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Abstract 
Context Species-agnostic connectivity models are 
often used to inform management over broad spatial 
scales. The four main approaches to species-agnostic 
models parameterize resistance to movement based 
on naturalness, structural features, climate, or geo-
diversity variables. Though all four of these factors 
simultaneously affect species movement and flow of 
ecological processes, they are rarely combined.

Objectives We built upon an approach that uses all 
four of these factors to model current and future eco-
logical connectivity for the Crown of the Continent 
Ecoregion, in Canada and the USA.
Methods We estimated resistance for each pixel on 
the landscape based on multivariate ecological dis-
tances to surrounding pixels. We then modeled con-
nectivity with resistant kernels at different scales, and 
dynamically in response to future climates from 2020 
to 2080.
Results Across the study area, we found median 
connectivity values decreased by 17–50% from 2020 
to 2080 depending on the scale, with broader scales 
experiencing greater losses in connectivity. Though 
often considered natural conduits for movement, 
stream and valley bottoms generally lost connectiv-
ity through time. Wilderness areas had significantly 
higher connectivity values than unprotected lands for 
all time steps and scales, indicating their importance 
for maintaining future connectivity of ecological 
processes.
Conclusions We offer an updated approach for spe-
cies-agnostic connectivity modeling that combines 
naturalness, structural features, and topo-climatic lay-
ers while considering multiple scales of ecological 
processes over a large spatial extent and dynamism 
through time. This approach can be applied to other 
landscapes to produce products for short- and long-
term management of connectivity and ecological 
resilience.
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Introduction

The largest threats to ecosystems and ecosystem 
functioning are habitat loss and fragmentation result-
ing from human development (Pereira et  al. 2010; 
Haddad et  al. 2015), and climate change (Bellard 
et  al. 2012). An important conservation tool for 
addressing these threats is maintaining, enhanc-
ing, and integrating ecological connectivity (Heller 
and Zavaleta 2009; Krosby et  al. 2010), especially 
in cooperation with local communities and partners 
(Bennett et  al. 2017). Connecting intact protected 
areas and habitat patches may reduce inherent vulner-
abilities of small, isolated populations such as suscep-
tibility to inbreeding and stochastic events (Frankham 
2005; Willi et al. 2006). Connectivity may also pro-
vide avenues of movement for species to track pre-
ferred climate conditions across the landscape as the 
climate changes (Heller and Zavaleta 2009). Because 
of its importance in conservation, connectivity is an 
increasingly critical component of land management 
plans. For example, in the U.S., the Forest Service is 
required to consider connectivity in its forest plans 
under the 2012 Planning Rule (U.S. Forest Service 
[USFS], 2012), and the Bureau of Land Management 
has new policy guidance that also requires the con-
sideration of connectivity (U.S. Bureau of Land Man-
agement 2022). In Canada, Parks Canada recently ini-
tiated the National Program for Ecological Corridors, 
which aims to protect and restore ecological connec-
tivity (https:// parks. canada. ca/ nature/ scien ce/ conse 
rvati on/ corri dors- ecolo giques- ecolo gical- corri dors). 
As federal governments ramp up landscape conserva-
tion programs like the America the Beautiful Chal-
lenge (U.S.) and the Target One Challenge (Canada), 
empirically based spatial models that identify high 
value connectivity areas could help managers achieve 
local and continental conservation objectives.

Connectivity is a catch-all term that can refer to 
areas that allow for species-specific short-distance 
movements, long-range dispersal events, structural 
connectivity of vegetation types (e.g., forest cover), 
or wildlife crossing structures, among other things. 

All these interpretations and uses of this term make 
it difficult to determine the most effective approach 
for modeling connectivity (Hilty et  al. 2020). Fur-
ther, connectivity estimates are often desired across 
broad spatial extents. Estimating connectivity for 
a variety of species with different life history traits 
and dispersal capabilities across large areas is often 
prohibitively difficult. Therefore, species-agnostic 
approaches have been used to model generalized con-
nectivity across large landscape extents (e.g. Belote 
et al. 2022). However, it is important to note that dif-
ferent species sometimes require very different con-
nectivity strategies (Unnithan Kumar et  al. 2022); 
generalized connectivity may therefore produce con-
nectivity predictions which are suitable for many spe-
cies, but not suitable for others.

