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Abstract
The paper focuses on the semantics of distributivity, grammatical number, and cardi-
nality predicates (numerals and modifiers like several). I argue that constructions
involving so-called ‘dependent plurals’, i.e. plurals lacking cardinality predicates
occurring in the scope of certain quantificational items such as all and most (e.g.
All the girls were wearing hats), pose a challenge to familiar semantic frameworks
that distinguish between two sources of multiplicity: mereological plurality and dis-
tributive quantification. I argue that dependent plural readings should be analysed
as distinct both from cumulative readings and distributive readings, in the classical
sense. I demonstrate how this can be accomplished in a semantic framework where
expressions are evaluated relative to sets of assignments, or plural info states (van
den Berg, in Stokhof and Torenvliet (eds) Proceedings of the 7th Amsterdam Collo-
quium, ILLC, University of Amsterdam, Amsterdam, 1990, in Dekker and Stokhof
(eds) Proceedings of the 9thAmsterdamColloquium, ILLC,University ofAmsterdam,
Amsterdam, 1994, Some aspects of the Internal Structure of Discourse. The Dynam-
ics of Nominal Anaphora. PhD thesis, University of Amsterdam, 1996). The specific
formal implementation is based on a modified version of Brasoveanu’s (Structured
nominal and modal reference. PhD thesis, Rutgers, The State University of New Jer-
sey, 2007, Linguist Philos 31(2):129–209. https://doi.org/10.1007/s10988-008-9035-
0, 2008) Plural Compositional DRT. In this framework we are able to distinguish
between two types of distributivity: weak distributivity across the assignments in a
single plural info state and strong distributivity across multiple info states. I argue that
both of these types of distributivity play a role in the semantics of natural language,
accounting for the contrasting properties of ‘singular quantifiers’, such as each and
every, and ‘plural quantifiers’, such as all and most. The contrasting properties of
bare plurals and plurals involving cardinality modifiers are analysed in terms of the
distinction between state-level and assignment-level (mereological) plurality.
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1 Introduction

Bare plurals in the scope of some quantificational noun phrases allow an interpretation
which at first glance appears to be similar to that of singular indefinites:

(1) a. All the girls were wearing hats.

b. All the girls were wearing a hat.

In a neutral context, sentence (1a) is interpreted as stating that each girl was wearing
a single hat, i.e. its truth conditions appear to be very close to those of (1b). Crucially,
sentence (1a) does not entail that each girl was wearing more than one hat. De Mey
(1981) introduced the term dependent plurals for plural DPs that are used ‘in what
would appear to be a singular meaning’ (see also Partee 1985; Roberts 1990; Zweig
2008, 2009; Ivlieva 2013, a.o.). I will adopt the term licensor to refer to the other
member of the dependency, e.g. the DP all the girls in (1a), and co-distributivity as
a pre-theoretic umbrella term for all readings that are compatible with a one-to-one
correspondence between the set of individuals referred to (or quantified over) by the
licensor DP and the set of individuals referred to by the dependent (cf. Sauerland
1994).1 I will use the term dependent plural to refer specifically to plurals that occur
in the scope of quantificational items (including floating quantifiers), and allow a
co-distributive interpretation with their licensor.

This paper centres around three contrasts characteristic of dependent plural con-
structions. First, only a subset of quantificational DPs is able to license dependent
plurals:

(2) a. Each girl was wearing hats.

b. Each girl was wearing a hat.

Sentence (2a), in contrast to (1a), implies that each girl was wearingmore than one
hat, and thus differs sharply in its truth conditions from (2b) (cf. De Mey 1981; Zweig
2008, 2009; Kamp and Reyle 1993; Champollion 2010b for similar observations and
discussion).

Second, only a subset of plural DPs can function as dependent plurals. Thus, in (3)
the object DP contains the modifier several, and the sentence again entails that each
girl was wearing more than one hat (cf. Zweig 2008, 2009):

(3) All the girls were wearing several hats.

Finally, sentence (3) contrasts with (4), where the subject is a definite plural:

(4) The girls were wearing several hats.

1 I will reserve the more familiar term cumulative interpretation for cases like (4) below which involve two
non-quantificational DPs.
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Table 1 Availability of co-distributive readings (preliminary)

Definite plurals all-DPs each-DPs

Bare plurals � � *

Several-plurals � * *

Unlike (3), this sentence does not necessarily entail that each girl was wearingmore
than one hat. Instead, it allows for a cumulative interpretation, on which there exists
some kind of correspondence between the girls and the hats with each girl wearing at
least one hat (and each hat being worn by at least one girl).

Thus, on the one hand we have a three-way contrast between definite plurals vs
all-DPs vs each-DPs. On the other hand we have a two-way contrast between bare
plurals and indefinites with several. This is summarized in Table 1, where the columns
represent the three types of DPs in the subject position and the rows represent the two
types ofDPs in the object position. The cells indicate the availability of a co-distributive
interpretation in each configuration.

In the following we will see that each label in this table actually stands for a whole
class of items which pattern together with respect to their semantic behaviour in the
types of contexts discussed above. The aim of this paper is to provide a unified account
of all the contrasts represented in Table 1. As we will see, the main challenge lies in
accounting for the center column in Table 1, i.e. for the distinct semantic properties
of plural quantificational DPs involving all (as well as most, both, few etc.) and their
interaction with different types of plurals in their scope.2

The paper is structured as follows. Section 2 reviews the core empirical gener-
alizations related to dependent plurals. Section 3 provides an overview of existing
accounts of dependent plurals, and discusses some of the challenges they face. Sec-
tion 4 introduces the core features of the semantic framework that I will use to couch
my analysis. Sections 5 and 6 present a detailed analysis of the semantics of number
features, numerals, distributivity operators and quantificational determiners, account-
ing for the core generalizations that govern the availability of co-distributive readings.
Section 7 concludes the paper.

2 Apart from nominal licensors dependent plurals can be licensed by various types of pluractional (quan-
tificational, frequentitative, iterative) adverbials, which introduce a multiplicity of events/situations (cf.
De Mey 1981):

(i) a. John often wears loud neckties. (Roberts 1990, attributed to B. Partee)

b. John always introduces his girlfriends to his mother.

On the most salient reading, sentence (ia) states that there is a set of frequently occurring events which
involve John wearing a loud necktie. Crucially, this sentence does not imply that John necessarily wears
more than one necktie on each occasion. Similarly, in (ib) the quantificational adverb always serves as a
licensor for the plural possessive DP his girlfriends. On the most natural reading, this sentences states that
on each relevant occasion John introduces his one current girlfriend to his mother. It isn’t necessary for
John to be in a relationship with more than one woman on every (or any) relevant occasion for this sentence
to be judged true. This indicates that we are again dealing with a dependent plural reading. For reasons of
space, in this paper I will restrict attention to dependent plural constructions with nominal licensors (see
however Minor (2017) for an analysis of dependent plurals with adverbial licensors).
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2 Core properties of dependent plurals

2.1 Dependent plurals versus singular indefinites

As illustrated in (1a), bare plurals can be interpreted co-distributively with higher-
scoping all-DPs. This means that the multiplicity requirement normally associated
with plurals is not applied with respect to each member of the set quantified over by
the licensor DP. However, the question remains whether the opposite, ‘singularity’,
requirement is applied distributively. In other words, at this point we don’t know
whether the correct interpretation of (1a) should be as in (5a) or (5b):

(5) a. ‘Each girl was wearing one hat.’

b. ‘Each girl was wearing one or more hats.’

If dependent plurals have the same underlying semantics as singular indefinites,
the interpretation in (5a) should be correct. Kamp and Reyle (1993) demonstrate that
this is in fact not the case. The following is a slightly modified version of the example
they discuss:

(6) All the students bought books that would keep them fully occupied during the
next two weeks.

This example can be contrasted with that in (7):

(7) All the students bought a book that would keep them fully occupied during the
next two weeks.

If dependent plurals had the same interpretation as singular indefinites we would
expect these sentences to have the same truth conditions.And indeed, there are contexts
where both of these sentences will be judged true, e.g. if each student bought one book
such that this single book would keep them fully occupied for two weeks. However,
(6) on its dependent plural reading would be judged true in a wider range of contexts
than (7). Consider the following scenario: There are three students, Alan, George,
and Miriam, who each bought one or more book. Specifically, Alan bought one book,
George bought three, and Miriam four. In each case the book or books that the student
bought would keep the buyer fully occupied for two weeks. In this scenario, (7) would
be false because it is not true that each student bought a single book that would keep
them occupied for two weeks. On the other hand (6) would be judged true in this
situation.

This example strongly suggests that dependent plurals are in fact number-neutral
with respect to each member of the licensor-set, i.e. the semantics of (6) is closer to
that of (8) than to (7):

(8) All the students bought one ormore books that would keep them fully occupied
during the next two weeks.

The contrast in truth conditions between (6) and (7) demonstrates that dependent
plurals are in one respect less restrictive than singular indefinites. However, it turns
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out that in another way they are more restrictive. Consider the following examples,
due to Zweig (2008, 2009) (cf. also De Mey 1981; Spector 2003 a.o. for similar
observations):

(9) a. Ten students live in New York boroughs.

b. Ten students live in a New York borough.

As Zweig (2008, 2009) points out, sentence (9a) can have a reading on which each
student lives in just one New York borough. A similar reading is readily available for
sentence (9b), on the low-scope interpretation of the indefinite object DP. However,
these examples differ in their truth conditions: (9b) would be true in a scenario where
all the students live in the same New York borough (e.g., Manhattan), while sentence
(9a) would be judged false under this scenario. For sentence (9a) to be true, at least two
of the students must live in different boroughs, i.e. more than one New York borough
must be involved overall. Zweig (2008, 2009) calls this requirement associated with
dependent plurals the Multiplicity Condition:

The Multiplicity Condition
More than one of the things referred to by a dependent plural must be involved
overall.

Any adequate analysis of dependent plurals must account both for their number-
neutrality on the ‘fine-grained’ level, i.e. with respect to each individual element in the
set quantified over by the licensor, and the multiplicity requirement that they introduce
on the ‘global’ level.

2.2 The licensors

Dependent plural readings of bare plural noun phrases can be licensed by a range of
quantificational DPs, as the following examples demonstrate:

(10) a. All of the girls were wearing hats.

b. Most of the girls were wearing hats.

c. Both girls were wearing hats.

In all these examples the subject and the object can be interpreted co-distributively.
For instance, (10b) will be judged true relative to a situation in which there was a
majority of girls each wearing one or more hats, as long as they were wearing more
than one hat overall.

Similarly, dependent plurals are licensed in the scope of floating all and both:

(11) a. The girls were all wearing hats.

b. The girls were both wearing hats.

On the other hand, dependent plural reading are not licensed in the scope of DPs
with the quantificational determiners (QDs) each and every (examples 12a–12b), and
in the scope of floating each (example 13):
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(12) a. Each girl was wearing hats.

b. Every girl was wearing hats.

(13) The girls were each wearing hats.

These sentences entail that each girl was wearing more than one hat. Discussing
similar data in Dutch, De Mey (1981) relates the contrast between examples like (10)
and (12) to the number feature associatedwith the subject DP—plural quantificational
DPs license dependent plurals, while singular quantificational DPs do not.

Given these facts, I will adopt the following generalization:

(14) Ban on Singular Licensors
DPs that involve complement NPs in the singular do not license dependent
plurals.3

2.3 The dependents

The class of DPs that allow a dependent plural interpretation in the scope of plural
quantificational DPs is quite broad and includes, apart from bare plural indefinites,
possessiveDPs (cf.DeMey1981), definites (cf.Roberts 1990), and specific indefinites:

(15) a. All the boys brought their fathers along.

b. Most of these men married the ex-wives of their neighbours.

c. Most of these groups live permanently along certain coastlines or bays and
can therefore be spotted regularly.4

All these examples can be interpreted co-distributively. This indicates that the avail-
ability of the dependent plural interpretation is independent of the definiteness and
specificity of the plural involved.

On the other hand, plural indefinites involving numerals and cardinality modifiers
such as several, a few, numerous, multiple etc. cannot be interpreted co-distributively
with plural quantificational DPs (cf. the observations in Zweig 2008, 2009):

3 An alternative would be to formulate the restriction in terms of agreement, e.g. ‘DPs that trigger singular
agreement on the verb do not license dependent plurals’. This would successfully rule out dependent plural
readings in examples like (12). However, there are cases which show that singular agreement is not in itself
an impediment to dependent plural interpretation:

(1) a. Everybody has cell phones these days.

b. “Everyone has guns down there, it’s like the wild West,” Byrnes said.

In both of these examples the quantificational licensor in subject position triggers singular agreement on
the verb, but a dependent plural interpretation is nevertheless available. Sentence (1a) will be judged true
if every individual in a contextually specified set owns one or more cell phones. Similarly, Byrnes’ claim
in (1b), taken from the Corpus of Contemporary American English (COCA, cf. Davies 2008), is most
naturally interpreted as stating that each individual in the relevant location has one or more guns, rather
than asserting that each individual has at least two guns. Under the generalization in (14), these examples
can be accounted for, assuming that synchronically the nominal roots in everyone and everybody do not
function as independent NPs, and thus do not themselves carry a number feature.
4 http://www.explore-the-big-island.com/swim-with-dolphins-in-hawaii.html.
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(16) a. Both students made two mistakes.

b. All the students made several mistakes.

Sentence (16a) will be judged true if each of the two relevant students made two
mistakes. However, it will be judged false if each of the two students made only one
mistake, i.e. the students made two mistakes in total. Similarly, (16b) will be judged
true iff each of the students made two or more mistakes. It is not sufficient for the total
number of mistakes made by the students to be greater than one.5

These data lead to the following generalization:6

(17) Ban on Numerals
Plural quantificational DPs scoping over plurals involving numerals and car-
dinality modifiers cannot be interpreted co-distributively with these plurals.

As pointed out in the Introduction, plural non-quantificational DPs (e.g. plural
definites and indefinites) are not subject to this restriction:

(18) Ten/the students made twelve mistakes.

This sentence has a distributive reading under which each (relevant) student made
ten mistakes. But it also has a non-scopal co-distributive reading, often referred to as
a cumulative reading (cf. Scha 1984; Does 1993; Landman 2000; Beck and Sauerland
2001, among many others). Under this reading (18) will be judged true if there is a
set of students X, a set of twelve mistakes Y, and each student in X made one or more
mistakes in Y, and each mistake in Y was made by a student in X. Crucially, on this
reading sentence (18) does not entail that each student made more than one mistake.

2.4 Interim summary

Table 2 summarizes the core observations. As before, checkmarks in the cells rep-
resent the availability of co-distributive interpretation for particular combinations of
licensors and dependents. Specifically, we must distinguish between three types of

5 Similar facts obtain for plurals in the scope of pluractional adverbs. Here, too, the co-distributive reading
disappears if the plural contains a numeral or cardinal modifier:

(i) John often wears several loud neckties.

In contrast to the examples discussed above in footnote 2, this sentence entails that John wears more than
one loud necktie on each relevant occasion.
6 It seems that some speakers allow a cumulative interpretation in examples like (i):

(i) All the students made 15 mistakes.

This would suggest that for these speakers, all allows for an alternative, non-distributive, interpretation,
perhaps as a homogeneity remover (cf. Križ 2016). Such cumulative readings appear to be more marginal
in (iia) and impossible in (iib):

(ii) a. The students all made 15 mistakes.

b. Most of the students made 15 mistakes.

More research is needed to better understand the nature of this variation.
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Table 2 Availability of co-distributive readings

Non-Q Plural Q Singular Q

Plurals without cardinal modifiers � � *

Plurals with cardinal modifiers � * *

licensors, which correspond to the columns in the table: non-quantificational plural
DPs, plural quantificational DPs (and adverbial licensors) and singular quantificational
DPs.Wemust also distinguish between two relevant types of dependents: plurals with-
out numerals and other types of cardinal modifiers and plurals with such modifiers.7

The contrast between the first two columns reflects the distinction between dependent
plurals and cumulative predication. The contrast between the last two columns reflects
the Ban on Singular Licensors. Finally, the contrast between the two cells in themiddle
column reflects the Ban on Numerals.

In the next section I briefly discuss three families of approaches to the semantics
of dependent plural constructions, arguing that they all face significant challenges.

3 Previous approaches to dependent plurals

Existing approaches to dependent plurals can be broadly divided into two categories,
based on whether they take dependent plural interpretations (e.g. 19a) to be a special
case of distributive interpretations (as in 19b) or a special case of cumulative (or
collective) interpretations (as in 19c).

(19) a. All the girls were wearing hats.

b. Every girl was wearing a hat.

c. Five girls were wearing five hats.

I will refer to the first class of approaches as ‘distributivity-based’ and the latter
as ‘cumulativity-based’. The third approach that I will consider, which I refer to as
the ‘mixed’ approach, assumes that dependent plural readings in examples like (19a)
arise in the context of interpretations which combine the semantics of cumulativity
and distributivity.

3.1 Distributivity-based approaches

The first class of accounts attempts to assimilate dependent plural constructions to
garden variety distributive predication by assuming that the plural number feature on
the dependent is somehow ‘defective’ or ‘fake’ in that it is not semantically interpreted
as a plural.

7 I will occasionally refer to plurals without cardinal modified as bare plurals, although as we have seen
this class also includes plurals which are not traditionally considered bare, e.g. plural definites, specific
indefinites with certain, etc.
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The first account of this type was put forward by Partee (1975), who suggests that
the numbermarking on the object in (19a)may result from the application of a syntactic
agreement rule, which also determines the number agreement on the verb. Such a rule
would apply to a syntactic structure such as (20), and result in plural marking both on
the verb was and on the direct object a hat.

(20) [All the girls]N P + [was wearing a hat]V P .

Subsequently, accounts along these lines have been developed by Kamp and Reyle
(1993) and Spector (2003).8

Distributive approaches are able to account for the co-distributive interpretation
characteristic of dependent plurals. However, they accomplish this by assuming that
the plural feature on the dependent is not interpreted, and consequently they fail to
account for the overarching Multiplicity Condition associated with dependent plurals.
For instance, in the following example the bare plural New York boroughs would be
analysed as semantically singular/number-neutral. This would incorrectly predict that
this sentence should be true in a situation where all the students live in the same New
York borough:9

(21) All the students live in New York boroughs.

3.2 Cumulativity-based approaches

A more common analysis of dependent plurals assumes that they are mereolog-
ically plural, i.e. refer to non-atomic sums/non-singleton sets of individuals. The
co-distributive relation between the dependent and the licensor is then analysed as
an instance of cumulative predication. Zweig (2008, 2009) provides the most com-
prehensive exposition of this type of analysis (see also Bosveld-de Smet 1998; Swart
2006; Beck 2000 for similar proposals).10 Zweig’s formalization is based on Land-
man’s (2000) theory of plurality, with the dependent plural reading of sentence (22a)
represented as in (22b):

(22) a. Five boys flew kites.

b. ∃e∃X∃Y [|X | = 5 ∧ *boy(X) ∧ |Y | > 1 ∧ *kite(Y ) ∧ *flew(e) ∧
*agent(e)(X) ∧ *theme(e)(Y )]

Here, capital letters stand for variables which range over both atomic and non-
atomic individuals. The star * represents Link’s (1983) pluralization operator when it

8 Kamp and Reyle (1993) propose a rule according to which bare plurals can introduce number-neutral
discourse referents in the context of another plural noun phrase. Spector (2003) proposes an analysis
of dependent readings of French des-indefinites according to which they carry a morphological, but not
semantic, plural feature. Themorphological plural is taken to be licensed in the scope of an element carrying
a semantic plural feature.
9 Spector (2003) seems to be aware of this problem, but does not provide a solution within his account.
10 De Mey (1981) assumes that both the licensor and the dependent are interpreted collectively, and thus
‘the dependent reading is a special subcase of the collective–collective reading’ (cf. also Scha 1984). This
proposal is conceptually similar to cumulativity-based analyses in that dependent plurals are taken to be
semantically plural, but does not invoke the formal mechanism of cumulative predication.
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combines with a one-place predicates (e.g. flew), and the cumulative operator when
it combines with two-place predicates (e.g. theme). These can be defined as follows
(cf. Krifka 1989; Sauerland 1998; Sternefeld 1998, a.o.):

(23) a. *P(x) ↔ ∃x1, . . . , xn . x1 ⊕ . . . ⊕ xn = x ∧ P(x1) ∧ . . . ∧ P(xn)

b. *Q(x)(y) ↔ ∃x1, . . . , xn . ∃y1, . . . , yn . x1 ⊕ . . . ⊕ xn = x ∧
y1 ⊕ . . . ⊕ yn = y ∧ Q(x1)(y1) ∧ . . . ∧ Q(xn)(yn),
where P is a one-place predicate and Q is a two-place predicate.

According to these definitions, (22b) will be true in a wide range of scenarios where
there is a flying event whose total sum of agents is a sum of five boys, and whose total
sum of themes is a sum of more than one kite. In particular, this interpretation is
compatible with a co-distributive scenario where each of the five boys flew one kite.

Zweig (2008, 2009) integrates this account of dependent plurals with the indepen-
dently supported assumption that bare plurals in general are underlyingly number-
neutral (cf. Krifka 2004; Sauerland et al. 2005; Spector 2007). The multiplicity
requirement associated with the dependent (represented by the conjunct |Y | > 1
in 22b) is analysed as a scalar implicature which arises in competition with the corre-
sponding singular indefinite. Zweig’s approach is thus able to account for the fact that
in downward entailing contexts the multiplicity implicature associated with dependent
plurals does not arise. Consider the following example from Zweig (2009):

(24) John denied that the carpenters built rafts.

Sentence (24) is interpreted as ‘John claimed that the carpenters did not build any
rafts’, rather than ‘John claimed that the carpenters did not build more than one raft’.
Suppose John is testifying in court. If the carpenter did build exactly one raft, and (24)
is true, then it must be the case that John gave a false testimony.

Zweig’s (2008, 2009) analysis successfully accounts both for the co-distributive
interpretation and the Multiplicity Condition associated with dependent plurals, as
well as for the status of the Multiplicity Condition as an implicature. However, Zweig
does not provide an account of the contrast between singular and plural quantificational
DPs in their role as licensors (cf. the Ban on Singular Licensors in 14), or the contrast
between bare plurals and plurals with numerals and cardinality modifiers in their role
as dependents (cf. the Ban on Numerals in 17).11

The Ban on Numerals poses an especially pertinent challenge for cumulativity-
based analyses of dependent plurals. Indeed, if plural quantificational DPs can license
dependent plurals and the semantics of such constructions is cumulative, then we a
priori expect cumulative interpretations to be possible between plural quantificational
DPs and DPs involving numerals and other cardinal modifiers. After all, the most
garden variety examples of cumulative interpretations involve DPs with numerals,
as in (25a). In fact, as we have seen, examples like (25b) cannot be interpreted co-
distributively:

11 In fact, Zweig (2008) does put forward an account of the contrast between dependent plural and cumu-
lative readings under all, however it does not deliver the correct results as shown in Champollion (2010b:
204–205).
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(25) a. Ten safary participants saw thirty zebras.

b. All the safari participants saw thirty zebras.

Clearly, something more needs to be said about the semantics of quantificational
items like all andmost. I will discuss two solutions to this problem, both of which can
be viewed as extensions of Zweig’s proposal. The first was proposed by Champollion
(2010b), and later revised in Champollion (2017). The second is due to Ivlieva (2013).
I will discuss them in turn.

