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Abstract For regression on state and transition probabilities in multi-state models
Andersen et al. (Biometrika 90:15–27, 2003) propose a technique based on jackknife
pseudo-values. In this article we analyze the pseudo-values suggested for compet-
ing risks models and prove some conjectures regarding their asymptotics (Klein and
Andersen, Biometrics 61:223–229, 2005). The key is a second order von Mises expan-
sion of the Aalen-Johansen estimator which yields an appropriate representation of the
pseudo-values. The method is illustrated with data from a clinical study on total joint
replacement. In the application we consider for comparison the estimates obtained
with the Fine and Gray approach (J Am Stat Assoc 94:496–509, 1999) and also time-
dependent solutions of pseudo-value regression equations.
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1 Introduction

Regression models for multi-state processes have a wide range of applications. In this
article, we are interested in estimating effects of prognostic factors on disease stage
probabilities. For illustration, a clinical study is considered of an elderly population
of patients with a hip prosthesis. Here the aim is to analyze the effects of factors like
stem type, age or gender on the probability of revision due to aseptic loosening of the
prosthesis before death (Fig. 1).

A useful and popular tool to perform regression analysis in such a situation with in
general R ∈ N competing risks is the proportional hazard model for the sub-distribu-
tion function of a competing risk (Fine and Gray 1999); it corresponds with the link
function g(x) = log{− log(1 − x)} in the transformation model

F∗
r (t | Zi ) = g−1

⎧
⎨

⎩
β0

r (t)+
p∑
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j

r Z j
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= g−1(βT
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Here β0
r (t) is a baseline risk function, βr,t = {β0

r (t), β
1
r , . . . , β

p
r }T and F∗

r the con-
ditional cumulative incidence function corresponding to cause r ∈ {1, . . . , R}, i.e.
F∗

r (t | Zi ) is the conditional probability that the event of interest occurs to patient
i until time point t given covariates. The statistical analysis via generalized linear
modeling is not straightforward because in practice, due to right censoring, the event
times are often not observable for all patients. To overcome difficulties Andersen et al.
(2003) proposed to use pseudo-values derived from the Aalen-Johansen estimate of
the cumulative incidence function. To fit the model (1) the pseudo-values are evaluated
at a fixed number of time points and then used as response in a generalized estimating
equation (GEE) approach (Liang and Zeger 1986). Benchmarking the so obtained
estimates for the regression coefficients to those of the familiar Fine and Gray (1999)
approach yielded promising results in simulated and in real data (Andersen et al. 2003;
Klein and Andersen 2005). However, a theoretical justification and a thorough inves-
tigation of the requirements under which the pseudo-value approach works seems to
be lacking.

Fig. 1 Competing risks model
for the time course of patient
with hip prosthesis regarding
two competing subsequent states
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In this article we prove some conjectures of Andersen et al. (2003) and thereby
justify the pseudo-value regression approach. We limit our investigation to regression
models for the cumulative incidence function in a competing risks model. However, it
seems that some of the arguments can be extended to yield similar results for regression
on state occupation probabilities in more general multi-state models.

In order to be able to use an appropriate theorem of the GEE approach we have
to relax “unbiasedness of the pseudo-values”, as it is formulated in Andersen et al.
(2003), to “conditional unbiasedness of the pseudo-values given the covariates”. We
show that the pseudo-values derived from the Aalen-Johansen estimate satisfy this
new condition when the censoring mechanism is independent of the covariates and
of the event times. The central argument is a second order von Mises expansion of
the Aalen-Johansen estimate which leads to an appropriate representation of the jack-
knife pseudo-values. Based on this representation we discuss the relation between the
pseudo-value approach and the closely related approach of Scheike and Zhang (2007)
and Scheike et al. (2008).

In Sect. 6 we apply the pseudo-value approach to data from a clinical study on
total joint replacement (Maurer et al. 2001). In particular, we examine time-dependent
solutions of the pseudo-value regression model and compare them to the time-constant
regression coefficients obtained with the Fine and Gray (1999) approach.