Species-agnostic connectivity modeling 
approaches have typically used one of four general 
approaches. The first assumes that human develop-
ment and associated land-use alterations have nega-
tive, yet variable effects on species movement across 
the landscape. Under this ‘naturalness connectivity’ 
approach, measures of human modification are used 
to parameterize ‘costs’ or ‘resistances’ to move-
ment of species or ecological processes and develop 
a resistance surface (Zeller et  al. 2012) where areas 
of high modification have high resistance and more 
natural areas have a low resistance. Typically, this 
approach is applied to natural versus developed areas 
and no other variables are used, though some esti-
mates of human modification consider factors such 
as agricultural and forestry practices (Theobald et al. 
2020). The second approach is based on the defini-
tion of ‘structural connectivity’ and uses the con-
tiguity of specific landscape features to estimate 
resistance surfaces and model connectivity. For 
example, one approach might be to model connec-
tivity of cover types, like forest, where low resist-
ance would be assigned to any forested pixel and 
higher resistances would be applied to pixels domi-
nated by other cover types (e.g., Williamson et  al. 
2020). A third approach is based on the concept of 
geodiversity (Gray 2004), which assumes areas with 
high geodiversity (diversity of landforms) will have 
high biodiversity (Lawler et al. 2015), and areas with 
similar geodiversity that are connected will facilitate 
persistence of biodiversity regardless of land cover 
or climate variables (Beier and Brost 2010). In this 
approach, topographic and edaphic variables are used 

https://parks.canada.ca/nature/science/conservation/corridors-ecologiques-ecological-corridors
https://parks.canada.ca/nature/science/conservation/corridors-ecologiques-ecological-corridors
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to identify spatially-explicit ‘facets’ of geodiversity 
and linkages among these facets are identified. Lastly, 
there is climate connectivity. This approach identifies 
current climates, projects where those climates might 
be located in the future, and models whether species 
might be able to move to track those climates (e.g., 
McGuire et al. 2016; Schloss et al. 2022; Parks et al. 
2023).

Though some of the approaches above can be 
combined (e.g., climate connectivity and human 
modification, Parks et  al. 2020, 2023), every com-
ponent used to estimate connectivity in each of the 
four approaches can influence the way an individual 
animal responds to and moves through the landscape. 
As part of their estimation of ecological integrity for 
the northeastern U.S., McGarigal et al. (2018) used a 
measure of connectivity based on multivariate eco-
logical distance that incorporates all four approaches 
described above into one measure of connectivity. 
Their connectivity measure calculated multivariate 
space at each pixel on the landscape based on eco-
logical attributes such as human modification, land 
cover, topographic variables, soils, and climate. Mul-
tivariate Euclidean distance from each pixel to sur-
rounding pixels within an ecological neighborhood 
was then calculated, resulting in a unique resistance 
surface for every pixel on the landscape. A resistant 
kernel (Compton et  al. 2007) was then calculated 
across this surface for every pixel, representing the 
capacity for organisms to move from the focal pixel to 
surrounding pixels with similar ecological attributes. 
This resistant kernel was multiplied by the ecologi-
cal distance to each neighboring cell, thus represent-
ing accessibility by ecological similarity. Resistant 
kernels were summed across cells to estimate the 
overall connectedness of the system. In this case, con-
nectedness represented the capacity for ecological 
flow (henceforth ‘ecological connectivity’) to or from 
every pixel on the landscape.