Champollion (2010b, 2017) proposes that the semantic contribution of all amounts
to a presupposition formulated in terms of Stratified Reference. The following is the
interpretation of the prenominal (i.e. non-floating) all in the agent position as given in
Champollion (2017), and the definition of the relevant type of Stratified Reference:12

(26) a. �allagent� = λy.λV〈vt〉.λe : SR*agent,ε(*agent(e))(V ).[V (e) ∧ *agent(e) = y]

b. SR*agent,ε(*agent(e))(V )
def= ∀e′. V (e′) → e′ ∈ *λe′′. (V (e′′) ∧

ε(*agent(e))(*agent(e′′)))

(V has stratified reference along the agent dimension with granularity
ε(*agent(e)) iff every event in V can be divided into one or more events
which are also in V and whose agents are each small in number compared
to the agent of e.)

The idea is that DPs involving all only combine with predicates that are distributive
down to (relatively) small sub-groups of participants (cf. Dobrovie-Sorin 2014; Kuhn
2020). More precisely, a DP involving all in the agent position (or the floating all
which applies to the agent) only combines with an event predicate P if any event
in P can be represented as a sum of events which are also in P and whose agents
are relatively small sums of individuals.13 In the simplest case, a DP involving all
combines with a lexically distributive predicate such as smile:

(27) All the boys smiled.

The predicate smile satisfies the condition in (26b) because any smiling event can
be divided into smaller smiling sub-events whose agents are minimal, i.e. atomic.

Consider now example (25b), which does not have a cumulative reading. In this
example, the subject combines with the following event predicate:

(28) λe[*see(e) ∧ *zebra(*th(e)) ∧ |*th(e)| = 30]
This event predicate does not satisfy the Stratified Reference presupposition: not

every event of seeing thirty zebras is the sum of one or more events each of which

12 Note that following Landman (2000), Champollion assumes that theta-roles are (partial) functions of
type 〈ve〉, which map an event to the individual that bears a certain role in that event.
13 Champollion (2010b) assigns a slightly different presupposition to all, which requires the event predicate
to have stratified reference with granularity Atom, i.e. every event in the denotation of the predicate must
be dividable into one or more events which are also in the denotation of that predicate and whose agents
(themes, etc.) are atomic. This difference is not important for the current discussion.
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has a relatively small agent and is itself an event of seeing thirty zebras. For instance,
suppose there are three safari participants in the model, who each saw 10 zebras (and
all the zebras were different). Then there is a cumulative event e of them seeing 30
zebras, i.e. (28) is true of e. However, event e cannot be divided into sub-events which
are also events of seeing 30 zebras, whose agents have a cardinality smaller than 3. In
fact there are no sub-events in e which are also events of seeing 30 zebras and which
are distinct from e.

Thus, the unavailability of a cumulative reading in (25b) is explained by the fact
that the denotation of the VP does not satisfy the presupposition imposed by all.14

What about dependent plurals? Consider the following example:

(29) All the safari participants saw zebras.

Champollion follows Zweig (2008, 2009) in analysing dependent plurals as seman-
tically number-neutral, with the multiplicity requirement added as a scalar implicature
at a stage preceding the existential closure of the event variable. The key to Cham-
pollion’s account of examples like (29) is the assumption that the presupposition
associated with all is checked against the denotation of the VP without the added
multiplicity implicature, e.g. the presupposition is checked before the implicature is
added. Sentence (29) is interpreted in the following way:

(30) ∃e[*see(e) ∧ *ag(e) = ⊕
safari.participant ∧ *zebra(*th(e)) ∧ |*th(e)| > 1]

Presupposition: SR*agent,ε(*agent(e))(λe[*see(e) ∧ *zebra(*th(e))])
(True iff every event in which one or more zebras are seen can be divided into
sub-events such that each sub-event is an event of seeing one or more zebras
whose agent is small compared to the agent of e.)

According to these truth conditions, sentence (29) asserts the existence of a cumula-
tive event whose cumulative agent is the maximal sum of safari participants and whose
cumulative theme is a non-atomic sum of zebras. The condition |*th(e)| > 1 in (30)
represents the multiplicity implicature, and is not included in the denotation of the VP
when the presupposition is checked. In the absence of themultiplicity requirement, the
event predicate denoted by the VP satisfies the Stratified Reference presupposition:
any event of seeing one or more zebra can be divided into sub-events of seeing one
or more zebra involving minimal atomic agents, which would count as small com-
pared to the plural, non-atomic agent in (29). Thus sentence (29) is predicted to have
a cumulative interpretation.

Thus, Champollion’s (2010b, 2017) presuppositional approach to the semantics of
all accounts for the lack of cumulative readings between all-DPs and DPs involv-
ing unmodified numerals without giving up the central tenet of the mereological
approach—that dependent plurality is essentially a sub-type of cumulativity.15

14 Sentence (25b) does have a distributive reading on which each of the safari participants saw 30 zebras.
This reading is derived by attaching a silent distributivity operator to the predicate. This yields a new
predicate that is distributive down to atomic agents and thus satisfies the presupposition imposed by all, see
Champollion (2017: 263–264).
15 Champollion’s (2010b, 2017) account of the contrast between all and every/each is less clearlymotivated.
In Champollion’s theory, every and each encode stratified reference down to sub-events involving atomic
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However, the presupposition that Champollion (2010b, 2017) ascribes to all (cf.
26) turns out to be too strong, ruling out dependent plural readings in certain contexts
when they are in fact available. Consider the following example:

(31) All the students handed in their papers.

If the pronoun is interpreted as a variable bound by the subject, this sentence
has a dependent plural interpretation whereby each student handed in their paper
(or papers), and more than one paper was handed in overall. This is unexpected under
Champollion’s account because the predicate that the subject DP combines with does
not satisfy the Stratified Reference presupposition imposed by all:

(32) λe. [*hand-in(e) ∧ *th(e) = ⊕
(λy.[*paper(y) ∧ *POSS(y)(

⊕
student)])]

This predicate identifies a set of handing-in events whose theme is the sum of the
students’ papers. Suppose that we have an event where each student handed in their
own paper. Then there are no sub-events within (and distinct from) that event which
are also events of handing in the sum of all the student’ papers. This entails that there is
no way to represent that event as a sum of sub-events of handing in the students’ papers
whose agents are small relative to the whole sum of students, i.e. the presupposition
in (26) is not satisfied and the sentence in (31) is predicted to lack a dependent plural
reading, contrary to fact.

Note however, that the binding relation between the agent of the event and the
possessor of the theme is not represented in (32). We may wonder if solving this
problem may also help resolve the issue with the lack of Stratified Reference. In turns
out that it doesn’t.

One way to make all’s presupposition sensitive to the binding relation between the
agent and the possessor is to re-define the semantics of all in such a way that it takes
a relation between individuals and events rather than an event predicate as it’s second
argument:

(33) a. �all� = λy.λV〈e, vt〉.λe : SRε(V ).[V (y)(e)]
b. SRε(V )

def= ∀x ′.∀e′. V (x ′)(e′) → 〈x ′, e′〉 ∈ *λx ′′.λe′′. (V (e′′) ∧
ε(y)(x ′′))

When applied to a relation between individuals and events V , Stratified Reference
as defined in (33b) requires that any pair of individuals and events 〈x, e〉 in V must be
decomposable into a set of pairs 〈x1, e1〉, 〈x2, e2〉, . . . , 〈xn, en〉, such that:

(34) a) x1 ⊕ x2 ⊕ . . . ⊕ xn = x and e1 ⊕ e2 ⊕ . . . ⊕ en = e,
b) 〈x1, e1〉 ∈ V , 〈x2, e2〉 ∈ V , . . . , 〈xn, en〉 ∈ V , and
c) x1, x2, . . . , xn are small relative to x .

Footnote 15 continued
participants. To account for the fact that these items block dependent plural readings, Champollion stipulates
that the multiplicity implicature associated with bare plurals must be calculated (‘is trapped’) in their
distributive scope, leaving open the question of how to motivate this assumption.
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Assuming that the subject DP in (31) quantifier-raises from its base thematic posi-
tion, it will combine with the following individual-event relation, which now includes
the binding relation between the agent of the handing-in event and the possessor of
the papers:

(35) λx .λe. [*hand-in(e)∧*ag(e) = x ∧*th(e) = ⊕
(λy.[*paper(y)∧ *POSS(y)

(x)])]
At first glance, this relation has a better chance of satisfying the Stratified Reference

presupposition than the predicate in (32). Indeed, if we take a sum of students and a
sum-event where each of the students handed in their own paper, this pair will satisfy
the conditions listed in (34), i.e. we can decompose this pair into a set of pairs of the
form 〈s, e〉, where s is an individual student and e is the event of that student handing
in their paper. However, there are other pairs of individuals and events in (35) that do
not satisfy these requirements. Suppose we have a sum of students S, and each student
in S handed in a paper by another student in S. Let the sum of these events be E . Then
〈S, E〉 is in (35) because E is a sum of handing-in events whose cumulative agent
is S and whose cumulative theme is the sum of papers that stand in a (cumulative)
possessive relation with S. The pair 〈S, E〉 would not, however, satisfy the conditions
in (34), because the individual handing-in events in E (whose agents are the individual
students) are not in fact events of handing in one’s own paper(s). This means that the
relation in (35) does not satisfy the Stratified Reference presupposition in (33b), which
again incorrectly rules out the dependent plural reading in (31).16

I will now move on to an alternative account of the Ban on Numerals proposed by
Ivlieva (2013, 2020). Ivlieva’s approach is more successful in accounting for depen-
dent plural readings in examples like (31). I will argue, however, that it too faces
problems in delineating the precise range of available co-distributive interpretations.

3.3 Mixed approach

Building on the analysis of dependent plurals in Zweig (2009), Ivlieva (2013, 2020)
proposes an interpretation forall that explicitly combines the semantics of cumulativity
and distributivity:

16 Ivlieva (2020) provides another argument that Champollion’s (2010b, 2017) theory is too restrictive
based on examples involving so-called mixed predicates, i.e. predicates that have collective readings which
can be distinguished from their distributive readings, such as eat a pizza (cf. Link 1983; Scha 1984; Roberts
1990; Dowty 1987; Winter 2000, 2001, a.o.). Ivlieva notes that examples like (i) allow for a dependent
plural interpretation:

(i) All the boys ate pizzas.

This sentence will be judged true if, for example, each of the boys ate a single pizza. However, it turns out
that the event predicate that all combines with in (i) does not satisfy the Stratified Reference presupposition:

(ii) λe[*eat(e) ∧ *pizza(*th(e))]
Take an event of several boys eating a single pizza together. This event is itself an event of eating one or
more pizzas, but cannot be represented as a sum of smaller events of eating one or more pizzas. This means
that the predicate in (ii) lacks Stratified Reference, and the sentence in (i) is incorrectly predicted to lack a
dependent plural interpretation.
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(36) �all the boys� = λP〈e,vt〉.λe. P(σ x .*boy(x))(e) ∧ ∀y [y ≤ σ x .*boy(x) ∧
atom(y) → ∃e′ [e′ ≤ e ∧ P(y)(e′)]]

The interpretation of (37a) before event closure is (37b):

(37) a. All the boys flew kites.

b. λe.∃z [*kite(z) ∧ *fly(σ x .*boy(x))(z)(e) ∧ ∀y [y ≤ σ x .*boy(x) ∧
atom(y) → ∃e′ [e′ ≤ e ∧ ∃w [*kite(w) ∧ *fly(y)(w)(e′)]]]]

This predicate will be true of sums of flying events such that its cumulative agent
is the sum of all the boys and its cumulative theme is a sum of kites, and each boy is
the agent of a flying sub-event whose theme is a sum of kites. At this point the event
predicate in (37b) is compared to the alternative in (38), obtained by replacing the bare
plural object with a singular indefinite:

(38) λe.∃z [*kite(z) ∧ atom(z) ∧ *fly(σ x .*boy(x))(z)(e) ∧ ∀y [y ≤ σ x .*boy(x) ∧
atom(y) → ∃e′ [e′ ≤ e ∧ ∃w [*kite(w) ∧ atom(w) ∧ *fly(y)(w)(e′)]]]]

The alternative in (38) is stronger than (37): any event where each of the boys flew
the same kite is an event of the boys flying one or more kites, with each boy flying one
or more kites. Hence, the alternative in (38) is negated, giving rise to a strengthened
interpretation, which after event closure gives (39) as the truth conditions of sentence
(37a):

(39) ∃e.∃z [*kite(z)∧¬atom(z)∧*fly(σ x .*boy(x))(z)(e)∧∀y [y ≤ σ x .*boy(x) ∧
atom(y) → ∃e′ [e′ ≤ e ∧ ∃w [*kite(w) ∧ *fly(y)(w)(e′)]]]]

These truth conditions adequately capture the dependent plural reading of (37a):
(37a) is predicted to be true iff there is a flying event whose cumulative subject is the
maximal sum of boys and whose cumulative theme is a non-atomic sum of kites, and
for each individual boy there is a sub-event of that boy flying one or more kites, i.e.
each boy must fly one or more kites, and more than one kite must be flown overall.17

This analysis correctly predicts that in contrast to (37a), sentence (40a) will not
have a co-distributive reading:

(40) a. All the boys flew 10 kites.

b. ∃e.∃z [*kite(z) ∧ |z| = 10 ∧ *fly(σ x .*boy(x))(z)(e) ∧ ∀y [y ≤
σ x .*boy(x) ∧ atom(y) → ∃e′ [e′ ≤ e ∧ ∃w [*kite(w) ∧ |w| =
10 ∧ *fly(y)(w)(e′)]]]]

According to the truth conditions in (40b), sentence (40a) will be true iff there is a
flying event whose cumulative agent is the sum of all the boys and whose cumulative

17 Like Zweig (2008, 2009), Ivlieva assumes that scalar implicatures can be calculated at different levels
of the structure. However, she rejects the principle, adopted by Zweig, that only the strongest resulting
interpretation is chosen as the meaning of the sentence. Consequently, her system generates two further
readings for sentence (37a): a distributive reading, whereby each boy flew more than one kite (in case the
implicature is calculated below the subject), and a reading whereby there is an event of the boys flying one
or more kites, but there is no event of the boys flying the same kite (in case the implicature is calculated
above the event closure).
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theme is the sum of ten kites, and each boy is the agent of a flying sub-event whose
theme is, again, a sum of ten kites. In other words, sentence (40a) is predicted to be
true only if each of the boys flew ten kites. A co-distributive interpretation is blocked
thanks to the presence of a distributive component in the semantics of all.

This analysis is also able to handle examples like (31), repeated here:

(41) All the students handed in their papers.

This example is predicted to be true iff there is an event of all the students cumula-
tively handing in all their papers, which consists of sub-events where each student x
hands in x’s paper(s). This appears to be correct.18 There is however a major empiri-
cal challenge to both Champollion’s and Ivlieva’s theories, to which I turn in the next
section.

3.4 The challenge of modified numerals

As noted above, a major challenge for cumulativity-based approaches to dependent
plurals is to account for the Ban on Numerals, i.e. for the unavailability of co-
distributive readings between (higher scoping) DPs involving plural quantifiers like all
and (lower scoping)DPs involving numerals and other cardinalitymodifiers.Champol-
lion (2010b, 2017) tackles this problem by equipping all with a Stratified Reference
presupposition, while Ivlieva (2013, 2020) adds a distributive component to all’s
assertive semantics. These solutions succeed in ruling out co-distributive readings in
examples like (25b) and (40a), which involve all-DPs scoping over noun phrases with
unmodified numerals. However, both of these approaches make incorrect predictions
when it comes to sentences like (42):

(42) All the students made fewer than 10 mistakes.

The event predicate in (43) satisfies the Stratified Reference presupposition: any
large event of making fewer than ten mistakes can be represented as a sum of multiple
sub-events of making fewer than ten mistakes with minimal (atomic) agents.

(43) λe[*make(e) ∧ *mistake(*th(e)) ∧ |*th(e)| < 10]
Thus, Champollion’s approach predicts that fewer than n DPs should pattern with

bare plurals in allowing cumulative readings with all-DPs. Sentence (42) should then
have a reading on which each student made one or more mistakes and fewer than 10
mistakes were made overall.

18 Ivlieva’s (2013) account is also able to capture the contrast between all and every. Whereas the semantics
of all is taken to include both a cumulative and a distributive component, the semantics of every is purely
distributive:

(i) a. �every boy� = λP〈e,vt〉.λe.∀y [*boy(y) ∧ atom(y) → ∃e′ [e′ ≤ e ∧ P(y)(e′)]]
b. Every boy flew kites.

Relying on a number of specific assumptions about the mechanics of implicature calculation, Ivlieva (2013)
is able to derive the fact that sentences like (ib) only allow a distributive reading (i.e. each boy must have
flown more than one kite).
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Ivlieva makes a similar prediction. Her system generates the following interpreta-
tion for sentence (42):

(44) ∃e.∃z [*mistake(z) ∧ |z| < 10 ∧ *make(σ x .*student(x))(z)(e) ∧ ∀y [y ≤
σ x .*student(x) ∧ atom(y) → ∃e′ [e′ ≤ e ∧ ∃w [*mistake(w) ∧ |w| <

10 ∧ *make(y)(w)(e′)]]]]
According to these truth conditions, sentence (42) will be judged true iff there

is an event where the students cumulatively made fewer than 10 mistakes, and each
individual studentmade fewer than 10mistakes. Once again, sentence (42) is predicted
to have a reading where fewer than 10 specifies the total number of mistakes made by
the students. These predications are not borne out.

To see this clearly, consider the following scenario: A student competition is being
held. The students are divided into teams, and each student is asked to spell several
words. For each team, the number of mistakes made by the students on that team
is summed up, giving the total sum of mistakes for the whole team. To succeed a
team must make fewer than 10 mistakes in total. Now, suppose someone points at a
particular team and asks the question in (45):

(45) Did that team succeed?

Now consider the sentence in (46):

(46) Well, all the students on that team made fewer than 10 mistakes.

Intuitively, sentence (46) cannot function as an informative answer to the question
in (45)— it cannot be understood as providing the information about the total number
of mistakes the team made, it can only be read as stating that each of the students
made fewer than 10 mistakes. This indicates that fewer than n DPs pattern with DPs
involving unmodified numerals in that they do not allow cumulative readings in the
scope of all, contra Champollion’s and Ivlieva’s predications.19

19 The scale of the challenge posed by modified numerals becomes even more apparent if we consider
expressions like one or more, one or several or a certain number of, e.g.:

(i) a. The students are shown one or more French movies.

b. The students are all shown one or more French movies.

On the standard approach to numerals as predicates of sums, French movies is coextensive with one or
more French movies. Then, any theory that adopts such an approach and, furthermore, assigns a cumulative
interpretation to (ia), should allow one for (ib) as well, i.e. it will predict that in (ib) one or more can
be understood as specifying the total number of French movies watched by the students. Intuitively this
is incorrect — the numeral in (ib) must be understood distributively, as specifying the number of French
movies watched by each student. From the point of view of truth conditions, the cumulative and distributive
interpretations of (ib) are equivalent. Nevertheless, there is evidence that (ib) can in fact be only understood
distributively. Suppose groups of students are participating in a psychological experiment which examines
the effect of watching French movies on cognitive processes. In the experiment, each student is shown one
(and only one) French movie, and then subjected to a serious of cognitive tests. In some groups, all the
students are shown the same movie, in other groups the students are shown different movies. In this context,
(ia) (on its cumulative reading) adequately describes a feature of the experiment. Sentence (ib), on the other
hand, is misleading, because it suggests that there may be a student who is shown more than one French
movie. This indicates that (ib) must indeed be interpreted distributively.
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In a recent paper, Kuhn (2020) has proposed to solve this puzzle by augmenting
Champollion’s account with a novel approach to the semantics of measurement predi-
cates, including numerals. The idea is that measurement predicates introduce a special
type of event which relates the entity being measured (stuff(e)) to the correspond-
ing measurement (μ(e)). A VP containing a noun phrase with a numeral is taken to
denote a predicate of events which are sums of an ‘action event’ (e.g. make-events)
and a measurement (number) event, e.g.:

(47) �make fewer than 10 mistakes� =
λe. ∃e′, e′′ [e = e′ ⊕ e′′ ∧ *make(e′) ∧ *mistake(*th(e′)) ∧ *number(e′′) ∧
*th(e′) = *stuff(e′′) ∧ ∃n < 10 [μ(e′′) = n]]

Kuhn argues that thanks to the inclusion of the measurement event, the predicate
in (47) no longer has Stratified Reference. Suppose we take a sum consisting of (a) an
event e′ where three students cumulativelymade 7mistakes (studentAmade 1mistake,
student B made 2 mistakes, and student C made 4 mistakes), and (b) a number-event
e′′ that measures the total number of mistakes made in e′ (μ(e′′) = 7). Then, the
event predicate in (47) is true of e = e′ ⊕ e′′, however there is no way to represent
this event as a sum of sub-events which also satisfy (47) and have small agents. Take
the sub-events in e′ with minimal agents (students A, B, and C) summed up with the
corresponding measurement events (e1 = e′

1 ⊕ e′′
1 , e2 = e′

2 ⊕ e′′
2 , e3 = e′

3 ⊕ e′′
3),

these sums will also be witnesses of the predicate in (47). However, it turns our that
their sum (e1 ⊕ e2 ⊕ e3) is not actually equal to e. This is because the sum of the
small measurement events is not the same as the measurement corresponding to the
big event (e′′

1 ⊕ e′′
2 ⊕ e′′

3 = e′′). Indeed, the cumulative measure of e′′
1 ⊕ e′′

2 ⊕ e′′
3 is

the mereological sum of three degrees (μ(e′′
1 ⊕ e′′

2 ⊕ e′′
3) = 1 ⊕ 2 ⊕ 4), while the

measure of e′′ is an atomic degree (μ(e′′) = 7). Since the predicate in (47) does not
have Stratified Reference, it will not be directly compatible with a subject involving
all, thus ruling out a co-distributive interpretation in (42).

While clearly a step forward, Kuhn’s analysis does not fully solve the puzzle of
modified numerals. The system still overgenerates co-distributive readings in contexts
where they are not in fact possible. Consider first how the predicate in (47) is derived
compositionally. Kuhn (2020) does not discuss the details, but it seems fair to assume
that the function of constructing the sum event is part of the semantics of the noun
phrase:20

(48) �fewer than 10 mistakestheme� =
λV(vt).λe. ∃e′, e′′ [e = e′⊕e′′ ∧ V (e′) ∧ *mistake(*th(e′)) ∧ *number(e′′) ∧
*th(e′) = *stuff(e′′) ∧ ∃n < 10 [μ(e′′) = n]]

Consider now the following example:

20 In Champollion’s (2010b, 2017) system thematic roles are introduced by separate heads of type ve. (48)
can be generalized as follows:

(i) �fewer than 10 mistakes� =
λθ(ve).λV(vt).λe. ∃e′, e′′ [e = e′ ⊕ e′′ ∧ V (e′) ∧ *mistake(θ(e′)) ∧ *number(e′′) ∧ θ(e′) =
*stuff(e′′) ∧ ∃n < 10 [μ(e′′) = n]]
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(49) All the kids received gift bags containing fewer than 10 candies.

