). For the purposes of this schema-
tization we take it that what is usually thought of as the domain is here designated
by E! (and not D). This is reinforced by the axioms A3 and A4 (and Theorems 2.19
and 2.20), and some more evidence towards this claim will be provided later in the
section on modalities. However, the framework here is also perfectly compatible with
the single-domain semantics for positive free logics [1] (note that in Definition 3.2
we can regard E! as just an ordinary predicate).

Ni : ϕ(P n) ⊆ ϕ(E!)n, Ref t ,t t ∈ E!}
Pi : ϕ(P n) ⊆ ϕ(D)n, Ref t ,t t ∈ D}
Ci : ϕ(P n) ⊆ ϕ(D)n, Ref t ,t t ∈ D}, ϕ(E!) = ϕ(D)

Nn: ϕ(E!) = ∅, ϕ(P n) ⊆ ϕ(E!)n, Ref t ,t t ∈ E!}
Pn: ϕ(E!) = ∅, ϕ(P n) ⊆ ϕ(D)n, Ref t ,t t ∈ D}
Cn: ϕ(E!) = ∅, ϕ(P n) ⊆ ϕ(D)n, Ref t ,t t ∈ D}, ϕ(E!) = ϕ(D)

Each inclusive structure is obtained from its non-inclusive counterpart, by extend-
ing the interpretation of E! to empty cases.

A positive structure is obtained from a negative structure when Ref and ϕ(P n)

are extended from members of E! to members of D. Finally, a classical structure is
obtained from the positive one by extending the interpretation of E! to all members
of D (Fig. 4).
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Fig. 4 Relationship between
PFL, NFL and CL

Of these, the structure Cn marks the classical logic. Here, the domain is not empty,
and all the free individual variables refer (since in a negative structure t = t holds
only if E!t , and in a positive one t = t holds for every t).

While it is a classical structure, Ci is not the classical logic. Even though it is here
mostly a theoretical construct, it does correspond to an empty logic (more on that in
Section 5.2).

4 Meta-theoretical Properties

We now proceed to show that the systems G3pf and G3nf are sound and complete
with respect to their appropriate generalized semantics.

4.1 Soundness

Definition 4.1 A sequent ⇒ is valid on a structure S iff whenever all formulas
in are valid on S, some formula in also is.

We prove that

Theorem 4.2 If a sequent ⇒ is derivable in G3pf (G3nf ), it is valid on any
structure Sp (Sn).

Proof By induction on the height of the derivation of ⇒ . Straightforward for the
basic case, and simple for identity, E!, and connectives. We illustrate on an example.

If the last step of the derivation is obtained by L∧, then it has the form

⇒
L∧

C ∧ ⇒
Assume C∧D and all the formulas in are valid. Then by Definition 3.4,

are all valid. Then by inductive hypothesis, some formula in is valid.
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If the last step of the derivation is obtained by R∧, then it has the form
⇒ ⇒

R∧⇒ ∧ D

Assume all the formulas in are valid. Then by inductive hypothesis, either some
formula in is valid, in which case so is some formula in ∧ D, or both C and
D are, in which case by Definition 3.4 so is C ∧ D.

If the last step of the derivation is obtained by L∀, then it has the form

C[t/x], E!t, ∀ ⇒
L∀

E!t, ∀ ⇒
Assume E!t, ∀xC and all the formulas in are valid. Then, since ∀xC and E!t are

valid, by Definition 3.4 so is C[t/x], therefore all of C[t/x], E!t, ∀ are valid,
and by the inductive hypothesis so is some formula in .

If the last step of the derivation is obtained by R∀, then it has the form
E! ⇒ [t/x]

R∀⇒ ∀xC

Assume all the formulas in are valid and neither any formula in nor ∀xC are.
So by Definition 3.4 there is a free individual variable t such that E!t is valid, but
C[t/x] isn’t. Let that variable be t . So, none of the formulas in [t/x] are valid,
and therefore by contraposition of the inductive hypothesis, either some formula in
or E!t isn’t. Contradiction either way, and so either some formula in or ∀xC is

valid.
Parallel for R∃ and L∃ (for the latter the proof is direct).

4.2 Completeness

We start by the definition of a reduction tree. Intuitively, this represents a bottom-up
proof search.

Definition 4.3 (Reduction tree) A reduction tree for a sequent ⇒ is built in
steps. At step 0, the tree is just ⇒ . Any sequent that does not contain the same
atomic formula in both the antecedent and the consequent is called active.

Each subsequent step consists of stages. At each stage and for each sequent
i ⇒ i active at the beginning of it, we apply to any eligible (pair of) formulas

in the sequent the rule of the stage once (thereby extending the height of the tree by
n, for n such formulas in i ⇒ i , and creating at most 2n branches, before pro-
ceeding to the next stage). We call an application of a rule to the formula(s) their
reduction.

