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Abstract This paper considers the problem of obtaining a dynamic prediction for
5-year failure free survival after bone marrow transplantation in ALL patients using
data from the EBMT, the European Group for Blood and Marrow Transplantation. The
paper compares the new landmark methodology as developed by the first author and
the established multi-state modeling as described in a recent Tutorial in Biostatistics
in Statistics in Medicine by the second author and colleagues. As expected the two
approaches give similar results. The landmark methodology does not need complex
modeling and leads to easy prediction rules. On the other hand, it does not give the
insight in the biological processes as obtained for the multi-state model.
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1 Introduction

This paper discusses the problem of obtaining dynamic x-year survival predictions
during the follow-up of patients using all current information. We compare two
approaches to obtain such predictions. One approach is the recently developed
landmark methodology of van Houwelingen (2007). The other approach is the more
traditional multi-state modeling (Putter et al. 2007).

The data used in this paper are obtained from the European Group for Blood and
Marrow Transplantation (EBMT, http://www.ebmt.org/) registry. We consider all 2297
acute lymphoid leukemia (ALL) patients who had an allogeneic bone marrow trans-
plant from an HLA-identical sibling donor between 1985 and 1998. The data were
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extracted from the EBMT database in 2004. All patients were transplanted in first
complete remission. Events recorded during the follow-up of these patients were:
acute graft versus host disease (AGvHD), platelet recovery (PR, the recovery of plate-
let counts to a level of >20×109/l), relapse and death. AGvHD has been defined as
a GvHD of grade 2 or higher, appearing before 100 days post-transplant. Prognostic
information at time of transplant are: donor recipient gender mismatch, T-cell depletion
(TCD), year of transplant and age at transplant. The same data have been studied in a
multi-state model by Fiocco et al. (2008). This system of engraftment and acute GvHD
has been previously modeled and analyzed using quite similar multi-state models, see
Klein et al. (1993) and Klein and Shu (2002).

For the sake of this paper we combine the events relapse and death into a single
event “Failure”. The clinical purpose of our modeling is to obtain a dynamic prognos-
tic model for 5-year failure free survival given the history on AGvHD and PR and the
prognostic covariates.

The outline of the paper is as follows. In Sect. 2 we will describe a traditional data
analysis of failure free survival with AGvHD and PR as time-dependent covariates
and the prognostic information as fixed covariates. In Sect. 3 we will describe the
landmark approach and develop a dynamic prediction model for 5-year failure free
survival given the patient history during the first year. In Sect. 4 we will develop a
multi-state model for the data, use that to obtain dynamic 5-year failure free survival
predictions and compare those predictions with the landmark predictions. In Sect. 5
we will discuss the pros and contras of the two approaches and competitors.

2 A closer look at the data

To simplify the presentation and the calculations tied event times are broken randomly.
We first show the Kaplan–Meier estimates of the failure free survival distribution and
the censoring distribution in Fig. 1a and b.

It is clear from the survival graph that the situation of the patients is quite stable
after 5 years. The graph of the censoring distribution shows that the follow-up is quite
complete in the first 5 years. Attempting to predict long term survival, e.g. 10-year
survival, using this data set would be tricky because of the lack of follow-up in the
recent cohorts. (At 10-years of follow-up there are 298 patients at risk, 237 from the
first cohort (1985–1989), 61 from the second cohort (1990–1994) and 0 from the last
cohort (1995–1998).

Table 1 shows the distribution of the risk factors and the (univariate) hazard ratios
for treatment failure.

We categorized age and year of transplantation for didactical reasons. Both fac-
tors show a clear effect. Younger patients have a better prognosis and transplantations
before 1990 had a worse prognosis. Donor recipient gender mismatch seems to be of
minor importance, while TCD shows a clear negative effect on failure free survival.

To get an impression when AGvHD and PR occur, we show estimates of the cumu-
lative incidence functions of time to AGvHD and time to PR in Fig. 1c and d. By
definition, AGvHD appears before 100 days post-transplant. Since PR after 1 year is
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Fig. 1 Kaplan–Meier estimates of the failure-free survival distribution (a), the censoring distributing (b),
and estimates of the cumulative incidence functions for time until AGvHD (c) and time until PR (d)

very rare, we truncated the time axis after 1 year. It is clear that both AGvHD and PR
mostly occur within the first 3 months.