In this sentence, the modified numeral (fewer than 10) can only be understood
as specifying the number of candies received by each individual kid, not the total
number of candies in all the gift bags received by the kids. Assuming a standard
semantic analysis of restrictive relative clauses, this fact is problematic for Kuhn’s
account. The reason is that the measurement event introduced by the numeral will be
summed up with the containing-event inside the relative clause, and will not influence
the relevant properties of the higher event predicate:

(50) �receive gift bags containing fewer than 10 candies� =
λe [*receive(e) ∧ *bag(*th(e)) ∧ ∃e2 [*loc(e2) = *th(e) ∧ ∃e′, e′′ [e2 =
e′ ⊕ e′′ ∧ *contain(e′) ∧ *candy(*th(e′)) ∧ *number(e′′) ∧ *th(e′) =
*stuff(e′′) ∧ ∃n < 10 [μ(e′′) = n]]]]

This predicate has StratifiedReference despite the presence of ameasurement event,
because this measurement event is not summed up with the receiving-event variable,
but rather with the containing-event variable introduced by the verb in the relative
clause. Any cumulative event that satisfies (50) (i.e. an event of receiving gift bags
which cumulatively contain fewer than 10 candies) will be a sum of smaller sub-events
which also satisfy (50) and have minimal agents.21

Thus, unless some additional mechanism is introduced that would ‘propagate’ the
measurement event up from inside the relative clause in examples like (49), Kuhn’s
analysis does not fully solve the problem that modified numerals pose to cumulativity-
based approaches to dependent plurals.22

21 I am disregarding collective readings here, which pose an independent problem for the Stratified Refer-
ence account, cf. footnote 16.
22 There is another, more technical, issue with Kuhn’s (2020) proposal. Take the example in (ia) with the
event predicate in (ib):

(i) a. All the students watched fewer than 2 movies.

b. λe. ∃e′, e′′ [e = e′ ⊕ e′′ ∧ *watch(e′) ∧ *movie(*th(e)) ∧ *number(e′′) ∧ *th(e′) =
*stuff(e′′) ∧ ∃n < 2 [μ(e′′) = n]]

Since the only natural number below 2 is 1, the predicate in (ib) will only include events where all the
agents watched the same movie. (If we decide to include a bottom element into the domain of entities, as
argued by Bylinina and Nouwen (2018), we can replace fewer than 2 with fewer than 2 and more than
0.) It then follows, that if we take a cumulative event satisfying (ib), it will always be divisible into a set
of sub-events satisfying (ib) and involving minimal agents. All these sub-events will have the same theme
(since all the agents watched the same movie), and consequently the same measurement event. In other
words, the predicate in (ib) retains Stratified Reference despite the presence of a modified numeral, which
means that sentence (ia) should have a reading where fewer than 2measures out the total number of movies
watched by the students. Furthermore, sentence (ia) should contrast with (ii), where the modified numeral
is predicted to lack this ‘cumulative measurement’ interpretation:

(ii) All the students watched fewer than 3 movies.

As far as I can see, these predictions are not borne out.
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3.5 Summing up

We have seen that existing approaches to the semantics of dependent plurals suf-
fer from significant drawbacks. Distributivity-based approaches successfully account
for the contrasting properties of bare plurals and plurals with numerals under plural
quantifiers, but fail to derive the overarching Multiplicity Condition associated with
dependent plurals. Cumulativity-based approaches, as well as the mixed approach,
have the opposite problem. They successfully account for the Multiplicity Condition,
but fail to explain the Ban on Numerals.

From the point of view of the licensors, a successful solution should account for
the ‘distributive flavour’ of plural quantifiers like all and most, and at the same time
explain how this type of distributivity is different from the distributivity of singular
quantifiers like each and every (cf. the Ban on Singular Licensors).

From the point of view of the dependents, what is needed is a unified semantic
account of cardinality modifiers that would explain the broad contrast between ‘bare’
and (many different types of) ‘measured’ plurals. An account along these lines has
recently been proposed by Kuhn (2020). In what follows, I present an alternative way
of fleshing out this intuition, which is able to overcome the limitations of Kuhn’s
proposal.

4 Semantic framework: core features

The analysis I will propose is couched within an extended version of Plural Compo-
sitional DRT (PCDRT) of Brasoveanu (2007, 2008), which is itself an extension of
Muskens’ (1996) Compositional DRT. The main innovation of PCDRT in comparison
with Muskens’ (1996) system is the introduction of plural information states (or info
states), as originally proposed by van den Berg (1994, 1996) (see also Nouwen 2003;
Brasoveanu and Farkas 2011;Henderson 2014 for applications of related frameworks).
A plural information state is a set of assignments which can be represented as a matrix
where the rows correspond to individual assignments, and the columns correspond
to variables, or discourse referents (drefs). The cells in this matrix contain values of
discourse referents with respect to assignments, e.g. a cell in row im and column un
will store the value of the dref un with respect to the assignment im :
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(51)

Info state I . . . u1 u2 u3 . . .

i1 . . . x1 (= u1i1) y1 (= u2i1) z1 (= u3i1) . . .

i2 . . . x2 (= u1i2) y2 (= u2i2) z2 (= u3i2) . . .

i3 . . . x3 (= u1i3) y3 (= u2i3) z3 (= u3i3) . . .

. . . . . . . . . . . . . . . . . .

Thus, a plural info state stores multiple values for each dref (the columns in 51),
and the correspondence between the values of multiple drefs (the rows in 51).

My aim in what follows is to demonstrate that this semantic framework, initially
proposed to account for quite different types of phenomena, is perfectly suited to
represent the contrasts and generalizations observed in the realm of (co-)distributive
readings. Informally, a framework like PCDRT allows us to talk about three distinct
types (or levels) of multiplicity in the semantics of natural language: mereological
plurality on the level of the individual values of the drefs (e.g. x3 in (51) can stand
for a non-atomic sum of individuals); multiplicity of values of a dref within a single
info state, or state-level plurality (e.g. in (51) x1, x2 and x3 are all values of dref u1 in
info state I , but they can stand for different individuals); and distributive multiplicity,
i.e. multiplicity of values of a dref across multiple info states (analogous to having
multiple values for a variable relative to different assignments in familiar semantic
frameworks). Two of these levels, mereological plurality and distributive multiplicity,
have correspondents in standard semantic frameworks without plural info states. But,
as I will argue, it is the addition of a third, intermediate, level of multiplicity in systems
like PCDRT that gives them the expressive power necessary to account for the full
range of contrasts related to (co-)distributivity in natural language.

Specifically, I will argue that the contrast between bare plurals and plurals involv-
ing cardinality modifiers amounts to a contrast between state-level and mereological
plurality. On the other hand, the contrast between plural and singular quantifiers is
best understood in terms of two types of distributive operators: those that introduce
state-level plurality by distributing the values of a dref across assignments in a single
info state (I will refer to this asweak distributivity), and those that distribute the values
of a dref across multiple info states (strong distributivity). All the generalizations dis-
cussed above are accounted for by the combination of these two assumptions.23 I will
start by presenting the core features of the semantic framework, and refer the reader to
Brasoveanu (2007, 2008) for a more detailed exposition of the formal underpinnings.

4.1 Types

Brasoveanu’s (2007, 2008) PCDRT has three basic types: t (truth-values); e (atomic
and non-atomic individuals); and s (variable assignments). The domain of type t is the
set of two values {0,1}. Variable assignments are modelled as basic entities of type s.
The domain of type e, De, is the powerset of a non-empty set of entities IN minus the
empty set: De = ℘(IN)\∅. The sum operation is identified with set union: the sum

23 A previous version of this analysis was presented in Minor (2017). A conceptually similar account of
the contrast between bare and ‘measured’ plurals was later independently proposed by Champollion et al.
(2017), focusing primarily on the properties of for-adverbials. I will not discuss for-adverbials in this paper.
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xe ⊕ ye is the union of sets x and y. Similarly, the part-of relation ≤ over individuals
is identified with the subset relation ⊆ over De. Thus, we follow Brasoveanu (2008)
in allowing for mereological plurality.24

To the basic types t , e and s, we add type v for events. The domain of type v, Dv,
is defined in the same way as the domain of individuals, i.e. as the powerset of the
set of atomic events EV minus the empty set: Dv = ℘(EV)\∅. The sum and part-of
relations over events are analogous to the corresponding relations over individuals. I
will refer to this version of PCDRT enriched with the type for events as PCDRTe.

The set of basic types and the set of static types are defined in the following way:

(52) a. The set of basic static types BasSTyp: {t, e, v} (truth-values, individuals
and events)

b. The set of static types STyp: the smallest set including BasSTyp such that
if σ, τ ∈ BasSTyp, then (στ) ∈ STyp

4.2 Drefs and DRSs

Discourse referents, or drefs, are modelled as functions of type sτ , where τ is a static
type. For instance, individual drefs are functions from assignments to individuals.
Thus, a dref use applied to an assignment is, written as ui , returns an individual of
type e. I will write u J to mean the set of values that the dref u returns when applied
to the assignments in the plural info state J , i.e. u J = {x : ∃ j ∈ J . u j = x}. I will
also use ⊕u J to mean the sum of these values. Similarly, an event dref εsv applied to
an assignment is, i.e. εi , returns an event of type v.25

The set of dref types is defined as follows:

(53) The set of dref types DRefTyp: the smallest set such that if τ ∈ STyp, then
(sτ) ∈ DRefTyp

Each sentence is interpreted as a Discourse Representation Structure (DRS), which
is taken to be a function of type (st)((st)t). In otherwords, a sentence denotes a relation
between two sets of assignments, which correspond to the input plural info state and
the output plural info state. A standard DRS can fulfil two functions—introduce new
drefs and impose conditions on the output info state:

(54) λIst.λJst. I [new drefs]J ∧ conditionsJ

24 Brasoveanu (2007), on the other hand, follows van den Berg (1996) in assuming that the domain of
individuals De is restricted to atomic individuals. In this kind of system plurality is uniformly modelled
as state-level plurality, i.e. the existence of multiple distinct values for a dref in a plural info state. In the
analysis presented here the distinction between mereological and state-level plurality will play an important
role.
25 As a convention, I will use the the symbols u, u′, u′′, . . . and u1, u2, u3, . . . both for individual dref
constants of type se, and dref constants in general, and the symbols ε, ε′, ε′′, . . . and ε1, ε2, ε3, . . . for
event dref constants of type sv. I will specify the type of drefs using subscripts when necessary to avoid
confusion. I will also use v, v′, v′′, . . . and v1, v2, v3, . . . for variables of type se, and ζ, ζ ′, ζ ′′, . . .

and ζ1, ζ2, ζ3, . . . for variables of type sv.
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This is abbreviated in the following way:26

(55) [new drefs | conditions]
The following is a simplified DRS corresponding to the sentence A student chose

a film:27

(56) [u, u′, ε | student{u}, film{u′}, choose{ε}, Ag{u, ε}, Th{u′, ε}]
:= λIst.λJst. I [u, u′, ε]J ∧ student{u}J ∧ film{u′}J ∧ choose{ε}J ∧
Ag{u, ε}J ∧ Th{u′, ε}J

This DRS introduces two new individual drefs, u and u′, and one new event dref
ε, and places a set of conditions on the output info state J : the dref u applied to the
assignments in J must return a student-individual, dref u′ must return a film-individual,
and εmust return a choosing event, whose agent is the student returned by u andwhose
theme is the film returned by u′. I will write DI J to mean D(I )(J ), where D is a
DRS and I and J are info states.

DRSs that do not introduce any new drefs while imposing conditions on the output
info state are called tests, and have the following form:

(57) [conditions] := λIst.λJst. I = J ∧ conditionsJ

I adopt the following definition of the truth of a DRS:

(58) Truth of a DRS
A DRS D is true with respect to an input info state I iff there is an output info
state J , such that DI J = 1.

In what follows I will assume that the input info states for the DRSs are singleton.
This greatly simplifies the exposition, and as I will suggest, reflects the default mode
of discourse interpretation (see Sect. 6.5).

4.3 Introduction of new drefs

The introduction of a new dref is modelled as an arbitrary reassignment of the values
of that dref. In other words, the introduction of a new dref u means that the output
info state is allowed to differ from the input state with respect to the values of u. In
familiar dynamic systems that do not involve plural info states, this is formalized with
the help of the following two-place predicate over assignments:

(59) [u] := λgs.λhs. ∀vse (vg = vh → v = u)

26 In the following, I will try to provide the abbreviated form of expressionswhen possible, since this format
simplifies the presentation and should be more familiar to readers acquainted with regular DRT. However,
the abbreviated language is less expressive than full PCDRT, and consequently not all expressions that we
encounter will allow for an abbreviated form.
27 Here and throughout the paper I disregard the semantics of tense and aspect. I am also for now disre-
garding the role of number.
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Informally, gs[u]hs means that assignments g and h differ at most with respect to
the value for u.

Our system allows for non-singleton info states, which means that the predicate in
(59) is not directly applicable. Instead, we will adopt the following definition:

(60) New Dref Introduction
[u] := λIst.λJst. ∃ fss. ∀ j ∈ J . ∃i ∈ I . ( f (i) = j) ∧ ∀i ∈ I . ( f (i) ∈
J ∧ i[u] f (i)),
where f is a function from Ds to Ds.

Under this definition, a DRS introducing a new dref u maps every assignment in
the input info state onto a single u-different assignment in the output info state.28

Multiple dref introduction (as in example (56) above) is defined on the basis of
dynamic conjunction of multiple introduction predicates. The definition of dynamic
conjunction and multiple dref introduction is given in (61):

(61) a. Dst((st)t); D′
st((st)t) := λIst.λJst. ∃Hst. (DI H ∧ D′H J )

b. [u1, . . . , un] := [u1]; . . . ; [un]
Then, for example (56) the following holds:

(62) I [u, u′, ε]J := ∃Hst. ∃H ′
st. I [u]H ∧ H [u′]H ′ ∧ H ′[ε]J

4.4 Conditions and lexical relations

The second part of a DRS contains conditions on the output info state, i.e. terms of
type (st)t applied to the output info state. In example (56) above, these include lexical
predicates, i.e. student{u}J , film{u′}J and choose{ε}J , as well as thematic relations,
Ag{u, ε}J andTh{u′, ε}J . All these conditions are evaluated distributively relative to
each assignment in the output info state. More formally, for any non-logical constant
R of type ent , the following convention holds:29

(63) R{u1, . . . , un} := λIst. I = ∅ ∧ ∀is ∈ I .(R(u1i, . . . , uni))

28 This way of implementing the introduction of new drefs is different from that adopted in Brasoveanu
(2007, 2008):

(i) [u] := λIst.λJst. ∀is ∈ I (∃ js ∈ J (i[u] j)) ∧ ∀ js ∈ J (∃is ∈ I (i[u] j))
(i) requires for every individual assignment in the input info state to have a corresponding u-different
assignment in the output state, and conversely, for every individual assignment in the output info state to
have a corresponding u-different assignment in the input info state. No additional restrictions are placed
on the output info state. Our definition in (60) is more restrictive: it ensures that a DRS introducing a new
dref cannot return an output info state of a cardinality greater than that of the input info state. Thus, in our
system the function of increasing the cardinality of an info state is reserved for distributivity operators and
quantificational expressions (to be discussed below). This greatly simplifies all the calculations within the
system.
29 ent is defined as the smallest set of types s.t. e0t := t and em+1t := e(emt), cf. Muskens (1996),
Brasoveanu (2007, 2008).
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Thus, student{u}J will be true iff student(u j) is true for every assignment j in J ,
i.e. the dref u maps every assignment j in J to an individual who is a student (or more
accurately, a sum of students, cf. the discussion of lexical cumulativity in Sect. 4.5).
Similarly, walk{ζ }J will be true iff walk(ζ j) is true for every j in J .

The translations of most common nouns and verbs involve lexical relations of this
type, e.g.:30

(64) a. student � λvse.[student{v}] := λvse.λIst.λJst. I = J ∧ student{v}J
:= λvse.λIst.λJst. I = J ∧ ∀ j ∈ J .(student(v j))

b. walk � λvse.λζsv.[walk{ζ }, Ag{v, ζ }]
:= λvse.λζsv.λIst.λJst. I = J ∧ walk{ζ }J ∧ Ag{v, ζ }J
:= λvse.λζsv.λIst.λJst. I = J ∧ ∀ j ∈ J .(walk(ζ j) ∧ Ag(v j, ζ j))

In dealing with the types of expressions in PCDRTe, it will be useful to adopt a
simplifying convention proposed in Brasoveanu (2007, 2008): let us use e to stand for
the type of individual drefs (se), v to stand for the type of event drefs (sv), and t to stand
for the type of DRSs ((st)((st)t)). Then the type of common nouns (se)((st)((st)t))
(i.e. functions from individual drefs of type se to DRSs of type (st)((st)t)) can be
abbreviated as et, the familiar type for common nouns and intransitive verbs in the
standard Montgovian system. Similarly, determiners such as the and every translate
into functions of type (et)((et)t), intransitive verbs are translated into functions of type
e(vt), and transitive verbs are translated as functions of type e(e(vt)):

(65) choose � λve.λv′
e.λζv. [choose{ζ }, Th{v, ζ }, Ag{v′, ζ }]

I adopt the Neo-Davidsonian system of verb interpretation, where verbs are taken
to introduce predicates over events, and arguments are related to events via thematic
relations (cf. Parsons 1990). I will also assume Role Uniqueness, which states that
for any thematic relation 	 and any event e, there is a unique individual x such that
	(x, e) (cf. Carlson 1984; Parsons 1990; Landman 1996, 2000).

DPs are uniformly translated into functions of type (et)t. This means that in order
to combine with their arguments verbs need to be type-shifted to a higher type. I will
use an adapted version of the LIFT type-shifters from Landman (2000):

(66) a. Intransitive Lift: λvse.λζsv.[...] ⇒ λQ(et)t.λζ. Q(λv. [...])
b. Transitive Lift: λvse.λv′

se.λζsv.[...] ⇒ λQ(et)t.λv′.λζ.Q(λv[...])

4.5 Lexical cumulativity and lexical distributivity

I will assume that most lexical predicates, e.g. boy, girl, walk, as well as thematic
relation such as Ag and Th are closed under the sum operation, i.e. that they are
cumulative at the domain level. Cumulativity for one-place and two-place lexical
relations is defined as follows (cf. e.g. Krifka 1989; Landman 1996):

30 Collective predicates such as gather may be an exception to this, imposing conditions on the set of
values of a dref across assignments in a plural info state, cf. Minor (2017) for discussion.
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(67) Lexical Cumulativity
∀x, y (R(x) ∧ R(y) → R(x ⊕ y))
∀x1, x2, y1, y2. (R(x1, y1) ∧ R(x2, y2) → R(x1 ⊕ x2, y1 ⊕ y2))

Thus, the predicate boy applies to sums of boys, as well as to individual boys.
Similarly, walk applies both to individual walking events, and to sums of such events.

We will also make reference to the lexical distributivity of predicates. This is the
property that ensures e.g. thatwhenever the predicate dog is true of a sumof individuals
it is also necessarily true of each atomic sub-individual in that sum, and when there
is an event of a sum of dogs barking then for each atomic sub-individual d in that
sum there must be an event of d barking. Generally, verbal predicates may or may
not be lexically distributive with respect to a particular argument (i.e. theta-role). For
instance, the transitive verb carry is lexically distributive with respect to its theme
(i.e. if an individual carries a sum of boxes that individual necessarily carries each
individual box), however it is not lexically distributive with respect to its agent (i.e.
if a sum of individuals carries a box it does not follow that each of these individuals
carries that box, because they may be carrying it together).

Formally, the lexical distributivity of particular predicates is encoded as a set of
constraints (i.e. axioms ormeaning postulates) on appropriate models, in the following
way:

(68) a. ∀x . (dog(x) → ∀x ′.(x ′ ≤ x ∧ atom(x ′) → dog(x ′)))
b. ∀x .∀e. (bark(e) ∧ Ag(x, e) → ∀x ′. (x ′ ≤ x ∧ atom(x ′) → ∃e′. (e′ ≤

e ∧ bark(e′) ∧ Ag(x ′, e′))))
c. ∀x .∀y.∀e. (carry(e) ∧ Ag(x, e) ∧ Th(y, e) → ∀y′. (y′ ≤ y ∧

atom(y′) → ∃x ′.∃e′. (x ′ ≤ x ∧ e′ ≤ e ∧ carry(e′) ∧ Ag(x ′, e′) ∧
Th(y′, e′))))

4.6 Compositionality

Non-terminal syntactic constituents are translated with the help of a set of rules which
define the translation of the mother node based on the translations of its daughter
nodes:

Non-Branching Nodes (NN)
If A � α and A is the only daughter of B, then B � α.

Functional Application (FA)
If A � α and B � β and A and B are the only daughters of C, then C � α(β),
provided that this is a well-formed term.

Generalized Sequencing (GSeq) (Sequencing + Predicate Modification)
If A � α, B � β, A and B are the only daughters of C in that order, and α and
β are of the same type τ of the form t or (σ t) for some type σ , then C � α; β

if τ = t or C � λvσ .α(v); β(v) if τ = (σ t), provided that this is a well-formed
term.
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4.7 Indexing, traces, andQuantifying-In

I will follow Muskens (1996) in assuming that the syntactic component provides
indexation for all determiners, pronouns, and traces. However, following Brasoveanu
(2007, 2008) and unlike Muskens (1996), I will take drefs to serve as indices directly:

(69) a. Theu girl saw au’ rabbit. Itu’ was eating.

b. Everyu boy saw himselfu in au’ mirror.

Indices on determiners that introduce new discourse referents are written as super-
scripts, while indices on pronouns and traces link back to existing drefs, and arewritten
as subscripts.

Dislocated (moved)DPs are assigned an additional index by themovement rule, and
leave behind co-indexed traces. Traces and the corresponding dislocated DPs differ
from other index-bearing items in that their, and only their, indices are variables of
the dref type (se), rather than constants:

(70) Theu boy found au’ letter whichv theu” girl had lost tv .

Traces are translated as the dref variables they are indexed with (i.e. tv � v). The
Quantifying-In translation rule can then be stated as follows:

(71) Quantifying-In (QIn) (Predicate Abstraction)
If DPv � α, B � β and DPv and B are daughters of C, then C � α(λv.β),
provided that this is a well-formed term.

4.8 Event closure

Binding of the event dref variable introduced by the verb is performed by a designated
∃ev operator:

(72) ∃ε
ev � λVvt. [ε]; V (ε)

The event closure operator introduces a new event dref, ε in (72), and applies the
verbal predicate to this event dref. I will assume that this operator is inserted at some
level above the vP, after the verb has combined with all of its arguments, but I will
remain agnostic about its exact position with respect to other functional heads.31

5 Analysis

5.1 The semantics of number and cardinal modifiers

I will assume that DPs have the following syntactic structure:

31 As a notational convention, I will indicate the event dref introduced by the event closure operator as a
superscript on the verb, e.g.:

(i) Au student choseε au
′
film.
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(73) Structure of DP

DP

D NumP

Num NP

# N

I will take grammatical number, #, to be interpreted in the position where it is
spelled-out phonologically, i.e. adjacent to the noun.32 The #-head has two variants
in English: #:sg and #:pl, which are translated as predicates of type et, and combine
with their sister nouns via Generalized Sequencing (cf. Sect. 4.6).

