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Abstract

Context Spatial patterns of CH4 fluxes can be

modeled with remotely sensed data representing land

cover, soil moisture and topography. Spatially exten-

sive CH4 flux measurements conducted with

portable analyzers have not been previously upscaled

with remote sensing.

Objectives How well can the CH4 fluxes be pre-

dicted with plot-based vegetation measures and

remote sensing? How does the predictive skill of the

model change when using different combinations of

predictor variables?

Methods We measured CH4 fluxes in 279 plots in a

12.4 km2 peatland-forest-mosaic landscape in Pallas

area, northern Finland in July 2019. We compared 20

different CH4 flux maps produced with vegetation

field data and remote sensing data including Sentinel-

1, Sentinel-2 and digital terrain model (DTM).

Results The landscape acted as a net source of CH4

(253–502 lg m-2 h-1) and the proportion of source

areas varied considerably between maps (12–50%).

The amount of explained variance was high in CH4

regressions (59–76%, nRMSE 8–10%). Regressions

including remote sensing predictors had better perfor-

mance than regressions with plot-based vegetation

predictors. The most important remote sensing pre-

dictors included VH-polarized Sentinel-1 features

together with topographic wetness index and other

DTM features. Spatial patterns were most accurately

predicted when the landscape was divided into sinks

and sources with remote sensing-based classifications,

and the fluxes were modeled for sinks and sources

separately.

Conclusions CH4 fluxes can be predicted accurately

with multi-source remote sensing in northern boreal

peatland landscapes. High spatial resolution remote

sensing-based maps constrain uncertainties related to

CH4 fluxes and their spatial patterns.

Keywords Methane flux measurements �
Geographic object-based image analysis � Lidar �
Satellite imagery � Synthetic aperture radar �
Vegetation mapping

Supplementary Information The online version contains
supplementary material available at https://doi.org/10.1007/
s10980-021-01194-x.

A. Räsänen (&) � T. Virtanen
Ecosystems and Environment Research Programme,

Faculty of Biological and Environmental Sciences, and

Helsinki Institute of Sustainability Science (HELSUS),

P.O. Box 65, 00014 University of Helsinki,

Helsinki, Finland

e-mail: aleksi.rasanen@helsinki.fi

T. Manninen � M. Korkiakoski � A. Lohila
Finnish Meteorological Institute, P.O. Box 503,

00101 Helsinki, Finland

A. Lohila

INAR Institute for Atmospheric and Earth System

Research/Physics, Faculty of Science, P.O. Box 68,

00014 University of Helsinki, Helsinki, Finland

123

Landscape Ecol (2021) 36:1177–1195

https://doi.org/10.1007/s10980-021-01194-x(0123456789().,-volV)( 0123456789().,-volV)

http://orcid.org/0000-0002-3629-1837
https://doi.org/10.1007/s10980-021-01194-x
https://doi.org/10.1007/s10980-021-01194-x
https://doi.org/10.1007/s10980-021-01194-x
https://doi.org/10.1007/s10980-021-01194-x
http://crossmark.crossref.org/dialog/?doi=10.1007/s10980-021-01194-x&amp;domain=pdf
https://doi.org/10.1007/s10980-021-01194-x


Introduction

Methane (CH4) is the second most important green-

house gas (IPCC 2013), and a large part of CH4

emissions originate from northern peatlands (Frolking

et al. 2011; Turetsky et al. 2014; Abdalla et al. 2016).

On the one hand, CH4 is produced by methanogens in

anoxic conditions, which are typically obtained in

water-saturated conditions in which diffusion of gases

is low and oxygen is depleted quickly. CH4 is

transported from soil to the atmosphere by molecular

diffusion, in the form of gas bubbles (i.e. ebullition)

and plant-mediated processes. On the other hand, CH4

can be oxidized to carbon dioxide by CH4 consuming

methanotrophs in oxic conditions, typically found in

the surface peat layers. A net emission into the

atmosphere is observed when production and transport

exceed consumption (Le Mer and Roger 2001; Lai

2009; Abdalla et al. 2016).

Important factors controlling CH4 emissions are

soil temperature, water table depth, plant community

composition, and soil pH (Turetsky et al. 2014;

Abdalla et al. 2016). These factors are spatially

heterogenic in diverse scales in the landscape, and

there are considerable uncertainties in the resulting net

emission of CH4 by the peatlands and how the

emissions are distributed spatially (Turetsky et al.

2014). In some circumstances, also mineral soils can

act as CH4 sources (Lohila et al. 2016). To constrain

the different uncertainties, there have been attempts to

assess and upscale CH4 flux patterns over different

spatial extents ranging from a single mire (Lehmann

et al. 2016) to landscapes (Dinsmore et al. 2017) and

also to synthesize CH4 controls globally (Turetsky

et al. 2014).

