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Abstract
Understanding the distribution of an event duration time is essential in many studies.
The exact time to the event is often unavailable, and thus so is the full event duration.
By linking relevant longitudinal measures to the event duration, we propose to esti-
mate the duration distribution via the first-hitting-time model (e.g. Lee and Whitmore
in Stat Sci 21(4):501–513, 2006). The longitudinal measures are assumed to follow
a Wiener process with random drift. We apply a variant of the MCEM algorithm to
compute likelihood-based estimators of the parameters in the longitudinal process
model. This allows us to adapt the well-known empirical distribution function to esti-
mate the duration distribution in the presence of missing time origin. Estimators with
smooth realizations can then be obtained by conventional smoothing techniques. We
establish the consistency and weak convergence of the proposed distribution estima-
tor and present its variance estimation. We use a collection of wildland fire records
from Alberta, Canada to motivate and illustrate the proposed approach. The finite-
sample performance of the proposed estimator is examined by simulation. Viewing
the available data as interval-censored times, we show that the proposed estimator can
be more efficient than the well-established Turnbull estimator, an alternative that is
often applied in such situations.
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1 Introduction

The patterns of event duration times are of primary interest in many research studies.
A close follow-up of each study individual who potentially experiences the event
of interest is commonly unrealistic. Although the occurrence of the event may be
reported, its start time is often unavailable, especially with so-called “silent” event
occurrence (e.g. Balasubramanian and Lagakos 2003).

For example, it is important for the prediction of future fire growth and the allocation
of suppression resources to understand the distribution of the duration from the fire
start time to the time when the work of suppressing the fire begins, i.e. the initial attack
time. A wildland fire is usually reported to the fire management agency by look-out
towers or people in the area, and thefiremanager then dispatches fire-fighting resources
(e.g. Martell 2007; Morin 2014). The exact time when the fire starts is often unknown;
instead, recorded is the time when the fire is reported. As another example, many
HIV/AIDS studies are concerned with the duration of HIV infection from the time of
infection to the onset of an AIDS event; see, for example, Degruttola et al. (1991) and
Doksum and Normand (1995). Often the infection is detected at a time considerably
later after it takes place and thus the exact HIV infection time is usually unavailable.
Time to COVID–19 infection is a more recent example of this phenomenon.

A practical approach to handling data with missing time origins ignores the report-
ing delay and performs inference on the duration distribution using the observed
portion of the event duration, that is, the duration between the report time and event
termination. This naive approach yields apparently biased inferencewhen the time gap
is nonignorable between the event onset to when it is reported. Another commonly
used approach to handling times with missing time origin is to view the observation
on the time origin subject to interval-censoring. Thus the lower limit of the interval
is the length of time that the event has been observed (which we refer to as L∗),
and the upper limit is the sum of the observed duration and the longest possible
reporting delay (which we refer to as Rmax ). Turnbull’s nonparametric maximum
likelihood estimator (NPMLE; Turnbull 1976) can then be employed to estimate the
distribution of the actual duration (which we refer to as L) using such manufactured
interval-censored data. The resulting inference can be unsatisfactory, especially when
the longest expected reporting delay is large relative to the observed portion of the
event duration. In addition, the interval-censoring is likely informative in many situa-
tions, which invalidates Turnbull’s estimator. For example, fires can occur at varying
distances from fire management resources. It results in a reporting delay S and an
observed duration L∗ varying together, and thus L∗ and S may not be independent.
That is, the interval [L∗, L∗ + Rmax ] provides information on L additional to the
fact of L ∈ [L∗, L∗ + Rmax ]. This paper considers estimation of the event duration
distribution with the aforementioned type of event time data under a first-hitting-time
model using the event associated longitudinal measures.

Many studies have readily available longitudinalmeasures associatedwith the event
of interest. In reliability, for example, Lu and Meeker (1993) use degradation data to
estimate the distribution of a failure time, taking the failure time to be the time when
the degradation path hits a critical level. The concept of first-hitting-time has been
widely applied. Various models have been used to formulate longitudinal measures,
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such as a Gamma process (e.g. Lawless and Crowder 2004), a Wiener process (e.g.
Doksum and Hoyland 1992; Horrocks and Thompson 2004; Lee andWhitmore 2006;
Pennell et al. 2009; Choi et al. 2014; Mulatya et al. 2016), and an inverse Gaussian
process (e.g. Peng 2015).

We aim to make inference on the population of all reported fires. Most of the first-
hitting-time models formulate the event time via a hypothetical/underlying process.
Our modelling is similar to the excellent exception presented in Mulatya et al. (2016).
Using Brownian motion with random drift, we link the readily available longitudinal
measures to the recorded times to locate the missing time origin. The issue of depen-
dence between the reporting delay and the observed portion of duration is handled by
conditioning on the random drift. We adapt the empirical distribution function, which
requires independent and identically distributed (iid) observations, into an intuitive
and easy-to-implement estimator for the distribution based on the event duration with
missing time origin. Conventional smoothing techniques, such as kernel methods, can
be straightforwardly applied to smooth the proposed estimator. A collection of wild-
land fire records from Alberta, Canada is used to motivate and present the proposed
approach. However, potential applications of our approach are broad and not limited
to wildland fire management studies.

The rest of the paper is organized as follows. Section 2 introduces amodel for longi-
tudinal measures of fire burnt area over time and proposes an estimator for the duration
distribution aided by the longitudinal model using duration times with missing ori-
gins. It is straightforward to evaluate smoothed versions of the proposed estimator. We
present procedures for estimating the parameters that are involved in the longitudinal
model and required by the estimator for the duration distribution. We then derive the
asymptotic properties of the distribution estimator and its variance estimation. Sec-
tion 3 reports an analysis of wildland fire records with the proposed approach and
Sect. 4 presents simulation studies conducted to examine finite-sample performance
of the proposed estimator regarding its consistency, efficiency, and robustness.We also
compare the performance of the proposed approach with that of the naive approach
and of the Turnbull estimator. Some final remarks are given in Sect. 5.

2 Estimation of duration distribution in the presence of missing time
origin

2.1 Notation andmodel

We formulate the aforementioned statistical problem in terms of wildland fire man-
agement. Following Parks (1964), Fig. 1 provides a description for the development of
a hypothetical wildland fire via its progression of burnt area over time. The solid curve
in the figure represents the burnt area overtime of a fire that is subject to suppression
after detection. The time point when suppression begins is referred to as the time of
initial attack. The dashed curve shows the expected trajectory of the fire’s burnt area
if it had continued to burn without any suppression or intervention. After ignition, the
burnt area grows nonlinearly in time, and can be well approximated as exponential
initially. Prior to initial attack, the dashed curve and the solid curve coincide. The
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Fig. 1 Hypothetical description of a wildfire progression through fire management phases following Parks
(1964). The solid curve represents the burnt area of afire that is reported and then dispatchedwith suppression
resources. The dashed curve represents the burnt area of the fire that had continued to burn without any
suppression

times TS, TR , and TF in Fig. 1 are the calendar times when a fire starts, is reported,
and initial attack begins, respectively.