This multivariate approach for estimating ecological 
connectivity has numerous advantages. First, it has the 
capacity to incorporate all four of the above approaches 
into a single method. Second, no source or destination 
points are needed since flows are modeled from each 
pixel in the landscape, producing a continuous connec-
tivity map with values for every landscape pixel. Third, 
resistant kernels are used as the connectivity algorithm, 
an approach shown to have high predictive perfor-
mance for animal movement, often outperforming other 

algorithms (Unnithan Kumar and Cushman 2022). 
Fourth, because ecological connectivity is estimated 
among a focal pixel and its neighboring pixels, it can 
simultaneously represent connectivity for less vagile 
species at finer spatial scales and highly mobile species 
across entire ecosystems. Lastly, this measure of eco-
logical connectivity may be considered one measure of 
resilience—the ability to absorb stressors while retain-
ing ecological functions (Gunderson 2000). Ecologi-
cally connected pixels are those that are connected to 
other, similar pixels, which should facilitate recovery 
following a disturbance (McGarigal et  al. 2018) and 
provide resource managers with options as they prior-
itize and invest in recovery actions.

Here, we expand on the connectivity measure used 
in McGarigal et  al. (2018) by incorporating dynamic 
resistant kernels to quantify changes in connectiv-
ity through space and time. We use the Crown of the 
Continent Ecoregion (CCE) as our focal landscape—a 
biologically rich area of the Northern Rocky Mountains 
spanning the U.S.-Canada border (Fig.  1). The CCE 
covers over 70,000  km2 at the convergence of the Great 
Plains and the Rocky Mountains. The CCE includes a 
multitude of land management jurisdictions each with 
specific missions, mandates, and policies, and includes 
land administered by several Tribes and First Nations, 
two countries, two provinces and one state, and thou-
sands of private landowners. We identified variables 
that represent human development, climate and energy, 
moisture and hydrologic, chemical substrate, and physi-
cal disturbance to develop ecological attributes, cal-
culated ecological distances, and modeled ecological 
connectivity for the years 2020, 2050, and 2080 at three 
different spatial scales (a.k.a., ecological neighborhood 
sizes) to represent different ecological processes. We 
estimated connectivity dynamically through time by 
using the ecological attributes at a pixel for the current 
time step and estimating ecological distance to sur-
rounding pixels at future time steps. We also evaluated 
the importance of protected areas in this system for 
maintaining ecological connectivity into the future.

Methods

Study area

The study was conducted in the CCE, a 72,843  km2 
area that covers parts of the provinces of British 



 Landsc Ecol           (2024) 39:95 

1 3

   95  Page 4 of 15

Vol:. (1234567890)

Columbia and Alberta and the state of Montana. It 
is bounded approximately by Elk Lakes Provincial 
Park and Elbow-Sheep Wildland Provincial Park 
to the north, Interstate 90 to the south, the Rocky 
Mountain Trench to the west, and the prairie foot-
hills to the east (Fig. 1). The region is topographi-
cally complex, and elevations range from 729  m 
near Dixon, Montana to 3351  m at Mt. Harrison, 
British Columbia. Habitats range from lowland 
floodplains and grasslands to glaciers and alpine 
meadows. To the west of the Continental Divide, 
climate is dominated by Pacific Northwest Maritime 

weather; to the east, climate is drier and dominated 
by continental weather patterns.

Biophysical variables

Through consultation with the Crown Manager’s 
Partnership (https:// www. crown manag ers. org/) 
Technical Team and following McGarigal et  al. 
(2018), we identified six broad categories to rep-
resent the biophysical characteristics of the land-
scape and 15 geospatial layers, which included vari-
ables for naturalness connectivity, geodiversity, and 

Fig. 1  The crown of the 
continent ecoregion study 
area

https://www.crownmanagers.org/
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climate (Table  1). Each layer was selected for its 
unique effect on ecological systems (Table  1, eco-
logical influence). Layers were resampled to a 30 m 
pixel size and then range rescaled from 0 to 1.

Calculating connectedness

Connectedness was measured through the following 
process, for which more detail is provided below.

1) Resistance weights were estimated for each bio-
physical variable in terms of its importance in 
influencing ecological flow. The range-rescaled 
variables described above were multiplied by 
these weights.