2 Definitions and requirements

2.1 Competing risks data

Consider data from the time courses of patients in a competing risks model like the
one depicted in Fig. 1. At a common time-origin each patient i ∈ {1, . . . , n} is in the
initial state and a p-dimensional vector of covariates Zi is recorded. At the event time
Ti the course ends in one of the states Di ∈ {1, . . . , R} representing a competing risk.
We introduce the counting process Nir (t) = I(Ti ≤ t, Di = r)whose expected value
is the marginal cumulative incidence function of cause r . This can also be written as
the expectation of the conditional probability to experience risk r before time t given
covariates, with the expectation referring to the distribution of Zi :

Fr (t) = E{Nir (t)} = E[E{Nir (t) | Zi }] = E{ F∗
r (t | Zi )}.

The transition time Ti is right censored at the last time where the patient was observed
to be in the initial state. For inference from censored data it is often required that
the censoring mechanism satisfies some independence condition. In the approach of
Andersen et al. (2003) it is assumed that:

The censoring time Ci is stochastically independent of (Ti , Di , Zi ). (A1)

The observed data are Xi = (T̃i ,�i , Di , Zi ) where T̃i = min(Ti ,Ci ) and �i =
I(Ti ≤ Ci ). Based on the observed data we also define the counting process Yi (t) =
I(T̃i > t). Under (A1) the expectation of Yi is the product of the marginal event free
survival function S(t) and the survival function of the censoring time G(t):
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E{Yi (t)} = P(T̃i > t) = P(Ti > t) P(Ci > t) = S(t)G(t).

The expectation of the counting process Ñir (t) = I(T̃i ≤ t,�i = 1, Di = r) calcu-
lated at dt also factorizes under (A1):

E{Ñir (dt)} = E{�i Nir (dt)} = G(t−) Fr (dt) = F̃r (dt). (2)

For the theoretical results to hold, another important condition is the following:

Consider only time points t < τ such that G(τ ) > ν > 0. (A2)

Under (A2) we can rewrite the marginal cumulative incidence function by using (2)
as

Fr (t) =
∫ t

0

G(s−)
G(s−) Fr (ds) =

∫ t

0

F̃r (ds)

G(s−) . (3)

Next we need the product limit form of the survival function of the censoring times.
Introduce the distribution function H(t) = P(T̃i > t), the sub-distribution func-
tion H0(t) = P(T̃i ≤ t,�i = 0) and the following empirical estimates Hn(t) =
n−1 ∑

i Yi (t) and H0
n (t) = n−1 ∑

i I(T̃i ≤ t,�i = 0). Using these notations, the
function G and its Kaplan–Meier estimate can be expressed as

G(t) =
t∏

s=0

{

1 − H0(ds)

H(s−)
}

and Ĝ(t) =
t∏

s=0

{

1 − H0
n (ds)

Hn(s−)
}

,

respectively. The inverse of the probability of censoring weighted (IPCW) estimate of
Fr (Satten and Datta 2001; Jewell et al. 2007) is motivated by (3) and given by

F̂r (t) = 1

n

n∑

i=1

∫ s

0

Ñir (ds)

Ĝ(s−) .

The estimate is due to Aalen and Johansen (1978) and traditionally it is obtained
with the product limit form for transition matrices. Note that if there are ties between
the event and the censoring times then Hn(t) used in Ĝ(t) should be replaced by
n−1 ∑

i Yi (t)− n−1 ∑
r
∑

i Ñir (t) (Satten and Datta 2001).

2.2 Jackknife pseudo-values

Let Ĝ(k) denote the Kaplan–Meier estimate for G when it is computed based on
the reduced sample X1, . . . , Xk−1, Xk+1, . . . , Xn . Correspondingly define the Aalen-
Johansen estimate without the kth observation:

F̂ (k)r (t) = 1

(n − 1)

∑

i �=k

∫ s

0

Ñir (ds)

Ĝ(k)(s−) .
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The idea of Klein and Andersen (2005) is to use the jackknife pseudo-values of the
Aalen-Johansen estimate given by

Jkr (t) = n F̂r (t)− (n − 1) F̂ (k)r (t) (4)

as response in a GEE approach. Note that these pseudo-values are exactly equal to
Nkr (t) in the special case where all observations are uncensored, since then Ĝ(t) = 1.
Thus, in the uncensored situation E{Jkr (t)} = E{Nkr (t)} = Fr (t) and also

E{Jkr (t) | Zk} = F∗
r (t | Zk) (5)

at all time points t .