In order to define sensible landmark models in the next section, we explore the
potentially time varying effect of the time dependent factors AGvHD and PR. In order
to do so, we fit a Cox model with four binary time-dependent covariates: AGvHD(t),
recent-AGvHD(t), PR(t) and recent-PR(t). Here AGvHD(t) stands for having experi-
enced AGvHD before time t , while recent-AGvHD is defined as having experienced
AGvHD within the last month, that is between t − 1/12 and t . The definition of
“recent” as in the past month is based on some exploratory analysis. We have no bio-
logical rationale other than the general observation in the analysis of this type of data
that the effects of intermediate events have a tendency to “ fade out”. The results in
Table 2 show that recent-AGvHD is not significant, while recent-PR is highly signif-
icant. There remains a significant, but much smaller effect of PR after 1 month of its
occurrence.
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Table 1 Overview of the prognostic factors and the corresponding hazard ratios for treatment failure
(relapse or death)

Prognostic factor Category N (%) Hazard ratio (95% CI)

Donor recipient
gender mismatch

No gender mismatch 1,734 (76) 1

Gender mismatch
(F donor, M patient)

545 (24) 1.14 (0.98–1.32)

GvHD prevention No TCD 1,730 (76) 1

TCD 549 (24) 1.29 (1.11–1.49)

Year of transplant 1985–1989 634 (28) 1

1990–1994 896 (39) 0.74 (0.63–0.86)

1995–1998 749 (33) 0.73 (0.62–0.87)

Age at transplant
(years)

≤20 551 (24) 1

20–40 1,213 (53) 1.37 (1.16–1.63)

>40 515 (23) 1.64 (1.35–1.99)

Table 2 Estimated parameters for time-dependent effects of AGvHD and PR

β̂ SE(β̂) P-value exp(β̂)

AGvHD(t) 0.405 0.072 0.000 1.500

Recent-AGvHD(t) −0.220 0.179 0.218 0.803

PR(t) −0.263 0.073 0.000 0.768

Recent-PR(t) −1.070 0.257 0.000 0.343

The effects of these time-dependent covariates are assumed to be additive; so for instance the effect on
failure of recent-PR is the sum of the coefficients of PR(t) and recent-PR(t)

In further model building we will consider AGvHD(t), PR(t) and recent-PR(t) and
will denote them simply by AGvHD, PR and recent-PR.

We also checked in the same Cox model that there is no significant interaction
between AGvHD and PR. Therefore, we will not consider this interaction in our future
modeling. For simplicity in further analyses we will consider year of transplantation
prior to 1990 versus 1990 and later.

3 Dynamic prediction based on the landmark model

As described in the introduction we want to develop a dynamic prediction model for
5-year failure free survival based on the time-dependent covariates AGvHD, PR (and
recent-PR) and the fixed covariates: donor recipient gender mismatch, TCD, year of
transplantation and age at transplantation. Traditionally, this is done by making a model
for time to failure with time-dependent and fixed covariates, plus models for time to
AGvHD and time to PR depending on the fixed covariates and history and deriving a
predictive model from that by conditioning on being failure free and the AGvHD and
PR-status at the moment of prediction. As argued by Zheng and Heagerty (2005) and
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Fig. 2 The distribution of the current value of AGvHD and PR at each landmark point

van Houwelingen (2007) predicting models can well be constructed without making
comprehensive models by constructing landmark data sets with all relevant informa-
tion needed for the prediction. From the original data set we constructed such data
sets for 25 landmark (prediction) time points tL M = 0, 1/24, 2/24, . . . , 1 year. We
denote tL M by s to simplify the notation whenever convenient. In all data sets we
take all patients still at risk for failure, compute the current value of AGvHD, PR and
recent-PR and set the horizon for the failure time at thor = 5 to indicate that we want
to obtain dynamic models for 5-year failure free survival. The variation of AGvHD
and PR over time is shown in Fig. 2.

It is interesting to observe that the potentially important predictor recent-PR is only
present in a very limited time window between the first and the third month. We will
come back to that at the end of the section.

At each landmark point we can fit a simple Cox model on the interval (tL M , thor )

and use that to obtain a prediction of failure free survival at thor = 5. As argued in
van Houwelingen (2007) using arguments similar to those of Xu and O’Quigley (2000),
this will give a reasonably accurate estimate even if the predictors available at tL M

have time-varying effects in the interval (tL M , thor ).
In general terms we take a grid of landmark time points s0 ≤ s ≤ s1 (in our appli-

cation s0 = 0, s1 = 1 and we have 25 equally space landmark points). Let X (s) stand
for the current vector of predictors that might depend on the landmarking time-point.