The order of stages is:
(1) L∧ (2) R∧ (3) L∨ (4) R∨ (5) L¬ (6) R¬ (7) L→ (8) R→
(9) L∀, for every pair of formulas ∀xA and E!t in i .
(10) R∀, taking for the reduction of each formula ∀xA in i from the denumerable

list of free individual variables the first such variable t not yet used in the reduction
tree.

(11) L∃, treated symmetrically to R∀ (12) R∃, treated symmetrically to L∀
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(13) =Repl (14) =Ref , in the case ofG3pf for any t such that it occurs in i ⇒ i

but t = t does not occur in i ,
(15) E!, for G3nf only For each active sequent to which no rule can be applied,

we just copy it.

We now show that

Lemma 4.4 For any sequent ⇒ its reduction tree either produces a proof or it
produces a structure and a valuation that validates all the formulas in and none of
the formulas in .

Proof It is clear that a reduction tree with no active sequents will produce, read top
down (and thus beginning with initial sequents and ending with ⇒ ), a finite
derivation of that sequent. The second part is more involved and goes through several
lemmas below.

We now build an invalidating structure and a valuation from a reduction tree
to prove the second part. The existence of an infinite branch is guaranteed by the
König’s lemma in the usual way [19, p. 82].

Definition 4.5 (Refutation structure C) Take an infinite branch

≡ 0 ⇒ 0 i ⇒ i , . . .

of a reduction tree for a sequent ⇒ (where 0 ⇒ 0 is ⇒ ) and consider
sets ∗ ≡ i and ∗ ≡ i for 0 ≤ i. A refutation structure C for a sequent

⇒ is built by assigning to all atomic formulas in ∗ and ⊥ to all other atomic
formulas (therefore including all atomic formulas in ∗), and otherwise the same as V .

We first show that this produces the correct type of structure. Since the proof for
PFL is very similar, we will here focus on NFL.

Lemma 4.6 The refutation structure C for a sequent ⇒ in G3nf is a structure
Sn. Specifically, (i) E!t implies t ∈ D (ii) E!t → t = t (iii) s = t → (E!s ∧ E!t),
(iv) Pn(. . . , ti , . . .) → E!ti and (v) if s = t then Pn(. . . , si , . . .) iff Pn(. . . , ti , . . .) .

Proof By examining Definition 4.3.

(i) Immediate from the fact all formulas in ⇒ are formulas of L and the
procedure for selecting free individual variables in Definition 4.3.

(ii) By stage (14), for every atomic formula E!t in ∗, t = t is in ∗. Therefore by
Definition 4.5, t = t is likewise true.

(iii) By stage (15), for any atomic formula in ∗, including s = t , the formulas E!s
and E!t are likewise in ∗ and therefore true by Definition 4.5.

(iv) Similar to (iii).
(v) Assume that s = t and Pn(. . . , si , . . .) are in ∗. By stage (13), so is

Pn(. . . , ti , . . .), and therefore true by Definition 4.5. Same for the other direction.
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Now we show that

Lemma 4.7 Any formula A occurring in ∗ is assigned by the refutation structure
C and any formula B occurring in ∗ is assigned ⊥ by the refutation structure C.

Proof By simultaneous induction on the weight of A and B.
Basic step. Immediate from Definition 4.5 and noting that ∗ and ∗ share no

atoms.
Inductive step. We illustrate for one example of a connective, as all are straight-

forward.

(∧) If A is a formula C ∧ D, then by stage (1) of Definition 4.3, C and D are also
in ∗, and by inductive hypothesis assigned , and so C ∧ D is .

If B is a formula C ∧ D, then by stage (2) of Definition 4.3, either C or D

are also in ∗, and by inductive hypothesis assigned ⊥, and so C ∧ D is ⊥.
Similar for other connectives.

(∀) If A is a formula ∀xC, then by stage (9) of Definition 4.3, for every t ∈ D,
if E!t is in ∗ (and by inductive hypothesis ) then C[t/x] is in ∗ (and by
inductive hypothesis ), and so ∀xC is .

If B is a formula ∀xD, then by stage (10) of Definition 4.3, for some t ∈ D,
E!t is in ∗ (and by inductive hypothesis ) and D[t/x] is in ∗ (and by
inductive hypothesis ⊥), and so ∀xD is ⊥.

Similar for ∃.

Finally, we have that

Theorem 4.8 If ⇒ is valid in NFL or PFL, then ⇒ is derivable in G3nf

or G3pf , respectively.

Proof By contraposition we prove that if a sequent is not derivable, the entailment
doesn’t hold. Immediate from Lemmas 4.4 and 4.7. Specifically, by the latter we
know that all the formulas of are true, but none of are.

The proof for G3pf is nearly identical.