The singular imposes two conditions on its argument dref: it requires it to be atomic
at the assignment-level (i.e. the value that the dref returns for each assignment in the
output plural info state must be atomic), and unique. Uniqueness is satisfied if the dref
returns the same value for all the assignments in the output info state. Together, these
conditions are equivalent to stating that the sum of values of the dref in the output info
state must be atomic (i.e. the singular encodes a state-level atomicity condition).

(74) #:sg � λve. [atom{v}]; [unique{v}]

(75) a. atom{u} := λIst. ∀i ∈ I . atom(ui)

b. unique{u} := λIst. ∀i, i ′ ∈ I . ui = ui ′

Plural number, on the other hand, is semantically vacuous, and thus plural noun
phrases are taken to be underlyingly number-neutral (following Krifka 1989, 2004;
Sauerland et al. 2005; Sauerland 2003; Spector 2007; Zweig 2008, 2009, a.o.). The
multiplicity semantics associated with plurals in non-downward entailing context will
be derived as an implicature (cf. Sect. 5.3).

(76) #:pl � λve.λIst.λJst. I = J

Numerals and cardinality modifiers attach above # and are translated as expressions
of type et, imposing assignment-level cardinality conditions on the values of a dref:

(77) a. two � λve. [2_atoms{v}]
b. 2_atoms{u} := λIst. ∀i ∈ I . 2_atoms(ui),

where 2_atoms(xe) := |{ye : y ≤ x ∧ atom(y)}| = 2.

32 In (73) I represent number as a syntactic head directly above the noun. However, nothing in my analysis
prevents number to be analysed as an interpretable feature on the noun itself.
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(78) a. several � λve. [several_atoms{v}]
b. several_atoms{u} := λIst. ∀i ∈ I . several_atoms(ui),

where several_atoms(xe) := |{ye : y ≤ x ∧ atom(y)}| > 1.

5.2 Indefinite DPs

DPs are headed by determiners, including articles and quantificational determiners
(QDs). The sole function of the indefinite article is to introduce a new dref. Each
indefinite article is indexed with the name of the dref that it introduces, represented as
a superscript. I will assume that the indefinite article in English has twomorphological
forms, depending on its syntactic environment: a combines only with phrases headed
by #:sg, while a phonologically null indefinite article, Indef, combines with phrases
headed by #:pl and NPs with numerals and cardinal modifiers.

(79) au, Indefu � λPet.λP ′
et. [u]; P(u); P ′(u)

The following examples illustrate the compositional translation of singular and
plural indefinite DPs:33

(80) au student
λP ′. [u]; [atom{u}]; [unique{u}]; [student{u}]; P ′(u)

au

λP.λP ′. [u]; P(u); P ′(u)

λv. [atom{v}]; [unique{v}]; [student{v}]

#:sg
λv.[atom{v}]; [unique{v}]

student
λv. [student{v}]

(81) studentsu

λP ′. [u]; [student{u}]; P ′(u′)

Indefu

λP.λP ′. [u]; P(u); P ′(u)

λv. [student{v}]

#:pl
λv.λI .λJ . I=J

student
λv. [student{v}]

33 As a notational convention, I will indicate the dref introduced by the null indefinite article as a superscript
on the noun when providing noun phrase translations.
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(82) two studentsu

λP ′. [u]; [2_atoms{u}]; [student{u}]; P ′(u′)

Indefu

λP.λP ′. [u]; P(u); P ′(u)

λv. [2_atoms{v}]; [student{v}]

two
λv.[2_atoms{v}]

λv. [student{v}]

#:pl
λv.λI .λJ . I=J

student
λv. [student{v}]

5.3 Themultiplicity implicature

5.3.1 Constraints on Exh-insertion

I will follow Spector (2007), Zweig (2008, 2009) and Ivlieva (2013) and derive the
multiplicity semantics associatedwith the plural number feature as a scalar implicature
which arises in competition with a semantically more restrictive singular number
feature. On this account, in order to derive the multiplicity implicature for a plural DP
in structure α we must show that the corresponding structure β, where the plural DP
has been replaced with its singular counterpart, has a stronger interpretation than α.
Then, the interpretation of α can be strengthened (or enriched) via the negation of the
stronger alternative.

Following Zweig (2008, 2009) and Ivlieva (2013), I will assume that the multi-
plicity implicature can be calculated at various points of the semantic derivation (cf.
Chierchia 2004, 2006; Fox 2007; Chierchia et al. 2012; Fox and Spector 2018, a.o.).
The implicature is incorporated into the semantic form bymeans of exhaustification—
an operation that involves (a) comparing the logical form of an expression to a set of
alternatives; (b) determining which alternatives are stronger than that logical form;
and (c) adding the negation of the stronger alternatives to the logical form. For con-
creteness, I will assume that exhaustification is encoded as the semantics of a covert
exhaustivity operator Exh, which can be inserted at various levels in the syntactic
structure (cf. Chierchia et al. 2012, a.o.).34

Previous analyses disagree on the correct way of setting up the system of impli-
cature calculation for bare plurals. Zweig (2008, 2009) (following Chierchia 2004,
2006) adheres to what Ivlieva (2020) calls the Strongest Candidate Principle. Accord-
ing to this principle, if there are multiple levels in the structure of a sentence at which
the scalar implicature can be calculated, the one that produces the strongest over-
all interpretation is chosen as the meaning of the sentence. Chierchia et al. (2012)

34 This assumption is not critical to the proposed account of dependent plurals. Alternative ways of deriving
the multiplicity implicature can be formulated within a system of recursive implicature calculation such as
that proposed in Chierchia (2004, 2006), which does not rely on syntactically represented exhaustification
operators.
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provide arguments against adopting this as a general principle of calculating scalar
implicatures. Furthermore, Ivlieva (2020) argues that, contra Zweig (2008, 2009), this
principle produces incorrect results when applied to sentences involving bare plurals
in cumulative construction like (83a):

(83) a. My three friends attend good schools.

b. ∃e∃y [*good-school(y) ∧ *attend(e)(σ x . my-3-friends(x))(y)] ∧
¬∃e∃y [*good-school(y) ∧ atom(y) ∧ *attend(e)(σ x . my-3-friends(x))(y)]

c. ∃e∃y [*good-school(y) ∧ ¬atom(y) ∧ *attend(e)(σ x . my-3-friends(x))(y)]
In Zweig’s system, calculating the scalar implicature above event closure in (83a)

results in the interpretation in (83b) according to which sentence (83a) will be true iff
there is a sum of schools which the speaker’s 3 friends cumulatively attend, but there
is no single school that all these friends attend. As Ivlieva (2020) shows, this inter-
pretation is stronger than the standard cumulative interpretation in (83c), which can
be derived by calculating the multiplicity implicature below the event closure. Conse-
quently, in Zweig’s system the cumulative interpretation is blocked by the Strongest
Candidate Principle, contrary to fact.

Ivlieva (2020) proposes to replace the Strongest Candidate Principle with a Non-
Weakening Condition (cf. Fox and Spector 2018):

(84) Non-Weakening Condition
Do not introduce Exh in a structure S if that would lead to a sentence meaning
which is entailed by the meaning of S without Exh.

Now, it turns out that in a dynamic framework like the one adopted here, sentences
like (83a) do not pose a problem for the Strongest Candidate Principle (see Sect. 6.1).
In fact, nothing in the data that I address in this paper is directly incompatible with
the Strongest Candidate Principle. However, given the independent arguments against
this principle in Chierchia et al. (2012), I will follow Ivlieva (2020) in adopting the
condition in (84) instead. Nevertheless, it is worth noting that if the analysis presented
here is on the right tract, cumulative and dependent plural constructions do not in
themselves present an argument against the Strongest Candidate Principle (contra
Ivlieva 2020).35

Finally, following Ivlieva (2013), I will take Exh-insertion to be obligatory in the
context of bare plural DPs (see also Chierchia et al. 2012):

(85) A bare plural DPmust be c-commanded by an exhaustification operator, whose
restrictor contains the alternative obtained by replacing the plural with the
corresponding singular.

This accounts for the obligatory emergence of the multiplicity implicature in non-
downward entailing contexts.36

35 The Strongest Candidate Principle and the Non-Weakening Condition do make contrasting predictions
with respect to the availability of certain marginal readings of sentences involving quantificational items.
However the empirical status of these readings is unclear, see footnote 54.
36 As Ivlieva (2020) notes, there is a tension between the Non-Weakening Condition in (84), which bars
Exh-insertion in positions where it leads to weakening or vacuous exhaustification, and the condition in (85),
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5.3.2 Exh-operators and strength

Formally, I will define a family of Exh-operators in PCDRTe in the following way:

(86) Generalized Exhaustification
For any conjoinable type α, such that α = (τ1, (τ2(. . . τnt) . . .)),
ExhAlt 〈α, α〉 := λQα.λk1τ1 .λk

2
τ2

. . . λknτn .λIst.λJst. Q(k1) . . . (kn)I J ∧ ∀Q′
α.

(Q′ ∈ Alt ∧ Q′ � Q → ¬Q′(k1) . . . (kn)I J ),
whereAlt is the set of alternatives to Q, and Q′ � Q means that Q′ is stronger
than Q.

For instance, if Exh combines with a DRS of type t, the result is a DRS of the
following form:

(87) ExhAlt tt(D) := λIst.λJst. DI J ∧ ∀D′. (D′ ∈ Alt ∧ D′ � D → ¬D′ I J )

The syntactic Exh operator is translated as one of the Exh operators as defined in
(86).

Two comments are in order. First, the definition in (86) makes reference to con-
joinable types. The definition of conjoinable types is modelled on that in Partee and
Rooth (1983):

(88) Conjoinable Type
(i) t (i.e. st((st)t)) is a conjoinable type
(ii) if σ is a conjoinable type, then for all types τ ∈ DRefTyp, (τσ ) is a
conjoinable type.

Second, the definition of strength � must be made explicit and sufficiently general
to be applicable to terms of all conjoinable types. I will adopt the following definition:

(89) Generalized Strength
For any conjoinable type α, such that α = (τ1, (τ2(. . . τnt) . . .),
Q′

α � Qα iff:

Footnote 36 continued
which requires for each plural DP to be c-commanded by Exh. Specifically, taken together these conditions
rule out all the alternative options for Exh-(non)insertion in sentences where plurals occur in downward
entailing contexts, e.g.:

(i) John did not carry boxes.

In this case, inserting Exh below negation would lead to the weakening of the sentence’s truth conditions,
inserting it above negation leads to vacuous exhaustification, and leaving Exh out of the structure altogether
would result in the plural DP boxes lacking a c-commanding Exh-operator. Ivlieva (2013) proposes a way
to solve this problem by adopting (a) a looser version of the Non-Weakening Condition (ruling out Exh-
insertion which leads to asymmetric weakening of the truth conditions, but not vacuous exhaustification);
and (b) an assumption that implicature calculation is blind to the lexical distributivity of predicates (cf.
Ivlieva 2013 for detailed discussion, and Minor 2017 for some criticism of this approach). Alternatively,
we may assume that one of the two conditions in (84) and (85) is violable, and must be applied as long as
the other condition is satisfied. I will leave this question for future research.
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(a) For any appropriate model M and assignment function g, and any a1 of
type τ1, . . ., an of type τn , input info state Ist and output info state Jst :
if �Q′(a1) . . . (an)I J�M,g = 1, then �Q(a1) . . . (an)I J�M,g = 1.
(b) There is an appropriate model M , assignment function g, a1 of type τ1,
. . ., an of type τn , info states Ist and Jst , such that �Q(a1) . . . (an)I J�M,g = 1
and �Q′(a1) . . . (an)I J�M,g = 0.

As a limiting case, for two DRSs D and D′, D′ � D will be true iff for any
appropriate model and info states I and J , if D′ I J = 1 then DI J = 1, while the
converse does not hold. I will assume that appropriate models are those that respect the
meaning postulates associated with lexical items including those encoding the lexical
cumulativity and lexical distributivity of predicates.

5.4 Weak and strong distributivity

In this section I introduce the distinction between weak and strong distributivity. This
distinction will play a crucial role in our analysis of the properties of dependent
plurals. Somewhat informally, weak distributivity involves distribution of individuals
in a sum across the assignments in a single info state, while strong distributivity
involves distribution across multiple info states. We will start by defining a weak and a
strong distributivity operator in PCDRTe, and then use these to provide the translations
of syntactic distributivity operators. I will then show how the contrasting properties
of singular and plural quantificational determiners can be captured in terms of weak
and strong distributivity.

5.4.1 Weak and strong distributivity operators

Before I provide the definitions of the distributivity operators themselves, I will define
an auxiliary relation between info states:

(90) 〈u〉 := λIst.λJst. ∃ f . ∀ js ∈ J . ∃is ∈ I . ( j ∈ f (i)) ∧
∀is ∈ I . ∀Hst. ( f (i) = H → H ⊆ J ∧ ∀hs ∈ H . (i[u]h ∧ atom(uh)) ∧
⊕uH = ui),
where f is a function from the domain of assignments Ds to the set of info
states ℘(Ds).

I will write I 〈u〉J to mean that 〈u〉 applies to I and J . In a sense, what 〈u〉 does
is ‘split’ each assignment in the input info state into multiple assignments, where the
values for u are the atomic sub-parts of its value for the original assignment. For
instance, suppose an input info state I contains one assignment i , such that ui returns
the sum individual john⊕mary. Then an info state J such that I 〈u〉J will contain two
assignments, j1, j2, where j1 and j2 are identical to i , except that u j1 is john and u j2
is mary:37

37 This generalizes to info states of higher cardinality. For instance, if I contains two assignments i1 and
i2, such that ui1 is john ⊕ mary and ui2 is jane ⊕ bob, then J s.t. I 〈u〉J will contain four assignments,
j1, j2, j3, j4, where u j1 is john, u j2 is mary, u j3 is jane and u j4 is bob.
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(91)

Info state I . . . u . . .

i . . . john ⊕ mary . . .

⇓
Info state J , such that I 〈u〉J . . . u . . .

j1 (such that j1[u]i) . . . john . . .

j2 (such that j2[u]i) . . . mary . . .

The following equivalence will be relevant for us:

(92) 〈u〉; 〈u〉 := 〈u〉
It is easy to see why this should be the case. Applying the 〈〉-operator to the values

of a dref will split these values into their atomic parts, and distribute them across the
assignments in a plural info state. Applying the 〈〉-operator to the values of the same
dref again will return exactly the same info state, because all the values are already
atomic and thus cannot be split any further.

We can now use the 〈〉-operator to define two distinct distributivity operators:
(93) a. distw(D)(u) := λIst. λJst. (〈u〉; D)I J

:= λIst. λJst.∃Hst. I 〈u〉H ∧ DH J

b. dists(D)(u) := λIst. λJst. (〈u〉; dist(D))I J
:= λIst. λJst.∃Hst. I 〈u〉H ∧ dist(D)H J

The definition of the dist operator used in (93b) is the same as in Brasoveanu
(2008):

(94) dist(D) := λIst.λJst. ∃Rs((st)t) = ∅ (I = Dom(R) ∧ J = ⋃
Ran(R) ∧

∀ks∀Lst (RkL → D{k}L)),

where D is a DRS; Dom(R) := {ks : ∃Lst(RkL)}; Ran(R) := {Lst :
∃ks(RkL)}; and {k} is the singleton info state containing k.

The weak distributivity operator distw combines with a dref u and a DRS D, and
returns a DRS which applies to an input info state I and an output info state J iff J is
the result of ‘splitting’ the value(s) for u in I with the help of the 〈〉-operator, and then
updating the resulting info state with D. For instance, consider again info state I in
(91), repeated in (95). If we update it with the DRS distw(D)(u), the values for u in
I will first be split across multiple assignments, generating an intermediate info state
H , as shown in (95). This is the result of updating I with 〈u〉. Then this info state H
will be updated with D to yield the output info state.

(95)

Info state I . . . u . . .

i . . . john ⊕ mary . . .

⇓
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Info state H , such that I 〈u〉H . . . u . . .

h1 (such that h1[u]i) . . . john . . .

h2 (such that h2[u]i) . . . mary . . .

The strong distributivity operator dists also splits the values for u in I with the
help of the 〈〉-operator, yielding an intermediate info state H . But instead of updating
H directly with D, it further splits H into a set of singleton info state, updates each of
these info states independently with D, and then ‘glues’ the resulting info states back
together into J .

Take once again info state I in (96). Updating I with dists(D)(u)will first generate
the same intermediate info state H as in (95), which is the result of applying the 〈〉-
operator. But then, following the semantics of dist in (94), H will be split into two
singleton info states, H1 and H2, as shown in (96), and each of these info states will
be independently updated with D, yielding two new info states, call them H ′

1 and H ′
2.

The output info state will then be the union of H ′
1 and H ′

2, i.e. J = H ′
1 ∪ H ′

2.

(96)

Info state I . . . u . . .

i . . . john ⊕ mary . . .

⇓
Info state H , such that I 〈u〉H . . . u . . .

h1 (such that h1[u]i) . . . john . . .

h2 (such that h2[u]i) . . . mary . . .

⇓
Info state H1 . . . u . . .

h1 (such that h1[u]i1) . . . john . . .

Info state H2 . . . u . . .

h2 (such that h2[u]i1) . . . mary . . .

I will also define an ‘externally static’ version of the distributivity operators as
follows:

(97) a. dist’w(D)(u) := λIst. λJst. I = J ∧ ∃J ′. (〈u〉; D)I J ′

b. dist’s(D)(u) := λIst. λJst. I = J ∧ ∃J ′. (〈u〉; dist(D))I J ′

In contrast to the ‘externally dynamic’ operators in (93), the operators in (97) return
an output info state that is identical to the input info state, i.e. they do not update the
running info state directly. Instead, they function as tests that ensure that the input info
state can be updated in the relevant way (which entails that the relevant DRS is in fact
true). These modified versions of the distributivity operators will allow us to define a
more elegant semantics for quantificational determiners.

An important property of distributivity operators is that if they are ‘stacked’, the
following equivalences hold:
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(98) a. distw(distw(D)(u))(u) := distw(D)(u)

b. dists(dists(D)(u))(u) := dists(D)(u)

c. distw(dists(D)(u))(u) := dists(D)(u)

d. dists(distw(D)(u))(u) := dists(D)(u)

It is not hard to see how these equivalences follow from the definitions in (93) and
the equivalence in (92).

We will use the weak and strong distributivity operators defined in this section to
provide the translation of two classes of lexical items: syntactic distributivity opera-
tors/floating quantifiers and quantificational determiners.

5.4.2 Syntactic distributivity operators

Following Link (1987) and Roberts (1990), I will assume that predicates can com-
bine with distributivity operators, which modify the way the predicate is applied to
its argument (cf. also Landman 1989, 2000; Schwarzschild 1996; Lasersohn 1998;
Kratzer 2007, a.o.). Furthermore, I will assume that distributivity operators exist as
syntactic objects which can be attached to any constituent along the verbal spine. I
will posit two types of such operators: weak and strong. I will take the floating quan-
tifier all to be an instantiation of the weak syntactic distributitivy operator, and the
floating quantifier each to be an instantiation of the strong syntactic distributitivy
operator. Furthermore, I will assume that both of these operators have phonologically
null counterparts, represented as δw and δs respectively.

The two types of syntactic distributivity operators receive the following translations:

(99) Distributivity operators

a. δw, all � λPet.λve. distw(P(v))(v)

:= λPet.λve.λIst.λJst. ∃Hst.[I 〈v〉H ∧ (P(v))H J ]
b. δs, each � λPet.λve. dists(P(v))(v)

:= λPet.λve.λIst.λJst. ∃Hst.[I 〈v〉H ∧ (dist(P(v)))H J ]
Both syntactic distributivity operators are translated as functions that take a one-

place predicate as argument, and return another one-place predicate. These functions
combine with a predicate P and dref u, and update the input info state either with
distw(P(u))(u) or with dists(P(u))(u), depending on the strength of the operator.38

38 Given these definitions, it’s predicted that both each and all will distribute down to the atoms. In fact,
however, in certain contexts all allows for ‘intermediate’ interpretations as in (i), modelled on an example
from Lasersohn (1998):

(i) The shoes all cost $50.

This examples can be understood as stating that each pair of shoes costs $50, rather than each individual
shoe. Folllowing Gillon (1987) and Schwarzschild (1996), such examples can be accommodated in the
current system by relativizing the 〈〉-relation to a contextually specified cover C , along the following lines:

(ii) 〈u〉C := λIst.λJst. ∃ f . ∀ js ∈ J . ∃is ∈ I . ( j ∈ f (i)) ∧
∀is ∈ I . ∀Hst. ( f (i) = H → H ⊆ J ∧ ∀hs ∈ H . (i[u]h ∧ uh ∈ C(ui)) ∧ ⊕uH = ui),
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Now, given the equivalences in (98), it follows that if a strong distributivity operator
δs is stacked on top of a weak distributivity operator δw / all, or the other way round,
the translation of the structure will be equivalent to that involving a single strong
distributivity operator. For instance, the translation of (100) will be equivalent to that
of (101):

(100)
DP

all
δs XP

(101)
DP

δs XP

I will assume that stacking as in (100) accounts for strong distributive readings of
structures involving overt weak distributivity operators.39,40

Footnote 38 continued
where f is a function from the domain of assignments Ds to the set of info states ℘(Ds), and C is
a contextually specified function that combines with a sum x and returns a set of sums X such that
⊕X = x .

The definition of distw can then be re-stated in terms of 〈〉C . In what follows, I will put aside intermediate
readings.
39 Syntactic constraints should restrict the availability of stacking, ruling out sentences like (i):

(i) *Three students all each carried a box.

40 The definition of the syntactic distributivity operators may need to be modified to account for the ambi-
guity of pronouns in their scope. For instance, the following example can have a distributive interpretation
whereby each lawyer hired a possibly different secretary:

(i) Theu lawyers δs hiredε au
′
secretary they likedε′

.

As Kamp and Reyle (1993) point out, the reference of the plural pronoun they in this example is ambiguous:
it can either refer to each individual lawyer or to the whole group of lawyers referred to by the subject.
In the current framework, the distributive interpretation of examples like (i) is derived by positing a null
distributivity operator below the subject, which splits the value of the subject dref (u) into atomic part.
However, this would mean that the original reference of u to the sum of all the lawyers would no longer be
accessible in the scope of the distributivity operator.
We can solve this problem by assuming, in the spirit of Kamp and Reyle (1993), that the distributivity
operator does not directly ‘split’ the referent of the DP it combines with. Instead, it introduces a new dref
which returns the same value for the original info state as the dref it takes as argument, and then splits this
newly introduced dref:

(ii) δu
′

s , eachu
′
� λPet.λve. [u′ | u′ = v]; dists (P(u′))(u′)

Equality between drefs (u = v) is defined as follows:

(iii) u = u′ := λIst. I = ∅ ∧ ∀i ∈ I . (ui = u′i)

Then, the distributive and group interpretations of plural pronouns in examples like (i) can be distinguished
by co-indexing the pronoun either directly with the antecedent DP (for a group interpretation) or with the
distributivity operator (for a distributive interpretation). In the following, I will continue to use the simpler
translations of the distributivity operators in (99).
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5.4.3 Distributive Quantifying-In

As things stand at the moment, the system predicts that distributivity operators can
only combine with predicates of individual drefs, i.e. with expressions of type et.
However, given that verbs are predicated over event drefs in the current system, there
is no way of directly combining distributivity operators with verbal projections below
event closure. Inserting distributivity operators above event closure also results in a
type mismatch:

(102)

(δs/w) ∃Pt

∃ev XP

(δs/w) vPvt

To solve this problem, I will introduce a new rule of translation, Distributive
Quantifying-In (DistrQIn), that targets structures like (103), where a distributivity
operator is inserted below a DP that has undergone syntactic movement:

(103)
DPv XP

δs/w YPt

. . . tv . . .