The duration time of interest, denoted by L , is the elapsed time from the fire’s
start to the time of initial attack, i.e., L = TF − TS . We are concerned with situations
where the true fire start time TS is unavailable, and thus the time origin of the event
duration is missing. Denote the unobservable reporting delay by S = TR − TS . The
observed portion of the duration is L∗ = TF −TR = L − S, the period between report
time and initial attack time. Let A(u) be the burnt area at time u, where we assume
there is no burnt area at the start time, i.e. A(u) = 0 when u = 0. Let B = A(S) and
D = A(L) − A(S) denote the burnt area at the report time and the increase in area by
the initial attack time, respectively.

Consider a collection of n independent wildland fires. We assume that the natural
logarithm of fire i’s burnt area is Ai (u) = gi (u) + σiWi (u) for i = 1, · · · , n, where
gi (u) is a nondecreasing function with gi (0) = 0 and Wi (·) is the standard Wiener
process. As a fire usually grows unhindered until initial attack, we suppose σi ≡ σ and
use a linear approximation to gi (u) with random drift νi = νeδi , where the constant ν
is positive, and δi is independent of Wi (·) and following a distribution φ(·; σr ) with
E[δi ] = 0 and Var [δi ] = σ 2

r . This results in the model considered in this paper:

Ai (u) = νi u + σWi (u), u ≥ 0. (1)
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The randomdrift νi characterizes the heterogeneity in fire growth among the individual
fires. Note that νi reduces to a constant drift when σr = 0. In the rest of this paper, we
assume δi ∼ N (0, σ 2

r ) with σr ≥ 0.
Under the Wiener process model for burnt-area (1), the reporting delay Si (report

time since the fire starts) can be viewed as a first-hitting-time: it is the time when
fire i’s burnt area first reaches the threshold Bi , the burnt area at the report time:
Si = sup{u : u > 0, Ai (u) < Bi }, which is the same as inf{u : u > 0, Ai (u) > Bi }
almost surely.According toChhikara andFolks (1989), the first-hitting-time Si follows
the inverse Gaussian distribution given threshold Bi , with the cumulative distribution
function (CDF)

G(x |Bi , νi , σ ) = Φ

⎛
⎝
√

B2
i

σ 2x

[
xνi
Bi

− 1

]⎞
⎠

+ exp
(
2Biνi/σ

2
)

Φ

⎛
⎝−
√

B2
i

σ 2x

[
xνi
Bi

+ 1

]⎞
⎠ , (2)

where Φ(·) is the CDF of the standard normal distribution. Denote the observed data
by

Observed-data =
⋃n

i=1
Oi = {(TRi , TFi , Bi , Di ) : i = 1, 2, · · · , n

}
. (3)

This paper focuses on estimation of F(·), the CDF of the event duration using the
observed data (3) with the following assumptions.

Assumption (A1). {(TRi , TFi , Bi , Di , Li ) : i = 1, 2, · · · , n} is a collection of
iid realizations of

(
TR, TF , B, D, L

)
, where L ∼ F(·).

Assumption (A2). L∗
i = TFi−TRi = Li−Si and Si = TRi−TSi are independent

conditional on νi for i = 1, . . . , n.

The assumptions may hold to a reasonable level of approximation in many practi-
cal situations. In our wildland fire application, the assumption A2 assumes that the
reporting delay (Si ) of fire i and the time to the initial attack since being reported (L∗

i )
are independent conditional on the fire spread rate νi . This is plausible since the fire
agency often assesses a reported fire regarding its spread rate, and then arranges for
the initial attack accordingly. That is, L∗

i depends likely on Si solely through νi .

2.2 Procedures for estimating F(·)

2.2.1 Review of the existing approaches

If all duration times Li for i = 1, . . . , n were observed, the empirical distribution
function, the nonparametric maximum likelihood estimator (NPMLE) based on the
iid observations, could be applied to estimate the duration distribution: Fn(t) =∑n

i=1 I (Li ≤ t)
/
n, where I (E ) is the indicator function of event E . Since a fire

is usually reported after a delay, only L∗
i , a portion of Li = Si + L∗

i , is recorded. The

123



Estimating duration distribution aided by auxiliary longitudinal… 393

aforementioned naive estimator is F∗
n (t) = ∑n

i=1 I (L
∗
i ≤ t)

/
n. It is clearly biased

when P(Si > 0) �= 0.
Observe that Li = L∗

i +Si ∈ [L∗
i , L

∗
i +Rmax ]with Rmax the longest possible report-

ing delay as discussed in the existing literature. The current observations might then
be cast as interval-censored event times. Turnbull’s self-consistent estimator (Turn-
bull 1976) can then be used to estimate the distribution with the interval-censored
observations. Let 0 = τ0 < τ1 < · · · < τQ be the ordered unique values of{{L∗

i }ni=1, {L∗
i + Rmax }ni=1

}
, and define αiq = I

{
(τq−1, τq ] ⊆ (L∗

i , L
∗
i + Rmax ]

}
and pq = F(τq)− F(τq−1). Following Klein and Moeschberger (2003), the Turnbull
estimator is the solution to the equations

pq = 1

n

n∑
i=1

E
{
I (Li ∈ (τq−1, τq ]

∣∣∣Li ∈ (L∗
i , L

∗
i + Rmax ]

}

= 1

n

n∑
i=1

αiq pq∑Q
k=1 αik pk

(4)

for q = 1, . . . , Q. However, the Turnbull estimator may not perform very well in the
situations of particular interest in this paper. Note that the Turnbull estimator is not
uniquely defined over the whole positive real line but up to an equivalence class of
distributions that may only differ over gaps, i.e. the innermost intervals. Since Rmax

is large relative to L∗
i in our application, the data form relatively small number of

innermost intervals and thus often give a quite noninformative estimate. Moreover, the
mechanism of interval-censoring in wildland fire studies may be informative since the
observed L∗

i is often dependent on the reporting delay Si through the fire spread rate νi .
Those considerations motivate us to propose an alternative estimator for the duration
distribution F(·) using available observations on the burnt-area process, which contain
information related to the reporting delay.

2.2.2 Proposed estimator of F(·)

ByModel (1) and Assumption (A2), note that E
{
I (Li ≤ t)|Observed-data} = P

(
Si ≤

t − L∗
i |Oi

)
can be expressed as

∫∞
−∞ G(t − L∗

i |Bi , νeδ, σ )φ(δ|Oi ; ν, σ, σr )dδ, where
φ(·|Oi ; ν, σ, σr ) is the conditional distribution of δi given the observed data associated
with fire i as specified in (3). The consideration above suggests the following estimator,
provided that the parameters ν, σ, σr are known:

F̃n(t; ν, σ, σr ) = 1

n

n∑
i=1

∫ ∞

−∞
G(t − L∗

i ; Bi , νeδ, σ )φ(δ|Oi ; ν, σ, σr )dδ. (5)

We propose to replace parameters in (5) with their consistent estimators based on the
available data. This results in a feasible distribution estimator,

F̃n(t; ν̂, σ̂ , σ̂r ) = 1

n

n∑
i=1

∫ ∞

−∞
G(t − L∗

i |Bi , ν̂eδ, σ̂ )φ(δ|Oi ; ν̂, σ̂ , σ̂r )dδ, (6)

123



394 Y. Xiong et al.

abbreviated by F̂n(t) in the rest of this paper. In Sect. 2.3, we present procedures
for consistently estimating parameters ν, σ, σr . To compute (6) numerically, one may
approximate F̂n(t) with

1

nJ

J∑
j=1

n∑
i=1

G(t − L∗
i |Bi , ν̂eδ

( j)
i , σ̂ ), (7)

where δ
(1)
i , · · · , δ

(J )
i are sampled independently from the estimated conditional dis-

tribution φ(·|Oi ; ν̂, σ̂ , σ̂r ) for i = 1, . . . , n.
The proposed estimator in (5) is adapted from the empirical distribution function.