For each landmark point we postulate the prediction model

P(T > thor |T > tL M = s, X (s)) = exp(− exp(X (s)T β(s))H0(s, thor )) (1)

and estimate the parameters of this model by fitting the simple Cox model

h(t |X (s), s) = h0(t |s) exp(X (s)T β(s)) for s = tL M ≤ t ≤ thor (2)

enforcing administrative censoring at thor .
Fitting this model for each landmark point separately would ignore the “overlap”

between landmark data sets. We can expect that the coefficients β(s) depend on s in
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rather a smooth way. We can bring more structure into the analysis by modeling the
regression parameters β(s) as a function of s. Generally, we can take any parametric
model. In this application we take the simple model

β(s) = β0 + β1s (3)

and gather the components of β0 and β1 into a single parameter vector βL M . Fitting
the model (1)–(2) is equivalent to maximizing the pseudo partial log-likelihood

i pl(βL M ) =
∑

i

di

⎛

⎝
∑

s<ti

⎡

⎣Xi (s)
T β(s) − ln(

∑

t j ≥ti

eX j (s)T β(s))

⎤

⎦

⎞

⎠ (4)

It can be fitted to the data in standard software by using a stacked data set, contain-
ing all the 25 landmark data sets with stratification on the landmark. This can be
used to inspect whether the coefficients depend on the landmark. However, such a
fit from standard software cannot be used to test the statistical significance of the
components of β̂0 and β̂1 since the data of the same patient are used repeatedly in
the different landmark strata. The correct standard errors can by obtained by taking
into account the “clustering” of the data and using the sandwich estimators of Lin and
Wei (1989). This approach is incorporated in the landmarking software we developed
(van Houwelingen 2007), but it can also be performed in software packages like R and
Stata. For a further description how this can be done, see www.msbi.nl/multistate.

After fitting the model the baseline hazard at the event time ti can be estimated by
a Breslow-type estimator

ĥ0(ti |s) = 1
∑

ti ≤t j
exp(X j (s)T β̂(s))

(5)

It is interesting to observe that ĥ0(t |s) does not depend on s if X (s) and β̂(s) are con-
stant. See Van Houwelingen (2007) for a more elaborate discussion. In our application
some of the components of X (s) vary with s and not all β̂(s) turn out to be constant
either. That implies that ĥ0(t |s) will depend on s. To add more structure and to make
it easier to interpret the models we assume a model

h0(t |s) = h0(t) exp(γ (s)) (6)

with the restriction γ (s0) = 0 to warrant identifiably. In our application we take γ (s)
to be a third degree polynomial

γ (s) = γ1s + γ2s2 + γ3s3 (7)

The model (2), (3), (6), (7) can be fitted directly by applying a simple Cox model to
the stacked data set, provided the software allows for delayed entry at s. Repeated
observations on the same subject automatically leads to the presence of many ties.
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Table 3 Estimated parameters in the ipl*-model

(a) The β-parameters and their standard errors

Factor β̂0 (SE) β̂1 (SE)

AGvHD 0.317 (0.077)

Recent-PR −0.179 (0.042)

Age 20–40 0.285 (0.099) −0.193 (0.097)

Age 40+ 0.502 (0.113) −0.298 (0.152)

Tx < 1990 0.259 (0.092)

TCD 0.254 (0.094)

(b) The γ -parameters with standard errors

γ̂1 (SE) γ̂2 (SE) γ̂3 (SE)

−0.712 (0.094) 1.544 (0.270) −0.828 (0.155)

Fitting the model with the Breslow partial likelihood for those tied observations is
equivalent to maximizing a different pseudo partial log-likelihood, namely

ipl∗(βL M , γ ) = ∑
ti di

[
∑

s<ti (X T
i β(s) + γ (s)) − ln(

∑
t j ≥ti >s

exp(X T
j β(s) + γ (s))

]

(8)

The estimator of the corresponding baseline hazard is given by

ĥ∗
0
(ti ) = #(s < ti )∑

t j ≥ti >s
exp(X T

j β̂(s) + γ̂ (s)))
(9)