The spatial patterns of CH4 fluxes can be assessed

with remote sensing-based maps. One approach is to

monitor CH4 fluxes with imaging spectroscopy, in

particular in shortwave and thermal infrared region.

However, this approach has been limited to CH4

plumes instead of diffuse fluxes originating from

peatlands (Thorpe et al. 2016). Coarse-grained esti-

mates of CH4 fluxes can be derived with large scale

process models resembling carbon cycle (Bruhwiler

et al. 2014) or more locally with the eddy covariance

method (Davidson et al. 2017). However, in spatially

heterogeneous landscapes, such as forest-peatland

mosaics, CH4 fluxes have fine-scale spatial hetero-

geneity. Therefore, a typical approach is to measure

fluxes with chambers and then upscale of the obser-

vations with remote sensing data (Lehmann et al.

2016; Dinsmore et al. 2017; Morozumi et al. 2019).

Chambers can measure fluxes only from a small

area (\ 0.5 m2), and the number of chamber plots is

limited in one study; therefore, there remain large

uncertainties whether the limited number of chamber

plots are representatively sampled over a specific

landscape (Lehmann et al. 2016; Davidson et al.

2017). A typical approach is to upscale fluxes with

categorical land cover maps (Lehmann et al. 2016;

Morozumi et al. 2019), and it has been shown that

more accurate upscaling can be derived with land

cover maps with higher thematic resolution (Lehmann

et al. 2016). However, it has been discussed that maps

of continuous variables (e.g. topographic features,

spectral indices and tree canopy cover) represent more

accurately landscape processes such as CH4 fluxes,

which are typically not limited to crisp patches

(McGarigal et al. 2009; Kedron et al. 2018). There-

fore, another option is to conduct CH4 upscaling with

continuous maps of specific property such as satellite-

derived spectra (Dinsmore et al. 2017).

It is possible to link CH4 fluxes to diverse remotely

sensed or other data sources. In numerous mapping

endeavors it has been shown that multi-source remote

sensing (i.e. inclusion of multiple types of remotely

sensed information in one mapping workflow)

increases the accuracy (Bourgeau-Chavez et al.

2016; Karlson et al. 2019; Räsänen and Virtanen

2019). As CH4 fluxes in northern landscapes are

mainly connected to peatlands, it can be assumed that

similar methods can be used for detection of peatlands

and tracking spatial patterns of CH4. In previous

studies, it has been shown that multiple remote sensing

datasets are useful in wetland and peatland delin-

eation, containing optical data depicting spectral

properties of vegetation and land cover (Bourgeau-

Chavez et al. 2016; Minasny et al. 2019), synthetic

aperture radar (SAR) data sensitive to moisture,

surface roughness and vegetation structure (Widhalm

et al. 2015; Bourgeau-Chavez et al. 2016; Millard and

Richardson 2018; Karlson et al. 2019; Minasny et al.

2019) and topographic data capable to model presum-

ably wet areas based on water flow routes and flatness

(Murphy et al. 2007; Karlson et al. 2019; Minasny

et al. 2019; Lidberg et al. 2020). Nonetheless, the use

of multi-source remote sensing data has been limited

in CH4 flux studies. Furthermore, recent technological
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development of portable CH4 measurement devices

has opened up possibilities for spatially dense and

extensive field sampling. However, to the best of our

knowledge, spatially extensive measurements have

not yet been linked to remotely sensed data.

We measured CH4 fluxes with spatially extensive

chamber measurements (n = 279) in two adjacent

catchments (altogether 12.4 km2) in northern Finland

covering all main land cover types in the area during a

two-week period in early July 2019. We then upscaled

the measurements to the whole study area with multi-

source remote sensing data including Sentinel-2

optical satellite imagery, Sentinel-1 SAR data and

topographic data. Our two research questions were:

How well can the CH4 fluxes be predicted with plot-

based vegetation measures and remote sensing data

representing land cover, soil moisture and topogra-

phy? How does the predictive skill of the model

change when using different combinations of predictor

variables?

Materials and methods

Study area

We studied landscape-level CH4 fluxes in two adjacent

catchments (4.5 km2 and 7.9 km2 respectively) in

Pallas area, located in Muonio municipality, in

northern Finland (67�570–68�010 N; 24� 100–24�150
E, Fig. 1). The area belongs to northern boreal

vegetation zone and subarctic climate zone with the

annual average temperature being -1.3 �C, precipi-
tation 547 mm, and the number of growing degree

days above 5 �C 698 (years 1981–2010, data from

nearby Kittilä Pokka station). The area is character-

ized by gently undulating terrain with the elevation

above sea level ranging between 267 and 564 m.