Analogously, we can obtain a smoothed distribution estimator of F(·) by adapting the
kernel distribution estimatorwith all the duration observed. Recall that a kernel estima-
tor of F(·) with iid observed duration is Fn,h(t) = ∑n

i=1 K (
t−Li
h )
/
n, where K (t) =∫ t

−∞ k(u)du with k(·) a kernel function and h being the bandwidth (e.g., Rosenblatt

1956). Its projection onto the available data space,
∑n

i=1 E
{
K
( t−(L∗

i +Si )
h

)∣∣Oi
}/

n,

yields the following estimator with smooth realizations, denoted by F̂n,h(t):

1

n

n∑
i=1

∫ ∞

−∞

∫ ∞

0
K

(
t − (L∗

i + s)

h

)
φ(δ|Oi ; ν̂, σ̂ , σ̂r )dG(s|Bi , ν̂eδ, σ̂ )dδ. (8)

When one deals with the situation where no random effect is involved and Si is
assumed to be uniformly distributed over [0, Rmax ], the estimator F̂n,h(t) reduces to
the one discussed in Braun et al. (2005). Since the choice of bandwidth h is still under
investigation, we focus on the estimator F̂n(t) given in (6) for the rest of the paper.

2.3 Procedures for estimating parameters in Model (1):� = (�, �, �r)

The log-likelihood function based on the available data is

log Lobs(θ
∣∣Observed-data) =

n∑
i=1

log Lobs(θ;Oi ), (9)

where the contribution from fire i log Lobs(θ;Oi ) is log
∫∞
0

∫∞
−∞

{
Lobs,i |S,δ

}
d[S, δ]

with Lobs,i |Si ,δi = [Di |L∗
i , δi ][Bi |Si , δi ]. Here [Di |L∗

i , δi ] and [Bi |Si , δi ] are the
conditional distribution of Di given L∗

i , δi and the conditional distribution of Bi given
Si and δi , respectively. Under Model (1), [Di |L∗

i , δi ] and [Bi |Si , δi ] are both normal,
denoted by N (νeδi L∗

i , σ
2L∗

i ) and N (νeδi Si , σ 2Si ), respectively.
We estimate θ by maximizing log Lobs(θ

∣∣Observed-data). Denote the resulting

estimator by θ̂n . One can use θ̂n together with the collection of δ(1), · · · , δ(J ) in the
last iteration to compute (7) and (8) and to obtain F̂n(·) and F̂n,h(·), respectively. Here
δ( j) for j = 1, . . . , J are the n-dimensional vectors with the i-th components δ

( j)
i .
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We apply the MCEM algorithm (Wei and Tanner 1990) to compute the MLE, and
present details inAlgorithm A below. The log-likelihood function of θ based on the
observed data (3) together with S, δ is lF (θ |Observed-data, S, δ) = lF1(ν, σ |S, δ) +
lF2(θ; S, δ), where

lF1(ν, σ |S, δ) = −n log σ 2 −
n∑

i=1

(
Di − νeδi L∗

i

)2
2σ 2L∗

i
−

n∑
i=1

(
Bi − νeδi Si

)2
2σ 2Si

and lF2(θ; S, δ) =∑n
i=1 log[Si |δi ] +∑n

i=1 logφ(δi ; σr ).
Algorithm A For m = 0, 1, 2, · · · , denote the estimate from the mth iteration by
θ (m) = (ν(m), σ (m), σr

(m)).

E-step. Approximate Q(θ , θ (m)) = E{lF (θ |Observed-data, S, δ)|O, θ (m)} as

1

J

J∑
j=1

lF (θ |Observed-data, S( j), δ( j)) = 1

J

J∑
j=1

lF1(ν, σ |S( j), δ( j))

+ 1

J

J∑
j=1

lF2(θ; S( j), δ( j)), (10)

where for j = 1, 2, · · · , J , (S( j)
i , δ

( j)
i ) is generated from the conditional distribu-

tion given the observed data with the current parameter estimate θ (m),

[S, δ|Oi ; θ (m)] = Lobs,i |S,δ(ν
(m), σ (m); S, δ)[S, δ; θ (m)]∫∞

0

∫∞
−∞ Lobs,i |S,δ(ν(m), σ (m); S, δ)d[S, δ; θ (m)] . (11)

M-step. Maximize (10) with respect to θ to obtain θ (m+1).

Repeat Steps E and M until ||θ (m+1) − θ (m)|| < ε for a pre-specified tolerance ε. The
limit of the sequence {θ (m) : m = 1, 2, . . .} is the MLE θ̂n .

We follow the Metropolis–Hastings algorithm (Metropolis et al. 1953; Hastings
1970) to generate (S( j)

i , δ
( j)
i ) from the conditional distribution (11). The details are

provided in Sect. S1.1 of the Supplementary Material. One should also note that
[Si |δi ] in lF2(θ; S, δ) equals [Si |Bi , δi ][Bi |δi ]

/[Bi |Si , δi ], which does not have much
additional information on the parameters ν, σ . To ease the computational burden, one
may replace (10) with the following to update θ (m):

Q̃(θ , θ (m)) = 1

J

J∑
j=1

lF1(ν, σ |S( j), δ( j)) + 1

J

J∑
j=1

n∑
i=1

logφ(δ
( j)
i ; σr ). (12)

The maximizing procedure based on (12) leads to a variant of Algorithm A and
results in θ̃n , a close approximation to theMLE θ̂n . For the numerical studies presented
in this paper, we choose J = 200 and the algorithm converges with J = 200.
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Wemay obtain another estimator bymaximizing the conditional likelihood function
using only the observations on D and L∗. The log conditional likelihood function is
log Lc

obs(θ
∣∣Observed-data) = ∑n

i=1 log
∫∞
−∞[Di |L∗

i , δ]φ(δ; σr )dδ, and can be writ-
ten as

n∑
i=1

log

⎛
⎝
∫ ∞

−∞

⎡
⎣ 1√

2πσ 2L∗
i

exp

{
− (Di − νeδL∗

i )
2

2σ 2L∗
i

}⎤
⎦φ(δ; σr )dδ

⎞
⎠ . (13)

The estimator obtained by maximizing (13) is likely less efficient but easier to imple-
ment. We describe the procedure to obtain the maximizer of (13) in Sect. S1.2 of
the Supplementary Material. We refer to the second algorithm as Algorithm B and
denote estimators obtained from the two algorithms by θ̂nA and θ̂nB for the reminder
of the paper. The estimate obtained from Algorithm B may be used as the initial
estimate θ (0) for Algorithm A.

