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Abstract
Multi-state models are used to describe how individuals transition through different
states over time. The distribution of the time spent in different states, referred to as
‘length of stay’, is often of interest. Methods for estimating expected length of stay
in a given state are well established. The focus of this paper is on the distribution of
the time spent in different states conditional on the complete pathway taken through
the states, which we call ‘conditional length of stay’. This work is motivated by
questions about length of stay in hospital wards and intensive care units among patients
hospitalised due toCovid-19.Conditional length of stay estimates are useful as awayof
summarising individuals’ transitions through the multi-state model, and also as inputs
to mathematical models used in planning hospital capacity requirements. We describe
non-parametric methods for estimating conditional length of stay distributions in a
multi-state model in the presence of censoring, including conditional expected length
of stay (CELOS). Methods are described for an illness-death model and then for the
more complexmotivating example. Themethods are assessed using a simulation study
and shown to give unbiased estimates of CELOS, whereas naive estimates of CELOS
based on empirical averages are biased in the presence of censoring. The methods are
applied to estimate conditional length of stay distributions for individuals hospitalised
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due to Covid-19 in the UK, using data on 42,980 individuals hospitalised fromMarch
to July 2020 from the COVID19 Clinical Information Network.

Keywords Multi-state model · Length of stay · Covid-19 · Illness-death model ·
State occupation

1 Introduction

Multi-state models are used to describe how individuals transition through different
states over time. The simplest multi-state model is the illness-death model, depicted
in Fig. 1A. Quantities of interest in multi-state modelling analyses include rates of
transition from one state to another, the probability of being in a given state at a
given time after entering another state, and the expected length of time spent in a
given state. Analysis methods include non-parametric methods, including the Aalen-
Johansen estimator, and methods that enable estimation of the impact of predictors on
these quantities, including extensions to the Coxmodel, and fully-parametricmethods.
Andersen and Keiding (2002) and Putter et al. (2007) provide overviews of multi-state
modelling methods, and details of the underlying theory are provided in the books by
Andersen et al. (1993) and Aalen et al. (2008).

In this paper we consider descriptive analysis ofmulti-state systems, with a focus on
estimating the distribution of the time spent in different states in a multi-state model,

Fig. 1 Illness-death multistate model
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which is often referred to as ‘length of stay’, or ‘state occupation time’. Beyersmann
and Putter (2014) described non-parametric methods for estimating expected length
of stay in multi-state models. Our interest is in the distribution of the time spent in
different states conditional on the complete pathway taken through the states, which
we refer to as conditional length of stay. In the illness-death model depicted in Fig. 1A
there are two possible complete pathways through the states: the pathway from state
1 to state 3, and the pathway from state 1 to state 2 to state 3. In the illness-death
model therefore, conditional length of stay provides information about: (i) time spent
in the healthy state among individuals who do not transition through the illness state
(complete pathway: state 1 to state 3), (ii) time spent in the healthy state among
individuals who do transition through the illness state (complete pathway: state 1 to
state 2 to state 3), (iii) time spent in the illness state.

The concept of conditional length of stay involves conditioning on future events,
which is rarely appropriate in analyses of times-to-event (Andersen andKeiding 2012).
If our aim was to investigate causal effects of exposures on rates of transition between
states, or other causal estimands, or if the aim was to develop a prognostic model, then
conditioning on the patient’s future pathway would not be appropriate for addressing
the research question. Our consideration of conditional length of stay was motivated
by questions about length of stay in hospital wards and intensive care units (ICU)
among patients hospitalised due to Covid-19. Conditional length of stay estimates
were of interest for two goals: (1) providing inputs to mathematical models which are
used to inform resource requirements that are determined by patients’ length of stay
in different states; (2) providing a more comprehensive description of the multi-state
system taking into account patient pathways, alongside unconditional length of stay
estimates. The motivating example is described in more detail in Sect. 2.

Conditional length of stay has not, to our knowledge, been considered previously in
the multi-state modelling literature. In this paper we describe non-parametric methods
for estimating conditional length of stay distributions in a multi-state model, including
the conditional expected length of stay in a given state (CELOS). These methods take
into account that censoring can occur in every state. We also consider conditional
length of stay distributions restricted to a particular time horizon, which are relevant
when the full distribution of transition times is not observed in the data at hand due
to limited follow-up. To describe the statistical methods we begin by focusing on an
illness-death model (Sect. 3). The methods are evaluated using a simulation study
in Sect. 4. In Sect. 5 we extend the methods to the more complex multi-state model
setting of the motivating example and apply them to estimate conditional length of
stay in hospital and ICU for patients hospitalised with Covid-19 in the UK, using data
from the ISARICWHOCCP-UKCOVID19 Clinical Information Network (CO-CIN)
(Docherty et al. 2020). R code for implementing the methods is provided at https://
github.com/ruthkeogh/lengthofstay.

2 Motivating example: patients hospitalised with Covid-19

The outbreak of Covid-19, caused by the novel severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), was characterized as a pandemic by the World Health
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Fig. 2 Multi-state model for patients hospitalised due to Covid-19

Organization on 11 March 2020 (World Health Organisation 2020). According to
UK government statistics (UK Government 2021), as of 3 April 2021 in the UK,
4,354,344 individuals had received a positive test for Covid-19, and a total of 458,868
hospitalisations and 126,955 deaths had been recorded (within 28 days of a positive
Covid-19 test). Many patients require intensive care and, in the period up to 25 March
2021, 35,708 admissions to an intensive care unit (ICU) were recorded among patients
in England, Wales and Northern Ireland with confirmed Covid-19 (Intensive 2021).

Figure 2illustrates a multi-state model for patients hospitalised with Covid-19 in
the UK. The states are: (1) hospital ward; (2) intensive care unit (ICU); (3) hospital
ward post-ICU; (4) Death in hospital; (5) Discharged from hospital. State 4 is an
absorbing state. We also consider state 5 as an absorbing state—although patients can
be discharged and readmitted, we did not consider this aspect. There are six possible
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complete pathways starting from state 1. Some individuals can start in state 2 (ICU),
from which there are four possible complete pathways.

There were two main motivators for obtaining estimates of conditional length of
stay in this study. The original motivator was a request to provide conditional length
of stay estimates as inputs to mathematical models used in planning hospital capac-
ity requirements. Molenberghs et al. (2020) discussed the importance of providing
estimates of how long individuals require care in hospital and in ICU for planning
hospital capacity requirements during the Covid-19 pandemic. Mathematical models
are widely used to estimate hospital capacity requirements under different scenarios,
for example varying the number of infected individuals and their age distribution. This
is typically done using a simulation approach. One approach would be simulate how
patients progress through the states of the multi-state model (Fig. 2), using estimates
of transition intensities. Expected lengths of stay in different states could then be
estimated. However, this is computer intensive. Another approach, which is less com-
putationally intensive, is to assign simulated patients at the time of hospital admission
to one of the possible ‘complete pathways’ in the multi-state model with a given prob-
ability. This was the approach taken by Leclerc et al. (2021) from the London School
of Hygiene & Tropical Medicine’s Centre for Mathematical Modelling of Infectious
Diseases group, for whom we provided estimates. They aimed to investigate how esti-
mates of overall length of stay are influenced by the ‘hospital bed pathways’ taken
by a patient, which may differ by region depending on the local patient population
and local resource availability. It was concluded that national estimates of expected
overall length of stay may not be appropriate for local forecasts of bed occupancy for
COVID-19 (Leclerc et al. 2021).