Again, standard errors for the regression parameters can be obtained by sandwiching
and this is implemented in our software. Alternatively, R and Stata can be used for this
purpose as well, among others. Standard errors for the baseline hazard and estimated
survival probabilities are not included yet. The convenience of the ipl∗-model is that
landmark survival probabilities can easily be estimated as

P̂(T > t |T ≥ s, X (s)) = exp(−eX T
i β̂(s)+γ̂ (s)(Ĥ∗

0 (t) − Ĥ∗
0 (s−))) (10)

where Ĥ∗
0 (t) is the cumulative baseline hazard Ĥ∗

0 (t) = ∑
ti ≤t,di =1 ĥ∗

0(ti ).
We fitted the ipl∗-model to the data of our application. The parameters of the final

model are given in Table 3.
Table 3a can be interpreted losely as giving the relative risks for dying before 5 years

at different landmark points. For AGvHD the relative risk R R = exp(0.317) = 1.37,
for recent-PR R R = 0.84, for Tx < 1990 R R = 1.30 and for TCD R R = 1.29. For
the age groups, the relative risks compared to the baseline groups with age < 20, varies
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with the time of landmarking. For the 20–40 age group it varies from R R = 1.33 at
the start of the follow-up to R R = 1.09 after 1 year. Similarly, the relative risk for the
40 + age group varies from R R = 1.65 to R R = 1.23. The graph of the γ (s)- function
(not shown) has a “dip” about s = 0.3 related to the changes in the distribution of
the dynamic predictors shown in Fig. 2. This curve is used in the computation of the
5-year survival probability by means of formula (10). It is hard to give it a simple
interpretation. The bending of the curve near s = 1 might be an artifact of the poly-
nomial model. Using B-splines might give a more “natural” curve, but we stick to the
polynomial model for the sake of simplicity. The shape of γ̂ (s) is partly caused by the
transient behavior of recent-PR as shown in Fig. 2b.

The curves for Ĥ0(t) and its quadratic B-spline fit with knots at t = 1 and t = 2

Ĥ∗
0 (t) = 0.392 · t − 0.157 · t2 + 0.129 · ((t − 1)+)2 + 0.024 · ((t − 2)+)2 (11)

(not shown) virtually coincide. (Here, a+ = max(a, 0)) The function rapidly increases
in the beginning, slows down later and reaches a value of about 0.32 at 5 years after
transplant.

Table 3 only gives the results as obtained after some data-driven model building.
The main findings are:

(1) Recent-PR suffices to describe the PR-effect. In contrast with Table 2, the PR-
effect itself was not significant in a model with recent-PR.

(2) The effect of AGvHD and PR does not depend significantly on the landmark s.
(3) Donor recipient gender mismatch has no significant effect.
(4) TCD has a significant constant effect.
(5) The cohort “before 1990” has a significantly worse prognosis. There is no sig-

nificant difference between the other two cohorts.
(6) Age at transplantation has a major effect that depends significantly on s.

It might seem a bit unnatural that only recent-PR is used in the predictive model.
The statistical explanation is that (i) there is very little effect of PR for those who are
still alive at the landmark time-point after 6 months; (ii) for landmarking in the very
beginning of the follow-up recent-PR has a stronger effect that PR-present. The reader
should bear in mind that the effects in Table 3 apply to 5-year survival while those in
Table 2 apply to the hazard.

The predicted 5-year failure free survival probabilities for TCD = 0 and Tx after
1989 are shown for the three age categories in Fig. 3.

The curves look quite smooth showing that the model allows predictions at any time
in the first year, not only in the 25 landmark points. However, the smooth appearance
does not imply that the dynamic prediction itself is smooth. Everybody starts in the
upper left corner curve with No AGvHD, no recent-PR. The other curves are actually
meaningless for s close to zero. At the occurrence of either PR or AGvHD a patient
shifts to one of the other curves. One month after PR, a patient with recent-PR moves
back to the No recent-PR status. This also implies that the curves for recent-PR are
only relevant in the first quarter of the follow-up. Another way of presenting would
be to show how the prognosis changes over time for a patient who, for example, expe-
riences PR after 6 weeks and AGvHD after 8 weeks. We leave that to the reader. It
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Fig. 3 Estimated 5-year failure-free survival probabilities for subject with no TCD and transplanted after
1989 based on the landmark model. In light grey age <20, in grey age 20–40, in black age ≥40

is not hard to write a little program that implements the predictions based upon the
ipl*-model given by Table 3 and approximation (11).

