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Abstract We show that Leitgeb’s dependence operator of Leitgeb (Journal of
Philosophical Logic, 34, 155–192, 2005) is a �1

1-operator and that this is best
possible.
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In [2] Hannes Leitgeb introduced a dependence operator D−1 as a relation between
sets of sentences in a language LTr such as that for arithmetic (which we shall take
here) augmented with a predicate symbol Ṫr to represent truth. We shall assume the
reader has a familiarity with this article and its ideas, as our purpose here is only to
correct an error of our own: we had mistakenly persuaded its author that this operator
was hyperarithmetic (that is the relation ‘�σ� ∈ D−1(�)’ - as a relation of σ and
� - was �1

1). We had realised that this was false, but unfortunately too late for its
suppression in [2]. Since a number of people have subsequently asked about this,
we feel we should set the record straight, (and take this opportunity to apologise to
Hannes Leitgeb for being so misleading). We thus show here:

Proposition 1 The relation ‘ �σ� ∈ D−1(�)’ is in general �1
1 and this is best possi-

ble. Indeed if �α is a stage in the increasing monotone hierarchy of dependency sets
building up to the least fixed point �lf of [2] Section 3, then for any α > 0, �α is a
�1

1-complete set of gödel numbers.
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Proof The first sentence will follow from the second, so we prove the latter. Recall
that we define �0 = Ø and then:

�α+1 ={�ϕ� | ϕ ∈ D−1(�α)} = {�ϕ� | ϕ depends on �α}
= {�ϕ� | ∀�((N, �) |= ϕ ↔ (N, � ∩ �α) |= ϕ)} ;

�λ =
⋃

α<λ

�α.

Given any �1
1 set A ⊆ N we show that for any α that A is (1-1) reducible to

�α . That is, we show that there is a total (1-1) recursive function F : N −→ N
so that n ∈ A ↔ F(n) ∈ �α . Indeed there will be a single F that works for all α

simultaneously.
By a theorem of Kleene, for any such �1

1-set A there is a recursive relation
R(u, n) ⊆ Seq × N so that:

n ∈ A ↔ ∀f ∈ NN ∃k0∀k ≥ k0(¬R(f � k, n)). (1)

Here f � k denotes the number in Seq coding the sequence of the first k values
of f. The idea being that an initial segment f � k′ is a sequence, so a node, in a
recursive tree (depending on n) specified by R, but f � k0 falls out of the tree, as do
all later extensions f � k. See for example the discussion in [4] at 16.4. Then n ∈ A

if and only if the tree is wellfounded and all putative infinite paths f must fall out of
the tree at somepoint. Roughly speaking the relation R(u, n) holding indicates that a
certain Turing computation has not yet converged and halted; if ¬R(u, n) then from
the sequence code u, a halting run of computation can be inferred, and indeed this is
then naturally so for any sequence code v extending the code u - which we write as
u ⊆ v. We thus naturally have that ¬R(u, n) ∧ u ⊆ v → ¬R(v, n). Hence (1) is
also equivalent to

n ∈ A ↔ ∀f ∈ NN ∃k0(¬R(f � k0, n)).

Here u ∈ Seq. Finite sequences of numbers such as (u0, u1, . . . , um−1) may be
coded by natural numbers u via, usually, some prime power coding: so we may take
u = p

u0+1
0 .p

u1+1
1 . · · · .p

um−1+1
m−1 where the pi enumerate the primes in ascending

order. Since the extension of the predicate � is supposed to be gödel numbers of
sentences we adjust our coding by primes to a coding by gödel numbers of self-
referential sentences. The choice here is motivated by the desire that we wish to use
sentences, and so gödel codes, that cannot appear in the dependence hierarchy sets
�α . So let λ denote a standard liar sentence. By λu0 we mean the u0-fold conjunction
(λ ∧ λ ∧ · · · ∧ λ) of u0 λ’s. We let Seq∗ be the set of gödel numbers of the form
�λu0+1 ∨ λu1+1 ∨ · · · λum−1+1� and regard the latter number as also a code for the
sequence (u0, u1, . . . , um−1).

Then Seq∗ is a recursive set of numbers, whilst being disjoint from the set of
(codes of) grounded sentences in the sense of [2]. Note that the map ∗ : Seq −→
Seq∗ implicitly described above may be assumed recursive. We may for the recursive
relation R(u, k) underlying the presentation of A above, then introduce a similar
recursive relation R∗(u, k) so that R(u, k) ↔ R∗(u∗, k) holds.
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We may thus represent A equivalently by:

n ∈ A ↔ ∀f ∈ NN ∃k0∀k ≥ k0(¬R∗(( f � k )∗, n)) (2)

Let σn be the sentence:

[∃u ∈ Seq∗ ∩ Ṫr ∧
∧ ∀u, v ∈ Seq∗ ∩ Ṫr ((u ⊆ v ∨ v ⊆ u) ∧ ∃u′ ∈ Seq∗ ∩ Ṫr (u ⊂ u′))] −→

−→ ∃u ∈ Ṫr ∩ Seq∗¬ϕR∗(u, n).