2.3 Generalized estimating equations

For estimating the parameters of the model (1) Klein and Andersen (2005) propose
to select a finite number of time points t1, . . . , tl and to evaluate a vector of pseudo-
values to be used as (pseudo) responses for patient k: {Jkr (t1), . . . , Jkr (tl)}T . In the
sequel, for notational convenience and without loosing substance of the mathematical
problem, we only consider a single time point t and work with the pseudo response
Jkr (t). Extensions to multiple time points are discussed in Sect. 5.

In the pseudo-value approach estimates of the regression coefficients are the solu-
tions of the following generalized estimating equation:

U(n)(βr,t ) =
n∑

k=1

(
∂g−1(βT

r,t Zk)

∂βr,t

)T

V −1
k

{
Jkr (t)− g−1(βT

r,t Zk)
}

= 0. (6)

Here Vk is the usual “working covariance matrix” which may account for the correla-
tion structure inherent to the pseudo response values (Andersen et al. 2003). In case of
a single time point, we have Vk = 1. It seems straightforward to use a general theorem
for GEE (Liang and Zeger 1986) to prove the large sample properties of the solution
β̂r,t to Eq. 6. However, in addition to the usual regularity conditions the following
“asymptotic unbiasedness” of the pseudo-values is required:

E{Jkr (t) | Zk} = g−1(βT
r,t Zk)+ oP (1). (7)

This holds trivially and without remainder term if all event times are uncensored, as
outlined before in Eq. 5. It is not straightforward and surprisingly difficult to verify this
condition of the pseudo-values for right censored situation. Condition (7) is needed to
show that E{U(n)(β∗

r,t )} = 0 at the true parameter value β∗
r,t . In Andersen et al. (2003)

it is argued that unbiasedness of (6) follows directly from their equation (2.6) which
translated to our setting states that E{Jkr (t)} = E{g−1(βT

r,t Zk)}. This however seems

to be valid only in the special case where β j
r,t = 0 for j ≥ 1.

123



246 Lifetime Data Anal (2009) 15:241–255

3 Von Mises expansion

In this section we obtain a representation of the jackknife pseudo-values for the com-
peting risks model given in (4). The representation is then used to show validity of (7).
It also allows a comparison of the jackknife pseudo-values and the weighted binomial
response considered in Scheike et al. (2008). We discuss this further in Sect. 5.

As a first step we define the Aalen-Johansen functional. Let P denote the probability
law of the vector Xi and Pn(·) = n−1 ∑

i I(Xi ∈ ·), i = 1, . . . , n the empirical law
corresponding to the sample of right censored observations X1, . . . , Xn . Further denote
by P(k)n the empirical distribution of the reduced sample X1, . . . , Xk−1, Xk+1, . . . , Xn .
The Aalen-Johansen functional ψr : P → F operates on a set P of probability mea-
sures for Xi which includes P and the empirical measures (James 1997; Gill 1989) and
maps into the set F of all sub-distribution functions. It is defined such thatψr (P) = Fr

is the parameter of interest andψr (Pn) = F̂r the Aalen-Johansen estimate correspond-
ing to the sample X1, . . . , Xn . Hence, the jackknife pseudo-values can be expressed
as Jkr = nψr (Pn)− (n − 1) ψr (P

(k)
n ).

Generally, a smooth statistical functional ψ can be “von Mises expanded” in a
similar way as a smooth function can be “Taylor expanded” (Gill 1989):

ψ(Pn) = ψ(P)+ n−1
n∑

i=1

ψ̇(Xi )+ 1

2
n−2

n∑

i=1

n∑

j=1

ψ̈(Xi , X j )+ OP (n
− 3

2 ). (8)

Here ψ̇ and ψ̈ are the first and second order Gateaux derivatives of the functional ψ ,
also called influence functions (Hampel 1974) or “canonical gradients”. The first deriv-
ative is centered, E{ψ̇(Xi )} = 0 (Huber 1977); the second is symmetric, ψ̈(Xi , X j ) =
ψ̈(X j , Xi ) and ought to satisfy for every y (see Van der Vaart 1998, Sect. 20.1.1)

E{ψ̈(Xi , y)} =
∫

ψ̈(x, y)dP(x) = 0. (9)

Theorem 1 For a differentiable statistical functional ψ , which possesses a second
order von Mises expansion as in (8) such that also (9) holds, the jackknife pseudo-
values are represented by:

nψ(Pn)− (n − 1) ψ(P(k)n ) = ψ(P)+ ψ̇(Xk)+ oP (1).