4 Dynamic prediction based on the multi-state model

The multi-state model we use for the comparison follows the methods outlined in Putter
et al. (2007) and the mstate software developed for the prediction based upon the multi-
state model. In this approach we use a single time-scale, years since transplantation.
The transition intensities and their covariate effects are modeled by imposing Cox
proportional hazards models for the transition intensities. Some restrictions on the
baseline hazards and the covariate effects are made in order to follow the landmark
model and some states have to be introduced to handle the time-varying effect of PR.

123



456 Lifetime Data Anal (2008) 14:447–463

1.
Transplant 
(T)

2.
AgvHD
(A)

3.
Recent PR 
(P)

4.
Past PR 
(P30)

5.
AGvHD + 
recent PR (AP) 

6.
AGvHD + past 
PR (AP30) 

7.
Failure
(F)
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After estimating the baseline hazards and the covariate effects, the 5 years relapse-free
survival probabilities for a patient with a given set of covariate values are obtained
by first “deducing” the patient-specific transition intensities for all the transitions in
the model and by subsequently applying the Aalen and Johansen formula to these
patient-specific transition intensities. Each of these steps is detailed below.

The multi-state model that allows an effect of recent-PR as described in Sect. 3 is
shown in Fig. 4.

The multi-state model has seven states, indicated by boxes, and thirteen direct
transitions between states, indicated by arrows. In Fig. 4 we have also indicated the
abbrevations that will be used to denote these states. We distinguish between PR within
the last 30 days and PR more than 30 days ago by assigning two distinct states to PR,
states P (recent-PR) and P30 (past-PR). Since PR may occur after AGvHD, also two
states are used to indicate AGvHD plus PR. A patient in state P will automatically
move to state P30 after 30 days, unless another event or a censoring occurs before
30 days after PR. A similar transition after 30 days is defined from state AP to AP30.
We further want to create a model in which AGvHD(t) and PR(t) act as time-dependent
covariates in a Cox model for the transition to Failure with a time-varying effect for
PR(t) (recent-PR versus past-PR). Moreover, we want to exclude such a time-varying
effect of PR(t) on the transition to AGvHD for the patients who have experienced PR.
We create such a model by imposing the following restrictions:

• No covariates are incorporated into the transitions P → P30 and AP → AP30
• Transitions P → AP and P30 → AP30 have identical baseline transition intensities

and covariate effects
• Transitions P → F and P30 → F differ only with respect to a proportionality coef-

ficient indicating the effect of recent-PR (the effect of prognostic factors is assumed
to be identical)
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• Transitions AP → F and AP30 → F differ only with respect to a proportionality
coefficient indicating the effect of recent-PR (the effect of prognostic factors is
assumed to be identical)

• All transitions into state F (failure) are assumed to be proportional, with transition
T → F being the baseline, and two proportionality coefficients being estimated,
indicating the effect of recent-PR and of AGvHD.

For the remainder the model has been chosen as free as possible; all transition
intensities are freely estimated and the effects of all fixed covariates are allowed to
differ between transitions. The fixed covariates we consider are the same as in Sect. 3:
TCD, transplant before 1990 and age at transplant (in three groups). In terms of param-
eters that need to be estimated, the basis is a Cox proportional hazards model for the
transition intensity of transition i → j of the form

hi, j (t) = h0
i, j (t) exp(βT

i, j Z),

where h0
i, j (t) is the baseline transition intensity of transition i → j , and βi, j is a

regression vector of transition-specific covariate effects. In terms of these baseline
hazards and regression vectors, the above restrictions read as follows:

βP,P30 = βAP,AP30 = 0; h0
P,AP (t) = h0

P30,AP30(t);βP,AP = βP30,AP30

βP,F = βP30,F ;βAP,F = βAP30,F ; h0
i,F (t) = h0

1,F (t) exp(γi ),

where by definition γT = 0, and also γP30 = 0. Two unknown parameters γA and γP

indicate the effects of AGvHD and of recent-PR on failure free survival, and we have
γAP = γA + γP and γAP30 = γA.