A second motivator for this work was to show how we can provide descriptive
information to the medical and scientific community and the general public about
how long people hospitalised due to Covid-19 will be expected to spend receiving
different levels of treatment in the hospital. Expected length of stay in hospital or ICU
provides an overall summary, but conditional length of stay provides more detailed
information that has also been of interest. Stays in the hospital ward (before a potential
transfer to ICU) can end with death, discharge or a transfer to ICU. Conditional length
of stay provides separate information on how long a patient requires in the hospital
to recover and get discharged, and how long it takes for people in the hospital ward
to become life-threatening ill and require intensive care. It also provides separate
information on how long it takes for an individual admitted to ICU to recover, and
how long a patient spends in ICU prior to death.

If all individuals in a given data set available for estimating length of stay had com-
pleted their stay, that is if their complete pathway was known, then expected lengths
of stay and conditional expected lengths of stay in different states could be estimated
empirically using observed averages. However, when the follow-up time of individuals
is subject to censoring, empirical estimates based on the subset of individuals whose
complete pathway is known will be biased. A number of authors have presented esti-
mates of length of stay and conditional lengths of stay in different hospitalised states
for Covid-19 patients (Vekaria et al. 2020; Rieg et al. 2020; Rees et al. 2020; Liu et al.
2018; Hazard et al. 2020). However, several have used empirical estimates (i.e. not
accounting for censoring), and in other papers the approach taken was unclear. In this
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paper we show how traditional non-parametric multi-state modelling methods can be
used to enable estimation of conditional lengths of stay. We discuss similarities and
differences between our approach and that of other authors in Sect. 6.

3 Methods: illness-deathmodel

3.1 Notation

We begin by considering the illness-death model depicted in Fig. 1. The multi-state
model is depicted in two different ways in Fig. 1A and B. Figure 1A shows three
states: (1) healthy state, (2) illness, (3) death. In Fig. 1B the absorbing state of death is
divided into two components: 3(1)—death directly from the healthy state, 3(2)—death
from the illness state. These are two representations of the same model. In Fig. 1B
there is only one arrow going into any given state, in contrast with Fig. 1A where there
are two arrows going into state 3. Below it will be shown how the representation in
Fig. 1B is helpful for estimating conditional length of stay, and subsequent notation
will refer to the model representation in Fig. 1B.

Using standard notation formulti-statemodelswe let X(t) denote the state occupied
at time t after entering state 1. We let P1k(s, t) = Pr(X(t) = k|X(s) = 1) denote the
probability of being in state k (k = 1, 2, 3(1), 3(2)) at time t conditional on having been
in state 1 at time s. The intensities of transitions from state 1 to state k (k = 2, 3(1)) at
time t are denoted λ1k(t). For transitions out of state 2 we assume a clock-reset (i.e.
semi-Markov) approach and let X (2)(t)denote the state occupied at time t after entering
state 2. We define the transition probability P2k(s, t) = Pr(X (2)(t) = k|X (2)(s) = 2)
as the probability of being in state (k = 2, 3(2)) at time t after entering state 2, having
been in state 2 at time s after entering state 2. The transition intensity from state 2 to
state 3(2) at time t after entering state 2 is denoted λ

(2)
23(2) (t). In the motivating example,

a clock-reset approach for the ICU and hospital-post-ICU states was considered most
reasonable.

There are two possible complete pathways through the multi-state system: 1 →
3(1), 1 → 2 → 3(2). We may also allow people to start in state 2, and the only
possible pathway for those people is 2 → 3(2). Let Pk|p(t) denote the probability that
the time spent in state k is ≥ t , conditional on the complete pathway being p. We
are interested in the distribution of time spent in state 1 conditional on the complete
pathway being 1 → 3(1) or 1 → 2 → 3(2), defined by the probabilities P1|13(1) (t)
and P1|123(2) (t) respectively. We are also interested in the distribution of time spent
in state 2 conditional on the complete pathway being equivalently 1 → 2 → 3(2),
defined by the probabilities P2|123(2) (t). For those people who start in state 2 we
are interested in P2|23(2) (t). For the purposes of describing the methods, we assume
that P2|123(2) (t) = P2|23(2) (t), meaning that the distribution of time spent in state 2
(conditional on entering state 2) does not depend on whether the person started in state
1 or state 2. This assumption could be relaxed by estimating P2|123(2) (t) and P2|23(2) (t)
separately. Below we consider estimation of P1|13(1) (t), P1|123(2) (t), P2|123(2) (t), and
P2|23(2) (t).
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We assume that data are available on a cohort of individuals and we let T1 =
{t1, . . . , tJ1} denote the set of ordered observed times of transition out of state 1 (to
state 2 or to state 3(1). Similarly, T2 = {t (2)1 , . . . , t (2)J2

} denotes the set of ordered

observed times of transition from state 2 to state 3(2).

3.2 Conditional distribution of time spent in state 1

By using the illness-death model in the format as depicted in Fig. 1B we can express
the probabilities P1|p(t) in terms of the multi-state transition probabilities P1k(s, t).
First, P1|13(1) (t) can be written

P1|13(1) (t) =Pr(X(t) = 1|X(∞) = 3(1))

=Pr(X(∞) = 3(1)|X(t) = 1)Pr(X(t) = 1)

Pr(X(∞) = 3(1))

= P13(1) (t,∞)P11(0, t)

P13(1) (0,∞)

(1)

Similarly, we can write

P1|123(2) (t) =Pr(X(t) = 1|X(∞) = 3(2))

=Pr(X(∞) = 3(2)|X(t) = 1)Pr(X(t) = 1)

Pr(X(∞) = 3(2))

= P13(2) (t,∞)P11(0, t)

P13(2) (0,∞)

(2)

Using established results for multi-state models (Aalen et al. 2008, Ch.3) we can write
the transition probabilities P11(s, t), P13(1) (s, t) and P13(2) (s, t) as functions of the
transition intensities as follows:

P11(s, t) = Pr(X(t) = 1|X(s) = 1)

= e− ∫ t
s (λ12(x)+λ13(1) (x))dx (3)

P13(1) (s, t) = Pr(X(t) = 3(1)|X(s) = 1)

=
∫ t

s
P11(s, u

−)P13(1) (u−, u)du

=
∫ t

s
e− ∫ u−

s (λ12(x)+λ13(1) (x))dxλ13(1) (u)du (4)