2) For each pixel, multivariate Euclidean distance 
was calculated to all surrounding pixels, based on 
the environmental variables and weights selected 
for those variables. This multivariate Euclidean 
distance served as a resistance surface for each 
location on the landscape.

3) A resistant kernel was then calculated from each 
pixel  on the landscape across the unique resist-
ance surface for that  pixel. Three ecological 
neighborhoods were used as the bandwidths of 
the resistant kernels to capture variation in dis-
persal distances across species and scales of eco-
logical flows (500, 2000, and 8,000 m; Bowman 
et al. 2002).

4) Ecological distance weights were selected for 
each variable. These weights indicated the impor-
tance of a variable for ecological similarity, and 
represented how closely related pixels are, with 
the assumption that areas that are more ecologi-
cally similar to a species’ habitat are better able 
to meet its resource needs. See below for more 
details on ecological distance weights.

5) The resistant kernel was multiplied by the eco-
logical distance weights for each pixel, yielding 
a kernel representing both accessibility and eco-
logical similarity to the focal pixel.

6) The ecologically weighted kernels were summed 
across the landscape to create a raw connected-
ness surface.

7) The raw connectedness surface was quantile 
rescaled by cover type to rank the most important 
areas for connectivity within each cover type.

Because there is no approach for empirically 
quantifying the resistance and ecological distance 
weights of each variable, we used the weights from 
McGarigal et al. (2018) as a starting point (Table 1). 
McGarigal et al. (2018) reasoned that not all biophys-
ical variables would contribute equally to resistance 
or ecological distance. For example, human devel-
opment variables were weighted higher than other 
variables since moving across an impervious surface 
or a road with high traffic rate is expected to disrupt 
ecological flow to a greater degree than moving from 
one soil type to another. Therefore, resistance weights 
were applied that reflected the relative contribution 
of each variable in creating resistance to movement. 
The same approach was used for the ecological dis-
tance weights. Though hard development had a very 
high weight, that weight was only considered in areas 
where hard development was present since it is very 
different ecologically than any other changes in natu-
ral features. We adjusted the weights used in McGari-
gal et  al. (2018) to account for the wider ranges in 
topography and climate in our study area.

Although conceptually a resistance surface and 
resistant kernel would be built for every pixel on 
the landscape, for computational reasons we built 
kernels for sampled pixels (every 5th pixel for the 
500 m scale, every 10th pixel for the 2,000 m scale, 
and every 100th pixel for the 8,000 m scale). At these 
pixels, resistance was calculated as the weighted mul-
tivariate Euclidean distance to each neighboring cell. 
Then, we divided the distance surface by the maxi-
mum resistance weight. This resulted in a surface 
where two pixels with the same environmental attrib-
utes had a value of 0, and maximally dissimilar val-
ues had a value of 1. We then multiplied the Euclid-
ean distance surface by 50 and added a 1 to ensure 
the minimum resistance value was not less than 1, as 
required by the resistant kernel algorithm. Fifty is the 
theoretical maximum resistance among pixels and 
was determined based on iterative testing. Please see 
McGarigal et al. (2018) for more information.

A Gaussian resistant kernel was applied to this 
resistance surface at each focal pixel. The resistant 
kernel accumulated cost and distance as it moved 
away from the focal pixel. These cost distances 
were transformed to probabilities weighted by the 
Gaussian distribution so that probabilities summed 
to one. The extent of the kernel was governed by the 
bandwidth (e.g., 500, 2000, or 8000  m). Resistant 
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kernels were equivalent to a standard Gauss-
ian kernel when resistance was minimal (i.e., in a 
landscape where biophysical variables are identi-
cal across all pixels), but spread of the kernel was 
reduced in areas where biophysical variables dif-
fer from those of the focal pixel. The resistant ker-
nel was then multiplied by the ecological distance 
weights (Table  1), thereby reducing the value at 
neighboring pixels that are dissimilar to the focal 
pixel. The result was a modified resistant kernel that 
measured both accessibility from and similarity to 
the focal pixel.