Proof The representation follows from Eq. 8:

nψ(Pn) − (n − 1)ψ(P(k)n )

= nψ(P)− (n − 1)ψ(P)+
n∑

i=1

ψ̇(Xi )−
∑

i �=k

ψ̇(Xi )

+ 1

2 n

n∑

j=1

n∑

i=1

ψ̈(Xi , X j )− 1

2 (n − 1)

∑

i �=k

∑

j �=k

ψ̈(Xi , X j )
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+ n OP (n
− 3

2 )− (n − 1)OP ((n − 1)−
3
2 )

= ψ(P)+ ψ̇(Xk)

− 1

2n(n − 1)

n∑

i=1

n∑

j=1

ψ̈(Xi , X j )+ (n − 1)−1
n∑

i=1

ψ̈(Xi , Xk)

− 1

2(n − 1)
ψ̈(Xk, Xk)+ n− 1

2 OP (1)− (n − 1)−
1
2 OP (1)

= ψ(P)+ ψ̇(Xk)+ (n − 1)−1
n∑

i=1

ψ̈(Xi , Xk)+ oP (1).

By the law of large numbers, the third term in the last line of the previous display
converges to

E{ψ̈(Xi , y)} = oP (1)

by Eq. 9. ��
The Aalen-Johansen functional is Hadamard differentiable (see e.g. Gill and

Johansen 1990) . It is also well-known that the Aalen-Johansen estimate is n
1
2 -consis-

tent (Andersen et al. 1993). Thus, by arguing similar as in James (1997) who considered
the Kaplan–Meier and the Nelson-Aalen estimator, one may show thatψr has a second
order von Mises expansion as in (8). The crucial assumption for this is our condition
(A2). Indeed, it has been shown in Jewell et al. (2007, Appendix A) that the (first order)
influence curve of the Aalen-Johansen estimate ψr (Pn) for the cumulative incidence
function in the competing risks model is given by

ψ̇r (Xi ; P)= Ñir (t)−�i Fr (t)

G(Ti−) +
∫ T̃i

0

P(Ti ≤ t, Di=r | Ti ≥ u)− Fr (t)

G(u)
d MG(u)

(10)

where d MG(u) = I(T̃i ∈ du,�i = 0) − I(T̃i ≥ u)�G(du) is the martingal and
d�G = −dG/G the cumulative hazard function associated with 1 − G. Thus, we
have the following lemma to Theorem 1:

Lemma 1 Under conditions (A1) and (A2) the following representation holds

Jkr (t) = ψ̇r (Xk)+ Fr (t)+ oP (1)

Proof It remains to show that (n−1)−1 ∑
i ψ̈r (Xi , Xk) = oP (1). This follows directly

from the fact that the second order influence functions of the Nelson-Aalen and the
Kaplan–Meier functionals have this property (James 1997, see Sect. 5) ��
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3.1 Properties of the pseudo-values

The representation given in Lemma 1 immediately leads to some important properties
of the jackknife pseudo-values. They are summarized in the following

Lemma 2 Under conditions (A1) and (A2) we have:

(i) Jkr (t), k = 1, . . . , n can be approximated by independent and identically dis-
tributed variables

(ii) E {Jkr (t)} = Fr (t)+ oP (1), ∀k ∈ {1, . . . , n}
(ii) E {Jkr (t) | Zk} = F∗

r (t | Zk)+ oP (1), ∀k ∈ {1, . . . , n}.
Proof (i) and (ii) follow directly from the representation given in Lemma 1 and the
properties of the (first order) influence function. For (iii) note first that under (A1)

E{dMG(t) | Zi } = E {I(Ci ∈ dt)(1 −�i ) | Zi }
+dG(t)

G(t)
E {I(Ti ≥ t)I(Ci > t) | Zi }

= −S∗(t− | Zi )dG(t)+ S∗(t− | Zi )dG(t)
G(t)

G(t)
= 0.