(104) Distributive Quantifying-In (DistrQIn)
If DPv � α, B is a distributivity operator (i.e. B ∈ {all, each, δw, δs}), B� δ,
C � β, B and C are daughters of D, and DPv and D are daughters of E, then
E � α(δ(λv.β)), provided that this is a well-formed term.

5.4.4 Two classes of quantificational determiners

Following Brasoveanu (2008), I will define the translation of quantificational deter-
miners via a general schema which links the semantics of dynamic quantifiers to their
standard static counterparts.My treatment of quantificational determiners will be close
to that of Krifka (1996), the major innovation being a contrasting analysis of singular
and plural QDs.

Both singular and plural quantificational determiners will take two predicates of
type et as arguments, and return a DRS of the following simplified form, where 

is derived from the restrictor predicate of the QD, and  ′ is derived from its nuclear
scope predicate:

(105) [u′, u]; [DET{u′, u}]; maxu′((u′)); maxu((u); ′(u))
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This schemamakes use of the maximization operatormax, defined in the following
way:41

(106) maxu(D) := λIst.λJst. DI J ∧ ∀I ′
st (I [u]I ′ ∧ ∃J ′

st. (DI ′ J ′) → ∀is ∈ I . ∀i ′s ∈
I ′. (i[u]i ′ → ui ′ ≤ ui))

The max-operator is indexed with a dref u, and its function is to update the input
state I with a DRS D while ensuring that uI returns the maximal values which render
D true with respect to I . In other words, the max operator ensures that there is no
way of replacing the values that u returns for the info state I for mereologically larger
ones, such that D would still be true with respect to this modified input info state.42

Consider now the DRS in (105). It does several things. First, it introduces two
new drefs. Then, it imposes a condition on the relation between these drefs which
invokes the static quantifier (DET) corresponding to the dynamic quantifier that is
being translated. For instance, the dynamic translation for most will involve the static
quantifier MOST, the translation for all will involve the static quantifier ALL, etc.
Importantly, like most other lexical relations, the static quantifiers themselves are
interpreted distributively with respect to the info state they apply to, e.g.:43

(107) a. MOST(u′, u) := λIst. I = ∅ ∧ ∀i ∈ I . ( |ui | > |u′i − ui | )

b. ALL(u′, u), EVERY(u′, u) := λIst. I = ∅ ∧ ∀i ∈ I . ( |u′i | = |ui | )

Finally, the DRS in (105) ensures that the first of the newly introduced drefs (u′)
stores the maximal possible values that satisfy the predicate , derived from the
restrictor predicate, while the second (u) stores themaximal possible values that satisfy
the (dynamic) conjunction of predicates  and  ′, the latter derived from the nuclear
scope predicate.44

The difference between plural and singular quantificational determiners is captured
by the way  and  ′ are defined for the schema in (105). Specifically, in the case of

41 I am grateful to Jakub Dotlačil for helpful suggestions regarding this definition.
42 The maximization operator defined in (106) requires that each value of a dref in the input info state
be maximal with respect to a certain DRS, i.e. it ensures maximality at the assignment level. This can
be contrasted with state-level maximality, which would require that the total set of values of a dref in an
info state (or the total sum of these values) be maximal (cf. Brasoveanu 2008). Treating maximality as an
assignment-level condition ensures that our system correctly handles cases of multiple quantification, as in
the following example:

(i) All the students read most of the papers they were assigned.

To get the correct truth conditions for this example, we need the maximal sums of assigned papers and the
maximal sums of papers that were read to be calculated separately for each student. In our system, this will
be accomplished by calculating maximal sums of papers for each assignment in a plural info state, where
each of the assignments will store a separate atomic student as the value of the subject dref (see below on
the semantics of plural QDs).
43 Note that I take the static quantifier to relate sets (or, rather, sums) of individuals, rather than sets of
assignments. This allows us to avoid the proportion problem discussed at length in Brasoveanu (2007).
44 The introduction of two distinct new drefs in the translation of QDs is motivated by the existence of two
types of reference to presuppositional quantificational DPs, discussed in detail byNouwen (2003): reference
to the refset and to the maxset (cf. also related observations in Krifka 1996). These can be illustrated with
the help of the following examples from Nouwen (2003):
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plural quantifiers such as all and most,  and  ′ are obtained via the application of
the weak distributivity operator distw, in the following way:

(108) det_plu,u’ � λPet.λP ′
et. [u′, u]; [DET{u′, u}]; maxu′(dist’w(P(u′))(u′));

maxu(distw(P(u); P ′(u))(u))

For singular quantifiers such as each and every, and ′ correspond to the restrictor
and nuclear scope predicates taken under the strong distributivity operator dists :

(109) det_sgu,u’ � λPet.λP ′
et. [u′, u]; [DET{u′, u}]; maxu′(dist’s(P(u′))(u′));

maxu(dists(P(u); P ′(u))(u))

Thus, quantificational determiners introduce two new drefs. The first stores the
maximal values that distributively satisfy the restrictor predicate alone, while the
second stores the maximal values that distributively satisfy the conjunction of the
restrictor and nuclear scope predicates.45 The difference between plural and singular
QDs is the type of distributivity that is involved (weak vs strong). Note that in both
(108) and (109), the distributivity operator used to restrict the values of the ‘maxset’
dref u′ is externally static (cf. the definitions in 97), which means that the output
info state will not store the ‘split’ values of u′. On the other hand, the distributivity
operator used to restrict the ‘refset’ dref u is externally dynamic (cf. 93). This entails
that the output info states of (108) and (109) will store the individual ‘split’ values
of u, as well as (potentially) the values of other drefs introduced in the restrictor and
nuclear scope of the determiner. Consequently, the proposed system is compatible

Footnote 44 continued

(i) a. Few senators admire Kennedy; and they are very junior.

b. Few senators admire Kennedy. Most of them prefer Carter.

In (ia) the plural pronoun in the second clause refers to the set of senators who admire Kennedy, i.e. the
maximal individual that satisfies both the the restrictor and the nuclear scope predicate of the quantifier few
in the first clause (i.e. the refset). Example (ib), on the other hand, is an instance of reference to the maxset:
the plural pronoun in the second sentence picks up the whole set of senators as its referent, i.e. the maximal
individual that satisfies the restrictor predicate of the quantifier few.
45 Syntactically, many QDs can combine either directly with NP restrictors, or with PPs headed by the
preposition of, e.g all/most/each of the students. Definite DPs are translated with the samemax operator in
(106):

(i) theu students � λQet. [u]; maxu([student{u}]); Q(u).

Then, the preposition of can be translated as a function that takes DPs of type (et)t and turns them into
predicates of type et in the following way (similar to the BE type shifter of Partee 1987):

(ii) of � λQ(et)t.λve. Q(λv′. [v ≤ v′]),
where u ≤ u′ := λI . I = ∅ ∧ ∀i ∈ I (ui ≤ u′i).

This translation is essentially a dynamic way of saying that of extracts the sub-parts of the sum referred to
by its complement definite DP. The predicate returned by of is then of the right type to combine with a QD.
In what follows, I will for simplicity translate all restrictors of QDs as simple NPs, e.g.:

(iii) of the students � λv. [student{v}].
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with previous proposals that make use of related semantic frameworks to account for
complex cases of cross-sentential anaphora, such as quantificational subordination (cf.
e.g. Krifka 1996; Nouwen 2003; Brasoveanu 2007, and discussion in Sect. 6.5). At
the same time, the use of externally static distributivity operators to impose conditions
on the maxset-drefs allows us to avoid unnecessarily inflating the output info state.46

6 Putting it all together

6.1 Cumulative readings

Consider first example (110):

(110) Threeu students carriedε boxesu
′
.

This sentence allows for a cumulative interpretation, whereby there are three stu-
dents, several boxes and a set of carrying events, such that the students are the
cumulative agent of these events and the boxes are the cumulative theme of these
events. Let us consider how these truth conditions are derived in PCDRTe.

Assuming that no covert distributivity operators are inserted, sentence (110) is
assigned the following structure:

(111)

(Exh)

∃ε
ev

(Exh) vP

threeu students

(Exh) VP

carried boxesu
′

Following our assumptions (cf. 85), an exhaustification operator Exh must be
inserted in (111). There are three potential sites: immediately above the VP, imme-
diately above the vP, or above the event closure operator. Suppose Exh is inserted
immediately above the VP.

The translation of the VP is the following:

(112) [V P carried boxesu′
] � λv′.λζ.λI .λJ . I [u′]J ∧ box{u′}J ∧

carry{ζ }J ∧ Th{u′, ζ }J ∧ Ag{v′, ζ }J
46 If we replace the externally static distributivity operators with their externally dynamic counterparts in
(108) and (109), the output info states would contain assignments corresponding to each possible combina-
tion of the ‘split’ values of u′ and the ‘split’ values of u. Although this wouldn’t in principle be problematic,
it seems to be an unnecessary complication of the structure of the info state.
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Exh is translated as an Exh operator. A generalized definition of Exh operators
was given above in (86). In combination with a term of type e(vt), Exh is defined as
follows:

(113) ExhAlt (e(vt))(e(vt))(Ve(vt)) := λve.λζv.λIst.λJst. V (v)(ζ )I J ∧
∀V ′

e(vt). (V ′ ∈ Alt ∧ V ′ � V → ¬V ′(v)(ζ )I J ),

where Alt is the set of alternatives for V .

The definition in (113) requires for all stronger alternatives to be negated. The
set of alternatives for (112) includes the following term, which is the translation of
the corresponding VP with the plural indefinite direct object replaced by a singular
indefinite :

(114) λv′.λζ.λI .λJ . I [u′]J ∧ atom{u′}J ∧ unique{u′}J ∧ box{u′}J ∧ carry{ζ }J ∧
Th{u′, ζ }J ∧ Ag{v′, ζ }J

To perform exhaustification, we must determine whether the alternative in (114)
is stronger than (112). Since (114) only differs from (112) in that it imposes some
additional restrictions on the values of u′ in the output info state (i.e. it requires for
u′ to return the same atomic individual for all the assignment ), it follows that for any
info states I and J , event dref ε and individual dref u, if u, ε, I and J satisfy (114),
then they also satisfy (112). The converse, however, does not hold. Hence, following
the definition of strength in (89), we can conclude that (114) is indeed stronger than
(112).

The expression in (112) must then be strengthened via the negation of the stronger
alternative:

(115) λv′.λζ.λI .λJ . I [u′]J ∧ box{u′}J ∧ carry{ζ }J ∧Th{u′, ζ }J ∧Ag{v′, ζ }J ∧
¬(I [u′]J ∧ atom{u′}J ∧ unique{u′}J ∧ box{u′}J ∧ carry{ζ }J ∧
Th{u′, ζ }J ∧ Ag{v′, ζ }J )

:= λv′.λζ.λI .λJ . I [u′]J ∧ box{u′}J ∧ carry{ζ }J ∧ Th{u′, ζ }J ∧
Ag{v′, ζ }J ∧ (¬atom{u′}J ∨ ¬unique{u′}J )

We then arrive at the following DRS as the translation of (112):

(116) λIst.λJst. I [ε, u, u′]J ∧ 3_atoms{u}J ∧ student{u}J ∧ box{u′}J ∧
carry{ε}J ∧ Th{u′, ε}J ∧ Ag{u, ε}J ∧ (¬atom{u′}J ∨ ¬unique{u′}J )

This DRS introduces three new drefs: an event-dref ε, and two individual-drefs u
and u′, and imposes conditions on the values of these drefs in the output info state
J . Assuming a singleton input info state I , the output state J will have the following
form:
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(117)

Info state J . . . ε u u′ . . .

j . . . e s1 ⊕ s2 ⊕ s3 b1 ⊕ . . . ⊕ bn . . .

Given our definition of new dref introduction ([], cf. 60), if I is singleton, J must
also be singleton, i.e. J = { j}. Then, according to (116), and given that we assume
lexical predicates to be cumulative, ε j must be a sum of carrying events, u j must be a
sum students, and u′ j must be a sum of books. The numeral in (110) is translated as a
cardinality predicate, which requires for u j to be a sum of 3 individuals. Furthermore,
given that the thematic relations (Ag and Th) are also cumulative, it follows that the
three students (u j) are the cumulative agent in e, and the books (u′ j) are the cumulative
theme in e. Finally, (116) states that u′ must either return different values for some two
assignments in J or return a non-atomic individual for some assignment in J . Given
that J is singleton, it follows that u′ j must be a non-atomic sum of boxes. The DRS
in (116) will be true (relative to input state I ) iff such a J exists, which is equivalent
to saying that there exists a sum of carrying events, a sum of three students and a
non-atomic sum of boxes that stand in the defined cumulative relations to each other.
We have thus derived the cumulative interpretation of sentence (110).

Interestingly, the same truth conditions are derived in our system if Exh is inserted
above the vP or above event closure in (111). Consider the latter option. In this case,
the Exh operator combines with the following DRS:

(118) λIst.λJst. I [ε, u, u′]J ∧ 3_atoms{u}J ∧ student{u}J ∧ box{u′}J ∧
carry{ε}J ∧ Th{u′, ε}J ∧ Ag{u, ε}J

This is compared to the alternative in (119):

(119) λIst.λJst. I [ε, u, u′]J ∧ 3_atoms{u}J ∧ student{u}J ∧ atom{u′}J ∧
unique{u′}J ∧ box{u′}J ∧ carry{ε}J ∧ Th{u′, ε}J ∧ Ag{u, ε}J

The alternative in (119) is stronger than (118): any pair of info states that satisfy
(119) would also satisfy (118). Hence, following the translation of the Exh-operator in
(120), the stronger alternative is negated, once again yielding (116) as the translation
of the structure in (111).

(120) ExhAlt tt(Dt) := λIst.λJst. DI J ∧ ∀D′. (D′ ∈ Alt ∧ D′ � D → ¬D′ I J ),
where Alt is the set of alternatives for D.

6.2 Dependent plurals

6.2.1 Deriving co-distributivity

Consider now sentence (121) that minimally differs from (110) it that a weak distribu-
tivity operator has been inserted below the subject:

(121) Threeu students [all/δw carriedε boxesu
′
]
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Ignoring the exhaustification operator for the time being, this sentence is assigned
the structure in (122), with the subject raised from its base position to a position above
the distributivity operator:

(122)

[Threeu students]v

all/δw

∃ε
ev vP

tv VP

carried boxesu
′

The compositional translation of the vP combined with the event closure operator
is the following:

(123) [ε]; [u′]; [box{u′}];
[carry{ε}, Th{u′, ε}, Ag{v, ε}]

∃ε
ev

λV . [ε]; V (ε)

vP
λζ. [u′]; [box{u′}];

[carry{ζ }, Th{u′, ζ }, Ag{v, ζ }]

tv
v

VP
λv′.λζ. [u′]; [box{u′}];

[carry{ζ }, Th{u′, ζ }, Ag{v′, ζ }]

This is then combined with the distributivity operator and the raised subject. The
resulting structure is translated via the Distributive Quantifying-In rule in (104) to
yield the following DRS:

(124) threeu students δw carriedε boxesu ′

[u]; [3_atoms{u}]; [student{u}];
distw([ε]; [u′]; [box{u′}]; [carry{ε}, Th{u′, ε}, Ag{u, ε}])(u)

[threeu students]v

λP ′. [u]; [3_atoms{u}];
[student{u}]; P ′(u) δw

λP.λv′. distw(P(v′))(v′)
[ε]; [u′]; [box{u′}];

[carry{ε}, Th{u′, ε}, Ag{v, ε}]

Unpacking the distw operator, we obtain the following DRS:
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(125) λI .λJ .∃H ([u]; [3_atoms{u}]; [student{u}])I H ∧
∃H ′. (H〈u〉H ′ ∧ ([ε]; [u′]; [box{u′}]; [carry{ε}, Th{u′, ε}, Ag{u, ε}])H ′ J )

Let us consider the truth conditions of this DRS in detail. It will be true with respect
to a singleton input info state I iff there exists an info state J such that the following
conditions are met:

(a) there is an info state H such that the assignments in H differ from the assignments
in I at most with respect to the values for u, and u returns a sum of three students for
each assignment in H . Given that I is singleton, H is also singleton:

(126)

Info state H , s.t. I [u]H . . . u . . .

h . . . s1 ⊕ s2 ⊕ s3 . . .

(b) There exists an info state H ′, such that H〈u〉H ′, i.e. the value of u in H is ‘split’
into its atomic parts, which are returned as values of u in H ′:

(127)

Info state H ′, s.t. H〈u〉H ′ . . . u . . .

h′
1 (s.t. h1[u] j) . . . s1 . . .

h′
2 (s.t. h2[u] j) . . . s2 . . .

h′
3 (s.t. h3[u] j) . . . s3 . . .

(c) The output info state J differs from H ′ at most with respect to the values for ε

and u′, such that for every assignment j in J , u′ j is a (possibly atomic) sum of boxes,
ε j is a (possibly atomic) sum of carrying events, u j is the agent of ε j , and u′ j is the
theme of ε j . This is illustrated in (128):

(128)

Info state J , s.t. H ′[u′, ε]J . . . u ε u′ . . .

j1 (s.t. j1[u′, ε]h′
1) . . . s1 e1 b1 . . .

j2 (s.t. j2[u′, ε]h′
2) . . . s2 e2 b2 . . .

j3 (s.t. j3[u′, ε]h′
3) . . . s3 e3 b3 . . .

Note, that the values of u′ with respect to the assignments in J (b1, b2 and b3 in
128) can be either atomic or non-atomic on the assignment level, and can be either
distinct or identical on the state level. For instance, the truth conditions of the DRS
in (125) are compatible with a scenario where three students each carried a different
box. We have thus derived the co-distributive reading of sentence (121).

6.2.2 Deriving the multiplicity condition

To fully capture the dependent plural interpretationwemust also derive the overarching
Multiplicity Condition associated with the dependent plural: (121) will not be judged
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true if all the students carried the same box. Thus, we must ensure that the sum of
the boxes carried by the students is greater than one. I will now demonstrate that the
Multiplicity Condition is derived as an implicature in the current system, in exactly
the same way as the non-atomicity requirement associated with non-dependent bare
plurals (cf. the discussion of example (110) above).

To satisfy the requirement in (85), an exhaustification operator must be inserted into
the structure in (122). There are four potential insertion sites for Exh: above the VP,
above the vP, above event closure, and at the root above the raised subject.47 Inserting
the Exh in the lowest position, we again derive (115) as the strengthened translation
of the VP, and the DRS in (129) as the translation of example (121):

(129) λI .λJ .∃H . I [u]H ∧ 3_atoms{u}H ∧ student{u}H ∧
∃H ′. (H〈u〉H ′ ∧ H ′[ε, u′]J ∧ box{u′}J ∧ carry{ε}J ∧ Th{u′, ε}J ∧
Ag{u, ε}J ∧ (¬atom{u′}J ∨ ¬unique{u′}J ))

This DRS is very similar to the one in (125), except that (129) requires for the
values of u′ to be either non-atomic or non-unique with respect to the output info
state J , i.e. u′ must either return a non-atomic individual for some assignment in J or
return different individuals for some assignments in J . For convenience, I reproduce
the table representing J here:

(130)

Info state J . . . u ε u′ . . .

j1 . . . s1 e1 b1 . . .

j2 . . . s2 e2 b2 . . .

j3 . . . s3 e3 b3 . . .

Thus, the DRS in (129) will be true iff there exist three atomic students s1, s2 and
s3, three (sums of) carrying events e1, e2 and e3, and three sums of boxes b1, b2 and
b3, such that s1 carried b1 in e1, s2 carried b2 in e2, and s3 carried b3 in e3. Moreover,
following the conditions in (129), it must be the case that either b1, b2 or b3 is a
non-atomic sum of boxes, or ¬(b1 = b2 = b3). In other words, (129) will be true iff
there are three students such that they each carried one or more boxes, and more than
one box was carried overall. This amounts to a co-distributive reading combined with
a global Multiplicity Condition, i.e. a dependent plural reading.

If Exh is inserted directly above the vP, directly above the event closure operator
or at the root in (122) the result is again the DRS in (129).48 Thus, for sentences like
(121) our system derives the overarching Multiplicity Condition irrespective of the
choice of exhaustification site.

47 Formally, there is a fifth option of inserting Exh immediately above the distributivity operator, below
the subject. However, this structure would be uninterpretable in the current system since the exhaustivity
operator would block the application of the Distributive Quantifying-In rule.
48 For reasons of space, I leave the calculation of the relevant translations to the reader.
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6.2.3 Dependent plurals under plural quantifiers

Consider now the interpretation of bare plural indefinites in the scope of plural quan-
tifiers. Take example (131), with the structure in (132) (leaving out the Exh-operator
for now):

(131) Mostu,u′
students carriedε boxesu

′′
.

(132)

[mostu,u′
students]v

∃ε
ev vP

tv VP

carried boxesu
′′

The translation of the subject DP, given the schema in (108), is the following:

(133) mostu,u’ students � λP ′
et. [u′, u]; [MOST{u′, u}];maxu′

(dist’w([student(u′)])(u′)); maxu(distw([student(u)]; P ′(u))(u));
The translation of the VP was already calculated above. I repeat it here:

(134) [V P carried boxesu′′
] � λv′.λζ.λI .λJ . I [u′′]J ∧ box{u′′}J ∧

carry{ζ }J ∧ Th{u′′, ζ }J ∧ Ag{v′, ζ }J
In order to satisfy the condition in (85), an exhaustivity operator must be inserted

in a position c-commanding the bare plural in (132). Suppose Exh is inserted directly
above the VP, yielding the following strengthened term:

(135) λv′.λζ.λI .λJ . I [u′′]J ∧ box{u′′}J ∧ carry{ζ }J ∧ Th{u′′, ζ }J ∧
Ag{v′, ζ }J ∧ (¬atom{u′′}J ∨ ¬unique{u′′}J )

This is then combined with the subject trace and the event closure operator to yield
the following DRS:

(136) ∃ε
ev tv carry boxesu” � λI .λJ . I [ε, u′′]J ∧ box{u′′}J ∧ carry{ε}J ∧

Th{u′′, ε}J ∧ Ag{v, ε}J ∧ (¬atom{u′′}J ∨ ¬unique{u′′}J )

Finally, after combining the subject in (133) with the DRS in (136) via the
Quantifying-In rule, we arrive at the following translation for (131):

(137) [u′, u]; [MOST{u′, u}]; maxu′(dist’w([student{u′}])(u′));
maxu(distw(λI .λJ . student{u}I ∧ I [ε, u′′]J ∧ box{u′′}J ∧ carry{ε}J ∧
Th{u′′, ε}J ∧ Ag{u, ε}J ∧ (¬atom{u′′}J ∨ ¬unique{u′′}J ))(u))

Lets us consider the four parts of this DRS in turn, assuming a singleton input info
state I . First, the DRS in (137) introduces two new drefs, u′ and u, giving rise to a
new info state, call it K :

123



478 S. Minor

(138)

Info state K , s.t. I [u′, u]K . . . u′ u . . .

k . . . s′
1 ⊕ s′

2 ⊕ . . . ⊕ s′
m s1 ⊕ s2 ⊕ . . . ⊕ sn . . .