2.4 Asymptotic properties of F̂n(t) and variance estimation

The proposed estimator F̂n(t) using θ̂nA from Algorithm A in Sect. 2.3 has the
following asymptotic properties.

Theorem 1 Under Assumptions (A1) and (A2) and Conditions (C1)-(C5) for the log-
likelihood function in (9), the estimator F̂n(t) has the following properties:

(i) Strong Consistency. supt∈[0,τ ]|F̂n(t) − F(t)| p→ 0 as n → ∞.
(ii) Weak Convergence. For t ∈ [0, τ ], as n → ∞,

√
n(F̂n(t) − F(t)) converges

weakly in �∞([0, τ ]) to a tight, mean-zero Gaussian process G with covariance
Cov(G(t),G(s)) given by

⎧⎪⎨
⎪⎩

∫∞
0

∫∞
0 M(t, l∗, b; θ0)M(s, l∗, b; θ0)h(l∗, b)dl∗db − F(t)F(s), t �= s∫∞

0

∫∞
0 M(t, l∗, b; θ0)

2h(l∗, b)dl∗db − F2(t)

+Eθ0 [∂M(t, L∗
i , Bi ; θ0)

/
∂θ ]′Π−1(θ0)Eθ0 [∂M(t, L∗

i , Bi ; θ0)
/
∂θ ], t = s,

(14)

where θ0 is the true parameter, Π(θ0) = E
{ − ∂2 log Lobs(θ;Oi )

/
∂θθ

′}
is the

same as Σ(θ0) = Var
{
∂ log Lobs(θ;Oi )

/
∂θ
}
with log Lobs(θ;Oi ) the contri-

bution from individual i to the log-likelihood function in (9), M(t, L∗
i , Bi ; θ) =∫∞

−∞ G(t−L∗
i |Bi , νeδ, σ )φ(δ|Oi ; ν, σ, σr )dδ, and h(l∗, b) is the joint probability

density function of L∗
i and Bi .

Aproof of Theorem 1 is outlined in the Appendix. It results in a consistent estimator of
the covariance function in (14) substituting its unknown elements with their following
estimators.

Note that
∫∞
0

∫∞
0 M(t, l∗, b; θ0)

2h(l∗, b)dl∗db can be approximated by n−1∑n
i=1[∑K

k=1 G(t−L∗
i |Bi , ν̂neδ

(k)
i , σ̂n)

/
K
]2 with δ

(1)
i , · · · , δ

(K )
i obtained from the last iter-

ation ofAlgorithm A in Sect. 2.3.Wemay similarly approximateEθ0

[
∂M(t, L∗

i , Bi ;
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θ)
/
∂θ
]
. Further, note that Π̂n(θ0) = −n−1∂2 log Lobs(θ;Observed-data )/∂θθ

′)

converges in probability to Π(θ0) = Σ(θ0), and so does Σ̂n(θ0) = n−1Varθ0(
∂ log Lobs(θ;Observed-data)

/
∂θ
)
. Thus, either Π̂n(θ̂nA) or Σ̂n(θ̂nA) can be used

to estimate Π(θ0) = Σ(θ0).

2.5 Construction of confidence bands for F(·)

Based on Theorem 1, we see that the process
√
n(F̂n(t) − F(t))

/√
var(t) converges

weakly to the standard Gaussian process, where var(t) is Cov(G(t),G(s)) given in
(14) with t = s. Denote the consistent estimator of var(t) obtained as described in
Sect. 2.4 by v̂ar(t). We employ the resampling approach in Hu and Lagakos (1999);
Zhao et al. (2008) to construct the following confidence band (CB) for the distribution
F(·).

The (1 − α) confidence band for F(·) is
{
q(·) : for all t ∈ [0, τ ], q(t) ∈

[
F̂n(t) − cα

√
v̂ar(t)

n
, F̂n(t) + cα

√
v̂ar(t)

n

]}
,

where the critical value cα is determined by the resampling scheme as follows. For
t ∈ [0, τ ], define

Cn(t) =
√

1

nv̂ar(t)

n∑
i=1

[∫ ∞

−∞
G(t − L∗

i |Bi , ν̂eδ, σ̂ )φ(δ|Oi ; ν̂, σ̂ , σ̂r )dδ − F̂n(t)

]
Zi ,

where Z1, · · · , Zn ∼ N (0, 1) iid and are independent of the data. We compute cα as
follows:

Step (i) . Generate M sets of independent realizations of (Z1, · · · , Zn) and, with
each of sets, compute C (m)

n (·) for m = 1, · · · , M .
Step (ii) . Choose cα as the (1 − α)% quantile of supt∈[0,τ ] |C (1)

n (t)|, . . . , supt∈[0,τ ]
|C (M)

n (t)|.

3 Analysis of Alberta Forest fire data

We now apply the proposed approach to analyze the wildland fire data that motivated
this research. Alberta Agriculture and Forestry collected records of 603 lightning-
caused fires that occurred in 10 wildland fire management areas of Alberta, Canada
during the fire season from May to August in 2004. Each fire record contains the fire
progression information: the times and the fire burnt area at the time of report and at
the time of initial attack. As expected, the records do not include the exact fire start
times.

Figure 2 shows the burnt area at the report times and at initial attack times for the
different regions. The10Albertawildlandfiremanagement areas are classified into two
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Fig. 2 Burnt area in each management region

groups: north and south. The north region includes Fort McMurray, High Level, Lac
La Biche, Peace River, Slave Lake; the south region: Calgary, Edson, Grande Prairie,
Rocky Mountain House and Whitecourt. Table S1 in Sect. S2 of the Supplementary
Material summarizes burnt area for the two regions at the report times, the initial
attack times, and at the time when fires were extinguished. Fires in the north region
tend to have larger burnt area at the times of report and initial attack. The distributions
of the burnt area are skewed so we use the transformed version log10(burnt area + 1)
in the analysis.

The time of initial attack is when the first fire-fighting resource arrives at a wildland
fire to prevent the fire from spreading, and to extinguish it if possible. It is believed that
fires with a delayed initial attack may require a more substantial suppression effort.

Using the proposed approach, we estimate the distribution of the duration between
the start of a fire to its initial attack. We consider two cases with Model (1): (i) σr = 0
(i.e., νi = ν for i = 1, 2, · · · , n), and (ii) σr ≥ 0. Table 1 presents the parameter
estimates and the corresponding standard error estimates obtained by Algorithms
A and B in Sect. 2.3. The standard errors are estimated using both the inverse Fisher
information matrix and the sandwich variance estimator. We also provide computing
times for each algorithm in Table 1. Algorithms B is computationally faster than
Algorithms A, but it yields less efficient estimator as the estimated standard errors
are larger than those of Algorithms A. The estimates of σr for the model with
random drift are quite large, indicating considerable variation among the fires. This
could be because the fire spread rates depend on location and local weather.