Here S∗(· | Zi ) is the conditional event free survival function given Zi . Thus, using
also Eq. 2 and Lemma 1, we have under (A1) and (A2) for every k:

E{Jkr (t) | Zk} = Fr (t)+ E{Ñkr (t) | Zk}
G(Tk−) − Fr (t)

E{�k | Zk}
G(Tk−) + oP (1)

= Fr (t)+ F∗
r (t | Zk)− Fr (t)

G(Tk−)
G(Tk−) + oP (1)

= F∗
r (t | Zk)+ oP (1) ��

4 Asymptotics for pseudo-value estimation equations

We are now prepared for a rigorous investigation of consistency and asymptotic nor-
mality of the estimators defined by (6).

Theorem 2 Consider a time point t that satisfies (A2). Under (A1) and mild regu-
larity conditions regarding the link function g(·), the solution β̂r,t to (6) is consistent
and asymptotically normal for estimating the parameter β∗

r,t of model (1):

√
n(β̂r,t − β∗

r,t ) ∼ N (0, �r,t )

where the asymptotic variance �r,t is consistently estimated by the sandwich-form:

�̂r,t = 	̂−1
r,t (β̂r,t )V ar

{
U(n)(β̂r,t )

}
	̂−1

r,t (β̂r,t )
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where

	̂r,t (β̂r,t ) = n−1
n∑

k=1

{
∂g−1(βT

r,t Zk)

∂βr,t

}T

V −1
k

{
∂g−1(βT

r,t Zk)

∂βr,t

}

V ar
{

U(n)(β̂r,t )
}

= n−1
n∑

k=1

Uk(β̂r,t )U
T
k (β̂r,t )

and Uk(·) is denoted by Eq.6 with U(n)(·) = ∑
k Uk(·)

Proof The essential part of the proof of consistency is to show that the residual

Jkr (t)− g−1(βT
r,t Zk)

has expectation zero. This follows directly from Lemma 2 (iii). The essential part of
the proof of asymptotic normality is to show that the score process can be approx-
imated by a sum of independent and identically distributed random variables at the

n− 1
2 -rate. Such a representation follows directly from Lemma 1:

U(n)(βr,t ) =
n∑

k=1

(
∂g−1(βT

r,t Zk)

∂βr,t

)T

V −1
k {ψ̇r (Xk)− g−1(βT

r,t Zk)} + oP (n
− 1

2 ).

The rest of the proof is analogous to Liang and Zeger (1986). ��

5 Extensions

5.1 Multiple time points

A single time point is enough to identify the regression coefficients of model (1). How-
ever, in practice it might be more efficient to use several or all time points. Furthermore,
it might be of interest to estimate the baseline risk function β0

r (t). The score function
(6) can be modified to fit model (1) based on a fixed set of time points (Andersen
and Klein 2007) and based on all time points (Scheike and Zhang 2007). Mathemat-
ically the latter is more involved because then the model involves a nonparametric
component (Scheike et al. 2008). In both approaches additional correlation structure
is introduced through multiple jackknife pseudo-values from the same patient which
is considered in the working covariance matrix Vk in (6) (see also Liang and Zeger
1986) .

5.2 Comparison with direct binomial regression

The jackknife pseudo-value approach discussed here is closely related to the direct
binomial regression approach as given by Scheike et al. (2008). There the authors
consider the weighted event indicator

123



250 Lifetime Data Anal (2009) 15:241–255

Ñkr (t)/Ĝ∗(Tk | Zk) (11)

as response in a generalized linear model approach for patient k at time point t . Here
Ĝ∗(t | Zk) = P(Ck > t | Zk) is an estimate of the conditional censoring survival
function. Under (A1) the expression in (11) can be approximated by

Ñkr (t)/G(Tk)

and this equals the first term of the influence function ψ̇r given in (10). Thus, under
(A1) the difference between the jackknife pseudo-value response Jkr (t) and (11) is

�k Fr (t)

G(Tk−) +
∫ T̃k

0

P(Tk ≤ t, Dk = r | Tk ≥ u)− Fr (t)

G(u)
d MG(u)+ oP (1).

which could be interpreted as the “pseudo-part” considered in the first approach.