P13(2) (s, t) = Pr(X(t) = 3(2)|X(s) = 1)

=
∫ t

s

∫ t−u

0
P11(s, u

−)P12(u
−, u)P(2)

22 (0, v−)P(2)
23(2) (v

−, v)dvdu

=
∫ t

s

∫ t−u

0
e− ∫ u−

s (λ12(x)+λ13(1) (x))dxλ12(u)e
− ∫ v−

0 λ
(2)
23(2)

(x)dx
λ

(2)
23(2) (v)dvdu

(5)
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The transition intensities λ1k(t) (k = 2, 3(1), 3(2)) can be estimated non-
parametrically using λ̂1k(t) = d1k(t)/n1(t), where d1k(t) denotes the number of
transitions from state 1 to state k at time t , and n1(t) denotes the number at risk of
transitioning to state 1 from state k at time t , i.e. the number of individuals observed
to be in state 1 just before time t . Note that λ̂13(1) (t j ) = 0 for times t j ∈ T1 that are
times of transition from state 1 to state 2 but not times of transition from state 1 to
state 3(1), and similarly λ̂12(t j ) = 0 for times t j ∈ T1 that are times of transition from
state 1 to state 3(1) but not times of transition from state 1 to state 2.

Suppose first that the full distribution of transition times out of state 1 and state 2
is observed in the data. Note that this does not preclude the presence of censoring.
In Sect. 3.4 we discuss estimation of Pk|p(t) when the full distribution of transition
times is not observed. The probabilities in (3), (4), and (5) can be estimated using

P̂11(s, t) =
∏

s<t j≤t

(
1 − λ̂12(t j ) − λ̂13(1) (t j )

)
(6)

P̂13(1) (s, t) =
∑

s<t j≤t

λ̂13(1) (t j )
∏

s<u<t j

(
1 − λ̂12(u) − λ̂13(1) (u)

)
. (7)

P̂13(2) (s, t) =
∑

s<t j≤t

∑

0<t (2)j <t−t j

⎛

⎝
∏

s<u<t j

(
1 − λ̂12(u) − λ̂13(1) (u)

)
⎞

⎠ λ̂12(t j )

×
⎛

⎜
⎝

∏

0<v<t (2)j

(
1 − λ̂23(2) (v)

)
⎞

⎟
⎠ λ̂

(2)
23(2) (t

(2)
j ) (8)

It follows from the above that P1|13(1) (t) (Eq. 1) can be estimated using

P̂1|13(1) (t) =
∑

t j>t λ̂13(1) (t j )
∏

u<t j

(
1 − λ̂12(u) − λ̂13(1) (u)

)

∑
t j∈T1 λ̂13(1) (t j )

∏
u<t j

(
1 − λ̂12(u) − λ̂13(1) (u)

) (9)

and P1|123(2) (t) (Eq. 2) can be estimated using

P̂1|123(2) (t) =
∑

t j>t λ̂12(t j )
∏

u<t j

(
1 − λ̂12(u) − λ̂13(1) (u)

)

∑
t j∈T1 λ̂12(t j )

∏
u<t j

(
1 − λ̂12(u) − λ̂13(1) (u)

) (10)
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3.3 Conditional distribution of time spent in state 2

The probability of being in state 2 for time t or longer (conditional on reaching state
2) conditional on the pathway being 1 → 2 → 3(2) or 2 → 3(2) can be written

P2|123(2) (t) =Pr(X (2)(t) = 2|X (2)(∞) = 3(2))

=Pr(X (2)(∞) = 3(2)|X (2)(t) = 2)Pr(X (2)(t) = 2)

Pr(X (2)(∞) = 3(2))

= P23(2) (t,∞)P22(0, t)

P23(2) (0,∞)

(11)

where P23(2) (0,∞) = 1 and P23(2) (t,∞) = 1. The transition probabilities P22(s, t)
can be written

P22(s, t) = e− ∫ t
s λ23(2) (x)dx . (12)

If the full distribution of transition times is observed, these probabilities can be
estimated for any s and t using

P̂22(s, t) =
∏

s<t (2)j ≤t

(
1 − λ̂

(2)
23(2) (t

(2)
j )

)
(13)

Therefore P2|123(2) (t) can be estimated using

P̂2|123(2) (t) =
∏

0<t (2)j ≤t

(
1 − λ̂

(2)
23(2) (t

(2)
j )

)
(14)

This is simply theKaplan-Meier estimate, because once a person reaches state 2 there is
only one subsequent state towhich they can transition. The transition intensityλ

(2)
23(2) (t)

can be estimated by λ̂
(2)
23(2) (t) = d2k(t)/n2(t), where d2k(t) denotes the number of

transitions from state 2 to state 3(2) at time t after entering state 2, and n2(t) denotes
the number at risk of transitioning to state 2 from state 3(2) at time t after entering
state 2.

3.4 Estimation when the full distribution of transition times is not observed

Above we assumed for estimation that the full distributions of transition times out of
state 1 and state 2 were observed in the data. Suppose instead that there is censoring
in the observed data in such a way that the full distributions of transition times are
not observed. This means that the last observed time of censoring or transition out of
a given state (state 1 or state 2) will be a censoring time rather than a transition time.
In this case it is not possible to estimate the probabilities P1|13(1) (t) and P1|123(2) (t).
We note that this problem does not arise if the data are only subject to uninformative
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censoring prior to the last transition time, but rather is specific to ‘late’ censoringwhich
results in the full distribution of transition times not being observed. In this situation,
we can consider instead Pτ

1|13(1) (t)—the probability of spending time t or longer in

state 1 conditional on transitioning to state 3(1) before time τ , and Pτ
1|123(2) (t)—the

probability of spending time t or longer in state 1 conditional on transitioning to state
2 before time τ (because subsequent transition to state 3(2) is then inevitable). The
probabilities Pτ

1|13(1) (t) and Pτ
1|123(2) (t) can be estimated for times τ ≤ t∗J1 , where t

∗
J1

denotes the latest observed follow-up time in state 1 (including both transition times
and censoring times). To estimate Pτ

1|13(1) (t) and Pτ
1|123(2) (t), the results in Eqs. (9)

and (10) can be applied, with the sums in the denominators changed from
∑

t j∈T1 to∑
t j≤τ .
For time spent in state 2, P2|123(2) (t) can be estimated for any t ≤ t∗J2 , where t∗J2

denotes the latest observed follow-up time in state 2 (including both transition times
and censoring times). We may also be interested in Pτ

2|123(2) (t), which we define at the
probability of spending time t or longer in state 2 conditional on transitioning to state

3(2) before time τ , which can be written Pτ
2|123(2) (t) = P23(2) (t,τ )P22(0,t)

P23(2) (0,τ )
, and estimated

using

P̂τ
2|123(2) (t) =

∑
t<t (2)j ≤τ

λ̂
(2)
23(2) (t

(2)
j )

∏
u<t (2)j

(
1 − λ̂

(2)
23(2) (u)

)