We estimate the distribution of duration by substituting the estimated model param-
eters into (7), andobtained the smoothed estimator basedon (8). Tomake a comparison,
we also evaluated the empirical distribution function based on the observed event
duration, the naive estimator, and the Turnbull estimator viewing the fire data as
interval-censored data with Li ∈ [L∗

i , L
∗
i + Rmax ]. We set Rmax = 6, 12 or 48

hours for illustration. In fact, Rmax could be up to 2 weeks (Wotton andMartell 2005).
Figure 3 presents the estimated distributions for the times to initial attack withAlgo-
rithms A andB together with approximate 95% pointwise confidence intervals (CIs)
calculated using the estimated asymptotic variance given in (14).
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Table 1 Estimates of parameters in model (1) with Alberta Wildfire Data

Constant drift Random drift
(σr = 0) (σr ≥ 0)

Parameter ν σ ν σ σr

Algorithm A aEst 0.090 1.283 0.093 1.216 0.122
bSEF 0.013 0.026 0.013 0.025 0.003
cSER 0.013 0.030 0.017 0.027 0.003

Computing Times 0.168 seconds 9.47 seconds

Algorithm B Est 0.091 1.272 0.089 1.258 0.108

SEF 0.024 0.037 0.023 0.037 0.004

SER 0.026 0.046 0.025 0.042 0.004

Computing Times 0.080 seconds 8.67 seconds

aEst : the estimates of parameters
bSEF : the standard error estimates using the Fisher information
cSER : the standard error estimates by the sandwich variance estimator

Fig. 3 Estimated distributions for times to initial attack with Alberta Data
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Figure 3 shows that the naive distribution estimate and the Turnbull’s estimates are
different from the proposed estimates. We see that Turnbull’s estimates deviate more
from the proposed estimates as Rmax increases. This is because a larger Rmax can lead
to a wider interval (L∗

i , L
∗
i + Rmax ) for Li . As a result, there are fewer disjoint inner–

most intervals within which the survivor function estimated by Turnbull’s method can
jump. Comparing the estimates by the two algorithms, we see thatAlgorithms A can
produce a more efficient estimator. We also evaluate the kernel-smoothed estimator
(8) presented in Sect. 2.2. The distribution estimates and their corresponding 95%
CIs/CBs are in close agreement with those un-smoothed estimates.

Figure 4 presents scatterplots of the final burnt area vs the estimated duration times.
The estimated duration is calculated by L̃i = L∗

i + S̃i , where S̃i is generated from
the posterior distribution of reporting delay [S|δ,Oi ; θ (m)] at the last iteration of
the MCEM procedure in Algorithms A, for i = 1, · · · , n. We present scatterplots
using three realizations of L̃i together with the scatterplot in Fig. 4a using the observed
portion of the duration L∗

i . The pattern of association between the final burnt area and
duration is apparentlymore obvious with the estimated duration. This suggests that the
duration between fire start and initial attack may be more predictive of the final burnt
area. Accounting for the reporting delay time is worthwhile when using the duration
as a predictor for the final burnt area.

We applied the proposed procedure to analyze the data of fires from the north region
and the ones from the south region separately. Table 2 gives the model parameter
estimates. Figure 5 shows the estimated duration distributions. The estimate of σr
associated with north region is large, significantly different from zero. It indicates a
larger variation across fires in the region. The south region has a smaller estimate of
σr .

4 Simulation studies

We conducted two simulation studies to examine the finite-sample performance of the
proposed approach and to verify the findings from the data analysis. Specifically, in the
first simulation study, we generated data based on Model (1) to verify consistency and
efficiency, and in the second simulation study, we assessed robustness of the approach
against model misspecification.

4.1 Simulation A: Consistency and efficiency

To mimic the fire data, we simulated a study with n = 300 independent fires with the
data of fire i for i = 1, 2, · · · , n generated as follows.

(i) Generate the burnt area process Ai (t), t ∈ [0, 30] based on Model (1) with the
parameter values ν = 2.0 and σ = 0.5, and δi ∼ N (0, σ 2

r ) with σr = 0, 0.5, or
0.8.

(ii) Generate the size at the report time Bi ∼ logNormal(2.0, 0.1), and determine
the reporting delay as Si = max{t |t ∈ [0, 30], Ai (t) ≤ Bi }.
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Fig. 4 Scatterplots of final burnt area and estimated times to initial attack with three realizations of L̃i =
L∗
i + S̃i , where S̃i is generated from the posterior distribution of reporting delay [S|δ,Oi ; θ (m)] at the last

iteration of the MCEM procedure in Algorithm A, for i = 1, · · · , n. The solid line represents the fitted
linear regression line of the final burnt area and time to initial attack; the dashed curve is the local regression
curve. The shaded areas define corresponding approximate 95% confidence bands

(iii) Generate L∗
i ∼ Exp(3.0B−1

i ), calculate the duration Li = Si + L∗
i , and obtain

the burnt area at the time of initial attack Di = Ai (Li ).

Using the simulated data, we evaluated the estimator θ̃nA , the approximation to θ̂nA ,
by the variant of Algorithm A in Sect. 2.3. We then obtained the corresponding
duration distribution estimates.

Table 3 summarizes the parameter estimates based on 200 simulation repetitions.
The samplemeans of estimates obtained byWiener processmodel with a constant drift
are close to the true parameter values for the scenario of σr = 0; the bias is evident
when the true value of σr increases to 0.5 and 0.8. When we use a model with random
drift, i.e. σr ≥ 0, the sample means of estimates are close to the true parameter values
for all three scenarios of σr . This provides an empirical verification of the consistency
of the two estimators, and suggests that it may be acceptable not to assume σr = 0 in
practice. Further, we estimated θ by maximizing the conditional likelihood given in
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Table 2 Estimates of parameters in model (1) with data of Wildfires in North region and South region

Constant drift Random drift
(σr = 0) (σr ≥ 0)

Parameter ν σ ν σ σr

North region Algorithm A aEst 0.085 1.637 0.074 0.859 0.670
bSEF 0.017 0.045 0.019 0.022 0.015
cSER 0.023 0.052 0.020 0.029 0.015

Algorithm B Est 0.084 1.639 0.074 0.957 0.565

SEF 0.039 0.069 0.035 0.042 0.019

SER 0.046 0.073 0.041 0.042 0.021

South region Algorithm A Est 0.102 1.272 0.105 0.995 0.058

SEF 0.015 0.023 0.015 0.016 0.002

SER 0.011 0.029 0.015 0.017 0.003

Algorithm B Est 0.104 1.272 0.101 1.025 0.047

SEF 0.023 0.032 0.022 0.030 0.017

SER 0.026 0.041 0.023 0.032 0.017

aEst : the estimates of parameters
bSEF : the standard error estimates using the Fisher information
cSER : the standard error estimates by the sandwich variance estimator

(13)which uses only observations on D and L∗. The results are presented inTable S2 of
Sect. S3.1 of the SupplementaryMaterial.While the parameter estimates are similar to
those obtained by Algorithm A, the sample means of the estimated standard errors
are larger. The sample means of the estimated standard errors associated with the
robust sandwich variance estimator are similar to the corresponding sample standard
deviations of the estimates for both algorithms, which suggests that the proposed
variance estimator performs sufficiently well at the simulation settings, we conclude
that maximizing (13) may yield less efficient estimators.