All this implies that seven different baseline intensities are estimated, namely
h0

T,A(t), h0
T,P (t), h0

A,AP (t), h0
P,AP (t), h0

P,P30(t), h0
AP,AP30(t) and h0

T,F (t) and that
four distinct covariate effects are estimated on 8 distinct transitions. After some data
preparation, using transition-specific covariates [see e.g. Andersen et al. (1993) and
Putter et al. (2007)] and defining appropriate strata, all regression parameters and base-
line transition hazards can be fitted within a single stratified Cox regression model.
For more details the reader is referred to our website mentioned under Software.

The estimated baseline cumulative transition hazard estimates of the transitions (not
shown) resemble the form of the plots of Fig. 1. The cumulative transition intensities of
P → P30 and AP → AP30 were estimated by adding a time to P30 (AP30) in the data
used for estimation of the parameters of the multi-state model for patients reaching
P (AP). These times were given by t + 30 for patients reaching P (AP) at time t . The
transition intensities were then estimated from the data without using covariates for
those transitions (see restrictions stated above). The estimates of the cumulative transi-
tion intensity result in very high cumulative hazards, reflecting the fact that almost all
patients reaching the P state will move on to the P30 state after 30 days. The estimated
cumulative hazards also have large jumps, and we shall see later that this results in
slight irregularities in some of the predictions, but it is a consequence of our wish to
stay in the Markov model framework in order to apply the Aalen–Johansen formulas
for obtaining prediction probabilities. In this case it would have been more logical to
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Table 4 Estimated hazard ratios in the multi-state model with 95% confidence intervals

TCD Year > 1990 Age 20–40 Age > 40

(a) Estimates of the prognostic factors (exogeneous covariates)

T → A 0.79 (0.67–0.92) 0.89 (0.77–1.03) 1.12 (0.95–1.32) 1.07 (0.88–1.31)

P → AP 0.76 (0.53–1.10) 0.90 (0.70–1.18) 1.31 (0.91–1.87) 1.57 (1.07–2.32)

T → P 0.65 (0.54–0.78) 1.29 (1.11–1.50) 1.06 (0.89–1.26) 1.28 (1.05–1.57)

A → AP 1.07 (0.84–1.37) 1.85 (1.51–2.27) 0.67 (0.53–0.84) 0.75 (0.56–0.99)

T → F 1.16 (0.90–1.51) 0.85 (0.63–1.14) 1.51 (1.15–1.98) 1.68 (1.19–2.38)

A → F 1.53 (1.16–2.02) 1.09 (0.80–1.49) 1.40 (1.05–1.86) 1.72 (1.21–2.45)

P → F 1.26 (0.88–1.82) 0.99 (0.72–1.37) 0.81 (0.58–1.14) 1.26 (0.86–1.84)

AP → F 1.01 (0.74–1.38) 0.77 (0.59–1.00) 1.50 (1.13–2.00) 1.81 (1.29–2.53)

(b) Estimates of AGvHD and recent PR on failure (endogeneous covariates)

Acute GvHD 1.23 (0.90–1.69)

Recent platelet recovery 0.39 (0.24–0.62)

Covariate effects significant at the 5% level are shown in bold

have used the semi-Markov or clock-reset approach [see e.g. Lagakos et al. (1978),
Dabrowska et al. (1994), Putter et al. (2006)], but that would have made prediction far
more difficult.

The effects of the covariates are shown in Table 4. Again a number of transitions
are not shown. The transitions P → P30 and AP → AP30 are assumed not to depend
on covariates. The effects of covariates are assumed to be identical for the transitions
P → F and P30 → F, and also for P → AP and P30 → AP30, and for AP → F
and AP30 → F. The most consistent findings are the effects of age; higher age gen-
erally implies a higher transition rate to failure, and a lower transition rate to PR after
AGvHD. TCD, given as a treatment to prevent AGvHD is effective as such, but also
has negative side effects, such as a lower PR rate. Moreover, due to the well known
reverse biological mechanisms of AGvHD and relapse, TCD has a higher relapse rate
and hence generally a higher intensity of the transitions into failure. A more detailed
analysis distinguishing between relapse and death as endpoints (Fiocco et al. 2008)
revealed a higher relapse rate for TCD but no direct effect of TCD on death. The
adverse effect of TCD on failure was not seen as clearly here because in this analysis
no distinction was made between relapse and death.