Observation 4.9 Note that the result in the Theorems 4.2 and 4.8, combined with
the results in Theorems 2.19 and 2.20, demonstrate the adequacy of the generalized
semantics.

5 Further Varieties

In this section we observe some further varieties of G3pf and G3nf mentioned in the
Section 3.2. We first note that the two systems described so far are compatible with
an empty domain. We then add a rule preventing that, and briefly discuss the resulting
(non-inclusive) logics. Furthermore, we also take a look at the logic corresponding
to the structure Ci .
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5.1 Non-inclusive Logics

Note that for the sequent ∀xA ⇒ ∃xA the refutation structure C will be generated by
an infinite branch containing only that sequent, and the truth condition for ∀ will be
vacuously fulfilled as no E!t appears as true in ∗. So nothing we have said so far
actually excludes the possibility of ϕ(E!) being empty inG3pf andG3nf , i.e. of them
being inclusive logics. We can make them explicitly non-inclusive by the addition of
the rule:

E! ⇒
NI, t fresh⇒

This rule makes “something exists” a theorem:

Lemma 5.1 ⇒ ∃xE!x
Proof

E!t ⇒ ∃xE!x, E!t
R∃

E!t ⇒ ∃xE!x
NI⇒ ∃xE!x

This rule is not necessary in the classical system G3pf +nf , which contains all the
rules of both G3pf and G3nf (and by inspection of their proofs also all the structural
properties), since it can be easily shown that

Theorem 5.2 In a system G3pf +nf , the rule NI is admissible.

Proof

E! ⇒
Lemma 2.7

t = t, E! ⇒
E!

t = ⇒ =Ref⇒

This derivation mirrors the semantical explanation of the interaction of the two
systems from the Section 3.2. Of course, nothing we have said so far excludes the
list of free individual variables D being empty either. Without that assumption, we
obtain the logic G3Ci which corresponds to an empty logic.

5.2 Empty Logic G3Ci

If we assume D is empty, ∀xA becomes an abbreviation for (see [23]). To rep-
resent this semantics in terms of a sequent calculus any formula P n(t1, . . . , tn) can
be seen simply as an abbreviation for ⊥ (for the sake of simplicity we exclude 0-
ary predicates from the language). Therefore, the rules E!, =Ref and =Repl reduce
to contraction, which can be shown admissible. Furthermore, every initial sequent is
simply an instance of the rule L⊥. The system then has the following form:
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Definition 5.3 (Empty logic G3Ci) The empty logic G3Ci is obtained from G3nf
by removing the rules for initial sequents, E!, =Ref and =Repl and replacing the
quantifier rules by all the rules in Fig. 5.

Equivalently, this logic can be obtained by the same procedure from G3pf, (with
the rule E! vacuously removed).

Structural rules for this logic are demonstrated in a routine manner, so we will
limit ourselves here to just showing the admissibility of contraction, as it was used in
the preceding paragraph.

Lemma 5.4 (Contraction in G3Ci) Contraction is height-preserving admissible in
G3Ci. Namely,

i) If n ⇒ then n ⇒ .
ii) If n ⇒ then n ⇒ .

Proof Simultaneous for (i) and (ii) by induction on the height of the derivation.
In the initial case (for zero-premise rules since there are no initial sequents), if

⇒ ( n ⇒ ) is a conclusion of a zero-premise rule, then so is
⇒ ( ⇒ ).

Standard for propositional rules.
For L∀ and R∃ we apply the inductive hypothesis to the upper sequent of the rule

and then the rule in a routine way.

Like this case, all other properties of the system are straightforward and routine,
and will be skipped.

5.2.1 Adequacy of G3Ci

One axiomatization by which we can measure the adequacy of our formalization is
that in [7]. The notation is adjusted to be more in line with the current standards and
the present paper.

Fig. 5 G3Ci
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Definition 5.5 (Empty logic QE)

1. If A is tautologous, then A

2. ∀x∀yA → ∀y∀xA1

3. ∀x(A → B) → (∀xA → ∀xB)

4. A → ∀xA, if x is not free in A

5. ∀xA → ∀yA[y/x]
6. (A → ∀xB) → ∀x(A → B), if x is not free in A

7. If A and A → B then B.

Theorem 5.6 All of the Axioms 1-7 of QE are derivable in G3Ci .

Proof Note that the propositional part ofG3Ci is simply standard G3 classical propo-
sitional logic, so (1) follows from completeness of it. (2)-(6) are easily derivable
from R∀ and R→. Finally, (7) follows from Lemma 2.17 (again noting that the
propositional part of G3Ci is standard).

It would be interesting to check whether this axiomatization is complete with
respect to the intended semantics, as it is not obvious to us the axiomatization can
be used to prove anything other than universal closures of tautologies (as opposed to
any universally quantified formula). However, such a discussion would take us too
far off topic since, as stated previously, we are here to a large extent dealing with an
artifact of the systematization.