According to our land cover classification, coniferous

and mixed coniferous-deciduous forests (68%) and

forested and open peatlands (17%) dominate the

whole area, while its western part includes mountain

tundra and treeline vegetation (14%) (Fig. 1, Table 1;

methods described in Supplementary material). Dom-

inating tree species include Norway spruce (Picea

abies), Scots pine (Pinus sylvestris) and Downy birch

(Betula pubescens). The western part of the study area

belongs to Pallas-Yllästunturi National Park and

includes old-growth forests, mostly with mixed tree

species composition (Fig. 1). The eastern part contains

mostly coniferous dominated forests, as in the latter

half of the twentieth century, deciduous trees were

selectively logged, and Scots pines were planted in

some locations. Furthermore, some of the peatlands in

the eastern part have been drained for forestry

purposes in the same period. Atmospheric, ecological

and hydrological research within and nearby the study

area has been extensive during the past decades

(Lohila et al. 2015).

Field inventory and vegetation data

We gathered the vegetation cover data and conducted

the CH4 flux measurements between July 3 and 13,

2019 in twelve 0.5–2.0 km long transects located

within the catchments so that all major land cover

types were included (Fig. 1). Along each transect, we

sampled circular plots with 10 m diameter in 100 m

intervals. Within most of the circular plots, we

sampled three subplots with 0.5 m diameter located

at a 2 m distance to the north, east, and west from the

plot centroid. In total, we sampled 131 larger plots and

300 subplots. We collected the location of each plot

with Trimble R8 GPS device with ± 0.05 m

accuracy.

For each plot, we calculated a number of plot-based

vegetation measures representing vegetation compo-

sition and structure. In the larger plots, we measured

the height, crown length and diameter at breast height

of each tree located within the plot. Within the

subplots, we estimated %-cover of each vascular plant

and moss species and measured the average height of

each vascular plant species. For each larger plot, we

estimated the ground and field layer biomass and leaf-

area index for four vascular plant functional types

(evergreen shrubs, deciduous shrubs, forbs, and

graminoids) and biomass for mosses as well as total

biomass and leaf-area index (Supplementary mate-

rial). Additionally, we estimated tree biomass and

leaf-area index for spruce, pine, coniferous trees in

total, deciduous trees in total, and all trees in total

(Supplementary material). For each subplot, we

defined membership values for fuzzy plant community

clusters (Supplementary material).

At each of the 279 subplots, we conducted cham-

ber-based measurements of CH4 fluxes once during

the field inventory period. The chamber closure time

was always 5 min and measurements took place
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between 9:15 AM and 5:30 PM. We used portable LI-

COR trace gas analyzer (LI-7810, LI-COR Environ-

mental, Lincoln, NE, USA) and a closed opaque

chamber (height 30.5 cm, diameter 31.5 cm). During

the flux measurements, we measured the air temper-

ature inside the chamber headspace. We measured soil

Fig. 1 Land cover map of the study area located in northern Finland. The classification accuracy was 76% and methods description is

given in Supplementary material
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Table 1 Description of different land cover types, their %-cover in the landscape and number of methane measurement plots

Land cover type Description %-

cover

CH4

plots

Forests on mineral soil 68.0 144

Pine forest Pine-dominated forest on mineral soil; canopy cover at least 20%; pine (Pinus sylvestris)
cover at least 2/3 of total canopy cover; field layer dominated by evergreen shrubs (esp.

Vaccinium vitis-idaea); some deciduous shrubs may exist; ground layer dominated by

feather mosses and lichens

7.1 24

Spruce forest Spruce-dominated forest on mineral soil; canopy cover at least 20%; Norway spruce (Picea
abies) cover at least 2/3 of total canopy cover; field layer dominated by deciduous shrubs

(esp. Vaccinium myrtillus), also evergreen shrubs, forbs and graminoids exist; ground layer

dominated by feather mosses

26.4 54

Mixed forest Forest on mineral soil; canopy cover at least 20%; not dominated by one species, dominant

tree species include pine, spruce and birch (Betula pubescens), the cover of minority species

at least 1/3; field layer dominated by deciduous shrubs, forbs and graminoids; ground layer

dominated by mosses and lichens

34.5 66

Peatlands 17.2 102

Dwarf shrub pine

bog

Peatland with coverage of pines at least 1%; evergreen (Rhododendron tomentosum) and
deciduous (Vaccinium uliginosum, Betula nana) shrubs dominate in field layer, also some

forbs (Rubus chamaemorus) and graminoids (mostly Carex spp.); ground layer covered by