Overlapping weighted kernels were summed for 
each pixel, resulting in a raw connectedness value 
at each pixel. This resulted in one of two measures 
of connectivity that we considered, raw connected-
ness and scaled connectedness. Raw connectedness 
was used to quantify changes in absolute connec-
tivity among the time steps. Scaled connectedness 
incorporated structural cover types and was used as 
our final mapped products. To obtain scaled con-
nectedness, we quantile rescaled the raw connected-
ness values by cover type to obtain ecological con-
nectedness values at each pixel. We performed this 
rescaling for two reasons. First, quantile rescaling 
ranked cells within a cover type against one another 
allowed us to identify pixels with the greatest con-
nectivity within that particular cover type. Second, 
many cover types are inherently less connected eco-
logically with the surrounding landscape because 
they are very ecologically different. For example, 
wetlands would have large ecological distances 
with their surrounding environment and typically 
have consistently lower connectedness than forests. 
By quantile rescaling in this manner, the value of 
each pixel represented its connectivity relative to 
all other pixels in that cover type and incorporates 
structural connectivity into the final surfaces. We 
used the following cover type bins from the Com-
mission for Environmental Cooperation North 
American Land Cover Product (Centre for Remote 
Sensing et al. 2020) to rescale the connectivity sur-
face; coniferous forest, deciduous forest, mixed for-
est, shrub, grassland, wetland, open water, snow, 
and streams.

The process outlined above resulted in connectiv-
ity surfaces for three ecological neighborhoods, 500, 
2000, 8000 m. To evaluate multi-scale connectivity 

and areas important at all scales, we then averaged 
the surfaces across the neighborhoods.

Future predictions

To evaluate potential climate influences on ecological 
connectivity, we modeled connectivity in a dynamic 
framework across time steps (Ash et  al. 2020). We 
implemented this for the 2050 time step by using the 
2020 climate layers (in addition to the other layers) 
at each source pixel in the landscape and calculating 
ecological distance to the surrounding pixels with the 
2050 layers. For the 2080 time step, we considered 
the 2050 environment at the source pixels and cal-
culated ecological distance to the surrounding pixels 
with the 2080 layers. These time steps were chosen to 
be consistent with the future stream temperature data 
source (more below; Jones et al. 2017).

We used climate and stream temperature projec-
tions in a dynamic connectivity framework to predict 
how the connectivity of ecological processes changes 
through time. For the climate data, we used Climatic 
Moisture Deficit (CMD), Growing Degree Days 
(GDD), Mean Temperature of the Warmest Month 
(MTWM), and Winter Precipitation (WTPP) from the 
ClimateNA database (AdaptWest Project 2021; Wang 
et  al. 2016). We used data from the ensemble mod-
els which averaged the following eight Global Cli-
mate Models (GCMs), as recommended by Mahony 
et  al., (2022); ACCESS-ESM1.5, CNRM-ESM2-1, 
EC-Earth3, GFDL-ESM4, GISS-E2-1-G, MIROC6, 
MPI-ESM1.2-HR, and MRI-ESM2.0. We used two 
projected future time periods, 2041–2070 (hereaf-
ter 2050), and 2071–2100 (hereafter 2080). For the 
stream temperature data, we used projected stream 
temperatures developed by Jones et al. (2017). Stream 
temperatures were predicted for 2035 and 2075 with 
RCP 4.5 and 8.5 emissions using the CAN ESM2 
Global Climate Model. To match years with our other 
climate variables, we took the average stream tem-
perature of the 2035 and 2075 projections to obtain a 
2055 projection, and used the 2075 projection for the 
2071–2100 time period. To determine how connectiv-
ity was changing through time, we also calculated the 
per-pixel differences in raw connectedness (unscaled 
by cover type) between the 2020 and 2080 time 
steps as percent difference. To help assess drivers of 
changes in connectivity through time we calculated 
the Pearson correlation coefficient between the 2020 
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to 2080 difference in raw connectedness and the 2020 
to 2080 difference for each of the climate variables.