∑
0<t (2)j ≤τ

λ̂
(2)
23(2) (t

(2)
j )

∏
u<t (2)j

(
1 − λ̂

(2)
23(2) (u)

) (15)

3.5 Conditional expected length of stay (CELOS)

Above we focused on the distribution of conditional lengths of stay. The expected
time spent in a given state conditional on the pathway is one way of summarising the
distribution. We refer to this as conditional expected length of stay (CELOS) and let
CELOSk|p denote the expected length of stay in state k conditional on the complete
pathway being p. The (unconditional) expected length of stay in state k can be written
in terms of the state occupation probability: Ek = ∫ ∞

0 Pr(X(t) = k)dt (Beyersmann
and Putter 2014). It follows that CELOSk|p can be written

CELOSk|p =
∫ ∞

0
Pk|p(t)dt (16)

The conditional expected length of stay in state 1 among those who do not transition
to state 2, denoted CELOS1|13(1) , can therefore be estimated using

̂CELOS1|13(1) =
∑

t j∈T1
(t j − t j−1) × P̂1|13(1) (t j−1) (17)

where t0 = 0 and P1|13(1) (t0) = 1. CELOS1|13(1) can equivalently be estimated

using ̂CELOS1|13(1) = ∑
t j∈T1 t j × (P̂1|13(1) (t j+1) − P̂1|13(1) (t j )). The expression in
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(17) is similar to that used by Beyersmann and Putter (2014) for restricted expected
length of stay. Similarly, ̂CELOS1|123(2) = ∑

t j∈T1(t j − t j−1) × P̂1|123(2) (t j−1) and

̂CELOS2|123(2) = ∑
t j∈T2(t j − t j−1) × P̂2|123(2) (t j−1).

In studies where there is censoring such that the full distribution of transition times
is not observed, we discussed above that the conditional probabilities P1|13(1) (t) and
P1|123(2) (t) cannot be estimated, and P2|123(2) (t) can only be estimated for times t
up to the latest observed transition time. Beyersmann and Putter (2014) discussed
restricted expected length of stay in the multi-state modelling context, defined as
Eτ
k = ∫ τ

0 Pr(X(t) = k)dt , which is the expected time spent in state k up to time τ .
This is an extension to the multi-state setting of restricted mean survival time (RMST),
proposed by Irwin (1949) (see also Royston and Parmar (2013) for example), which
is the mean survival up to a particular time horizon.

We define restricted conditional expected length of stay (RCELOS) as the expected
length of stay in a given state up to time τ conditional on the pathway taken up to time τ :

RCELOSτ
k|p =

∫ τ

0
Pk|p(t)dt . (18)

RCELOSτ
1|13(1) and RCELOSτ

1|123(2) can be estimated using

̂RCELOS
τ

1|13(1) =
∑

t j∈T1,t j≤τ

(t j − t j−1) × P̂τ
1|13(1) (t j−1)

and

̂RCELOS
τ

1|123(2) =
∑

t j∈T1,t j≤τ

(t j − t j−1) × P̂τ
1|123(2) (t j−1).

RCELOSτ
2|123(2) is the same as the restricted (unconditional) length of stay in state 2

and is estimated using ̂RCELOS
τ

2|123(2) = ∑
t (2)j ∈T2,t (2)j ≤τ

(t (2)j −t (2)j−1)× P̂2|123(2) (t (2)j−1).

We may also be interested in

̂RCELOS
τ∗
2|123(2) =

∑

t (2)j ∈T2,t (2)j ≤τ

(t (2)j − t (2)j−1) × P̂τ
2|123(2) (t

(2)
j−1)

which estimates the expected length of stay in state 2 conditional on transitioning to
state 3(2) before time τ after entering state 2.

3.6 Software

The conditional state occupation probabilities Pk|p(t) and CELOSk|p, and the
restricted equivalents Pτ

k|p(t) and RCELOSτ
k|p can be estimated ‘manually’ by obtain-

ing estimates of the transition intensitiesλ1k(t) (k = 2, 3(1)) andλ
(2)
23(2) (t), and applying
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the formulae given above. In the illness-death setting that we have considered so far,
it is also possible to make use of some of the features of the mstate package in
R (De Wreede et al. 2011; Putter et al. 2020), notably the probtrans function
which can provide an estimate of the probability of having entered state 2. However,
the probtrans function does not currently allow a clock-reset approach, which we
assume here, which means that it cannot be used without modification beyond the
illness-death setting.

4 Simulation study

We conducted a simulation study with the primary aims of checking the results in
Sect. 3 and of demonstrating the bias if a naive analysis is used, in which empir-
ical probabilities and means are calculated from the data ignoring censoring. The
simulation also aims to illustrate some of the considerations needed when estimat-
ing restricted length of stay. R code is provided at https://github.com/ruthkeogh/
lengthofstay, enabling the simulation results to be replicated.

4.1 Simulating data

Data were generated from the multi-state model depicted in Fig. 1 for N = 1000
individuals. We consider three scenarios. In scenario (1) transition times were gener-
ated from exponential distributions using constant transition intensities λ12 = 0.005,
λ13(1) = 0.1, λ

(2)
23(2) = 0.3. In the motivating example transition times are recorded

in terms of dates, resulting in ties. To mimic this discrete time setting of the motivat-
ing example, all times were rounded up to the next whole number in this scenario.
In scenario (2) transition times were generated from Weibull hazard models of the
form λ(t) = κγ tκ−1 for each transition, where κ is the shape parameter and γ is
the rate parameter. For λ12(t), λ13(1) (t), and λ

(2)
23(2) (t) we used (κ = 0.75, γ = 0.05),

(κ = 0.75, γ = 0.1), and (κ = 1.25, γ = 0.3) respectively. In practice, there is
likely to be heterogeneity of transition intensities between individuals. We therefore
considered a scenario (3) in which we incorporated individual frailties. This was done
using Weibull transition hazards as in scenario (2), and individual frailties generated
from a log-normal distribution with mean 0 and variance 1 and independently across
transitions.

In all three scenarios censoring times were generated from an exponential model
with hazard λ0.We consider situationswith no censoring (λ0 = 0) andwith substantial
censoring (λ0 = 0.2) designed to result in the full distribution of transition times not
being observed. In the situation with censoring, the choice of λ0 resulted in an average
of 53% of individuals having their transition out of state 1 censored in scenario (1),
67% in scenario (2), and 60% in scenario (3).

There are 6 scenarios in total: scenarios (1), (2) and (3), each with and without
censoring. We generated 1000 simulated data sets under each scenario.
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4.2 Estimands

The estimands of interest were the CELOS (CELOS1|13(1) , CELOS1|123(2) ,
CELOS2|123(2)) and the RCELOS (RCELOSτ

1|13(1) , RCELOS
τ
1|123(2) , RCELOS

τ
2|123(2) ,

RCELOSτ∗
2|123(2)) for a time horizon of τ = 5. We note that the RCELOS with a large

τ correspond to the CELOS. For the RCELOS we present results for a time horizon of
τ = 5 because the maximum observed times spent in states 1 and 2 in the simulated
data sets was typically greater than 5 in all scenarios, meaning that we expect to be able
to obtain unbiased estimate of the RCELOS with τ = 5 in situations with and without
censoring. In practice, the time horizon may be selected as the maximum observed
transition or censoring time in each state.