The values that these drefs return for the assignment in K are then compared by
the quantifier MOST. I repeat its definition here for convenience:

(139) MOST(u′, u) := λIst. I = ∅ ∧ ∀i ∈ I . ( |ui | > |u′i − ui | )

Following this definition, the sum of individuals that u returns for the assignment
in K (the sum s1 ⊕ s2 ⊕ . . . ⊕ sn in 138) must have a cardinality greater than the
cardinality of the complement of that sum in the sum of individuals returned by u′
(the sum s′

1 ⊕ s′
2 ⊕ . . . ⊕ s′

n in 138).
The static quantifier in (137) is followed by a maximization operator. For conve-

nience, I repeat the definition of max from (106):

(140) maxu(D) := λIst.λJst. DI J ∧ ∀I ′
st (I [u]I ′ ∧ ∃J ′

st. (DI ′ J ′) → ∀is ∈ I . ∀i ′s ∈
I ′. (i[u]i ′ → ui ′ ≤ ui))

Consider the role of the first max operator in (137). Its argument is the DRS
dist’w([student{u′}])(u′). Given the definitions in (97), this DRS can be unwrapped
in the following way:

(141) dist’w([student{u′}])(u′)
:= λIst. λJst. I = J ∧ ∃J ′. (〈u′〉; [student{u′}])I J ′

Combining it with themax operator produces the following DRS:

(142) maxu′(dist’w([student{u′}])(u′)) :=
λIst.λJst. I = J ∧ ∃J ′. (〈u′〉; [student{u′}])I J ′ ∧
∀I ′

st (I [u′]I ′ ∧ ∃J ′
st. (I ′ = J ′ ∧ ∃J ′′. (〈u′〉; [student{u′}])I ′ J ′′) →

∀is ∈ I . ∀i ′s ∈ I ′. (i[u′]i ′ → u′i ′ ≤ u′i))

The DRS in (142) is a test, i.e. it does not re-assign the values of any drefs in the
output info state. Instead, it requires for the values of u′ in the input info state I to
be such that if they are split into their atomic parts, each of those parts would be in
the denotation of student , i.e. u′i must return a sum of students for every i ∈ I .
Furthermore, its requires that there be no way to re-assign the values of u′, e.g. in I ′,
such that u′ returns larger sums of students in I ′ than for the corresponding assignments
in I . When applied to the info state K in (138), this entails that u′k must return the
maximal sum of students.

The final part of (137) involves another maximization operator, but in this case it
is applied to a conjunction of the nuclear scope and restrictor predicates taken under
the weak distributivity operator. Replacing the max and distw operators with their
definitions in (140) and (93), we arrive at the following DRS:

(143) λI .λJ .∃Hst. I 〈u〉H ∧ student{u}H ∧ H [ε, u′′]J ∧ box{u′′}J ∧ carry{ε}J ∧
Th{u′′, ε}J ∧ Ag{u, ε}J ∧ (¬atom{u′′}J ∨ ¬unique{u′′}J ) ∧

123



Dependent plurals and three levels of multiplicity 479

∀I ′
st. (I [u]I ′ ∧ ∃J ′

st. ∃H ′
st. I ′〈u〉H ′ ∧ student{u}H ′ ∧ H ′[ε, u′′]J ′ ∧

box{u′′}J ′ ∧ carry{ε}J ′ ∧ Th{u′′, ε}J ′ ∧ Ag{u, ε}J ′ ∧ (¬atom{u′′}J ′ ∨
¬unique{u′′}J ′)) → ∀is ∈ I . ∀i ′s ∈ I ′. (i[u]i ′ → ui ′ ≤ ui)

Because distw is externally dynamic, the DRS in (143) is not a test. Applied to
the info state K in (138), it first splits the value for u in K into its component atoms,
producing an new info state H :

(144)

Info state H , s.t. K 〈u〉H . . . u′ u . . .

h1 . . . s′
1 ⊕ s′

2 ⊕ . . . ⊕ s′
m s1 . . .

h2 . . . s′
1 ⊕ s′

2 ⊕ . . . ⊕ s′
m s2 . . .

. . . . . . . . . . . . . . .

hn . . . s′
1 ⊕ s′

2 ⊕ . . . ⊕ s′
m sn . . .

This info state is then updated with the event dref ε and individual dref u′′ resulting
in the output info state J :

(145)

Info state J . . . u′ u ε u′′ . . .

j1 . . . s′
1 ⊕ s′

2 ⊕ . . . ⊕ s′
m s1 e1 b1 . . .

j2 . . . s′
1 ⊕ s′

2 ⊕ . . . ⊕ s′
m s2 e2 b2 . . .

. . . . . . . . . . . . . . . . . . . . .

jn . . . s′
1 ⊕ s′

2 ⊕ . . . ⊕ s′
m sn en bn . . .

The DRS in (143) places a number of restrictions on the values of the drefs in J .
Specifically, s1, s2, . . . , sn are (atomic) students, e1, e2, . . . , en are carrying events,
and b1, b2, . . . , bn are possibly atomic sums of boxes. Next, s1 is the agent of e1, s2
is the agent of e2, …, sn is the agent of en . Similarly, b1 is the theme of e1, b2 is the
theme of e2, …, bn is the theme of en . It must also be the case that the cardinality of
the sum b1 ⊕ b2 ⊕ . . .⊕ bn is greater than one. This output info state will exist if there
is a set of students, where each student carried a (possibly atomic) sum of boxes, and
more than one box was carried overall.

Finally, the DRS in (143) when applied to K requires that there be no K ′, which
differs from K at most in the value for u such that: a) there exist info states H ′ and J ′
satisfying the same conditions as H and J above; and b) the sum of individuals that u
returns for the assignment in K is a proper sub-sum of the sum of individuals that u
returns for the assignment in K ′. In other words, uk in (138), i.e. s1 ⊕ s2 ⊕ . . . ⊕ sm ,
is the maximal sum of students such that each student carried a (possibly atomic) sum
of boxes, and more than one box was carried overall.

Now, recall that the quantifier MOST in (137) requires for the sum of individuals
that u returns for the assignment in K (s1 ⊕ s2 ⊕ . . .⊕ sn) to have a cardinality greater
than the cardinality of the complement of that sum in the sum of individuals returned
by u′ in K (s′

1 ⊕ s′
2 ⊕ . . . ⊕ s′

n). This means that the cardinality of the maximal sum
of students S such that each student in S carried a (possibly atomic) sum of boxes and
together the students in S carried more than one box, must be greater than half the
cardinality of the maximal sum of students.

Summing up, the DRS in (137) will be true iff there is a sum of students S, such
that each student in S carried a possibly atomic sum of boxes and more than one box
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was carried overall, S is the maximal sum of students satisfying this condition, and
the cardinality of S is greater than half the cardinality of the maximal sum of students.
This adequately captures the dependent plural interpretation of sentence (131).

Attaching the Exh-operator at other sites in (132) (e.g. above the vP, above the
subject trace, above the event closure operator or at the root) yields the same DRS in
(137) (cf. Appendix 1).

6.3 Accounting for the ban on numerals

6.3.1 Numerals and weak distributivity

Consider now the interpretation of plural DPs containing numerals and cardinal mod-
ifiers in the scope of weak distributivity operators and plural quantificational items.

Take the following example with the structure in (147):

(146) Threeu students all / δw carriedε fouru
′
boxes.

(147)

[Threeu students]v

δw

∃ε
ev vP

tv VP

carried fouru
′
boxes

The translation of this sentence in PCDRTe is parallel to that of (121) discussed
above, except for the cardinality condition contributed by the numeral:

(148) [u]; [3_atoms{u}]; [student{u}];
distw([ε]; [u′]; [4_atoms{u′}]; [box{u′}]; [carry{ε}, Th{u′, ε},
Ag{u, ε}])(u)

TheDRS in (148) will be true (with respect to a singleton input info state I ) iff there
exists an output info state like the following, where the value for the subject dref u is
distributed (by virtue of the weak distributivity operator) across multiple assignments:

(149)

Info state J . . . u ε u′ . . .

j1 . . . s1 e1 b1 . . .

j2 . . . s2 e2 b2 . . .

j3 . . . s3 e3 b3 . . .

Here, s1, s2 and s3 are distinct atomic sums of students, b1, b2 and b3 are sums of
boxes, and e1, e2 and e3 are carrying events whose agents are s1, s2 and s3, respec-
tively, and whose themes are b1, b2 and b3, respectively. The cardinality condition
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4_atoms{u′} in (148) is interpreted distributively, i.e. with respect to each assignment
in J . This means that b1, b2 and b3 are all sums of four boxes. An info state like this
will exists iff there are three students who each carried four boxes, i.e. we end up
with truth conditions for (147) where the subject has distributive scope over the direct
object. Thus, the proposed analysis correctly captures the fact that floating quantifiers
as in (146) block co-distributive interpretations between the subject and the direct
object involving a numeral. In the proposed system this follows from the fact that dis-
tributivity operators split the values of the subject dref across multiple assignments or
info states, while the cardinality conditions imposed by numerals apply to the values
of the object dref for each assignment.49

Consider now example (150), and its translation in (151):

(150) Mostu,u′
students carriedε fouru

′′
boxes.

(151) [u′, u]; [MOST{u′, u}]; maxu′(dist’w([student{u′}])(u′));
maxu(distw([student{u}]; [ε, u′′]; [4_atoms{u′′}]; [box{u′′}];
[carry{ε}]; [Th{u′′, ε}]; [Ag{u, ε}])(u))

Sentence (150) does not allow for a co-distributive interpretation, i.e. the numeral
cannot be understood as specifying the total number of boxes carried by the students.
Instead, this sentence must be interpreted distributively with the cardinality condition
evaluated relative to the individual students. This result, again, follows directly from
our analysis of QDs and numerals.

Consider the DRS in (151). It’s truth conditions mirror those of (137) discussed
above, up to the translation of the object DP. It introduces two new drefs, u′ and u, as
in (138), such that the cardinality of the sum of individuals returned by u (i.e. uk in
138) is greater than half the cardinality of the sum returned by u′ (u′k). Moreover, u′
must return the maximal sum of students. The lack of a co-distributive interpretation
is explained by the conditions that the DRS in (151) imposes on the values of u and
u′′. It requires u to return the maximal sum of individuals uk such that there exists an
output info state J of the following form:

(152)

Info state J . . . u ε u′′ . . .

j1 . . . s1 e1 b1 . . .

j2 . . . s2 e2 b2 . . .

. . . . . . . . . . . . . . . . . .

jn . . . sn en bn . . .

Here, the value for u has been split by theweak distributivity operator into its atomic
sub-parts s1, s2, . . . , sn . Each of these individuals must be a student. Next, ε and u′′
have been introduced, such that the values of ε are carrying events whose agents are

49 It is easy to see that the same truth conditions will obtain if we replace all with each in (146). The
floating each is analysed as a strong distributivity operator, which will split the value of the subject dref
into atomic parts distributed across multiple singleton info states. The cardinality condition on the direct
object dref will then apply distributively to each of these singleton info states.
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the values of u, and whose themes are the values of u′′. Finally, u′′ must return a sum of
four boxes for each assignment in J . Crucially, since the cardinality condition imposed
on the values of u′′ occurs in the scope of the weak disitributivity operator that splits
the value of the agent dref, it will apply distributively relative to each atomic value
of the agent dref, i.e. each student must have carried four boxes. Thus, the presence
of the weak distributivity operator in the semantics of plural QDs, in combination
with the fact that numerals encode assignment-level cardinality conditions, explains
the lack of co-distributive interpretations in contexts involving plural quantificational
items scoping over DPs with numerals.50

6.3.2 Modified numerals

The analysis extends naturally to all types of cardinality modifiers (e.g., modified
numerals of various types, modifiers like several and multiple, etc.). As long as the
cardinality conditions associated with these items are taken to apply at the level of the
individual assignments, we predict that they will not be interpreted co-distributively
in the scope of weak distributivity operators and plural quantificational DPs.

For concreteness, let us consider the semantics of comparative numerals like fewer
than 10, which as we have seen pose problems for cumulativity-based approaches to
the semantics of plural quantifiers. Take sentence (42), repeated in (153):

(153) All the students made fewer than 10 mistakes.

In examples like this, modified numerals receive a maximal interpretation, i.e.
sentence (153) can be paraphrased as stating that for each student the maximal number
of mistakes that they made was less than 10.51

To account for this reading, I will incorporate an analysis of comparative numerals
along the lines of Hackl (2000) and Heim (2000). First, we need to add a new basic
type d for degrees. The domain of d is the set of non-negative integers, with the <

relation defined in the standard way. Next, we need to introduce the notion of drefs
over degrees (functions from assignments to degrees, type sd). I will use d, d1, d2 . . .

for constants of type sd, and n, n1, n2 . . . for variables of type sd.
Following Hackl (2000), I will assume that the structure of comparative numerals

(154) involves a phonologically null parametrized determiner many, with the transla-
tion in (155):

(154)

fewer than ten many
mistakes

50 The proposed analysis also derives only distributive readings for DPs with numerals in the scope of
singular quantificational DPs like each/every student.
51 In other contexts, comparative numerals can receive a non-maximal, existential interpretation. I will not
address the complex issue of the source and nature of this variation (cf. the discussion and references in
Buccola and Spector 2016). The aim of this section is simply to demonstrate how maximal readings of
numerals can be treated in the proposed system.
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(155) manyu � λnsd .λPet.λP ′
et. [u]; [card{u, n}]; P(u); P ′(u),

where card{u, d} := λIst. ∀i ∈ I .(|{xe : x ≤ ui ∧ atom(x)}| = di)

Defined in this way, many combines with a dref over degrees n and two dynamic
predicates, P and P ′, and introduces a new individual dref u satisfying P and P ′, such
that for each assignment i in the updated info state the cardinality of ui is equal to ni .

The comparative numeral is treated as a generalized quantifier over degrees: it
combines with a predicate of degree drefs and places a condition on the value of the
maximal degree that satisfies that predicate:

(156) fewerd than 10 � λM(sd)t. [d]; maxd(M(d)); [d < 10],
where d < 10 := λIst. I = ∅ ∧ ∀i ∈ I .(di < 10)

Maximality is encoded with the help of the samemax operator that we used in the
translations of definites and QDs (cf. the definition in 106). Recall, that this operator
encodes distributive maximality for the values of a dref, i.e. it ensures that for each
assignment in the current info state, the value of a dref is maximal with respect to
a particular DRS. Furthermore, (156) includes a cardinality condition (d < 10) that
applies distributively to each value of the degree dref in the plural info state.

The final piece of the analysis is the idea that comparative numerals can quantifier
raise out of their base position leaving behind a degree-type trace. In our system, this
means that the comparative numeral leaves a trace whose index is a variable of type
sd, i.e. the type of degree drefs.

Sentence (153) is assigned the following structure:

(157)

[allu
′,u′′

the students]v

[fewerd than 10]n

∃ε
ev

tv

made DP

tn manyu
mistakes

The comparative numeral (fewer than 10) must raise out of its base position in order
to ensure thatmany combines with an expression of an appropriate type (sd), and land
above the event closure operator.52 The compositional translation of the structure in
(157) results in the following DRS:

52 Raising of the comparative numeral above the quantificational subject appears to be blocked in such
constructions, a phenomenon sometimes referred to as Kennedy’s Generalization (cf. Heim 2000, see also
Lassiter 2010).
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(158) [u′′, u′]; [ALL{u′′, u′}]; maxu′′(dist’w([student{u′}])(u′));
maxu′(distw([student{u′}]; [d]; maxd([u]; [card{u, d}]; [ε]; [mistake{u}];
[make{ε}]; [Th{u, ε}]; [Ag{u′, ε}]); [d < 10])(u′))

Consider the truth conditions of this DRS relative to a singleton input info state.
First, it introduces two new drefs u′′ and u′:

(159)

Info state K , s.t. I [u′′, u′ ]K . . . u′′ u′ . . .

k . . . s1 ⊕ s2 ⊕ . . . ⊕ sn s1 ⊕ s2 ⊕ . . . ⊕ sn . . .

Given the definition of ALL (cf. 107), the values for u′′ and u′ must have equal
cardinality. The value for u′′ is the maximal sum of students. The value for u′ is the
maximal sum of individuals such that there is an info state of the following form:

(160)

Info state J . . . u′ d ε u . . .

j1 . . . s1 N1 e1 m1 . . .

j2 . . . s2 N2 e2 m2 . . .

. . . . . . . . . . . . . . . . . . . . .

jn . . . sn Nn en mn . . .

Here, the value for u′ in (159) has been split by the weak distributivity operator
into its atomic parts, and each of these parts is a student. The values of d are degrees
(i.e. natural numbers), the values for u are sums of mistakes, and the values for ε are
making events, such that for each assignment j , the student u′j is the agent of εj , the
sum of mistakes uj is the theme of εj , and the degree dj is the cardinality of the sum
of mistakes uj . Moreover, for each assignment j , d must return the maximal number
such that such sums of mistakes and making events exist. Finally, d must return a
number lower than 10 for each assignment in (160).

In other words, the DRS in (158) will be true iff the cardinality of the maximal
sum of students who each made at most 9 mistakes is equal to the cardinality of the
maximal sum of students, i.e. iff each student student made fewer than 10 mistakes.
This captures the intended reading of sentence (153). A co-distributive interpretation
of this sentence is ruled out by the combination of two factors. First, the subject’s plural
QD is weakly distributive, splitting the values of the subject dref into atomic parts and
distributing them across multiple assignments in a plural info state. And second, the
maximality and cardinality conditions encoded in the semantics of the comparative
numeral apply distributively to the values of the object dref for each assignment.

6.3.3 Numerals at a distance

This approach also immediately accounts for the lack of co-distributive readings in
examples like (161), which I have argued pose a problem for Kuhn’s (2020) proposal:
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(161) Allu1,u2 the kids receivedε1 gift bagsu3 containingε2 fewerd than 10u4 candies.

This sentence translates into the followingDRS (seeAppendix 1 for a compositional
translation of the complex DP):53

(162) [u1, u2]; [ALL{u1, u2}]; maxu1 (dist’w([kid{u1}])(u1));
maxu2 (distw([kid{u2}]; [ε1, u3]; [gift-bag{u3}]; [¬atom{u3} ∨ ¬unique{u3}]; [d];
maxd ([ε2, u4]; [card{u4, d}]; [candy{u4}]; [contain{ε2}]; [Th{u4, ε2}]; [Loc{u3, ε2}]);
[d < 10]; [receive{ε1}]; [Th{u3, ε}]; [Ag{u2, ε1}])(u2))

Let us evaluate the truth conditions of this DRS relative to an arbitrary singleton
input info state I . We start by introducing two individual drefs u1 and u2:

(163)

Info state K , s.t. I [u1, u2]K . . . u1 u2 . . .

k . . . k1 ⊕ k2 ⊕ . . . ⊕ kn k1 ⊕ k2 ⊕ . . . ⊕ kn . . .

Here, dref u1 must return the maximal sum of kids, and u1 and u2 must return sums
of individuals of equal cardinality. Furthermore, the value for u2 must be the maximal
sum of individuals such that there is an info state like the following:

(164)

Info state J . . . u2 ε1 u3 d u4 ε2 . . .

j1 . . . k1 e1 b1 N1 c1 e′
1 . . .

j2 . . . k2 e2 b2 N2 c2 e′
2 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

jn . . . kn en bn Nn c3 e′
n . . .

Here, the values for u2 are atomic sums of kids, the values for ε1 are receiving
events, and the values for u3 are sums of gift bags. The sum of values of u3 across all
the assignments is non-atomic (i.e. more than one gift bag must be involved overall).
For each assignment j , kid u2 j is the agent of the receiving event ε1 j , and the sum of
gift bags u3 j is the theme of ε1 j . Next, the values of d are degrees, the values of u4
are sums of candies, and the values of ε2 are containing events. For each assignment j ,
the sum of gift bags u3 j is the location of the containing event ε2 j , the sum of candies
u4 j is the theme of ε2 j , and d j is the cardinality of u4 j (i.e. the number of candies).
Moreover, for each assignment j , d j is the maximal number of candies contained in
u3 j . Finally, each value of d must be a number lower than 10.

In other words, to evaluate the truth of the DRS in (162) we must find the maximal
sum of kids K1 such that each kid ki in K1 received a sum of gift bags bi containing
at most 9 candies, and more that one gift bag was received overall. Then we need
to compare K1 to the maximal sum of all the kids K2. If |K1| = |K2|, the DRS in
(162) is true, otherwise false. This amounts to saying that every kid received a gift
bag containing fewer than 10 candies, and more than one such gift bag was received
overall.

53 The abbreviated term [¬atom{u3} ∨ ¬unique{u3}] stands for λI .λJ . I = J ∧ (¬atom{u3}J ∨
¬unique{u3}J ).
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Crucial for our purposes is the fact that themodified numeral in the relative clause in
(161) is interpreted as specifying the cardinality of candies relative to each individual
kid, rather than the total number of candies that the kids received altogether. This is a
direct consequence of the fact that the structure of the plural info state generated by
the quantificational subject is passed down in the course of semantic composition to
all expressions in the scope of that subject.

6.4 Accounting for the ban on singular licensors

6.4.1 Bare plurals in the scope of strong distributivity operators

Now consider the interpretation of bare plurals in the scope of strong distributivity
operators:

(165) Threeu students δs /each carried boxesu
′
.

The example in (165) has the following structure (disregarding exhaustification for
now), with the compositional translation in (167):

(166)

[Threeu students]v

δs / each
∃ε
ev vP

tv VP

carried boxesu
′

(167) threeu students δs carriedε boxesu ′

[u]; [3_atoms{u}]; [student{u}];
dists ([ε]; [u′ ]; [box{u′}]; [carry{ε}, Th{u′, ε}, Ag{u, ε}])(u)

[threeu students]v

λP ′. [u]; [3_atoms{u}]; [student{u}]; P ′(u)

δs
λP.λv′. dists (P(v′))(v′)

∃evP
[ε]; [u′ ]; [box{u′}];

[carry{ε}, Th{u′, ε}, Ag{v, ε}]

Replacing the dists operator with its definition, we obtain the following DRS:

(168) λI .λJ .∃H . ([u]; [3_atoms{u}]; [student{u}])I H ∧ ∃H ′. (H〈u〉H ′ ∧
dist([ε]; [u′]; [box{u′}]; [carry{ε}, Th{u′, ε}, Ag{u, ε}])H ′ J )

The difference between the DRS in (168) and that in (125), discussed above, is that
here the introduction of ε and u′, as well as the application of the predicates box and
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carry and the thematic relations occurs in the scope of a dist-operator. This difference
in itself does not make a truth-conditional impact on the basic (i.e. non-enriched)
meaning, i.e. (168) and (125) apply to the same set of input-output state pairs in any
(appropriate) model. However, the introduction of a dist-operator makes a crucial
difference when it comes to calculating the scalar implicature associated with the bare
plural boxes in (166).