5.3 More general multi-state models

Andersen et al. (2003) formulated their pseudo-value approach for state occupation
probabilities in general multi-state models. So far, we were able to analyze the validity
of their propositions in the situation of competing risks. The claim of theorem 2 would
be valid in case of general multi-state models as long as the pseudo-values satisfy a
conditional unbiasedness condition as given in (7). Analogously, if θ(t) defines a state
probability in a multi-state model, θ̂ (t) a corresponding consistent estimator based
on random variables X1, . . . , Xn and Jk,θ (t) = nθ̂ (t)− (n − 1)θ̂ (k)(t) the jackknife
pseudo-value for k ∈ {1, . . . , n} analogous to (4), we would require

E
{

Jk,θ (t) | Zk
} = g−1(βT

r,t Zk)+ oP (1).

To proof this condition one might be able to find a similar representation for the jack-
knife pseudo-value as given in lemma 1. This might be possible as the arguments used
can be adapted to general multi-state situations if we are able to construct θ̂ (t) by
smooth mappings of the Nelson-Aalen and the Kaplan–Meier functionals.

6 Performing pseudo-value regression

In this section we apply the pseudo-value regression approach to data from a clinical
study (Maurer et al. 2001) and compare the estimates to the results of the Fine and
Gray (1999) approach. We extend the ideas of Andersen et al. (2003) by considering
also time-dependent coefficients.

During the years 1987–1993 a total of 442 patients with newly implanted hip pros-
theses where followed concerning the two competing risks death and revision of the
prosthesis (rev) due to aseptic loosening. Patients with two prostheses were assumed
as rev when the first prosthesis failed. During the study-period (t ∈ [0, 4474] days)
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Fig. 2 Cumulative incidence functions Frev(t) and Fdeath(t) for the data of Maurer et al. (2001) estimated
by the Aalen-Johansen estimator

a total of rev = 84 and death = 112 were observed; 246 patients are right-cen-
sored. The cumulative incidence functions estimated by the Aalen-Johansen estima-
tor are illustrated in Fig. 2. Several covariates were measured at time of implan-
tation. We focused our investigations on the following variables which are either
categorized or binary: Stem type with type Titan SLS or Titan GS, Stem size of the
prosthesis in mm (7.5, 10,≥12.5), gender and age (<65, 65–75, ≥75 years). They
were found to be relevant in the previous analysis (Schwarzer et al. 2001). Analy-
sis was performed in R (R Development Core Team 2006; Halekoh and Højsgaard
2006).

To investigate time-dependency the pseudo-values for each patient were calculated
every 100 days. The model was fitted at each time point separately. Solutions for the
covariates Stem type and gender are given in Fig. 3 with the corresponding pointwise
95% confidence intervals. The variation of these estimates is related to the Aalen
Johansen estimates of the corresponding cumulative incidence functions (Fig. 2) as
these are used to calculate the pseudo-values. As stated above, Klein and Andersen
(2005) propose to consider several grid points simultaneously in the generalized esti-
mating Eq. 6. Based on simulations they suggested to study at least 10 grid points which
are equidistantly distributed on the scale of T̃i which would lead to stable estimates
for β j

r . Although we could confirm their results in our data set we assume that this
number of grid points could be insufficient as the appropriate number might depend
on the data structure.

By studying several time points simultaneously, the working covariance matrix Vi

in (6) allows to consider different correlation structures taking into account the auto-
correlation between the calculated pseudo-values for patient i . Klein and Andersen
(2005) suggest to use an independent correlation structure as they find no advantage
for extended versions. With regard to this observation and neglecting risk type r in
the notation, we propose to use β j = 1/tmax

∫ tmax
0 β̂

j
s ds as the mean over β̂ j

t in time,
with tmax = maxi (T̃i ). Estimates are compared in Table 1 and shown in Fig. 3. The
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Fig. 3 Estimated regression parameters for Frev(t) (left) and Fdeath(t) (right) for binary covariates Stem

Type (a) and gender (b). Graphics contain single time point estimates β̂ j
t (•) and their pointwise 95% con-

fidence interval (�), the mean β j (dashed line) and β̂ j
FG (solid line, grey) obtained by the Fine & Gray

method. For Frev(t) 95% confidence intervals start at t = 500 for graphical clarity due to estimates of

β̂
j
400 = 3.5e11 (a) and β̂ j

400 = 6.8 (b), respectively

time independent estimate β̂FG given by Fine and Gray (1999) is added in Fig. 3.
Analysis of all variables (figures not shown) give evidence for the approximation of

β̂FG as a (weighted) mean β j
t , although this proposition has to be checked in detail.