Protected area effectiveness

To determine current protected area effectiveness 
at providing for ecological connectivity and resil-
ience across the entire CCE landscape we obtained 
protected area information from PAD-US v 3.0 for 
the U.S (U.S.G.S. 2022) and CPCAD for Canada 
(CPCAD 2021) and grouped these protected areas by 
IUCN classifications into three categories, all IUCN I 
levels (e.g., preserves and wilderness areas), all IUCN 
II areas (e.g., National Parks), and all other IUCN cat-
egories (e.g., National Forests). We first converted the 
CCE connectivity rasters to points and identified the 
autocorrelation distance of the points for each spatial 
scale, indicated by the sill of a spatial variogram fit 
using the gstat package in R (Pebesma 2004; Graler 
et al. 2016). We then subsampled the points at these 
distances and extracted the following information at 
each point: connectivity value, elevation, and protec-
tion (i.e., protected or not, category of protection).

We modeled connectivity as a linear function of 
protected status while controlling for the effect of ele-
vation for all models using the lm function in R. We 
first modeled connectivity as a function of elevation 
and protected area status (protected or unprotected). 
We then modeled connectivity as a function of eleva-
tion and protected area category.

Results

For the 2020 time step, and regardless of spatial 
scale, ecological connectivity was higher in the north-
eastern corner of the study area, on both sides of 
Highway 22 in Alberta, between Route 3 to the south 
and Route 40 to the north. Higher connectedness was 
also present in and around Castle Provincial Park 
and in the foothill grasslands around the Ross Lake 
Natural Area in Alberta, and the Bob-Marshall Wil-
derness Complex in Montana (Fig.  2). As expected, 

ecological connectivity values were more heteroge-
neous at the 500 m scale and more smoothed at the 
8000 m scale. At this broadest scale, ecological con-
nectivity was lower for areas like the Mission Moun-
tains Wilderness and Mission Mountains Tribal Wil-
derness due to development in the valleys on either 
side of this mountain range.

Though future ecological connectivity values 
increased for some patches, areas around streams 
tended toward lower connectivity in future time steps, 
resulting in higher connectivity patches being sur-
rounded by lower connectivity linear features (Fig. 3).

Because rescaling by cover type quantile rescales 
the connectivity values for each type, overall changes 
in connectivity among the time steps were assessed 
with the raw connectivity values. The raw median 
connectivity values of the 2020 surfaces were 0.82, 
0.72, and 0.42 for the 500 m, 2,000 m, and 8,000 m 
scales respectively. For the 2080 surfaces, these val-
ues were 0.68, 0.58, and 0.21 respectively, indicating 
reduced connectivity in the future for all scales and a 
reduction in connectivity values from 17 to 50%. To 
better highlight differences in raw ecological connec-
tivity among the time steps and scales, we estimated 
the percent difference in connectivity values between 
2020 and 2080 (Fig. 4; Appendix B). Losses in con-
nectivity increased with scale, with the 8000 m scale 
having the largest losses in future connectivity. These 
losses were especially evident on the eastern side of 
the Rocky Mountains in grassland areas.

For the 2020 time step and both emissions scenar-
ios, protected areas had higher ecological connectiv-
ity than unprotected areas (Fig. 5; Appendix C). This 
was also true for the 2080 time step, but to a lesser 
degree than the current time step, indicating that 
protected areas overlapped with lower connectivity 
values in future time steps. For all scales and for the 
2020 and 2080 time steps, IUCN category I protected 
areas had significantly higher ecological connectivity 
compared with unprotected areas. For only the 500 m 
scale, and for the 2020 and 2080 time steps and the 
RCP 8.5 emissions scenario, IUCN category II pro-
tected areas had significantly higher ecological con-
nectivity compared with unprotected areas (Appendix 
C). For all other IUCN categories, only the 2000 m 
and 8000 m scales were significant for 2020 (Fig. 5; 
Appendix C). There was no significant difference 
from unprotected of the ‘other’ IUCN category for 
2080 for any scale.