For each generated data set, we estimated the duration distribution by F̂n(t) using
θ obtained from Algorithm A, and used F̃n(t; ν, σ, σr ) given in (5) with the true
values of parameters as a reference. The consistent variance estimator of (14) given in
Appendix C was evaluated to construct confidence intervals (CIs). Assuming the drift
of Wiener process involves random effects, Fig. 6 shows the sample means of the 200
estimated distribution functions together with the approximate conventional 95% CIs
and their 2.5%, 97.5% sample quantiles. To make a comparison, each plot in Fig. 6
also includes the sample means of the 200 evaluations of the empirical distribution
function Fn(·) using the true duration, the empirical distribution function F∗

n (·) using
the observed duration times (the naive approach), and the Turnbull estimator using
Rmax as the third quantile and maximum of the reporting delay in each generated data
set.

The estimate associated with the proposed approach is very close to those based
on F̃n(t; ν, σ, σr ) using true θ . At all simulation settings, both the approximate 95%
CIs and the CIs using the 2.5% and 97.5% sample quantiles contain the empirical
distribution functions Fn(·) obtained with true duration. The naive estimates and the
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Fig. 5 Estimated distributions of time to initial attack in north region and south region

Turnbull’s estimates appear to be different from Fn(·). The Turnbull estimator is highly
dependent on the assumed values of Rmax , especially when Rmax is much larger than
L∗
i , the performance of the Turnbull estimator deteriorates substantially. Histograms

for realizations of L∗
i presented in Fig. S1 of Sect. S3.1 of the Supplementary Material

support this finding. For the scenario that the true value of σr is 0, the two values of
Rmax are relatively small and Turnbull’s estimates are close to the proposed estimate
as shown in Fig. 6. When the true value of σr increases, Rmax becomes much greater
than the maximum of L∗

i when it is chosen as the maximum of the reporting delays in
the generated dataset and the corresponding Turnbull’s estimates depart much further
from the proposed estimates. This is consistent with the outcome seen in the data
analysis. Moreover, we evaluated the distribution estimator using θ̂nB obtained from
Algorithm B (SeeFig. S2ofSect. S3.1 in theSupplementaryMaterial) and thekernel
smoothed version of the proposed estimator. The behavior of these two estimates in
comparisonwith the naive estimates andTurnbull’s estimates is similar to that observed
in Fig. 6.

We computed the point-wise sample mean square errors of Turnbull’s estimates,
the proposed estimates and the reference estimates based on F̃n(t; ν, σ, σr ). With any
t ≥ 0, the proposed estimator has the smallest sample mean squared error, which
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Table 3 Numerical Properties of Estimators for Model Parameters in Simulation A with Algorithm A

Constant drift Random drifts
Parameter ν σ ν σ σr
(true value) 2.0 0.5 2.0 0.5

σr = 0

Algorithm A aSMean 1.999 0.499 1.998 0.497 0.001
bSSE 0.014 0.016 0.015 0.015 0.002
cSMSEF 0.012 0.014 0.012 0.014 0.001
dSMSER 0.012 0.014 0.012 0.014 0.001

σr = 0.5

Algorithm A SMean 2.243 1.887 1.992 0.490 0.504

SSE 0.055 0.072 0.015 0.017 0.026

SMSEF 0.044 0.051 0.010 0.014 0.021

SMSER 0.053 0.069 0.010 0.014 0.020

σr = 0.8

Algorithm A SMean 2.765 3.668 2.009 0.492 0.808

SSE 0.112 0.122 0.062 0.027 0.035

SMSEF 0.100 0.105 0.048 0.024 0.033

SMSER 0.105 0.118 0.048 0.025 0.032

aSMean: the sample mean of the estimates
bSSE: the sample standard error of the estimates.
cSMSEF : the sample mean of the estimated standard errors using the Fisher information.
dSMSER : the sample mean of the estimated standard errors using the sandwich variance estimator

demonstrates the relative efficiency of the proposed estimator over the naive estimator
and the Turnbull estimator at all simulation settings. Figure S3 in Sect. S3.1 of the
Supplementary Material presents the sample standard deviations and sample means
of the estimated standard errors of the proposed distribution estimator with θ̃nA by
Algorithm A, together with those associatedwith the empirical distribution function
and F̃n(·; ν, σ, σr ), which require more information than the data structure of interest.
The plots in the figure show that the variation of the proposed estimator is comparable
to that for F̃n(·; ν, σ, σr ), and is, in some settings, smaller than that of the empirical
function. This indicates that using the available information on fire growth can recover
the efficiency loss due to the missing start times and even in some situations outper-
form the empirical distribution function, a nonparametric estimator for the duration
distribution.

4.2 Simulation B: Robustness

We generated burnt area sample paths for a collection of simulated independent fires
following the model Ai (t) = νi t+σiW ∗

i (t) , i = 1, 2, · · · , n = 300, where νi = νeδi

with δi ∼ N (0, σ 2
r ) and W ∗

i (·) is a process with correlated increments. Specifically,
the increments W ∗

i (tk) − W ∗
i (tk−1) for the partition tk, k = 1, 2, · · · , K of the time
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Fig. 6 Simulation A: sample means of estimated distribution functions with corresponding 95% CI, based
on model with random drift

period [0, 30] were generated from MN (0,Σ) with the (k, k′) entry as Δtρ|k−k′| for
k �= k′ and Δt for k = k′ with ρ = 0.2. The observations on variables B, S, L∗, and
D were generated in the same way as in Simulation A.

We computed θ estimates and then the duration distribution estimates as if the data
were generated fromModel (1). Table S3 in Sect. S3.2 of the Supplementary Material
summarizes the simulation outcomes for 200 replicates of the estimates. The sample
means of the θ estimates are close to the true parameter valueswith the assumedWiener
process model using random drift. The sample means of the estimated standard errors
from the robust estimator are fairly close to the sample standard deviations of the θ

estimates.
Figure S4 in Sect. S3.2 of the SupplementaryMaterial presents the samplemeans of

the estimated distribution functions from bothAlgorithms A andBwith the approx-
imate 95% CIs and their 2.5% and 97.5% quantiles. In each plot, we also overlaid
the sample means of the estimates by empirical distribution function, F̃n(·; ν, σ, σr ),
the naive estimator, and the Turnbull estimator. These plots indicate that the proposed
estimator is close to the empirical function in the situation, even when Model (1) does
not hold.
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We also explored scenarios where the burnt-area process is generated following
other models, such as Ai (t) = νi t2 + σiWi (t). The estimated duration distribution
based on the proposed approach assuming Model (1) is also close to the empirical
function using all the true duration times. This indicates that the proposed estimator
F̂n(·) can be quite robust to model misspecification. Further investigation could lead
to a way of systematically checking the validity of Model (1).