For scenario (1), where transition times are integers, we also obtained estimates of
the probabilities P1|13(1) (t), P1|123(2) (t) and P2|123(2) (t) (corresponding to the CELOS)
and Pτ

1|13(1) (t), P
τ
1|123(2) (t) and Pτ

2|123(2) (t) for τ = 5 (corresponding to the RCELOS).

4.3 Methods and true values

We applied the multi-state analysis methods described in Sect. 3. We also calculated
the empirical (“naive”) estimates in each simulated data set. For example, the naive
estimate of CELOS1|13(1) was calculated as the mean observed time of entering state
3(1) in thosewho transition to that state, excluding individuals whowere censored. The
naive estimate of RCELOSτ

1|13(1) was calculated as the mean observed time of entering

state 3(1) in those who transition to that state and who do so before time τ , excluding
individuals who were censored. The naive estimates of P1|13(1) (t) and Pτ

1|13(1) (t) were

calculated as the proportion of individuals who transitioned to state 3(1) whose time
of transition to 3(1) was ≥ t (and ≤ τ for Pτ

1|13(1) (t)), excluding individuals who were
censored.

In scenarios without censoring we expect the estimates of the CELOS to be (asymp-
totically) unbiased using both the naive approach and using our formulae. In scenarios
with censoring the CELOS cannot always be estimated. Given the quite substantial
censoring generated in the censoring scenarios, we expect the estimates of the CELOS
to be biased both under the naive approach and using our formulae.

The true values of the estimands were approximated by simulating a data set of one
million individuals for scenarios (1), (2) and (3) without censoring and calculating the
empirical values, as in the naive approach.

For each estimand, we present the mean estimate across the 1000 simulated data
sets and the empirical standard deviation. We also present the bias using the mean
difference between the 1000 estimates and the true value, and corresponding Monte-
Carlo standard error, which is calculated as the empirical standard deviation of the
estimates divided by

√
1000 (the square-root of the number of simulated data sets).

In scenario (1), averages of probability estimates at a given time t are obtained only
from those simulated data sets in which t was an observed transition time.
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Table 1 Simulation results for scenario (1) (exponential data generating model)

Without censoring With censoring
Est (SD) Bias (MCE) Est (SD) Bias (MCE)

Conditional expected length of stay (CELOS)

Naive analysis

CELOS1|13(1) 7.172 (0.253) −0.000 (0.008) 3.390 (0.168) −3.782 (0.005)

CELOS1|123(2) 7.172 (0.356) −0.016 (0.011) 3.394 (0.299) −3.794 (0.009)

CELOS2|123(2) 3.853 (0.177) 0.007 (0.006) 2.544 (0.214) −1.303 (0.007)

Multi-state analysis

CELOS1|13(1) 7.172 (0.253) −0.000 (0.008) 6.447 (0.912) −0.725 (0.029)

CELOS1|123(2) 7.172 (0.356) −0.016 (0.011) 6.342 (1.252) −0.847 (0.040)

CELOS2|123(2) 3.853 (0.177) 0.007 (0.006) 3.575 (0.434) −0.272 (0.014)

Restricted conditional expected length of stay (RCELOS) with τ = 5

Naive analysis

RCELOSτ

1|13(1) 2.704 (0.077) 0.003 (0.002) 2.337 (0.084) −0.365 (0.003)

RCELOSτ

1|123(2) 2.705 (0.103) 0.001 (0.003) 2.341 (0.152) −0.364 (0.005)

RCELOSτ

2|123(2) 2.428 (0.080) 0.011 (0.003) 2.098 (0.132) −0.319 (0.004)

RCELOSτ∗
2|123(2) 2.999 (0.084) 0.007 (0.003) 2.336 (0.150) −0.656 (0.005)

Multi-state analysis

RCELOSτ

1|13(1) 2.704 (0.077) 0.003 (0.002) 2.705 (0.095) 0.004 (0.003)

RCELOSτ

1|123(2) 2.705 (0.103) 0.001 (0.003) 2.704 (0.126) −0.001 (0.004)

RCELOSτ

2|123(2) 2.428 (0.080) 0.011 (0.003) 2.425 (0.153) 0.008 (0.005)

RCELOSτ∗
2|123(2) 2.999 (0.084) 0.007 (0.003) 2.998 (0.154) 0.005 (0.005)

CELOS and RCELOS estimates and corresponding bias, obtained using the naive analysis (ignoring
censored observations) and the multi-state analysis, for scenarios with and without censoring
Est mean of estimates from 1000 simulated data sets, SD empirical standard deviation,MCEMonte-Carlo
standard error

4.4 Results

Simulation results for the CELOS and RCELOS estimates for Scenarios (1), (2) and
(3) are summarised in Tables 1, 2 and 3.

When there is no censoring, the naive estimates of the CELOS and RCELOS are
identical to those obtained from the multi-state analysis, as we would expect. The
estimates are (approximately) unbiased,with very small bias in somevalues (according
to the MCE) being attributed to the finite sample size.

When there is censoring the CELOS estimates are biased both using the naive
approach and the multi-state analysis. Again, this is what we expect to see. The
censoring induced by the data generating mechanisms results in the latest observed
transition or censoring time typically being a censoring time. The bias from the multi-
state analysis does not arise because there is a problem with the method, but because
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Table 2 Simulation results for scenario (2) (Weibull data generating model)

Without censoring With censoring
Est (SD) Bias (MCE) Est (SD) Bias (MCE)

Conditional expected length of stay (CELOS)

Naive analysis

CELOS1|13(1) 14.947 (0.759) 0.012 (0.024) 2.708 (0.223) −12.227 (0.007)

CELOS1|123(2) 14.927 (1.097) −0.013 (0.035) 2.683 (0.399) −12.257 (0.013)

CELOS2|123(2) 2.444 (0.109) −0.004 (0.003) 1.847 (0.184) −0.600 (0.006)

Multi-state analysis

CELOS1|13 14.947 (0.759) 0.012 (0.024) 7.950 (2.596) −6.985 (0.082)

CELOS1|123(2) 14.927 (1.097) −0.013 (0.035) 7.430 (3.187) −7.510 (0.101)

CELOS2|123(2) 2.444 (0.109) −0.004 (0.003) 2.388 (0.252) −0.060 (0.008)

Restricted conditional expected length of stay (RCELOS) with τ = 5

Naive analysis

RCELOSτ

1|13(1) 1.933 (0.090) −0.001 (0.003) 1.533 (0.097) −0.401 (0.003)

RCELOSτ

1|123(2) 1.918 (0.129) −0.014 (0.004) 1.527 (0.177) −0.405 (0.006)