Fig. 2  Connectivity surfaces from using the a 500  m, b 
2,000 m, and c 8,000 m bandwidths for the year 2020. Mean 
connectivity surface across scales, d is shown with protected 
area boundaries. White areas within the study area boundary 
indicate developed pixels with no associated connectivity value

◂
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Discussion

We predicted ecological connectivity by account-
ing for the composition and configuration of anthro-
pogenic development, moisture and hydrology, soil 
attributes, physical disturbance, and climate and 
energy under current conditions and under future sce-
narios. This approach incorporated multiple species-
agnostic connectivity methods that are often applied 
separately (e.g., naturalness, topographic and soil 
variables, and climate) into a single framework. An 
additional strength of this approach is the ability to 
model connectivity for different scales of ecological 
processes. We extended the methods of McGarigal 
et al., (2018) to model dynamic ecological connectiv-
ity into the future with projected climate variables. 
Through this process, we were able to identify impor-
tant differences among spatial scales, time steps, and 
the efficacy of the current protected area system for 
maintaining ecological connectivity in the CCE.

Ecological processes like dispersal, gene flow, and 
connectivity occur at multiple spatial scales and one 
of the challenges of ecology is to identify the appro-
priate scale for the process of interest (Levin 1992; 
Noss 1992). We examined three spatial scales to cap-
ture connectivity for species with different movement 
capabilities and observed different scaling patterns. 
Raw connectivity across the study area was higher 
at finer spatial scales than coarser ones, likely due to 
inherent spatial autocorrelation in natural landscapes 
and lower ecological dissimilarities at fine scales. 
Species that move shorter distances likely encounter 
similar environments over these distances and may 
not be as constrained by environmental dissimilarities 
than species that move longer distances. However, as 
distances increase and environments become more 
dissimilar, constraints in movement may be encoun-
tered—especially for specialist species with particular 
environmental niches. Across all scales, we found an 
overall decrease in raw connectivity values across the 
study area for future time steps, suggesting reduced 
ecological connectivity in this system’s future. This 
change in connectivity was driven by changes in the 
values of the climate layers through time, especially 

for growing degree days and climatic moisture deficit, 
and to a slightly lesser degree, winter precipitation 
(Appendix D). Our coarse-scale evaluations project 
larger losses of raw connectivity through time, which 
again is likely a result of lower spatial autocorrela-
tion. Therefore, connectivity for ecological processes 
occurring at fine scales in our study area may be less 
sensitive to climatic changes in the near term, though 
more research is needed (Collins et al. 2012).

For raw connectivity and for ecological connec-
tivity (quantile rescaled by cover type), we observed 
reduced connectivity along stream and valley bot-
toms compared with the rest of the landscape for the 
current time step, and further loss of connectivity in 
these areas in the future, especially at broad spatial 
scales. This change in connectivity was also driven by 
large changes in values of our climate layers particu-
larly along valley bottoms, which aligns with other 
studies on climate projections in the CCE. For exam-
ple, currently, much of the precipitation in the CCE 
falls as snow in the winter, which feeds streams and 
rivers throughout the summer months. However, that 
snowpack, which has already declined by 15–30% 
from historic levels (Mote et  al. 2005), is projected 
to decline further. Winter precipitation in mid to 
low elevations is also projected to fall more as rain 
than snow, thereby increasing stream flows during 
winter, but reducing the overall snowpack and lead-
ing to lower summer stream flows, which are already 
being observed (Leppi et  al. 2011). These changes 
can affect water temperatures, species occupancy and 
abundance in stream reaches, riparian species com-
positions, and connectivity to upland habitat. The 
decrease in connectivity we modeled along riparian 
areas is concerning since these areas are typically 
natural conduits for movement. For example, riparian 
networks not only allow for movement between high 
and low elevation areas (Beier 2012) and among pro-
tected areas (Fremier et al. 2015), but also allow for 
many species to move through otherwise inhospitable 
areas (Lees and Peres 2008).