6 Modal Logic

When we move to the modal context, the principle of unrestricted specification,
∀xA → A[t/x], fails to hold in general [20, pp. 223–224]. Therefore, it seems prima
facie that free and modal logics might be a good fit (cf. [5, 12]). In fact, as we will see
in this section, not only is there structural correspondence between modal and quan-
tifier rules (this is by design), but the extension of one into the other is exceedingly
straightforward.

The modal logic system presented here will be an extension of the base systems
G3pf and G3nf into labeled sequent calculi, following [16, 20], with the addition of
the modal operator rules.

Definition 6.1 (G3Kpf, G3Knf) We add a countable set of labels w1, . . . ,

wn, . . . to our language, extend it with relational formulas of the form wRo and
replace every formula of the form A with a labeled formula of the form w : A.
Moreover, we replace every side and principal formula A in the rules of G3pf and
G3nf by a labeled formula w : A (Fig. 6). Finally, we add the modal operator rules
(Fig. 7).

1[23] points out, citing [3], that this axiom is easily omitted.
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Fig. 6 Quantifier rules for G3Kpf , G3Knf

Note that the labeled formula w : A is a formula of the new language iff A was a
formula of the old one. Therefore, sentence formation rules do not apply to relational
formulas (i.e. they are always atomic, and never active in logical rules).

Should we wish to also extend the systems with the explicit rule for non-
inclusiveness NI, the resulting rule would correspond to the non-emptiness rule from
[20].

The interesting case here are the new quantifier rules, which will now have the
following form:

Note that the usual extension of the quantifier rules into a modal context requires
us to specify that t is an element of the domain of w [20]. No such provision is
required here due to the presence of the formula E!t . Therefore, all that is required
to transform the rules is adding the same label to all the active and principal formulas
of the rules. The modal operator rules are:

6.1 Structural Properties

Given that the non-modal rules have been minimally modified, it is easy to see that
Lemmas 2.6 - 2.9, as well as Theorem 2.10 will still hold, so we just need to extend
those with the case of modal rules. Moreover, since the modal rules closely resemble

Fig. 7 Modal rules for G3Kpf , G3Knf
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the quantifier ones, the proofs there will be quite similar. Therefore, we simply note
that

Theorem 6.2 Axiom generalization, height-preserving weakening and contraction,
as well as cut are admissible in G3Kpf and G3Knf . Moreover, the rules of the systems
are (height-preserving) invertible.

6.2 Generalized Semantics

In developing the generalized semantics for G3Kpf and G3Knf we adopt standard
Kripke semantics, and define two different types of frames, depending on whether
identity is taken as invariant (marked with a superscript I ) or varying (marked with
V ). We start off with a more general type:

Definition 6.3 A negative (positive) Kripke frame Fn (Fp) is a pair W, R , where
W is a countable multiset (we note the i-th member ofW aswi) of negative structures
Sn D, ϕ (positive structures Sp), and R ⊆ W × W .

This frame allows for lists of names that vary between worlds. If we want to keep
them fixed between worlds, we define the frame

Definition 6.4 A negative (positive) Kripke frame FV
n (FV

p ) is a tuple D, W, R ,
whereD = a1, . . . , b1, . . . as before, W is a countable multiset of negative (positive)
interpretation functions ϕ, and R ⊆ W × W .

Now the list of names is fixed between worlds, but all predicates, including iden-
tity, are interpreted separately in each. Since identity can vary, we designate the
frames with V . To get an identity predicate that is invariant, we deflate W further and
obtain a frame

Definition 6.5 A negative (positive) Kripke frame F I
n (F I

p) is a tuple F∗
n , W, R ,

( F∗
p, W, R ) where F∗

n is some negative structure without ϕ(P n) (F∗
p a positive

structure without ϕ(P n)), W is a countable multiset of negative interpretation func-
tions over n-ary predicates ϕ(P n) (positive functions ϕ(P n)), and R ⊆ W × W . For
each ϕi ∈ W , ϕi(=) and ϕi(E!) (ϕi(=)) are identical to ϕ of F∗

n (F∗
p).

Given that the unrestricted instantiation fails in models with varying domains
regardless of the limitation to E!, the first type of frames will not be of particu-
lar interest to us, so we focus on the other two. We call the logics defined by these
successive frames Knf, Kpf, Kinf and Kipf.

In each of these cases, a model is

Definition 6.6 (Model M) A model M is a pair F,V , where F is some frame
from Definitions 6.4 - 6.5, and V is valuation such that

– M ϕi
P n(t1, . . . , tn) iff t1, . . . , tn ϕi(P

n),
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– Standard for connectives,
– M ϕi

∀xA iff for every t s.t.M ϕi
E!t it holds thatM ϕi

A[t/x],
– M ϕi

∃xA iff for some t s.t.M ϕi
E!t it holds thatM ϕi

A[t/x],
– M ϕi

A iff for every ϕn s.t. ϕi, ϕn R it holds thatM ϕn A

– M ϕi
♦A iff for some ϕn s.t. ϕi, ϕn R it holds thatM ϕn A

A formula w : A is valid in M F,V if w ∈ F and M w A. A sequent
⇒ is valid inM if whenever every w : A in is valid, then some w : A in is

valid.