RCELOSτ

2|123(2) 1.940 (0.074) 0.001 (0.002) 1.640 (0.147) −0.300 (0.005)

RCELOSτ∗
2|123(2) 2.265 (0.084) −0.002 (0.003) 1.790 (0.164) −0.478 (0.005)

Multi-state analysis

RCELOSτ

1|13(1) 1.933 (0.090) −0.001 (0.003) 1.927 (0.119) −0.006 (0.004)

RCELOSτ

1|123(2) 1.918 (0.129) −0.014 (0.004) 1.920 (0.178) −0.012 (0.006)

RCELOSτ

2|123(2) 1.940 (0.074) 0.001 (0.002) 1.943 (0.165) 0.004 (0.005)

RCELOSτ∗
2|123(2) 2.260 (0.084) −0.008 (0.003) 2.237 (0.174) −0.031 (0.006)

CELOS and RCELOS estimates and corresponding bias, obtained using the naive analysis (ignoring
censored observations) and the multi-state analysis, for scenarios with and without censoring
Est mean of estimates from 1000 simulated data sets, SD empirical standard deviation,MCEMonte-Carlo
standard error

the conditional mean cannot be estimated when the full distribution of transition times
in not observed, highlighting that restricted estimates are required in this situation.
We note that the bias is smaller from the multi-state analysis than from the naive
analysis, but it is still substantial in all three scenarios. The bias is in the direction of
under-estimating the conditional expected length of stay. We chose a high hazard for
censoring in this simulation. The bias due to ignoring censoring will clearly depend
strongly on the extent and distribution of censoring. In the motivating example shown
later, the amount of censoring is much lower.

Estimates of the RCELOS obtained using the multi-state analysis are (approxi-
mately) unbiased in all three scenarios, including when there is censoring. The naive
estimates are unbiased only when there is no censoring. When there is censoring the
naive analysis results in estimates that are biased downwards, i.e. under-estimating
the RCELOS.

123



Estimating distribution of length of stay in a multi-state… 303

Table 3 Simulation results for scenario (3) (Weibull data generating model with individual frailty)

Without censoring With censoring
Est (SD) Bias (MCE) Est (SD) Bias (MCE)

Conditional expected length of stay (CELOS)

Naive analysis

CELOS1|13(1) 18.053 (1.872) −0.064 (0.059) 2.101 (0.166) −16.016 (0.005)

CELOS1|123(2) 20.893 (2.703) −0.073 (0.085) 2.237 (0.299) −18.729 (0.009)

CELOS2|123(2) 3.347 (0.254) 0.000 (0.008) 1.717 (0.192) −1.629 (0.006)

Multi-state analysis

CELOS1|13(1) 18.053 (1.872) −0.064 (0.059) 6.066 (2.324) −12.051 (0.073)

CELOS1|123(2) 20.893 (2.703) −0.073 (0.085) 6.378 (2.922) −14.587 (0.092)

CELOS2|123(2) 3.347 (0.254) 0.000 (0.008) 2.701 (0.501) −0.646 (0.016)

Restricted conditional expected length of stay (RCELOS) with τ = 5

Naive analysis

RCELOSτ

1|13(1) 1.676 (0.083) −0.006 (0.003) 1.316 (0.083) −0.366 (0.003)

RCELOSτ

1|123(2) 1.743 (0.106) −0.007 (0.003) 1.378 (0.147) −0.372 (0.005)

RCELOSτ

2|123(2) 1.673 (0.071) 0.001 (0.002) 1.378 (0.125) −0.294 (0.004)

RCELOSτ∗
2|123(2) 2.310 (0.089) 0.001 (0.003) 1.588 (0.142) −0.721 (0.004)

Multi-state analysis

RCELOSτ

1|13(1) 1.676 (0.083) −0.006 (0.003) 1.679 (0.108) −0.003 (0.003)

RCELOSτ

1|123(2) 1.743 (0.106) −0.007 (0.003) 1.751 (0.151) 0.002 (0.005)

RCELOSτ

2|123(2) 1.673 (0.071) 0.001 (0.002) 1.675 (0.150) 0.003 (0.005)

RCELOSτ∗
2|123(2) 2.299 (0.090) −0.010 (0.003) 2.254 (0.167) −0.056 (0.005)

CELOS and RCELOS estimates and corresponding bias, obtained using the naive analysis (ignoring
censored observations) and the multi-state analysis, for scenarios with and without censoring
Est mean of estimates from 1000 simulated data sets, SD empirical standard deviation,MCEMonte-Carlo
standard error

Supplementary Figures 1–4 show plots of the estimated distribution of time spent in
different states conditional on the pathway taken in scenario (1), for situations without
censoring and with censoring. These demonstrate clearly how bias arises in the naive
approachwhen there is censoring,with small values of t beingover-represented relative
to large values of t due to incomplete follow-up, resulting in an underestimate of the
CELOS and RCELOS.
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5 Application to hospitalisation for Covid-19

5.1 Data

The International Severe Acute Respiratory and emerging Infections Consortium
WHO Clinical Characterisation Protocol UK (ISARIC WHO CCP-UK) study was
established in the wake of the influenza A H1N1 pandemic (2009) and the emer-
gence of Middle East respiratory syndrome coronavirus (2012). Further details about
ISARIC WHO CCP-UK can be found at https://isaric4c.net. A key component of the
ISARIC WHO CCP-UK study is the COVID19 Clinical Information Network (CO-
CIN), which has collected clinical care data in near-real time from 208 hospitals in
England, Scotland, and Wales on patients admitted to hospital since January 2020.
Data were collected by clinical research nurses and administrators from clinical notes
and entered into an online database. The clinical features of patients in this cohort
have been described previously (Docherty et al. 2020).

We used CO-CIN data on individuals with proven or a high likelihood of infec-
tion with SARS-CoV-2 leading to COVID-19 disease with hospital admission from
10 March to 19 July 2020 (130 days). Information recorded includes patient char-
acteristics, level of care (ward based, high dependency unit, or intensive care unit),
complications, and dates of entering the following states: admission to hospital ward,
admission to ICU (defined as high dependency unit or intensive care unit), stepping
down from ICU to the general ward, death in hospital, and discharge. We include
patients who had been admitted for a separate condition but had tested positive for
SARS-CoV-2 during their hospital stay. A small proportion of individuals whose age
or sex was not recorded were excluded.

Themajority of individuals start in the hospital ward state, and the remainder start in
the ICU admission state. The “discharge” state included individuals recorded with the
outcomes “discharged alive” or “palliative discharge”. Individuals with the outcomes
“hospitalized” or “transfer to other facility” were assumed alive and still in hospital or
ICU at their outcome date. Some individuals have no outcome recorded because they
were still within their care episode at the date of data extraction. These individuals
were censored at the last date at which they had any information recorded in the
data. When more than one event/transition was recorded on the same date for a given
individual, we assumed the events occurred in quick succession and modified the data.
For example if an individual was recorded as having been admitted to ICU on the same
date as hospital admission, and then recorded as dying on the same date, the time of
ICU admission was considered to be 0.25 days and the time of death 0.5 days.