Figure 5 shows similar pictures as Fig. 3, that is estimated 5-year failure free sur-
vival for patients transplanted after 1989 and with TCD = 0. They were obtained by first
deriving the patient-specific transition intensities for all transitions in the multi-state
model from the estimated regression coefficients of Table 4 and the estimated baseline
cumulative transition intensities. Subsequently, the formula of Aalen and Johansen
(1978) (see also Andersen et al. (1993), Sect. VII.2.3) was used to obtain predictions
of 5-year failure free survival.

Each picture is based on predictions starting from a different state in the multi-state
model (states T, A, P, AP, P30, AP30, respectively). The jumps in the prediction No
AGvHD, recent-PR (state 3), and to a lesser extent those in the prediction AGvHD,
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Fig. 5 Estimated 5-year failure-free survival probabilities for subject with no TCD and transplanted after
1989 based on the multi-state model. In light grey age < 20, in grey age 20–40, in black age ≥40
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recent-PR (state 4) are caused by the jumps in the cumulative hazards of the P → P30
and AP → AP30 transitions. Although we attempted to stay close to the model of
Sect. 3, there are two striking differences: in Sect. 3 only recent-PR matters, merging
patients with no PR and patients with past-PR. Such a merging is not possible in
our implementation of the multi-state modeling. The caveats given in Sect. 3 for the
interpretation of such curves apply here as well. Another striking difference between
Figs. 3 and 5 is the reversed age effect in the group of patients with No AGvHD and
recent or past-PR.

It might be a bit surprising that some curves for no PR are non-monotone. For
instance, the second plot of Fig. 5 shows P(failure free at t | state AGvHD at s) for
fixed t and varying s. A plot of P(failure free at t | state AGvHD at s) for fixed s
and varying t is indeed monotone since Failure is an absorbing state in the multi-state
model, but there is no reason why this should be the case for fixed t and varying s. The
fact that the curves are non-monotone in this instance is a consequence of the dynamic
nature of PR status. The curve can be interpreted as: the longer you have waited for
PR, the more likely that it will never happen and the worse the prognosis. Actually, the
non-monotone behavior in Fig. 5 might be an indication that the multi-state modeling
stays closer to the clinical data.

5 Discussion

We have chosen to build a landmark prediction model that is valid for the whole first
year of follow-up. On retrospect, this is open for debate because the intermediate events
mostly occur in the first half year. Although we did not find a statistically signifcant
interaction between the (dynamic) predictors and the time-point of landmarking, the
picture might slightly change if we restrict the landmarking to the first half year. How-
ever, we think that our choice for the first year gives a good insight in the potential of
the landmarking methodology and its pros and cons when compared with multi-state
modeling.

The big advantage of using a Markov multi-state model is the availability of the
formula of Aalen and Johansen (1978) that converts the transition hazards into tran-
sition or state probabilities through repeated multiplication of matrices containing the
transition hazard increments. The multiplication is over the event time points; when
these multiplications are performed in increasing order of event time points this yields
predictions forward in time. In order to obtain our 5-years predicted probabilities of
failure, we have instead performed these matrix multiplications backward in time. This
makes the prediction of 5-years failure free survival from different points in time quite
straightforward once the required transition hazards are obtained. But in the presence
of covariates Aalen–Johansen’s formula is only valid for Markov models (see Datta
and Satten (2001) however, who show that the Markov property is not needed in the
absence of covariates). The wish to stay within the framework of Markov models is in
fact not very well compatible with the nature of the intermediate events found in Sect. 2.
In particular the distinction between recent and past-PR has forced us to make some
arguably unnatural steps. It has led us to introduce two extra states in the multi-state
model with some restrictions on the transition intensities. In order to compensate for
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the large number of additional parameters, we have modeled the transitions P → P30,
AP → AP30, and P → AP and P30 → AP30, with additional restrictions on equality
of the baseline transition intensities and covariate effects. These restrictions appeared
to make sense a priori (certainly in clock reset time-scale, perhaps less so in clock
forward time-scale) and limited checks have not shown violations of the underlying
assumptions. Of course it would have been most natural to use the time-scale of time
since entrance in state P (recent-PR) for the transition to P30 (past-PR), and for the
similar transitions after AGvHD (the transition AP → AP30), but this destroys the
Markov property. Models that use time since entrance of the present state as time-scale
are called clock reset or semi-Markov or Markov renewal models (under additional
Markov-like assumptions). Prediction in this type of multi-state models is far more
difficult to do exactly. Instead simulation could be used to approximate the required
transition probabilities.