6.3 Invariance of Identity

In the sequent calculus case, to make identity invariant across worlds/ labels (whence
it follows it is necessary), we add the rule of invariance of identity to G3Kpf and
G3Knf thereby obtaining, respectively, G3Kipf and G3Kinf. The rule is adopted from
[17], and we follow the authors’ naming of it as the rule for rigidity.

From this rule the necessity of identity easily follows:

Lemma 6.7 Necessity of identity: w : s = t ⇒ w : s = t

Proof

o : s = t, wRo, w : s = t ⇒ o : s = t =Rig
wRo, w : s = t ⇒ o : s = t

R
w : s = t ⇒ w : s = t

6.4 Meta-theoretical Properties

In this section each of the systems G3Kpf, G3Knf, G3Kipf and G3Kinf will be shown
sound and complete with respect to the appropriate semantics.

Theorem 6.8 If a sequent ⇒ is derivable in G3Kpf (G3Knf), it is valid on any
Kripke frame FV

p (FV
n ).

Proof Routine by induction on the height of the derivation with relational atoms
wRo valid iff w, o R and validity of a sequent mutatis mutandis as in Definition
3.5.

Fig. 8 Invariance of identity rule
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Theorem 6.9 If a sequent ⇒ is derivable in G3Kipf (G3Kinf), it is valid on any
Kripke frame F I

p (F I
n ).

Proof By induction on the height of the derivation. A new case to check is the rule
=Rig . If the last step of the derivation was obtained by it then it has the form:

w : s = t, o : s = ⇒ =Rig
w : s = ⇒

Assume w : s = t, o : s = ⇒ is valid. Then for any model such that
whenever for any r : A in it holds that M r A and moreover that M w s =
t and M o s = t , it holds for some r : B in that M r B. Now assume
w : s = is valid. But M w s = t iff M o s = t by Definition 6.5, so
w : s = t, o : s = is likewise valid. Therefore, so is some r : B in .

We begin the proof of completeness by extending the definition of the reduction
tree:

Definition 6.10 We extend Definition 4.3 by first noting that the appropriate appli-
cations of the rules now include labeled formulas (this is straightforward) and then
adding the following steps:

(16) L , for every formula w : A and every relational formula wRo in i .
(17) R , taking for the reduction of each formula w : A in i from the countable

list of appropriate interpretation functions the first one not yet used in the
reduction tree.

(18) L♦, treated symmetrically to R (19) R♦, treated symmetrically to L
(20) =Rig , for G3Klpf and G3Klnf only, taking for the reduction of each formula

w : s = t every interpretation function o appearing in i and i .

We build a refutation structure same as in Definition 4.5. Note that the results of
the Lemma 4.6 are extended. Specifically, since relational formulas occur only in
the antecedent, for each wRo we add w, o R to generate an appropriate Kripke
frame. Moreover, in the case of G3Kipf and G3Kinf, for any w and o, M w s = t

iff M o s = t .
It is easy to see that

Lemma 6.11 The results of the Lemma 4.7 hold mutatis mutandis, and are extended
for the cases of modal formulas.

Proof The first clause is straightforward (replacing A with w : A). For modal
formulas:

( ) If A is a formula w : C then by stage (16) for every o such that wRo is in
∗ (and therefore w, o R), o : C is in ∗, and therefore by inductive hypothesis

M o C. Therefore, M w C.
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If B is a formula w : D then by stage (17) for some o such that wRo is in ∗
(and therefore w, o R), o : C is in ∗, and therefore by inductive hypothesis
M o C. Therefore, M w D.

Similar for ♦.
Finally, we have that

Theorem 6.12 If ⇒ is valid in the Kpf, Knf, Kipf and Kinf, then it is derivable
in G3Kpf, G3Knf, G3Kipf and G3Kinf, respectively.

6.5 Applications

We make use of this framework to illustrate the point made earlier about the role the
predicate E! plays in free logics. We first note that in frames FV

n the Barcan formulas
fail. As an illustration, consider the converse Barcan formula, ∀xAx → ∀x Ax,
and a model where D = {t1, t2}, W = {ϕ1, ϕ2}, ϕ1(E!) = {t1, t2}, ϕ2(E!) = {t2} ,
ϕ1(A) = {t1, t2}, ϕ2(A) = {t2} andR ϕ1, ϕ2 . HereM ϕ2 ∀xAx and therefore
M ϕ1 ∀xAx, but M ϕ2 At1, so M ϕ1 At1 and therefore M ϕ1 ∀x Ax.
Note that this counterexample works for both inclusive and non-inclusive versions.