5 Final remarks

We propose in this paper procedures for estimating the distribution of event duration
with observations in the presence of missing time origins. By employing the distri-
bution of the first-hitting-time with a Wiener process, we link the distribution of the
event duration with associated longitudinal measures. Both simulation and real data
analysis show that the proposed approach performs well in predicting the times to
initial attack and also demonstrates the importance of taking into account the duration
between the unobserved start time and the later report time.

The proposed approach is applicable to many situations where event duration is of
interest but where the time origins in the duration observations are missing. Examples
include predicting the length of period from the unknownHIV infection to detection of
infection bymaking use of the longitudinal viral loadmeasures (DoksumandNormand
1995), predicting the lifetime of trees by using longitudinal measures of the diameter
at breast height for trees (Thompson 2011), and, as suggested by a referee, estimating
the onset time of a disease by utilizing longitudinal medical expenditure data such
as the usage of prescription drugs and the cost of skilled nursing facilities. The idea
underlying our approach could readily be applied to analysis under a different model
for longitudinal measures, e.g. Wang (2008); Wang and Xu (2010). It would be worth
exploring the validity of the stochastic process for longitudinal measures.

Several other investigation would be worthwhile. The target population in the wild-
land fire application of this paper includes only the fires that are reported and have
been dispatched with initial attack resources. When a study aims to explore the whole
physical development process of wildland fire, the fires not reported should also be
included in the population under consideration. The current available wildland fire
records are then length-biased.We suggest to extend the idea of the proposed approach
and adapt methods for estimating distributions with right-censored event times subject
to length-biased sampling (e.g. Asgharian and Wolfson 2005; Huang and Qin 2011)
to the situation where the origins of the duration times are missing.

Heterogeneity and correlation between fires should be accounted for. Applying
the proposed approach to the data stratified by fire region has revealed that the event
duration distributions are different for fires in different regions; see Table 2 and Fig. 5,
for example. The duration is likely related to fuel type and moisture content as well as
wind activity and local topography. To deal with this problem, as discussed in Wang
(2010), we could follow (Lawless and Crowder 2004) and specify the drift parameter
νi of Model (1) as a function of covariates. In addition, due to potential correlation
between wildland fires, it would be of interest to extend the approach to account for
spatio-temporal correlation. A third possibility is to follow (Heitjan and Rubin 1990)
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to accommodate semi-continuous data with the rounded burnt-area records shown in
Table S1 of Sect. S2 of the Supplementary Material.

More investigation is required to systematically determine J , the number of Monte
Carlo samples in Algorithm A. We can incorporate automated data-driven strate-
gies (e.g. Levine and Casella 2001; Caffo et al. 2005) to the current algorithm to
choose an appropriate J at each iteration. This paper evaluates integrals by monte
carlo integration. As suggested by a referee, it can be interesting to compare the
integral approximation with different numerical integration approaches, such as the
Gaussian quadrature rule.
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Appendix: Technical details of Sect. 2.4

This appendix outlines our derivation for the asymptotic properties of the estimator
F̂n(t) in Sect. 2.4. To simplify the notation, we define θ = (ν, σ, σr ) and use θ0 to rep-
resent the true values of the parameters. Denote F̃n(t; ν0, σ0, σr0) by F̃n(t). We focus
on the realization of the proposed estimator F̂n(·) using θ̂nA obtained by Algorithm
A. The derivation can be adapted to handle F̂n(·) using θ̂nB by Algorithm B with
little change.

The following are the regularity conditions assumed in Model (1). We adapt the
regularity conditions for the MLE, which are summarized by Serfling (1980).

Condition (C1). The parameter space Θ is compact and the true parameter θ0
is an interior point of Θ .
Condition (C2). The first, second, and third partial derivatives of the log-
likelihood function given in (9) with respect to θ exist for each θ ∈ Θ .
Condition (C3). Differentiation and integration are interchangeable for first,
second and third partial derivatives of the log-likelihood function with respect
to θ .
Condition (C4). The third partial derivative of the log-likelihood function with
respect to θ , is dominated by a fixed integrable function M2(·) for every θ ∈ Θ .
Condition (C5).Σ(θ0) = Eθ0

[(
∂ log Lobs(θ;Oi )

/
∂θ
)(

∂ log Lobs(θ;Oi )
/
∂θ
)′]

exists and is positive definite, where log Lobs(θ;Oi ) is the i th term in (9). It is the
same as
Π(θ0) = −Eθ0

[
∂2 log Lobs(θ;Oi )

/
∂θθ

′]
.
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Appendix A: Proof of Theorem 1(i) Strong consistency

To establish the consistency of the proposed estimator, we first note that the MLE θ̂nA

is consistent and asymptotically normal. That is, under (C1)- - (C5), θ̂nA

a.s.→ θ0 as

n → ∞, and
√
n(θ̂nA − θ0)

d→ N (0,Π−1(θ0)). Here Π(θ0) = Σ(θ0).
LetM(t, L∗

i , Bi ; θ0) = ∫∞
−∞ G(t−L∗

i |Bi , ν0eδ, σ0)φ(δ|Oi , ν0, σ0, σr0)dδ. Define
the class of functions F = {M(t, L∗

i , Bi ; θ0) : t ∈ [0, τ ]}. Let Pn and
P be the empirical measure and probability measure of n i.i.d. observations
{(L∗

i , Bi ), i = 1, 2, · · · , n}. Thus, PnM(t, L∗
i , Bi ; θ0) = ∑n

i=1 M(t, L∗
i , Bi ; θ0)

/
n,

PM(t, L∗
i , Bi ; θ0) = E

[
M(t, L∗

i , Bi ; θ0)
]
. Note that F̃n(t) can be written as

PnM(t, L∗
i , Bi ; θ0) and F̂n(t) can be written as PnM(t, L∗

i , Bi ; θ̂nA). Since G(t −
L∗
i |Bi , ν0eδi , σ0) is a monotone process, the integral M(t, L∗

i , Bi ; θ0) is also mono-
tone. By Lemma 4.1 in Kosorok (2008), we have that F is a P-Donsker . The
Glivenko–Cantelli property of F yields

sup
t∈[0,τ ]

∣∣∣
(
Pn − P

)
M(t, L∗

i , Bi ; θ0)

∣∣∣ p→ 0. (15)

Note that E
[
M(t, L∗

i , Bi ; θ0)] = E[E{G(t − L∗
i |Bi , ν0eδi , σ0)|Oi }

] = F(t). Thus

sup
t∈[0,τ ]

∣∣∣F̃n(t) − F(t)
∣∣∣ p→ 0.

We then write F̂n(t)− F̃n(t) as n−1∑n
i=1

[
M(t, L∗

i , Bi ; θ̂nA)−M(t, L∗
i , Bi ; θ0)

]
,

which is

1

n

n∑
i=1

∂E
[
G(t − L∗

i |Bi , νeδi , σ )|Oi
]/

∂θ
∣∣
θ=θ∗

(θ̂nA − θ0), and ||θ∗ − θ0|| ≤ ||θ̂nA − θ0||.