The multi-state model could be characterized as an indirect way of obtaining a
prediction through a complete model for the follow-up of a patient. Such a modeling
can be quite useful for a biological understanding of the underlying process, but the
predictions derived from these models can be off the mark if the assumptions under-
lying the model are violated or the fit of the model is not perfect. Actually, the validity
of the predictions can be checked in the same data set, but that is hardly ever done
in practice. In principle, such a goodness-of-fit check could be combined with the
landmark analysis by comparing the observed survival in each landmark data set with
the predictions derived from the multi-state, but in practice it would take quite some
energy to carry out such an analysis.

The landmark approach can be seen as a way of direct modeling. One useful
approach is the pseudo-value approach developed by Klein and Andersen (see
Andersen et al. (2003) and Andersen and Klein (2007)) which is inspired by the wish
to have simple regression models for multi-state transition probabilities P(in state S
at time t | covariate X ). An alternative is the direct modeling of Scheike and Zhang
(2007) and Scheike et al. (2008) which directly estimates similar probabilities from
the data using logistic regression type models and an ingenious way of handling the
censoring during the follow-up. The typical graphical presentation of the results of
such an analysis shows how P(in state S at time t | covariate X ) changes over time.

The main difference with our landmark approach is that we are interested in the
dynamic prediction P(in state S at time thor | covariate X , history at time s). A gener-
alization that includes both perspectives is to let both thor and the landmark time-point
s vary.

A technical difference is that we derive the prediction by fitting a simple Cox model
on the interval (s, thor ) to obtain an estimate of the survival up to thor . This circum-
vents the censoring problem that inspired the pseudo-values of Andersen and Klein,
but could be biased if there is much censoring between s and thor .

The main limitation of the approach is that it can only handle survival type data,
that is data with a single absorbing state. A next step would be to develop a similar
approach for competing risk data. Klein and Andersen (2005) apply the pseudo-value
approach to competing risk data to obtain simple estimates of the cumulative incidence
functions, comparable to the estimates coming from the models of Fine and Gray
(1989) based on the modeling the sub-distribution hazard. Scheike et al. (2008) give
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methodology for directly estimating the cumulative incidence functions by binomial
models. However it is not quite clear how to define and estimate dynamic cumulative
incidence functions. Of course it is always possible to define landmark sets and to
estimate landmark specific cumulative incidence functions, but it is not yet clear how
different landmark models could be combined into one (pseudo) model as used in this
paper.

The big advantage of the landmark approach is that it can easily incorporate any
type of information about the patients history. Multi-state models as used in Sect. 4
can only be used to obtain predictions given the current state in the model. In the ALL
example, it could not pool patients with no-PR with patients with past-PR while this
was easily done in the landmark model, which can handle any type of time-dependent
covariate without modeling the dynamics of the process itself.

Another advantage of the landmark approach is the sparseness of the model. It only
has to estimate a few parameters and a single baseline hazard, while the multi-state
model has much more parameters, which could lead to serious over-fitting. The impli-
cation is that it has a similar simplicity as the direct models of Klein and Andersen
(2005) and Scheike and Zhang (2007).

A final caveat is that one might be tempted to use prediction formula (10) for all
s < t ≤ thor . Such a prediction might be biased if in the landmark data set the effect
of the last observed covariate X (s) is time-varying, that is β(t |s) �= β(s) for some
s < t ≤ thor . It would be better to create a new data set with a different horizon.
Ultimately, this would lead to data-sets truncated at tL M = s and administratively
censored at thor that are used to “predict from tL M = s to thor ”. For each predic-
tion problem we can fit simple PH models with coefficients β(tL M , thor ) and baseline
hazard h0(t |tL M , thor ). The challenge would be to develop methodology that allows
a smooth dependence of both the coefficients β(tL M , thor ) and the baseline hazard
h0(t |tL M , thor ) on the pair (tL M , thor ).

The caveat above is especially relevant in case of time-dependent covariates. Since
the landmark approach as applied here can only use the current value of the
time-dependent covariate X (s) it can be expected that its effect will decrease over
time. Potential biases in the predictive probabilities can be avoided by using joint
models for the time-dependent covariate and the survival hazard. However, any lack
of fit of such models could lead to similar biases.

6 Software

The mstate software is available as an R package on www.msbi.nl/multistate. Macro’s
for dynamic predicting using landmarking as well as the data used in this paper can
also be found on this website.
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