To obtain Barcan formulas we would need to add standard restrictions, applied to
the predicateE! instead of the domain. Interestingly, that is not the case in framesF I

n .
In the modal negative free logic with the invariance of identity rule added, G3Kinf,
and corresponding to framesF I

n , the predicateE! behaves in the same way as identity
(as shown in the Lemma that immediately follows), and therefore Barcan formulas
hold:

Lemma 6.13 w : E!t ⇒ w : E!t

Proof
o : E!t, o : t = t, w : t = t, wRo, w : E!t ⇒ o : E!t

E!
o : t = t, w : t = t, wRo, w : E!t ⇒ o : E!t =Rig

w : t = t, wRo, w : E!t ⇒ o : E!t =Ref
wRo, w : E!t ⇒ o : E!t

R
w : E!t ⇒ w : E!t

Lemma 6.14 (CBF) w : ∀xA ⇒ w : ∀x A

Proof
o : E!t, o : t = t, w : t = t, wRo, w : E!t, w : ∀xA, o : ∀xA, o : A[t/x] ⇒ o : A[t/x]

L∀
o : E!t, o : t = t, w : t = t, wRo, w : E!t, w : ∀xA, o : ∀xA ⇒ o : A[t/x]

L
o : E!t, o : t = t, w : t = t, wRo, w : E!t, w : ∀xA ⇒ o : A[t/x]

E!
o : t = t, w : t = t, wRo, w : E!t, w : ∀xA ⇒ o : A[t/x] =Rig

w : t = t, wRo, w : E!t, w : ∀xA ⇒ o : A[t/x] =Ref
wRo, w : E!t, w : ∀xA ⇒ o : A[t/x]

R
w : E!t, w : ∀xA ⇒ w : A[t/x]

R∀
w : ∀xA ⇒ w : ∀x A
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Fig. 9 Contracting and Expanding E! rules

Lemma 6.15 (BF) w : ∀x A ⇒ w : ∀xA

Proof
w : E!t, w : t = t, o : t = t, o : E!t, wRo, w : ∀x A, w : A[t/x], o : A[t/x] ⇒ o : A[t/x]

L
w : E!t, w : t = t, o : t = t, o : E!t, wRo, w : ∀x A, w : A[t/x] ⇒ o : A[t/x]

L∀
w : E!t, w : t = t, o : t = t, o : E!t, wRo, w : ∀x A ⇒ o : A[t/x]

E!
w : t = t, o : t = t, o : E!t, wRo, w : ∀x A ⇒ o : A[t/x] =Rig

o : t = t, o : E!t, wRo, w : ∀x A ⇒ o : A[t/x] =Ref
o : E!t, wRo, w : ∀x A ⇒ o : A[t/x]

R∀
wRo, w : ∀x A ⇒ o : ∀xA

R
w : ∀x A ⇒ w : ∀xA

Such a situation does not occur in the positive case, since there is no close con-
nection between the existence and identity predicates. This is, to the best of our
knowledge, the first quantified modal logic based on the negative free logic, and it is
interesting to note that in G3Kinf the Barcan formulas come about as the result of the
rigidity of names. However, it should be clear that it is really the invariance of the E!
predicate that establishes said formulas. So, on any variant we can simply add a rule
for invariance of E! and obtain the same results.

Moreover, while adding such a rule will yield both the Barcan formula and its
converse, we can make the result more fine-grained by adding two separate rules:

It is straightforward to show that these will allow the derivation of the Barcan
formula and the Converse Barcan formula, respectively.

w : E!t, o : E!t, wRo, w : ∀x A, w : A[t/x], o : A[t/x] ⇒ o : A[t/x]
L

w : E!t, o : E!t, wRo, w : ∀x A, w : A[t/x] ⇒ o : A[t/x]
L∀

w : E!t, o : E!t, wRo, w : ∀x A ⇒ o : A[t/x]
E!c

o : E!t, wRo, w : ∀x A ⇒ o : A[t/x]
R∀

wRo, w : ∀x A ⇒ o : ∀xA
R

w : ∀x A ⇒ w : ∀xA

Parallel for CBF. The connection with the rules for the contracting and expanding
domains is unmistakable, and so this serves to further illustrate that in free logic E!
serves as the domain marker.

7 Concluding Remarks

In this paper we have established and systematized a range of sequent calculi for free
logics. Utilizing the similarity between modal operators and quantifiers, but working
from the former to the latter, we formulated the quantifier rules for free logic in a way
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that treats E! as a relational atom. This proved to carry several benefits – in addition
to simplification of the meta-theoretical and structural proofs, it also allowed us to
construct systems for free logic where the rules do not rely on implicit implication
and conjunction for the rules L∀ and R∃, respectively.