(We have written the defining formula for R∗ as ϕR∗ .) The antecedent here, when
true, guarantees that the set Seq∗ ∩ � forms an unbounded set of initial segments
of a function with an infinite domain. The conclusion states that � contains a gödel
number u which is a sequence∗ number witnessing ¬R∗(u, n).

Claim: n ∈ A ↔ �σn� ∈ �1 = {�ϕ� | ∀�((N, �) |= ϕ ↔ (N,Ø) |= ϕ)}. Hence
�1 is �1

1-complete.

Proof Let n ∈ A. Notice that
(
N,Ø

) |= σn trivially, since the extension of Ṫr is
empty and so the antecedent of σn is false, and σn holds vacuously. Now let � be
arbitrary; again if � does not contain an infinite linear chain of sequence∗ numbers,
then σn is again vacuously true. However, if otherwise, � will contain arbitrarily
long sequence∗ numbers of initial segments of some function f : N −→ N coded as
sequence numbers in Seq∗. That is, for some f ∈ NN, ( f � k )∗ ∈ � for infinitely
many k.

The antecedent of σn now holds true. Because

n ∈ A ↔ ∀f ∃k0∀k ≥ k0¬R∗(( f � k )∗, n),

we shall have for some sufficiently large k that ( f � k )∗ both witnesses that the
consequent of σn holds and is in �. Thence �σn� ∈ �1.

However if n /∈ A then by the properties of R and R∗ discussed above, we have
thus ∃f ∈ NN∀kR∗(( f � k )∗, n ). Letting � = {( f � k )∗ | k ∈ N}, we have that
(N, �) |= ¬σn ∧ (N,Ø) |= σn. Hence �σn� /∈ �1. The Claim is proven.

Setting F(n) = �σn�, F is recursive and witnesses the required reduction. Now
notice that by our choice of sequence∗ numbers, none of these can be in any �α .
Hence the argument above equally shows directly that n ∈ A ↔ F(n) = �σn� ∈ �α.

This proves the proposition.

The successive steps of this operator when started at �0 = Ø yield at each and
every stage �1

1-complete sets of integers. And then after ωck
1 many steps the result-

ing fixed point �lf = �ωck
1
is also �1

1-complete. Very similar arguments show that

the same is true for the supervaluation operator �sv: starting out from �0 = Ø yields
that all the �α are �1

1-complete sets (this was observed by Greg Hjorth and Toby
Meadows). In this case it does not matter which mode of supervaluation one takes,
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whether it be via maximal consistent extensions of a pair (�+
α , �−

α ), or simply all
consistent extensions, or . . . , just as for the dependence operator the universal quan-
tification over all relevant extensions, is a universal quantification over all countable
sets. This is in contradistinction to the hierarchy formed by using the strong (or the
weak) Kleene truth tables to formulate extensions. In these cases a �1

1-complete set
is only attained at the final union at stage ωck

1 . To build a new stage �sK
α+1, impec-

cable evidence using strong Kleene logic from the data in �sK
α is used; it is an

incrementalist approach. (The transitional operator at each stage is low down in the
hyperarithmetic hierarchy being just beyond arithmetic; the earlier stages are then
all hyperarithmetic.) Whereas for the dependence and the supervaluation operators,
a more cavalier, but ultimately a completist, approach is used that casts its eye wide
over all conceivable extensions, to obtain a still reasonable, but as full as possible an
extension in one swoop, which however will still need revising upwards. So the con-
ceptions (and attitudes) of course, as we know, are quite different. One might wonder
why the supposed universal quantifier over all functions, or all sets, in the supervalu-
ation and dependence construction is not a�1 quantification over the real continuum,
or equivalently over all (hereditarily) countable sets? This would render such a quan-
tification expressed by a �1

2 statement. This is because, to determine whether �σ� is
in the next extension, despite the prima facie supervaluation quantification implicit
in �sv being over all possible extensions, one really only needs to look at all possi-
ble extensions in the next admissible set (that is, transitive model of Kripke-Platek
set theory) beyond ωck

1 . Thus the quantification is really (but implicitly) a bounded
universal quantification. (The reason for this pleasantly bounded state of affairs is
the Kleene Basis Theorem (see, eg., again Rogers [4], Theorem XLII), which in our
context would state that a counterexample to �σ� being in the next extension, if such
exists at all, could be found recursively in a �1

1-complete set P and hence would
in the least admissible set containing P as an element. Hence to check �σ�’s sta-
tus we need only look there.) However the full-blooded revision theory of Gupta and
Belnap [1]which requires considering all possible revision sequences and all possi-
ble revision rules etc.,etc., over the natural number model, necessarily requires an
unbounded quantification over the real continuum to determine their stable truth set,
which is then indeed a complete �1

2 set.
Dependence is, by its nature, also a notion that requires one to look around at all

possible extensions, and so it is perhaps unsurprising that a somewhat complicated
(meaning a complete �1

1) set of outcomes occurs at each stage. This phenomenon is
observable again in other presentations of the operators and fixed points, either via
games [5] or, reinterpreting these once more, as proof trees [3].
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