For every t ∈ [0, τ ] and ν, σ, σr belonging to a compact set Θ , |G(t −
L∗
i |Bi , νeδi , σ )φ(δi |Oi ; ν, σ, σr )| is bounded. Therefore, we can interchange inte-

gration and differentiation. Then,

∂E
[
G(t − L∗

i |Bi , νeδi , σ )|Oi
]/

∂θ
∣∣
θ=θ∗E

[
∂G(t − L∗

i |Bi , νeδi , σ )
/
∂(ν, σ )|Oi

]∣∣∣
ν=ν∗
σ=σ ∗

.
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The derivatives ∂G(t − L∗
i |Bi , νeδi , σ )

/
∂ν and ∂G(t − L∗

i |Bi , νeδi , σ )
/
∂σ are

respectively

√
t − L∗

i

2πσ 2

[
exp

(
− A1

2

2
+ 2Biνeδi

σ 2 + δi

)
− exp

(
− A2

2

2
+ 2Biνeδi

σ 2 + δi

)]

+2Bieδi

σ
Φ(A2) and − 1√

2πσ

[
A1 exp

(
− A1

2

2

)
+ A2 exp

(
A2

2

2
+ 2Biνeδi

σ 2

)]

+ exp

(
2Biν

σ 2

) −4Biνeδi

σ 3 Φ(A2), (16)

where A1 =
√

Bi
σ 2(t−L∗

i )

(
(t−L∗

i )νe
δi

Bi
− 1
)
and A2 = −

√
Bi

σ 2(t−L∗
i )

(
(t−L∗

i )νe
δi

Bi
+ 1
)
.

The derivatives in (16) are uniformly bounded in probability for every t ∈
[0, τ ] and ν, σ, σr belonging to a compact set Θ . Therefore, n−1∑n

i=1 ∂Eθ∗
[
G(t −

L∗
i |Bi , νeδi , σ )|Oi

]/
∂θ is uniformly bounded in probability. This together with the

already observed fact that θ̂nA

a.s.→ θ0 leads to supt∈[0,τ ] |F̂n(t) − F̃n(t)| p→ 0, as

n → ∞. By (15), it follows that supt∈[0,τ ] |F̂n(t) − F(t)| p→ 0.

Appendix B: Proof of Theorem 1(ii) Weak convergence

Note that
√
n(F̂n(t) − F(t)) = √

n
(
PnM(t, L∗

i , Bi ; θ̂nA) − PM(t, L∗
i , Bi ; θ0)

)
is

√
n(Pn−P)M(t, L∗

i , Bi ; θ0)+√
n(Pn−P)

[
M(t, L∗

i , Bi ; θ̂nA)−M(t, L∗
i , Bi ; θ0)

]

+ √
nP
[
M(t, L∗

i , Bi ; θ̂nA) − M(t, L∗
i , Bi ; θ0)

]
. (17)

Since the class of functions F = {M(t, L∗
i , Bi ; θ0) : t ∈ [0, τ ]} is P-Donsker, the

first term
√
n
(
PnM(t, L∗

i , Bi ; θ̂nA)−PM(t, L∗
i , Bi ; θ0)

)
convergesweakly to a tight,

mean-zero Gaussian process in �∞([0, τ ]), whose variance is

∫ ∞

0

∫ ∞

0
M(t, l∗, b; θ0)M(s, l∗, b; θ0)h(l∗, b)dl∗db − F(t)F(s), (18)

where h(l∗, b) is the PDF for the joint distribution function of L∗ and B.
Also, for the second term on the right hand side (RHS) of (17), we have

sup
t∈[0,τ ]

√
n(Pn − P)

[
M(t, L∗

i , Bi ; θ̂nA) − M(t, L∗
i , Bi ; θ0)

] p→ 0.
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The third term on RHS of (17) can be written as
√
n(θ̂nA − θ0)Eθ0

[
∂M(t, L∗

i , Bi ;
θ)
/
∂θ
]+ op(1), which is

√
n(Pn − P)Π−1(θ0)∂ log Lobs(θ;Observed-data)/∂θ

∣∣
θ=θ0

Eθ0

[
∂M(t, L∗

i , Bi ; θ)
/
∂θ
]+ op(1).

Therefore, F̂n(t) is asymptotically linear with influence function:

M(t, L∗
i , Bi ; θ0) + Π−1(θ0)∂ log Lobs(θ;Observed-data)/∂θ

∣∣
θ=θ0

Eθ0

[
∂M(t, L∗

i , Bi ; θ)
/
∂θ
]
.

Since this influence function is P-Donsker,
√
n(F̂n(t) − F(t)) converges weakly to a

tight, mean-zero Gaussian process G, as n → ∞.

Appendix C: Variance estimation in Theorem 1(ii)

To calculate the variance of G, we write Var
(√

n
(
F̂n(t) − F(t)

))
as

Var
(√

n
(
F̂n(t) − F̃n(t)

))+ Var
(√

n
(
F̃n(t) − F(t)

))

+ Cov
(√

n
(
F̂n(t) − F̃n(t)

)
,
√
n
(
F̃n(t) − F(t)

))
. (19)

The second term on the RHS of (19) is given in (18) and the third term can

be calculated as nE
[(
F̂n(t) − F̃n(t)

)(
F̃n(t) − F(t)

)]
. Noting that |F̂n(t)| ≤ 1,

|F̃n(t)| ≤ 1, |F̂n(t) − F̃n(t)| ≤ 1, supt∈[0,τ ] |F̂n(t) − F̃n(t)| p→ 0, it is clear to show

that E
[(
F̂n(t) − F̃n(t)

)(
F̃n(t) − F(t)

)] p→ 0, by the bounded convergence theorem.

Therefore, Cov
(√

n
(
F̂n(t) − F̃n(t)

)
,
√
n
(
F̃n(t) − F(t)

)) p→ 0.

The first term, Var
(√

n
(
F̂n(t) − F̃n(t)

))
, can be calculated as

[ 1
n

n∑
i=1

∂M(t, L∗
i , Bi ; θ)

/
∂θ
∣∣
θ=θ∗

]′
Var
(√

n(θ̂nA − θ0)
)[ 1

n

n∑
i=1

∂M(t, L∗
i , Bi ; θ)

/
∂θ
∣∣
θ=θ∗

]
.

Note that
∑n

i=1
∂M(t,L∗

i ,Bi ;θ)

∂θ

/
n|θ=θ∗

p→ Eθ0

[
∂M(t, L∗

i , Bi ; θ)
/
∂θ
]
and the asymp-

totic variance of θ̂nA is Π−1(θ0). Thus Var
(√

n
(
F̂n(t) − F̃n(t)

))
converges in

probability as n → ∞ to

Eθ0

[
∂M(t, L∗

i , Bi ; θ)
/

∂θ
]′
Π−1(θ0)Eθ0

[
∂M(t, L∗

i , Bi ; θ)
/

∂θ
]
.
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The covariance of the limiting Gaussian process of
√
n
(
F̂n(t) − F(t)

)
is as given in

(14) in Theorem 1 (ii). Further, one can use
∑n

i=1
∂M(t,L∗

i ,Bi ;θ)

∂θ

/
n|

θ=θ̂nA
to estimate

Eθ0

[
∂M(t, L∗

i , Bi ; θ)
/
∂θ
]
and use Π(θ̂nA ) to estimate Π(θ0).
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