Moreover, by generalizing the semantic restrictions in a way that is still adequate
for the sequent calculus rules, we have obtained a system of semantics that enables
us to deal with a multitude of different systems of free logic. These approaches tend
to be mutually incompatible as well as difficult to extricate from their philosophical
motivations. The approach taken in this paper allows, on the other hand, for a proof-
theoretic examination of free logics while avoiding such pitfalls.

The possibilities of application of our results have not been exhausted in this paper
– specifically, even more unification is possible. In the introduction to this paper we
mentioned and described briefly the core idea of neutral free logics. It is on our future
research agenda to see if one (or more versions) of this family of free logic can be
integrated in our new framework. Having system(s) for a neutral free logic seems
timely and interesting also when viewed from a different perspective: hyperinten-
sional logic, e.g. [13]. In [13] the hyperintensional logic is construed as an extension
of intuitionistic logic with the constant domain axiom. Viewed from this angle it is
also natural to construct free logics (including neutral ones) within the ever growing
new field of hyperintensional logics.

Moreover, [14] demonstrates the usefulness of the single-premise approach to
quantification in obtaining the Craig’s interpolation theorem. We also plan to extend
those results to the systems developed here. And finally, we can also see a further
avenue for unification in bringing systems with intutionistic base into our framework.
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Appendix A: Structural properties

Lemma 2.4 (α-conversion) A derivation (where n denotes derivability with height
bounded by n) of n ⇒ can be converted into a derivation of n ⇒ , where

and differ from and , respectively, only in namings of bound variables.

Proof By induction on the height of a derivation.
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If ⇒ is an initial sequent, then so is ⇒ . If the last rule is any of the
propositional or identity rules, the namings remain unchanged from the premis(es). If
the last rule applied is R∀, then it is derived from some sequent E! ⇒ [t/x].
By the inductive hypothesis E! ⇒ , A[y/x][t/y] is likewise derivable, so by
applying R∀ we obtain ⇒ , ∀yA[y/x]. Similar for other quantifier rules and
simple for the rule E!.
Lemma 2.5 (Substitution) If n ⇒ is derivable in G3pf (G3nf ), then n

[t/s] ⇒ [t/s] is derivable.

Proof By induction on the height of the derivation. If ⇒ is an initial sequent,
then so is [t/s] ⇒ [t/s].

Propositional rules do not alter the free and bound individual variables between
their premis(es) and conclusion. The rules =Ref and E! in G3nf also do not alter the
free and bound individual variables between their premise and conclusion, and the
step is straightforward for =Ref in G3pf . The rule =Repl does not alter the free and
bound individual variables.

If the last rule applied is R∀ and t is an eigenvariable of that application of the rule (oth-
erwise we skip the first application of the inductive hypothesis), the premise of the
application of the rule is some E! ⇒ [t/x]. We use the inductive hypothesis
to replace it with some d that has not so far occurred anywhere above that application
of the rule to obtain E! ⇒ [t/x][d/t] (we know by eigenvariable condition
that t does not occur in or ), which is the same as E! ⇒ [d/x]. Using
the inductive hypothesis again we get E! [t/s] ⇒ [t/s], A[d/x][t/s], which
is the same as E! [t/s] ⇒ [t/s], A[t/s][d/x]. Now we apply R∀ to obtain

[t/s] ⇒ [t/s], ∀xA[t/s]. Similar for other quantifier rules.

Lemma 2.6 (Axiom generalization) Any sequent of the form ⇒ is
derivable in G3pf and G3nf .

Proof By induction on the weight of A. Since the two systems do not differ in their lan-
guage, the proofs proceed the same. The interesting cases here are for quantified formulas:
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Lemma 2.7 (Weakening) Weakening is height-preserving admissible in G3pf and
G3nf :

i) If n ⇒ then n ⇒ .
ii) If n ⇒ then n ⇒ .

Proof Routine by induction on the height of the derivation, using Lemma 2.5 when
necessary.

Lemma 2.8 (Invertibility) All the rules of G3pf and G3nf are height-preserving
invertible.

Proof Straightforward for propositional rules, follows from Lemma 2.7 for all other
rules except R∀ and L∃. So what remains to be shown is:

i) If n ⇒ ∀xA, then n E! ⇒ [t/x], and
ii) if n ∃ ⇒ , then n E!t, A[t/x] ⇒ .

We demonstrate (i) by induction on the height of the derivation, n.
If n = 0, then ⇒ ∀xA is an initial sequent, but then so is E! ⇒

[t/x].
If n > 0, then if ∀xA is not principal in the last step, ⇒ ∀xA follows from

some sequents E! ⇒ , ∀xA (E! ⇒ , ∀xA) with height ≤ n − 1.
Applying the Lemma 2.5 if t is an eigenvariable of the application of the rule and then
the inductive hypothesis, we obtain E! ⇒ , A[t/x] (E! ⇒ , A[t/x]),
and then applying the rule again we get E! ⇒ [t/x].