5.2 Methods

Figure 2A illustrates the multi-state model for the more complex motivating example,
in which there are 5 states. For patients starting in state 1 (hospital ward) there are 6
possible pathways. In the data, some individuals are observed to be admitted directly
to ICU and therefore start in state 2. Therefore, we are also interested in the three
possible pathways than a patient can follow if they start in state 2. The probabilities
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Pk|p(t) for this setting are summarised in Table 4. In Fig. 2B the two absorbing states
of discharge (state 4) and death (state 5) depicted in Fig. 2A are each divided into
three states. State 4 is divided into states 4(1) for people who are discharged from the
hospital ward, state 4(2) for people who are discharged from ICU, and 4(3) for people
who are discharged from the ward after ICU. Similarly state 5 is divided into states
5(1), 5(2), 5(3), depending on the state fromwhich an individual transitions to the death
state.

The methods outlined for the simpler illness-death model can be extended to
this more complex multi-state model and details are provided in the Supplementary
Materials.

5.3 Results

The data contained the records of a total of 74,722 individuals. After restricting to
those with a proven or a high likelihood of infection with SARS-CoV-2 and admitted
to hospital between 10 March and 19 July 2020 there remain 43,256 individuals for
analysis.Weexcluded270 individualswithmissingdata on ageor sex.The sample used
for the analysis contains 42,980 individuals, including 24,776males (58%) and 18,204
females (42%). Table 5 summarises the numbers of observed transitions between
states. The majority of individuals start in the hospital ward state (39571, 92%), with
the remainder starting in ICU. A total of 7816 (18%) of individuals entered the ICU
state (including those who start in that state), of whom the majority (89%) went back
to the hospital ward after ICU, prior to death or discharge. There were 12,058 deaths
(28%) and 24,456 (57%) individuals were discharged, with the remaining 15% of
patients being censored.

We began by summarising how patients transition through the multi-state model
using plots of state occupation probabilities, estimated non-parametrically. Figure 3
shows the resulting estimated state occupation probabilities. These show that themajor-
ity of transitions out of the hospital ward (pre ICU) have occurred by around 40 days.
There are longer tails on the state occupation estimates after entering the ICU state.
After entering the hospital ward after being in ICU, the plot shows that individuals
who then die tend to do so quickly and the majority of deaths and discharges occurred
within 10 days. The maximum time of transition out of state 1 (hospital ward pre-ICU)
was 103 days, the maximum time of transition out of state 2 (ICU) was 107 days and
the the maximum time of transition out of state 3 (hospital ward after ICU) was 89
days.

The (unconditional) expected lengths of stay in the hospital ward, in ICU and in the
hospital ward after entering ICU were estimated using the methods of Beyersmann
and Putter (2014), using the ELOS function from the mstate package in R. For
individuals admitted go the hospital ward, the expected length of stays are: 8.99 days
(95% CI 8.87, 9.11) in the hospital ward, 12.36 days (11.99, 12.77) in ICU, and 9.44
days (8.65, 10.20) in the hospital ward after ICU. For individuals admitted directly
to ICU, the expected length of stays are: 14.36 days (13.79, 14.89) in ICU, and 9.26
days (8.37, 10.12) in the hospital ward after ICU.
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Fig. 3 Estimated state occupation probabilities up to 100 days after entering each state, applied to Covid-
19 hospitalised patients using the CO-CIN data. For individuals admitted to the hospital ward. See
Supplementary Figure 1 for corresponding plots for individuals admitted directly to ICU

We applied the methods described in Sect. 5.2 to estimate the conditional length
of stay distributions (Table 4) and corresponding CELOS. Preliminary investigations
indicate that the length of follow-up available in this data set captures almost the full
distribution of time spent in each state, and therefore permits estimation of the CELOS
(as opposed to RCELOS). For comparison, we also calculated the naive estimates of
the CELOS, which exclude the 15% of patients who were censored. Bootstrapping
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(percentilemethod)was used to estimate 95%confidence intervals (CI) for theCELOS
estimates.

CELOS estimates are shown in Table 6 and the corresponding full conditional
distributions in Figs. 4 and 5. We focus on the results obtained for individuals who
started their stay in the hospital ward, as opposed to in ICU. Individuals who were
discharged at the end of their stay tend to spend longer in any given state (1, 2 or 3)
compared with patients who die at the end of their stay. Among patients who did not go
to the ICU, the expected time spent in hospital was 8.07 days in those who died at the
end of their stay and 10.23 days in those who were discharged. Figure 4 (first panel)
shows the long tail on the distributions. Time spent in the hospital ward (pre-ICU) was
much shorter in those who transition to ICU, being just over 4 days. Figure 4 (first
panel) shows a large drop off in the curves after 1 day for the curves corresponding
to pathways through ICU. Because we have assumed a clock-reset approach, the time
spent in hospital conditional on going to ICU does not depend on the states entered
after ICU.

Patients who went to ICU followed by the hospital ward were estimated to spend an
average of 12.38 days in ICU. Time spent in ICUwas slightly shorter in those who did
not subsequently return to the hospital ward (CELOS 7.71 days for those die in ICU
and 9.76 days for those who are discharged directly from ICU), but these estimates
are based on small numbers and the confidence intervals are wide. In those who go
to ICU and then return to the hospital ward, the time spent in the hospital ward after
ICU tended to be very short in patients who died (CELOS 1.03 days), suggesting that
some individuals are returned to the ward from ICU when it is known that they are
close to death. The expected time spent in the hospital ward after ICU was 10.77 days
in those who were subsequently discharged. Figure 4 (third panel) shows a very large
drop off in the distribution after 1 day for individuals who die. The distribution of time
spent in states 2 and 3 was similar for patients who started in state 1 and patients who
started in state 2 (i.e. were admitted directly to ICU).

The estimates of conditional length of stay using the naive analysis (excluding
censored observations) tend to underestimate the true values (Table 6), which we
expect from the simulation results and from theory.

6 Discussion

We have presented methods for estimating distributions of length of stay in a multi-
state model conditional on the pathway taken through the states in the model. We also
showed how the conditional length of stay distribution can be summarised in terms
of a conditional expected length of stay (CELOS) or restricted CELOS (RCELOS),
which is appropriate when there is censoring such that the last observed time in the
state of interest is a censoring time rather than a transition time. The methods are
non-parametric and do not rely on distributional assumptions. We described the meth-
ods for the widely used illness-death multi-state model and also provided details of
the extension to the more complex multi-state model relevant for transitions of hospi-
talised Covid-19 patients. We assumed a clock-reset approach in which the transition
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Fig. 4 Summary of the distribution of time spent in the hospital ward (pre-ICU), in ICU, and in the hospital
ward after ICU conditional on the pathway taken, for patients who are admitted to the hospital ward. The
plots how the probability that the time spent in state k is ≥ t days conditional on the pathway p: Pk|p(t)
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Fig. 5 Summary of the distribution of time spent in ICU, and in the hospital ward after ICU conditional
on the pathway taken, for patients who are admitted directly to ICU. The plots how the probability that the
time spent in state k is ≥ t days conditional on the pathway p: Pk|p(t). Estimated distribution of time spent
in the ICU and hospital ward after ICU conditional on the pathway taken

intensities in a given state depend on time since entering that state, but not on pre-
vious states visited or duration spent in previous states. Extensions to our approach
could relax this assumption, for example by specifying Cox models for the transition
intensities and including previous state and time spent in previous states as covariates.