The four relevant sites for the insertion of Exh in (166) are above the VP, above the
vP, above event closure, and above the raised subject. Suppose we apply Exh directly
to the VP. We have already calculated this strengthened translation in (115), and I
repeat it here:

(169) λv′.λζ.λI .λJ . I [u′]J ∧ box{u′}J ∧ carry{ζ }J ∧Th{u′, ζ }J ∧Ag{v′, ζ }J ∧
(¬atom{u′}J ∨ ¬unique{u′}J )

This term is then combined with the subject trace, the event closure operator, the
strongdistributivity operator and the raised subjectDP, resulting the following enriched
sentential translation:

(170) λI .λJ .∃H . I [u]H ∧ 3_atoms{u}H ∧ student{u}H ∧ ∃H ′. (H〈u〉H ′ ∧
dist(λI ′.λJ ′. I ′[ε, u′]J ′ ∧ box{u′}J ′ ∧ carry{ε}J ′ ∧ Th{u′, ε}J ′ ∧
Ag{u, ε}J ′ ∧ (¬atom{u′}J ′ ∨ ¬unique{u′}J ′))H ′ J )

Consider the truth conditions of this DRS. It will be true with respect to a singleton
input info state I iff:

(a) there is an info state H such that the assignments in H differ from the assignments
in I at most with respect to the values for u, and u returns a sum of three students for
each assignment in H . Given that I is singleton, H can be represented as follows:

(171)

Info state H , s.t. I [u]H . . . u . . .

h . . . s1 ⊕ s2 ⊕ s3 . . .

(b) There exists an info state H ′, such that H〈u〉H ′, i.e. the value of u in H is split
into its atomic parts in H ′:

(172)

Info state H ′, s.t. H〈u〉H ′ . . . u . . .

h′
1 (s.t. h1[u] j) . . . s1 . . .

h′
2 (s.t. h2[u] j) . . . s2 . . .

h′
3 (s.t. h3[u] j) . . . s3 . . .

(c) There is an output info state J that is the conjunction of singleton info states
obtained in the following way: the info state H ′ in (172) is split into a set of singleton
info states and each of these info states is updated with the event dref ε and individual
dref u′. Moreover, for each of these singleton info states: the value for u is an atomic
student sn ; the value for ε is a carrying event en , such that sn is the agent of en ; and
the value for u′ is a non-atomic sums of boxes bn , such that bn is the theme of en .
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(173)

Info state H ′′
1 . . . u ε u′ . . .

h′′
1 . . . s1 e1 b1 . . .

Info state H ′′
2 . . . u ε u′ . . .

h′′
2 . . . s2 e2 b2 . . .

Info state H ′′
3 . . . u ε u′ . . .

h′′
3 . . . s3 e3 b3 . . .

⇓
Info state J . . . u ε u′ . . .

j1 . . . s1 e1 b1 . . .

j2 . . . s2 e2 b2 . . .

j3 . . . s3 e3 b3 . . .

The way the output info state J is constructed follows from the definition of the
dist operator in (94). This operator first splits the info state H ′ in (172) into singleton
info states, then updates each of these info states separately, and finally ‘glues’ them
back together to produce the output info state J . Crucially, the state-level non-atomicity
condition imposed on the values of u′ is also applied separately to each of the singleton
info states, and not to J directly. This means that each value for u′ in J must be non-
atomic. Thus, theDRS in (170) will be true iff there are three students who each carried
more than one box. This correctly captures the truth conditions of sentence (165).

If we attach Exh directly above the vP or directly above the event closure operator
in (166), we will again obtain the DRS in (170). On the other hand, inserting Exh at
the root (above the raised subject) produces a DRS which will be true iff there are
three students who each carried a sum of boxes, and at least one of these students
carried more than one box. These truth conditions are weaker than those for (170),
which require for each student to have carried more than one box.Whether this weaker
reading exists for sentences like (165) is not completely clear, although it does seem
to be available at least marginally for some speakers (cf. some relevant discussion in
Sauerland 2003, Sauerland et al. 2005, Ivlieva 2013, and the next section). I will not
have anything new to say on this matter, and will leave it for future research.54

6.4.2 Bare plurals in the scope of singular quantificational DPs

Consider now the interpretation of bare plural DPs in the scope of singular quantifiers,
as in the following example:

(174) Everyu,u′
student carriedε boxesu

′′
.

This sentence does not have a dependent plural interpretation, e.g. it will not be
judged true if each student carried only a single box. Instead, it can be paraphrased

54 Adopting the Strongest Candidate Principle would rule out this weaker reading. Thus, this is one of
the contexts where the Non-Weakening Condition and the Strongest Candidate Principle make contrasting
predictions.
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as stating that each student carried more than one box. In the current system this is
explained by the presence of a strong distributivity operator scoping over the nuclear
scope predicate in the translation of singular QDs like every:

(175) everyu,u’ � λPet.λP ′
et. [u′, u]; [EVERY{u′, u}]; maxu′ (dist’s(P(u′))(u′));

maxu(dists(P(u); P ′(u))(u))

Like before, let us first consider a structure where the Exh-operator applies to the
VP:

(176)

[everyu,u′
student]v

∃ε
ev vP

tv
Exh VP

carried boxesu
′′

This structure is translated into the following DRS:

(177) [u′; u]; [EVERY{u′, u}]; maxu′ (dist’s([atom{u′}]; [unique{u′}]; [student{u′}])(u′));
maxu(dists(λI .λJ . student{u}I ∧ atom{u}I ∧ unique{u}I ∧ I [ε, u′′]J ∧ box{u′′}J ∧
carry{ε}J ∧ Th{u′′, ε}J ∧ Ag{u, ε}J ∧ (¬atom{u′′}J ∨ ¬unique{u′′}J ))(u))

Let us examine the truth conditions of (177) closer. Assuming a singleton input
info state I , the DRS in (177) first introduces two new individual dref u′ and u, giving
rise to a new info state K of the following form:

(178)

Info state K , . . . u′ u . . .

k . . . s′
1 ⊕ s′

2 ⊕ . . . ⊕ s′
m s1 ⊕ s2 ⊕ . . . ⊕ sn . . .

The values of u′ and u in K are then related by the quantifier EVERY with the
following definition:

(179) EVERY(u′, u) := λIst. I = ∅ ∧ ∀i ∈ I . ( |u′i | = |ui | )

Applied to K , this operator ensures that the cardinality of the sum of individuals
returned by u′ (s′

1 ⊕ s′
2 ⊕ . . .⊕ s′

m) is equal to the cardinality of the sum of individuals
returned by u (s1 ⊕ s2 ⊕ . . . ⊕ sn).

The first maximality operator in (177) applies to the restrictor predicate taken under
the externally static version of the strong distributivity operator. The resulting DRS is
a test. Applied to the info state in (178), it ensures that if the value of u is split into
atomic sub-parts, each of these sub-parts is a student. Moreover, it states that the value
of u in K (178) is the maximal sum of individuals that satisfies this condition, i.e. it is
the maximal sum of students. Note, that since the uniqueness and atomicity conditions
occur in the scope of the dists operator in (177), they will be applied separately to
multiple singleton info states, and hence will be effectively neutralized.

Consider now the second maximality operator in (177):
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(180) maxu(dists(λI .λJ . student{u}I ∧ atom{u}I ∧ unique{u}I ∧ I [ε, u′′]J ∧
box{u′′}J ∧ carry{ε}J ∧ Th{u′′, ε}J ∧ Ag{u, ε}J ∧ (¬atom{u′′}J ∨
¬unique{u′′}J ))(u))

It does two things. First, it updates the input info state K in (178) with the dynamic
conjunction of the restrictor and nuclear scope predicates taken under the externally
dynamic version of the strong distributivity operator:

(181) dists(λI .λJ . student{u}I ∧ atom{u}I ∧ unique{u}I ∧ I [ε, u′′]J ∧
box{u′′}J ∧ carry{ε}J ∧ Th{u′′, ε}J ∧ Ag{u, ε}J ∧ (¬atom{u′′}J ∨
¬unique{u′′}J ))(u) :=
λIst.λJst.∃H . I 〈u〉H ∧ dist(λI ′.λJ ′. student{u}I ′ ∧ atom{u}I ′ ∧
unique{u}I ′ ∧ I ′[ε, u′′]J ′ ∧ box{u′′}J ′ ∧ carry{ε}J ′ ∧ Th{u′′, ε}J ′ ∧
Ag{u, ε}J ′ ∧ (¬atom{u′′}J ′ ∨ ¬unique{u′′}J ′))H J

Applied to K in (178), this DRS first splits the value for u into its atomic parts
giving rise to info state H :

(182)

Info state H , s.t. K 〈u〉H . . . u′ u . . .

h1 . . . s′
1 ⊕ s′

2 ⊕ . . . ⊕ s′
m s1 . . .

h2 . . . s′
1 ⊕ s′

2 ⊕ . . . ⊕ s′
m s2 . . .

. . . . . . . . . . . . . . .

hn . . . s′
1 ⊕ s′

2 ⊕ . . . ⊕ s′
m sn . . .

This info state is then split into multiple singleton info states by the dist operator,
and each of these info state is updated with an event dref ε and individual dref u′′:

(183)

Info state H ′
1 . . . u′ u ε u′′ . . .

h′
1 . . . s′

1 ⊕ s′
2 ⊕ . . . ⊕ s′

m s1 e1 b1 . . .

Info state H ′
2 . . . u′ u ε u′′ . . .

h′′
2 . . . s′

1 ⊕ s′
2 ⊕ . . . ⊕ s′

m s2 e2 b2 . . .

. . .

Info state H ′
n u′ u ε u′′ . . .

h′
n . . . s′

1 ⊕ s′
2 ⊕ . . . ⊕ s′

m sn en bn . . .

Several conditions are applied separately to each of these singleton info states. For
each H ′

k in (183), the value for u is an atomic student sk ; the value for ε is a carrying
event ek , such that sk is the agent of ek ; and the value for u′′ is a non-atomic sum of
boxes bk , such that bk is the theme of ek .55

Following the definition of the dist operator, the singleton info states in (183) are
then ‘glued’ back together to produce the following output info state J :

55 Note that the non-uniqueness condition on the values of u′′ in (181) when applied separately to each
singleton info state is trivially false, which means that the value of u′′ in each info state in (183) must be
non-atomic.
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(184)

Info state J . . . u′ u ε u′′ . . .

j1 . . . s′
1 ⊕ s′

2 ⊕ . . . ⊕ s′
m s1 e1 b1 . . .

j2 . . . s′
1 ⊕ s′

2 ⊕ . . . ⊕ s′
m s2 e2 b2 . . .

. . . . . . . . . . . . . . . . . . . . .

jn . . . s′
1 ⊕ s′

2 ⊕ . . . ⊕ s′
m sn en bn . . .

This output state will exist iff there is a set of individuals s1, s2, . . . , sn who are
(atomic) students, who each carried a non-atomic sum of boxes.

The second function of the maximality operator in (180) is to ensure that the value
of u in K is the maximal sum of students where each student carried more than one
box.

Now, given that the cardinality of the value of u in K must be equal to the cardinality
of u′ in K (cf. 179), it follows that the DRS in (177) will be true iff the cardinality
of the maximal sum of students who each carried more than one box is equal to the
cardinality of the maximal sum of students, i.e. each student carried more than one
box. These are the desired truth conditions for sentence (174).

Inserting the Exh-operator anywhere else below the raised subject in (176) (i.e.
immediately above the vP or the event closure operator) does not change the resulting
truth conditions. On the other hand, applying exhaustification at the root (above the
subject) gives rise to weaker truth conditions whereby each student carried a sum
of boxes, and at least one student carried more than one box (cf. Appendix 1). As
discussed in the previous section, the status of such weakened readings is uncertain.
For instance, Ivlieva (2013) cites the following example:

(185) Every professor in our department has students.

Ivlieva reports that at least some speakers judge sentence (185) to be true in a
situation where some of the professors have just one student, and one or more profes-
sors have more than one student (cf. also the discussion of similar ‘mixed’ readings in
Sauerland 2003; Sauerland et al. 2005). She goes on to explore amore complex seman-
tics for the event closure operator in order to derive such readings. In our system these
readings do not require any additional assumptions, and are derived automatically by
applying exhaustification at the highest level.56

To conclude, we have seen that bare plural DPs in the scope of weak distributiv-
ity operators are interpreted as dependent plurals, with an overarching Multiplicity
Condition derived as a scalar implicature. On the other hand, when a bare plural DP
occurs in the scope of a strong distributivity operator, the multiplicity requirement is
calculated relative to each atomic individual in the distributed sum. This accounts for
the contrast between weak and strong syntactic distributivity operators (e.g. floating
all and each), as well as that between plural and singular QDs.

6.4.3 Deriving the ban on singular licensors

I have shown how the contrast between singular and plural QDs is captured in the
current system by analysing the semantics of singular QDs in terms of strong distribu-

56 The Strongest Candidate Principle would rule out the weaker ‘mixed’ readings for sentences like (174)
and (185). I leave it to future research to firmly establish the empirical status of such readings.
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tivity, and that of plurals QDs in terms of weak distributivity. Now I would like to
address a broader question, namely whether the link between the number marking on
the restrictor NP and the type of distributivity operator involved in a QD’s translation
is accidental, or conversely, can be derived in a principled way.

Specifically, we may ask whether we expect to find a language that possesses a
singular QD, i.e. a QD combining with a restrictor NP carrying a singular number
feature, and at the same time is weakly distributive with respect to its nuclear scope
predicate, thus licensing dependent plurals in its scope. Logically, such a QD may
exists. Consider for instance a hypothetical determiner every*, which by assumption
combines with a singular restrictor NP and has the following translation:

(186) every*u’,u � λPet.λP ′
et. [u′, u]; [EVERY*{u′, u}]; maxu′ (dist′s(P(u′))(u′));

maxu(distw(P ′(u))(u))

where EVERY*(u′, u) := λIst. ∀i ∈ I . (u′i ≤ ui)

This QD introduces a maximal dref that satisfies the restrictor predicate taken under
a strong distributivity operator, and compares it to the maximal dref that satisfies the
nuclear scope predicate, taken under a weak distributivity operator. Such a quantifier
would violate the Ban on Singular Licensors as formulated above, allowing for a
singular restrictor NP (due to the fact that the restrictor predicate is placed under
a strong distributivity operator) and at the same time licensing dependent plurals
as part of its nuclear scope (since the nuclear scope predicate occurs under a weak
distributivity operator).

As far as I know, quantificational determiners of this type have never been identified,
and I would like to suggest that there are theoretical reasons to expect that such
quantifiers should not exist in natural language. These reasons have to do with the
Conservativity Universal, first proposed (albeit, in slightly different terms) by Barwise
and Cooper (1981) (see also Keenan and Stavi 1986, and much subsequent work):

(187) Conservativity Universal
For all natural language determiners the following holds:
D(P)(Q) ↔ D(P)(P ∩ Q),
where D is the interpretation of the determiner, and P and Q are sets.

The following examples illustrate that this generalization holds of the English deter-
miners every and most:

(188) a. Every box is red. ↔ Every box is such that it is a box and it is red.

b. Most boxes are red. ↔ Most boxes are such that they are boxes and they
are red.

In a compositional dynamic framework, the Conservativity Universal can be re-
formulated in the following way, adapted from Chierchia (1995):

(189) Dynamic Conservativity Universal
For all natural language determiners and all models M the following holds:
�D(P)(Q)�M = �D(P)(λv.P(v); Q(v))�M ,
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where D is the translation of the determiner, P and Q are translations of
the restrictor and nuclear scope constituents, respectively, and ; is dynamic
conjunction.

Existing English QDs conform to this universal. On the other hand, the hypothetical
QD every* defined in (186) violates it. To see why consider the translation of the
following example involving this hypothetical determiner:

(190) a. Every* u,u′
student is thinkingε.

b. [u′, u]; [EVERY*{u′, u}]; maxu′(dist′s([atom{u′}]; [unique{u′}];
[student{u′}])(u′));maxu(distw([ε]; [think{ε}, Exp{u, ε}])(u))

Let us examine what it means for the DRS in (190b) to apply to a pair of input and
output info state. For simplicity, let’s take a singleton input info states I = {i}. The
DRS in (190b) first introduces two new drefs u′ and u such that the value for u′ is a
(non-proper) sub-part of the value for u:

(191)

Info state K , s.t. I [u′, u]K . . . u′ u . . .

k . . . s1 ⊕ s2 ⊕ . . . ⊕ sm x1 ⊕ x2 ⊕ . . . ⊕ xn . . .

Next, it states that the value for u′ (u′k) must be the maximal sum such that there
is a set of singleton info states where the values for u′ are the atomic parts of u′k, and
each of these values is a student:

(192)

Info state H1 . . . u′ . . .

h1 . . . s1 . . .

Info state H2 . . . u′ . . .

h2 . . . s2 . . .

. . .
Info state H1 . . . u′ . . .

hm . . . sm . . .

Note, that by virtue of the strong distributivity operator, the uniqueness condition
in (190b), derived from the singular number feature on the restrictor NP, is applied
separately to each of these singleton info states and is thus trivially satisfied. It follows,
that s1 ⊕ s2 ⊕ . . . ⊕ sm is the maximal sum of students.

Finally, the DRS in (190b) states that uk in (191) is the maximal sum of individuals
which can be split into atomic parts x1, x2, . . . , xn , and assigned to the values of u in
a plural info state of the following form, where e1, . . . , en are thinking-events whose
experiencers are x1, . . . , xn , respectively:
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(193)

Info state J . . . u ε . . .

j1 . . . x1 e1 . . .

j2 . . . x2 e2 . . .

. . . . . . . . . . . . . . .

jn . . . xn en . . .

Thus, x1 ⊕ x2 ⊕ . . .⊕ xn is the maximal sum of individuals who are thinking. Since
(190b) states that s1 ⊕ s2 ⊕ . . .⊕ sm (the maximal sum of students) must be a sub-part
of x1 ⊕ x2 ⊕ . . . ⊕ xn (the maximal sum of thinking individuals), is follows that the
hypothetical sentence in (190a) will be true iff every student is thinking.

Now if every* conforms to the Dynamic Conservativity Universal in (189), the
DRS in (190b) should be equivalent to the DRS that results from applying the same
quantifier to the restrictor predicate and the dynamic conjunction of the restrictor and
nuclear scope predicates. Namely, to the predicates in (194a) and (194b):

(194) a. λv. [atom{v}]; [unique{v}]; [student{v}]
b. λv. [atom{v}]; [unique{v}]; [student{v}]; [ε]; [think{ε}, Exp{v, ε}]

Applying every* to these predicates yields the following DRS:

(195) [u′, u]; [EVERY*{u′, u}]; max′
u(dist

′
s([atom{u′}]; [unique{u′}]; [student{u′}])(u′));

maxu(distw([atom{u}]; [unique{u}]; [student{u}]; [ε]; [think{ε}, Exp{u, ε}])(u))

This DRS again introduces two new drefs u′ and u, giving rise to the info state
K in (191). The conditions that it places on the value of u′ and the relation between
the values of u and u′ are the same as in (190b), i.e. u′k must return the maximal
sum of students and this sum must be a non-proper sub-part of uk. However, the
conditions imposed on the value of u are different. The second maximality operator
in (195) applies to the dynamic conjunction of the restrictor and nuclear scope DRSs
under a weak distributivity operator. This means that uk in (191) must be the maximal
individual such that there exists an output info state J like the following:

(196)

Info state J . . . u ε . . .

h1 . . . x1 e1 . . .

h2 . . . x2 e2 . . .

. . . . . . . . . . . . . . .

hn . . . xn en . . .

Here x1, . . . , xn are atomic individuals, the sum x1 ⊕ . . . ⊕ xn is equal to uk, and
e1, . . . , en are thinking-events whose experiencers are x1, . . . , xn , respectively. This
is similar to what we had in (193) above. However, the conjoined DRS under the distw
operator in (195) places additional conditions on the values of u in J . Specifically,
it requires student to be true of every x in {x1,…, xn}, and, crucially, for all the
individuals in {x1,…, xn} to be atomic and identical. Since, by definition of distw,
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uk = x1 ⊕ . . . ⊕ xn , it follows that uk in (191) must be atomic. Moreover, since uk
is required to be the maximal sum such that an info state as in (196) exists (i.e. every
individual that is a student and is thinking must be part of or equal to uk), such a sum
will only exist in a model that contains only a single thinking student. And since the
maximal sum of students must be a non-proper sub-part of uk, it follows that there
must be only one student overall.

In sum, (195) will only be true with respect to any pair of input and output info
states in a model where there is only one student, and that student is thinking. Clearly,
then, the DRS in (195) is not equivalent to that in (190b), and we may conclude that
every* violates the Dynamic Conservativity Universal.

The reason that the Dynamic Conservativity Universal is violated in this case is
that placing the translation of the singular restrictor NP under a weak distributivity
operator results in an undesired global atomicity condition on the value of themaximal
dref satisfying the nuclear scope predicate. This problem does not arise, however, if
the translation of the QD involves a strong distributivity operator scoping over the
nuclear scope predicate, because in that case the global atomicity condition applies
distributively to multiple singleton info states, and is thus in effect neutralized.

In fact, quite generally, if a QD combines with a restrictor carrying a singular
number feature, it must be interpreted as involving a strong distributivity operator
scoping over both its restrictor and nuclear scope, otherwise the unwelcome global
atomicity effect obtains and the Dynamic Conservativity Universal is violated. This in
turn means that such QDs will not be able to license dependent plurals as part of their
nuclear scope. I conclude that in the current system the Ban on Singular Licensors
follows directly form the Dynamic Conservativity Universal, as stated in (189), which
restricts the class of quantificational determiners possible in natural language.

6.5 A note on discourse interpretation

This paper has focused exclusively on intra-sentential phenomena related to the seman-
tics of quantificational items, grammatical number and cardinality modifiers. Before
I conclude, I would like to briefly address the issue of discourse interpretation, and
specifically the way information is passed on between sentences. As noted above, the
notion of context as a set of assignments, i.e. the idea of dynamic semantics with
plural info states, was originally developed to account for certain complex cases of
cross-sentential anaphora which posed problems for existing compositional dynamic
semantic systems (cf. van den Berg 1990, 1993, 1994, 1996). One such phenomenon
is quantificational subordination, illustrated in (197) (cf. detailed discussion in Kart-
tunen 1976; Krifka 1996; Nouwen 2003; Brasoveanu 2007):

(197) Every student wrote an article. They each sent it to L&P.

In this example, the second sentence can be understood as stating that each of the
students mentioned in the first sentence sent the article that they wrote to L&P. Thus,
for each student the singular pronoun it is able to pick up the value of the referent
introduced by the indefinite an article corresponding to that student. In systems that
model context as a set of assignments, the dependency between the two variables
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(the students and the articles) is established by the first sentence, and passed on as
the input context to the second sentence.57 Formally, it is standardly assumed that
the semantic representation of a discourse is obtained by dynamically conjoining the
DRSs corresponding to the sentences in that discourse:

(198) If � is a sequence of sentences such that � � D, and S is a sentence such
that S � D′, then:
〈�, S〉 � λI .λJ . ∃H . (DI H ∧ D′H J )

I have chosen to formulate my account of the semantics of distributivity in such a
way as to make it compatible with this type of approach to cross-sentential anaphora.
Specifically, this entails that distributive items are taken to be externally dynamic, i.e.
the dependencies they construct are encoded directly in their output info state, which
(assuming 198) can be passed on to the subsequent discourse.