If on the other hand ∀xA is principal, then the upper sequent of the last application
of the rule is already of the required form and with height ≤ n.

Parallel for (ii).

Lemma 2.9 (Contraction) Contraction is height-preserving admissible in G3pf and
G3nf :

i) If n ⇒ then n ⇒ .
ii) If n ⇒ then n ⇒ .

Proof Simultaneous for (i) and (ii) by induction on the height of the derivation. The
interesting part is when the formula C is principal in R∀ or L∃.

So, assume that C is ∀xA and principal in R∀ in the last step. Then the last step of
the derivation is ⇒ ∀xA, ∀xA, derived by R∀ fromE! ⇒ ∀xA, A[t/x].
Applying the Lemma 2.8 to that sequent we get E!t, E! ⇒ [t/x], A[t/x]
with the same height of ≤ n − 1. We then apply the inductive hypothesis to
obtain E! ⇒ [t/x] and then R∀ to finally obtain ⇒ ∀xA. Similar
for L∃.
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Theorem 2.10 Cut is admissible in G3pf and G3nf .

Proof By induction on the weight of a formula and subinduction on the sum of
heights of the two upper sequents of a cut. Standard for propositional rules, identity
rules in G3pf and the rule =Repl in G3nf . We check the remaining cases.

When the cut formula is principal in the rule E! the cut has the following form:

If 1 ⇒ 1, P [t] is an initial sequent we distinguish two cases. First, if 1 ⇒
1, P [t] is of the form P [t] 1 ⇒ 1, P [t] (i.e. if 1 contains P [t]), then the

bottom sequent of the cut is of the form P [t] 1 2 ⇒ 1 2 and can be obtained
from P [t] 2 ⇒ 2 using Lemma 2.7. Second, if 1 does not contain P [t], then
1 ⇒ 1 is likewise an initial sequent.
If 1 ⇒ 1, P [t] is not initial then the derivation has the following form (since

an atomic formula cannot be principal on the right):

This is transformed into:

Here cuts numbered (1) and (2) are of lesser height. Similar for the rule =Ref of
G3nf .

When the cut formulas are quantified the interesting case is when they are
principal in both upper sequents. In the case of ∀, the cut is then of the form:

This is transformed into:
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Here the cut numbered (1) is of lesser weight and (2) are of lesser height. Similar
for ∃.

Appendix B: Adequacy of axioms

Theorem 2.16 All of the PFL axioms A1-A6 are derivable in G3pf .

Proof A1: ∀x(A → B) → (∀xA → ∀xB)

A2: A → ∀xA

A3: ∀xA → (E!t → A[t/x])

A4: ∀xE!x

A5: s = t → (A → A[t//s])

A6: t = t
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Theorem 2.17 All of the NFL axioms A1-A7 are derivable in G3nf .

Proof Since most of the axioms are the same in both systems, it only remains to show
that the different version of A6, and the new axiom A7, are derivable.

A6: ∀x(x = x)

A7: P t1, . . . , tn → E!ti , 1 ≤ i ≤ n
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Edi Pavlović1 ·Norbert Gratzl2

Norbert Gratzl
N.Gratzl@lmu.de

1 Department of Philosophy, History and Art Studies, University of Helsinki, P.O. Box 24,
FI-00014, Helsinki, Finland

2 Fakultät für Philosophie, Wissenschaftstheorie und Religionswissenschaft, Munich Center
for Mathematical Philosophy (MCMP), Ludwig-Maximilians Universität München,
Geschwister Scholl Platz 1, 80539, München, Germany

148

https://plato.stanford.edu/archives/fall2018/entries/logic-free/
http://orcid.org/0000-0002-6331-4256
https://orcid.org/0000-0002-0660-6527
mailto: N.Gratzl@lmu.de

	A More Unified Approach to Free Logics
	Abstract
	Introduction
	The Formal Systems G3pf and G3nf
	Language of Free Logics
	Positive Free Logic G3pf
	Negative Free Logic G3nf
	Structural Properties
	Relation to Previous Systems of Free Logic
	Advantages of the Present Approach
	Adequacy of the Systems G3pf  and G3nf 


	Semantics
	Generalized Semantics
	Relationship Between PFL, NFL and Classical Logic

	Meta-theoretical Properties
	Soundness
	Completeness

	Further Varieties
	Non-inclusive Logics
	Empty Logic G3Ci
	Adequacy of G3Ci


	Modal Logic
	Structural Properties
	Generalized Semantics
	Invariance of Identity
	Meta-theoretical Properties
	Applications

	Concluding Remarks
	Appendix A Structural properties
	Appendix B Adequacy of axioms
	References
	Affiliations