The methods were assessed using a simulation study based on an illness-death
model. The results show that in situations with censoring such that the full distribution
of transition times is not observed, the naive estimates of the conditional length of
stay distributions are biased, giving under estimates of the RELOS due to small tran-
sition times being over-represented in the data and higher transition times not being
observed. The proposedmulti-state approach gives approximately unbiased estimates.
The results highlight that care should be taken when interpreting expected length of
stay results when there is censoring and in finite samples—in these situations the
restricted conditional length of stay (RCELOS) (up to a chosen time horizon τ ) is an
appropriate summary measure. We have also provided example R code for creating a
simulated data set and for implementing the methods.
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Alongside describing newmethods, we applied the methods to estimate conditional
length of stay in different states in patients hospitalised with Covid-19 in the UK using
data on 42980 patients. Resultswere presented in terms of distributions and conditional
expected length of stay in the hospital ward, in ICU, and in the hospital ward after
ICU. The CELOS in the hospital ward in patients not admitted to ICU was 9.58 days,
CELOS in ICU (among those admitted to ICU) was 12.38 days (in those who stepped
down to the hospital ward after ICU, which was the majority), and the CELOS in the
hospital ward after ICU (in those who entered that state) was 6.88 days, though this
differed considerably between patients who subsequently died and those who were
discharged.

Conditional length of stay in a state of a multi-state model involves conditioning
on what happens to an individual in the future, which is usually best avoided in
time-to-event analyses (Andersen and Keiding 2012). However, our estimands were
carefully defined as conditional on the pathway, and we have shown that they enable
a nuanced description of the multi-state system, as well as providing inputs that can
be used in mathematical models. A different aim in a multi-state model could be to
provide information about the risk of certain transitions occurring for an individual
given their characteristics, or to estimate how certain covariates are associated with
rates of transition. In that case conditioning on the pathway taken, or on any other
future information, would be in appropriate for the question at hand. In the Covid-
19 literature, multi-state modelling methods have been used by a number of authors
to investigate time spent in different states in the context of patients hospitalised
with Covid-19, and both unconditional and conditional lengths of stay have been
estimated. Vekaria et al. (2020) estimated conditional lengths of stays using data
on 6208 Covid-19 patients in the UK observed in the COVID-19 Hospitalisation
in England Surveillance System (CHESS) from March to May 2020. They took a
parametricmodelling approach and fittedWeibullmodels for each transition in amulti-
state model, which was combined with a simulation procedure to obtain conditional
length of stay estimates. Their estimates are in linewith ours. They estimated amean of
4 days spent in hospital prior to ICU admission (our estimate: 4.23 days). In those who
did not go to ICU the expected time to death was 8.8 days (our estimate: 8.07 days) and
the expected time to discharge 11.3 days (our estimate: 10.23 days).Among individuals
who stepped down to the hospital ward after ICU, the expected time to discharge was
6.2 days (our estimate: 10.77 days). The expected time from ICU admission to death
was 17.4 days (we did not obtain an equivalent estimate). They stated that they did
not observe any individuals who stepped down from ICU to the hospital ward and
then died. We observed individuals who transitioned from ICU to the hospital ward,
however our results showed that a high proportion of these individuals died a short
time after returning to the ward, suggesting that it may be appropriate to class some
of these deaths as deaths in ICU. Data on the reason for a patient going to the Ward
after ICUwould facilitate this. There may have been different ways of recording death
after ICU admission in the CHESS and CO-CIN data sets.

Rieg et al. (2020) performedmulti-statemodelling using data on 213 patients admit-
ted to a German hospital (February–May 2020). They considered the following states:
regular ward, ICU (without mechanical ventilation), mechanical ventilation, extra-
corporeal membrane oxygenation (ECMO), death and discharge. In those admitted
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to the regular ward, the expected length of stay in the regular ward was 13.6 days,
and expected length of stay in ICU was 0.8 days—this appears not be be conditional
on actually going to ICU and so has a different interpretation than our estimates. In
patients admitted directly to ICU the expected length of stay in ICU was 5.6 days.
Hazard et al. (2020) used non-parametric multi-state modelling analysis to estimate
restricted expected length of stay in ventilated and non-ventilated Covid-19 patients
admitted to ICU using data from two small published data sets from the US (n = 24)
and the US, Europe and Japan (n = 53). The estimated total length of stay in ICU up
to 28 days was 15.05 days (95% CI 9.29–21.66) in the larger study, which involved
patients treated with remdesivir.

Rees et al. (2020) conducted a systematic review of estimated length of stay in
Covid-19 patients based on studies published up to 12 April 2020. They identified 52
studies, most of which were from China. In studies from China the median length of
stay in hospital was 14 days (interquartile range 10–19 days), and in studies outside of
China the median length of stay in hospital was 5 days (interquartile range 3–9 days).
Median length of stay in ICU was 8 days in studies from China, and 7 days outside of
China. We estimated the full distribution of length of stay in different states and the
means. For use in planning capacity requirements, means are more appropriate than
medians as summary measures. Rees et al. (2020) noted that patients discharged alive
tended to have longer length of stay compared with those who died, which we also
found. In a study of trajectories among patients hospitalised with Covid-19 in France,
Boelle et al. (2020) found that the median time to death in those who went to ICU
was 20 days, and the median time to discharge from ICU was 17 days. In those who
did not go to ICU, the median time to death was 9 days, and median time to discharge
was also 9 days. They used parametric modelling methods, though it was not entirely
clear how they estimated the length of stay. In a study from Australia, Liu et al. (2018)
found that the median time spent in hospital was 9 days and the median time spent in
ICU was 6 days; their results appear to be based on patients with death or discharge
observed.

The methods described in this paper are non-parametric and do not incorporate
covariates. The methods could be applied to subsets of patients defined by character-
istics such as age group and sex. In further work it is of interest to extend the methods
to incorporate several covariates simultaneously. This could be done, for example,
by using semi-parametric Cox models for the transition intensities, and it should be
straightforward to implement this using the mstate package in R. It would also be of
interest to investigate extensions of the work of Klinten Grand and Putter (2016) who
used pseudo–observations to construct regression models for expected length of stay
in multi-state models, which enables estimation of associations between covariates
and length of stay to be quantified.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s10985-022-09586-0.
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