We also found a decrease in predicted future con-
nectivity in many of the eastern Rocky Mountain 
Front grasslands. This aligns with previous research 
showing that increasing temperatures and aridity will 
change grassland ecosystems in the CCE through spe-
cies turnover, decreasing productivity, and increasing 
soil erosion (Clark et  al. 2002). These changes also 
have the potential to increase invasion by noxious 

Fig. 3  Connectivity values for 2020, 2050, and 2080 for a sub-
set of the study area. The future projections are predicted for 
RCP emissions scenario 8.5. Results for RCP emissions sce-
nario 4.5 are provided in Appendix A

◂
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weeds and woody shrubs and increase disturbances 
in grassland areas by increasing the frequency and 
extent of wildfires (Bradley 2009). All these changes 
can contribute to ecological dissimilarity across the 
grassland system and cause an associated decrease in 
ecological connectivity.

As expected, for the current time step, protected 
areas had higher ecological connectivity values com-
pared with unprotected areas. However, the strength 
of this relationship decreased in future time steps. 
These results may point towards protected areas being 
slightly less effective at protecting ecological connec-
tivity in this landscape in the future. IUCN category I 
protected areas had significantly higher connectivity 
values compared to unprotected lands for all scales 
and for all time steps, indicating the importance of 

these areas for maintaining connectivity of future 
ecological processes. Future development may have 
large negative effects on ecological connectivity, 
which could further lower connectivity values in 
unprotected areas and raise the importance of pro-
tected areas. However, we were unable to project 
development into the future. Therefore, our results 
may be overestimating predicted future connectivity 
across the study area.

Conclusions

Our analysis provides multiple estimates of eco-
logical connectivity for the CCE, which can also be 
interpreted as measures of resilience—the ability to 

Fig. 4  Percent difference in connectivity values between the 
2020 and 2080 time steps for the RCP 8.5 emissions scenario. 
Cooler colors indicate higher connectivity values in the future 

and warmer colors indicate lower connectivity values in the 
future. Results for the RCP 4.5 emissions scenario are provided 
in Appendix B
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absorb stressors while retaining ecological functions 
(McGarigal et al. 2018). This set of models can help 
inform management in this diverse ecosystem. For 
example, the Crown Manager Partnership, led by 16 
resource management entities including three First 
Nations across our study area, identifies six conserva-
tion priorities in the most recent strategic plan: five-
needle pines, wildfire management, fish and wildlife 
habitat integrity, ecological connectivity, watershed 
integrity and resilience and invasive species, insect 
and disease risk. Our analysis not only speaks to the 
ecological connectivity priority, but also relates to 
other priorities and can serve an important role in 
adaptive management cycles. For example, the Crown 
Manager’s Partnership is partnering with the Con-
federated Salish and Kootenai Tribes and 20 other 
partners to implement restoration for the whitebark 
pine (Pinus albicaulis), recently listed as Threatened 
in the US. This species is adapted to high elevation 
subalpine zones throughout the CCE and dispersal 
among mountaintops is accomplished by its ecologi-
cal companion, the Clark’s nutcracker (Nucifraga 
columbiana). Although these species are ecologi-
cally co-dependent, changes in ecological connectiv-
ity may affect each independently and differently. Our 
array of models will serve to inform both silvicultural 
and wildlife managers across the multi-jurisdictional 
landscape. Since the pine and nutcracker are both 

most abundant in high-elevation protected areas, our 
models—which suggest that even our most protected 
areas may not be as effective at protecting connectiv-
ity in the future—can provide information to manag-
ers as they make decisions with future consequences.

By identifying areas of high ecological connec-
tivity and resilience, both today and into the future, 
management can be targeted to maintain these areas, 
thus buoying the ecological integrity of the system. 
Furthermore, our observed loss of ecological con-
nectivity in stream bottoms and eastern grasslands, 
along with a projected decrease in the efficacy of pro-
tected areas in conserving connectivity may require 
short-term interventions to stem long-term eco-
logical losses. Our method takes advantage of many 
advances in modeling species-agnostic connectivity, 
adds dynamism through time, and can be applied to 
other systems and study areas.
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