In Fig. 4 the model based cumulative incidence functions are given for the differ-
ent values of the covariable Stem type. Predicted curves based on estimates of the
pseudo-value approach using β j and the Fine & Gray method are compared to results
obtained by the Aalen-Johansen estimator. Predictions based on the pseudo-value
approach are calculated only for the covariable stem type setting all other covariates
to zero. Model curves based on β j show the lowest values. Caused by the direct esti-
mation of the intercept term β0(t) these curves are not strictly monotone increasing.
Further technique is required to force monotony.
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Table 1 Estimators for β j given by (1) β j , mean based on all β̂ j
t with t ≥ 500, (2) β̂ j

sim estimated as

proposed by Klein and Andersen (2005) based on 10 grid points (equidistantly distributed on T̃i ) and (3)

the Fine & Gray method β̂ j
FG

Z j β j SE β̂
j
sim SE β̂

j
FG SE

(a) Revision
Stem type

Titan SLS 0.794 0.33 0.886 0.42 0.986 0.24
Stem size

7.5 1.566 0.36 1.578 0.24 1.700 0.35
10.0 0.865 0.31 0.927 0.33 1.006 0.31

Gender
Male 1.072 0.31 1.126 0.27 1.217 0.29

Age
65–75 years −0.691 0.43 −0.730 0.24 −0.767 0.25
≥75 years −1.524 0.52 −1.579 0.34 −1.835 0.39

(b) Death
Stem type

Titan SLS −0.067 0.19 −0.194 0.32 −0.040 0.20
Stem size

7.5 −0.426 0.28 −0.757 0.40 −0.476 0.29
10.0 −0.565 0.18 −0.638 0.22 −0.546 0.21

Gender
Male 0.393 0.25 0.496 0.23 0.298 0.20

Age
65–75 years 0.922 1.10 0.647 0.33 0.939 0.35
≥75 years 2.101 1.00 1.918 0.31 2.128 0.33
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Fig. 4 Model based cumulative incidence functions Frev(t) for values of Stem type= {T itan SL S,
T itan GS}. Predictions based on the Aalen-Johansen estimator (solid line), the Fine & Gray method

(dashed) and the pseudo-value approach with β j (dotted)
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7 Summary

In this work we examined the pseudo-value regression approach proposed by Andersen
et al. (2003) in competing risks models. We have proven consistency and asymptotic
normality of the estimates of regression coefficients for the cumulative incidence
function. In addition to the usual mild regularity conditions needed for generalized
estimating equations we have shown here that the jackknife pseudo-values derived
from the Aalen-Johansen estimate of the cumulative incidence function satisfy a con-
ditional unbiasedness condition. For this we used a higher order von Mises expansion
of the Aalen-Johansen function. Similar expansions have been used earlier to analyze
for example the variance of jackknifed estimates (Parr 1985).

The pseudo-value approach is a reasonable method for direct regression analysis on
state and transition probabilities in multi-state models. In Scheike and Zhang (2007)
a similar approach has been studied. In the illustration part we have considered the
effect of the time at which the pseudo-values are calculated on the regression coeffi-
cients. We have shown that the time independent coefficients can be estimated by a
natural extension of the jackknife pseudo-value approach. The proposed estimate is
similar to the so far suggested extension (Andersen et al. 2003) which was based on
a grid of about 10 time points. As single time point estimates suppose the choice of
an appropriate grid may depend on the given data.

The pseudo-value approach requires independent censoring. This assumption might
not always be satisfied. In practice, however, it is often reasonable to assume that the
censoring mechanism is conditionally independent of the event times given the covar-
iates. The IPCW approach can be modified to work under this weaker assumption
(Scheike et al. 2008; Fine 1999).

So far, we have only considered competing risks models. The situation in the gen-
eral multi-state model, especially if pseudo-values for state occupation probabilities
in such circumstances satisfy the conditional unbiasedness condition, is not yet clear.
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