At the same time, throughout the paper I have evaluated the truth conditions of
the DRSs we’ve encountered assuming singleton input info state. I would now like
to suggest that this assumption is not just a simplification adopted for presentational
purposes, but rather a reflection of existing properties of discourse interpretation.

One thing to note is that the accessibility of quantificational dependencies like that
in (197) seems to be rather short-lived, rarely stretching beyond the sentence immedi-
ately following the one where the dependency is first established.58 For instance, the
following discourse is harder to interpret than (197):

(199) Every student wrote an article. They spent a few days considering different
journals. In the end, they each sent it to L&P.

Given this tentative observation, I would like to suggest that if a sentence produces
a complex, non-singleton info state as its output, this info state is by default simplified
before it is fed as input to the subsequent sentence. Specifically, I would like to suggest
the following as the default rule of discourse interpretation:

(200) If � is a sequence of sentences such that � � D, and S is a sentence such
that S � D′, then:
〈�, S〉 � λI .λJ . ∃H . (DI H ∧ ∃K . (K = ⊕H ∧ D′K J )),
where K = ⊕H := ∃ks . (K = {k} ∧ ∀v. (vk = ⊕vH))

According to this, the output info state of a sentential DRS is by default collapsed
into a singleton info state, with all the values of the drefs summed up, and only then
passed on to the next DRS in the discourse. Then the more direct mode of discourse
interpretation in (198) (where the output of one sentential DRS is directly fed as
input to the next one) is treated as a marked option, which is only employed when a

57 Of course, alternative accounts of such phenomena exist.Most prominently, e-type accounts, that analyse
(at least some) pronouns as covert definite descriptions (cf. Heim 1990; Elbourne 2001, 2005, a.o.). More
recently, Keshet (2018) has proposed an account withinDynamic Update Anaphora Logic. It lies far beyond
the scope of this paper to compare alternative approaches to quantificational subordination, and to cross-
sentential anaphora in general.
58 I am grateful to Jakub Dotlačil for drawing my attention to this issue. See also Asher and Wang (2003)
for a related observation.
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subsequent DRS makes direct reference to the dependencies established in the output
info state of the previous DRS (e.g. in cases involving quantificational subordination).
From a processing point of view, this can be regarded as a functional strategy on the
part of the interpreter aimed at reducing memory load.

A consequence of adopting (200) as the default rule for discourse interpretation in
the current system is that (putting aside contexts involving quantificational subordina-
tion) non-singleton info states are predicted to arise only in the scope of distributivity
operators and quantificational determiners.

7 Conclusion

I have presented an account of the semantics of grammatical number, quantificational
items, and cardinality predicates couched within PCDRTe, a dynamic semantic frame-
work with plural info states. I have shown how this analysis is able to treat dependent
plural readings as distinct from both cumulative and distributive readings, in the clas-
sical sense, thus overcoming the challenges facing previous approaches. The proposed
solution has two components. First, I introduced a distinction between two types of
distributivity: weak distributivity across the assignments within a single plural info
state and strong distributivity across multiple info states. I have argued that both of
these types of distributivity play a role in the semantics of natural language, account-
ing for the contrasting properties of ‘singular quantifiers’, such as each and every, and
‘plural quantifiers’, such as all and most. Second, I analysed numerals (and other car-
dinal expressions) as imposing assignment-level cardinality conditions, i.e. restricting
the cardinality of each value returned by a dref in a plural info state. The singular
number feature, on the other hand, was analysed as introducing a state-level atomicity
condition. The multiplicity condition associated with (underlyingly number-neutral)
bare plurals was then derived as a state-level non-atomicity condition, in competition
with the singular alternative. Together, these two distinctions (weak vs strong distribu-
tivity and assignment-level vs state-level plurality) give rise to three distinct ways of
representing the notion of multiplicity in the semantics of natural language, and are
sufficient to explain the observed patterns of (co-)distributive interpretation.
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Appendix 1. Some compositional translations

Complex DP with Embedded Numeral

(201) Allu1,u2 the kids receivedε1 gift bagsu3 containingε2 fewerd than 10u4 candies.

Structure of DP:

(202) gift bags containing fewer than 10 candies

Indefu3 NP

gift-bags CP

Opv′

[fewerd than 10]n

∃ε2
ev vP

tv′ VP

contain DP

tn manyu4
candies

Stepwise compositional translation:59

(203) VP
λv′.λζ. [u4]; [card{u4,n}]; [candy{u4}];

[contain{ζ }, Th{u4, ζ }, Loc{v′, ζ }]

contain
Lift: λQ. λv′.λζ.

Q(λv. [contain{ζ }, Th{v, ζ }, Loc{v′, ζ }])

DP
λP ′. [u4]; [card{u4,n}];

[candy{u4}]; P ′(u4)

tn manyu4

λn.λP.λP ′. [u4]; [card{u4,n}];
P(u4); P ′(u4)

candies
λv. [candy{v}]

59 In this tree and the following, I indicate the lifted translations of Vs, VPs and vPs when necessary.
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(204) ∃evP
[ε2]; [u4]; [card{u4,n}]; [candy{u4}];
[contain{ε2}, Th{u4, ε2}, Loc{v′, ε2}]

∃ε2
ev

λV . [ε2]; V (ε2)

λζ. [u4]; [card{u4,n}]; [candy{u4}];
[contain{ζ }, Th{u4, ζ }, Loc{v′, ζ }]

tv′ VP
λv′.λζ. [u4]; [card{u4,n}]; [candy{u4}];

[contain{ζ }, Th{u4, ζ }, Loc{v′, ζ }]

(205) CP
λv′. [d];

maxd ([ε2]; [u4]; [card{u4,d}]; [candy{u4}]; [contain{ε2}, Th{u4, ε2}, Loc{v′, ε2}]);
[d<10]

Opv′

λP.P

[d]; maxd ([ε2]; [u4]; [card{u4,d}]; [candy{u4}];
[contain{ε2}, Th{u4, ε2}, Loc{v′, ε2}]);

[d<10]

[fewerd than 10]n

λM . [d]; maxd (M(d)); [d<10]
∃evP

[ε2]; [u4]; [card{u4,n}]; [candy{u4}];
[contain{ε2}, Th{u4, ε2}, Loc{v′, ε2}]

(206) DP
λP ′. [u3]; [gift-bag{u3}]; [d];

maxd ([ε2]; [u4]; [card{u4,d}]; [candy{u4}]; [contain{ε2}, Th{u4, ε2}, Loc{u3, ε2}]);
[d<10]; P ′(u3)

Indefu3

λP.λP ′. [u3]; P(u3); P ′(u3)
NP

λv′. [gift-bag{v′}]; [d];
maxd ([ε2]; [u4]; [card{u4,d}]; [candy{u4}];

[contain{ε2}, Th{u4, ε2}, Loc{v′, ε2}]);
[d<10]

gift-bags
λv′. [gift-bag{v′}]

CP
λv′. [d];

maxd ([ε2]; [u4]; [card{u4,d}]; [candy{u4}];
[contain{ε2}, Th{u4, ε2}, Loc{v′, ε2}]);

[d<10]
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Exhaustifying at the Root

(207) Mostu,u′
students carriedε boxesu

′′
.

Structure:

(208)

Exh

[mostu,u′
students]v ∃evP

∃ε
ev vP

tv VP

carried boxesu
′′

Stepwise compositional translation:

(209) ∃evP
[ε]; [u′′]; [box{u′′}];

[carry{ε}, Th{u′′, ε}, Ag{v, ε}]

∃ε
ev

λV . [ε]; V (ε)

vP
λζ. [u′′]; [box{u′′}];

[carry{ζ }, Th{u′′, ζ }, Ag{v, ζ }]

tv VP
λv′.λζ. [u′′]; [box{u′′}];

[carry{ζ }, Th{u′′, ζ }, Ag{v′, ζ }]

carried
Lift: λQ. λv′.λζ.

Q(λv. [carry{ζ }, Th{v, ζ }, Ag{v′, ζ }])

boxesu
′′

λP ′. [u′′]; [box{u′′}]; P ′(u′′)
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(210)

ExhAlt
λD.λI .λJ . DI J ∧

∀D′. (D′∈Alt ∧ D′�D→¬D′ I J )

[u′,u]; [MOST{u′,u}];
maxu′ (dist’w([student(u′)])(u′));

maxu (distw([student(u)]; [ε]; [u′′]; [box{u′′}];
[carry{ε}, Th{u′′, ε}, Ag{u, ε}])(u))

[mostu,u′
students]v

λP ′. [u′,u]; [MOST{u′,u}];
maxu′ (dist’w([student(u′)])(u′));

maxu (distw([student(u)]; P ′(u))(u))

∃evP
[ε]; [u′′]; [box{u′′}];

[carry{ε}, Th{u′′, ε}, Ag{v, ε}]

The alternative to (210) is the following DRS, obtained by replacing the plural object
with its singular indefinite counterpart:

(211) [u′, u]; [MOST{u′, u}]; maxu′(dist’w([student(u′)])(u′));
maxu(distw([student(u)]; [ε]; [u′′]; [atom{u′′}]; [unique{u′′}]; [box{u′′}];
[carry{ε}, Th{u′′, ε}, Ag{u, ε}])(u))

The alternative in (211) is stronger than the DRS derived in (210). For any model
M , (211) will be true iff the maximal sum of students S1 in M who all carried the same
box is greater than half of the total sum of students S2 in M . Given the definition of
maximality in (106) and the fact that carry is lexically distributive with respect to its
theme, S1 will only exist in a model M where all the students who carried any boxes
carried the same box. Consequently, in any model M , (210) will return 1 for every
input-output info states for which (211) returns 1. The converse is obviously not the
case. Hence, (211) is stronger than (210), and the translation is strengthened by the
negation of (211):

(212) λI .λJ . ([u′, u]; [MOST{u′, u}]; maxu′(dist’w([student(u′)])(u′));
maxu(distw([student(u)]; [ε]; [u′′]; [box{u′′}];
[carry{ε}, Th{u′′, ε}, Ag{u, ε}])(u)))I J ∧
¬([u′, u]; [MOST{u′, u}]; maxu′(dist’w([student(u′)])(u′));
maxu(distw([student(u)]; [ε]; [u′′]; [atom{u′′}]; [unique{u′′}]; [box{u′′}];
[carry{ε}, Th{u′′, ε}, Ag{u, ε}])(u)))I J :=
λI .λJ .∃K . ([u′, u]; [MOST{u′, u}]; maxu′(dist’w([student(u′)])(u′)))I K ∧
maxu(distw([student(u)]; [ε]; [u′′]; [box{u′′}]; [carry{ε}, Th{u′′, ε},
Ag{u, ε}])(u))K J ∧
¬maxu(distw([student(u)]; [ε]; [u′′]; [atom{u′′}]; [unique{u′′}]; [box{u′′}];
[carry{ε}, Th{u′′, ε}, Ag{u, ε}])(u))K J

This DRS will be true iff the sum of students who carried any boxes is greater than
half of the total sum of students, and it is not the case that all the students who carried
any boxes carried (only) one and the same box. In other words, most of the students
carried one or more boxes, and they carried more than one box overall.
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(213) Everyu,u′
student carriedε boxesu

′′
.

(214)

Exh

[everyu,u′
student]v ∃evP

∃ε
ev vP

tv VP

carried boxesu
′′

(215)

ExhAlt [u′,u]; [EVERY{u′,u}];
maxu′ (dist’s ([atom{u′}]; [unique{u′}]; [student(u′)])(u′));

maxu (dists ([atom{u}]; [unique{u}]; [student(u)]; [ε]; [u′′]; [box{u′′}];
[carry{ε}, Th{u′′, ε}, Ag{u, ε}])(u))

[everyu,u′
student]v

λP ′. [u′,u]; [EVERY{u′,u}];
maxu′ (dist’s ([[atom{u′}]; [unique{u′}]; student(u′)])(u′));
maxu (dists ([atom{u}]; [unique{u}]; [student(u)]; P ′(u))(u))

∃evP
[ε]; [u′′]; [box{u′′}];

[carry{ε}, Th{u′′, ε}, Ag{v, ε}]

The alternative to (215) is the following DRS:

(216) [u′, u]; [EVERY{u′, u}]; maxu′(dist’s([atom{u′}]; [unique{u′}];
[student(u′)])(u′)); maxu(dists([atom{u}]; [unique{u}];
[student(u)]; [ε]; [u′′]; [atom{u′′}]; [unique{u′′}];
[box{u′′}]; [carry{ε}, Th{u′′, ε}, Ag{u, ε}])(u))

Consider the following output info state:

(217)

Info state J . . . u′ u ε u′′ . . .

j1 . . . s′
1 ⊕ s′

2 ⊕ . . . ⊕ s′
m s1 e1 b1 . . .

j2 . . . s′
1 ⊕ s′

2 ⊕ . . . ⊕ s′
m s2 e2 b2 . . .

. . . . . . . . . . . . . . . . . . . . .

jn . . . s′
1 ⊕ s′

2 ⊕ . . . ⊕ s′
m sn en bn . . .

Both (215) and (216) will be true with respect to an input info state I and output
info state J iff for each assignment in J , u′ returns the sum of all the students, u
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returns an atomic sum of students, ε returns a carrying event whose agent is the value
for u and whose theme is the value for u′′, and u′′ returns a sum of boxes. Now, (215)
requires for the sum of values of u in J to be the maximal sum of students such that a
state like J exists, i.e. it must be the maximal sum of students who each carried one
or more box. Then, the static quantifier EVERY ensures than the cardinality of this
sum is equal to the cardinality of the total sum of students, i.e. each student must have
carried one or more box.

The difference in (216) is that this DRS requires for each value of u′′ in J to be
an atomic sum of boxes. This means, that the sum of values of u in J must be the
maximal sum of students where each student carried one box, and the cardinality of
this sum must be equal to the cardinality of the total sum of students. Given that the
verb carry is lexically distributive with respect to its theme, for any model M , any I
and J that satisfy (216) will also satisfy (215), while the converse does not hold. Then,
by definition, (216) is stronger than (215), and the translation of (214) is strengthened.
The resulting DRS (cf. 218) will apply to an input info state I , and an output info state
J as in (217) iff all the conditions in (215) hold, and moreover it is not the case that all
the values of u′′ in J are atomic. In other words, it will be true iff each student carried
one or more boxes, and at least one student carried more than one box.

(218) λI .λJ . ([u′, u]; [EVERY{u′, u}];
maxu′ (dist’s([atom{u′}]; [unique{u′}]; [student(u′)])(u′));
maxu(dists([atom{u}]; [unique{u}]; [student(u)]; [ε]; [u′′]; [candy{u′′}];
[carry{ε}, Th{u′′, ε}, Ag{u, ε}])(u)))I J ∧
¬([u′, u]; [EVERY{u′, u}]; maxu′ (dist’s([atom{u′}]; [unique{u′}]; [student(u′)])(u′));
maxu(dists([atom{u}]; [unique{u}]; [student(u)]; [ε]; [u′′]; [atom{u′′}]; [unique{u′′}];
[candy{u′′}]; [carry{ε}, Th{u′′, ε}, Ag{u, ε}])(u)))I J

Appendix 2. Schein–Kratzer sentences

Quantificational DPs, both plural and singular, allow for cumulative readings with
other plurals as long as the base position of the plural c-commands the base position
of the quantificational DP (cf. Schein 1993; Kratzer 2000; see also Zweig 2008, 2009;
Champollion 2010a for relevant observations):

(219) a. Three copy editors found every mistake in the manuscript.

b. Three copy editors found all the mistakes in the manuscript.

Both of these sentences can be understood as stating that there were three copy
editors who between them identified the maximal set of mistakes, i.e. each copy editor
may have identified only as subset of this maximal set, as long as the union of these
subsets is equal to the maximal set.

Kratzer’s (2000) analysis of such examples relies on two assumptions: first, the
external argument (i.e. the agent in 219) is introduced by a separate thematic head,
rather than by the lexical verb itself. Second, quantificational DPs must be allowed to
scope below the closure of the event variable. In this appendix I will sketch out how an
analysis along these lines can be incorporated into the account argued for here, while
preserving its core results.
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Fist, I will re-define the translation of transitive verbs as relations between the
internal argument and the event:

(220) find � λve.λζv. [find{ζ }, Th{v, ζ }]
Agents will be introduced by a separate syntactic head, which I identify with v:

(221) v � λPvt.λve.λζv. [Ag{v, ζ }]; P(ζ )

Finally, I will assume that quantificational DPs are able to combine directly with
relations of type (e,vt). To make this work, we will need to generalize the 〈〉-relation,
previously defined for a single dref (cf. 90):

(222) 〈u1, . . . , un〉 := λIst.λJst. ∃ f . ∀ js ∈ J . ∃is ∈ I . ( j ∈ f (i)) ∧
∀is ∈ I . ∀Hst. ( f (i) = H → H ⊆ J ∧ ∀hs ∈ H . (i[u1, . . . , un]h ∧
atom(u1h) ∧ . . . ∧ atom(unh)) ∧ ⊕u1H = ui ∧ . . . ∧ ⊕unH = uni)),
where f is a function from the domain of assignments Ds to the set of info
states ℘(Ds).

The 〈〉-relation is now able to split multiple drefs into their atomic parts, and ‘co-
distribute’ these parts across the assignments in a plural info state. Based on (222) we
can define three-place versions of the distributivity operators:

(223) a. distw(D)(u)(u′) := λIst. λJst. (〈u, u′〉; D)I J

b. dists(D)(u)(u′) := λIst. λJst. (〈u, u′〉; dist(D))I J

We can then adopt the following modified translations of every and all:

(224) a. allu,u’ � λPet.λP ′
e,vt.λζv. [u′, u]; [ALL{u′, u}];

maxu′(dist’w(P(u′))(u′));
maxu(distw(P(u); P ′(u)(ζ ))(u)(ζ ))

b. everyu,u’ �� λPet.λP ′
e,vt.λζv. [u′, u]; [EVERY{u′, u}];

maxu′(dist’s(P(u′))(u′));
maxu(dists(P(u); P ′(u)(ζ ))(u)(ζ ))

Consider now the compositional translation of (219a):

(225) VP
λζ. [u′,u]; [EVERY{u′,u}];

maxu′ (dist’s ([atom{u′}]; [unique{u′}]; [mistake{u′}])(u′));
maxu(dists ([atom{u}]; [unique{u}]; [mistake{u}]; [find{ζ }, Th{u, ζ }])(u)(ζ ))

find
λv.λζ. [find{ζ }, Th{v, ζ }]

everyu,u′
mistake

λP.λζ. [u′,u]; [EVERY{u′,u}];
maxu′ (dist’s ([atom{u′}]; [unique{u′}]; [mistake{u′}])(u′));

maxu(dists ([atom{u}]; [unique{u}]; [mistake{u}]; P(u)(ζ ))(u)(ζ ))
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(226) vP
λζ. [u′′]; [3_atoms{u′′}]; [copy-editor{u′′}]; [Ag{u′′, ζ }];

[u′,u]; [EVERY{u′,u}];
maxu′ (dist’s ([atom{u′}]; [unique{u′}]; [mistake{u′}])(u′));

maxu (dists ([atom{u}]; [unique{u}]; [mistake{u}]; [find{ζ }, Th{u, ζ }])(u)(ζ ))

threeu
′′

copy editors
λP ′. [u′′]; [3_atoms{u′′}];
[copy-editor{u′′}]; P ′(u′′)

v’
Lifted: λQ.λζ. Q(λv. [Ag{v, ζ }]; [u′,u]; [EVERY{u′,u}];
maxu′ (dist’s ([atom{u′}]; [unique{u′}]; [mistake{u′}])(u′));

maxu (dists ([atom{u}]; [unique{u}]; [mistake{u}]; [find{ζ }, Th{u, ζ }])(u)(ζ ));

v

λP .λv.λζ. [Ag{v, ζ }]; P(ζ )

VP
find everyu,u′

mistake

After event closure applies, we obtain the following DRS:

(227) [ε]; [u′′]; [3_atoms{u′′}]; [copy-editor{u′′}]; [Ag{u′′, ε}]; [u′, u];
[EVERY{u′, u}];
maxu′(dist’s([atom{u′}]; [unique{u′}]; [mistake{u′}])(u′));
maxu(dists([atom{u}]; [unique{u}]; [mistake{u}]; [find{ε},
Th{u, ε}])(u)(ε))

This DRS will be true with respect to a singleton input info state I iff there is
an output info state J constructed in the following way. First, we introduce three
individual drefs u, u′ and u′′, and an event dref ε:

(228)

Info state K , s.t. I [u, u′, u′′, ε]K . . . u u′ u′′ ε . . .

k . . . m m′ c1 ⊕ c2 ⊕ c3 e . . .

Here, u′′k must be a sum of three copy editors, εk is a sum of events, u′′k is
the (cumulative) agent of εk, and uk and u′k must return sums of equal cardinality.
Moreover, u′ must return the maximal sum of mistakes.

Next, following the definition of dists in (223b) and the 〈〉-relation in (222), we
split both uk and εk into atomic parts, and distribute these across multiple singleton
info states:
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(229)

Info state H ′
1 . . . u u′ u′′ ε . . .

h′
1 . . . m1 m′ c1 ⊕ c2 ⊕ c3 e1 . . .

Info state H ′
2 . . . u u′ u′′ ε . . .

h′′
2 . . . m2 m′ c1 ⊕ c2 ⊕ c3 e2 . . .

. . .

Info state H ′
n . . . u u′ u′′ ε . . .

h′
n . . . mn m′ c1 ⊕ c2 ⊕ c3 en . . .

Here, for each H ′
k the value for u is an atomic mistake mk , and the value for ε is an

atomic finding event whose theme ismk . All these info states are then ‘glued’ together
to produce the output info state J :

(230)

Info state J . . . u u′ u′′ ε . . .

j1 . . . m1 m′ c1 ⊕ c2 ⊕ c3 e1 . . .

j2 . . . m2 m′ c1 ⊕ c2 ⊕ c3 e2 . . .

. . . . . . . . . . . . . . . . . . . . .

jn . . . mn m′ c1 ⊕ c2 ⊕ c3 en . . .

The second maximality operator in (227) requires for uk in (228) to be the maximal
sum such that an info state like J exists.

Summing up, the DRS in (227) will be true iff there is a sum of three copy-editors
who were the cumulative agent of a sum of finding events E , the theme of each finding
event in E was a mistake, and the cardinality of the total sum of mistakes found in
E was equal to the total cardinality of mistakes. In other words, three copy-editors
between them found all the mistakes. This adequately captures the cumulative reading
of sentence (219a). The cumulative reading of (219b) will be derived in an analogous
way, expect that the atomic sub-parts of uk and εk will be distributed across the
assignments in a single info state.

Note, that themodified translations of all and every in (224) still include contrasting
types of distributive operators scoping over the nuclear scope predicate. This means
that we retain the prediction that only DPs with all, but not those with every, will
license dependent plurals in their scope. Moreover, neither type of quantificational
DPs is predicted to allow co-distributive readings with lower-scoping plurals involving
numerals.
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