Sphagnum and feather mosses

4.5 18

Paludified spruce

forest

Peatland with a canopy cover of spruces at least 5%; other trees can also exist; field layer

dominated by forbs, graminoids and shrubs; ground layer covered by Sphagnum and feather

mosses

2.0 12

Paludified mixed

forest

Peatland with a canopy cover of spruces and birches at least 5%; other trees can also exist;

field layer dominated by forbs, graminoids and shrubs; ground layer covered by Sphagnum
and feather mosses

2.1 12

Palufied birch

forest

Peatland with canopy cover of spruces and birches at least 5%; other trees can also exist; field

layer dominated by forbs, graminoids and shrubs; ground layer covered by Sphagnum and

feather mosses

0.6 9

Dwarf shrub bog Peatland with little trees (\ 1% coverage); field layer covered by evergreen and deciduous

shrubs as well as herbs (esp. Rubus chamaemorus); ground layer covered by Sphagnum and

feather mosses

1.3 9

Tall sedge fen Open peatland; field layer dominated by grasses, also deciduous shrubs (e.g. Betula nana,
Salix spp.) and forbs; ground layer covered by Sphagnum and wet brown mosses

5.1 30

Flark Open peatland, often covered by water; field layer dominated by graminoids and forbs; ground

layer covered by open water, bare peat and wet brown mosses

1.6 9

Willow thicket 1–2 m tall willow (Salix spp.) thickets along small streams within peatlands; graminoids and

forbs may exist in the field layer; ground layer covered by water, wet brown mosses and

Sphagnum

0.1 3

Tundra and treeline vegetation 13.9 33

Dry shrub tundra

heath

Open tundra located on the top of the fells; field layer dominated by evergreen shrubs (esp.

Empetrum nigrum); ground layer covered by lichen, feather mosses and rock

4.3 14

Moist shrub

tundra heath

Open tundra located on the top of the fells; field layer dominated by deciduous shrubs (esp.

Vaccinium myrtillus), also evergreen shrubs, forbs and graminoids exist; ground layer

covered by feather mosses

3.4 7

Treeline forest Sparse forest located between open tundra and forest; tree species include mountain birch

(Betula pubescens subsp. czerepanovii), spruce and pine; field layer includes deciduous

shrubs, forbs and graminoids; ground layer dominated by feather mosses

6.2 12

Water Lakes, ponds and streams 0.2 0

Non-vegetated Non-vegetated areas, such as rock, sand and gravel roads 0.7 0
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temperature and moisture next to the chamber at the

surface (WET-2 sensor, Delta-T Devices Ltd, Cam-

bridge, UK). Additionally, we recorded 5 cm soil

temperature (Pt-100 RTD Thermometer HH376,

Omega, Taiwan).

CH4 flux (F) was calculated according to ideal gas

law:

F ¼ dC tð Þ
dt

� �
t¼0

MPV

RTA
ð1Þ

where
dC tð Þ
dt

� �
t¼0

is the time derivative (ppm s-1) of

exponential regression (e.g. Korkiakoski et al. 2017) at

the beginning of the closure, M is the molecular mass

of CH4 (16.042 g mol-1), P is the air pressure (Pa)

measured from the nearby official weather station

(Kenttärova,\ 2 km from the flux measurements), R

is the universal gas constant (8.314 J mol-1 K-1), T is

the chamber headspace temperature (K), V and A are

the chamber volume (m3) and base area (m2), respec-

tively. Here, a micrometeorological sign convention is

used where a positive flux indicates a flux from the

ecosystem to the atmosphere (CH4 emission/source)

and a negative flux indicates a flux from the atmo-

sphere to the ecosystem (CH4 uptake/sink). To control

for diurnal variation and changing weather conditions,

we standardized the CH4 fluxes to 10 �C soil temper-

ature. We measured fluxes in 84 (30%) of the subplots

9–10 times between June and August and in the rest

only once between July 3 and 13, 2019. For the

subplots with repeated measurements, we estimated

FCH4;10c by using Arrhenius model:

FCH4;meas ¼ FCH4;10cQ
T�283:15

10

10 ð2Þ

where FCH4;meas is the measured CH4 flux, T is the soil

temperature (K) at 5 cm, FCH4;10c is the CH4 flux at

10 �C and Q10 is the coefficient describing flux

sensitivity to temperature. We kept Q10 and FCH4;10c

as free parameters during fitting. For the subplots with

no repeated measurements, we solved FCH4;10c directly

from Eq. (2) by using median Q10 estimated from

repeated measurements (2.149 for FCH4;meas \ 0 and

2.386 for FCH4;meas [ 0) and measured T and

FCH4;meas.

Remote sensing data

We acquired diverse remote sensing datasets to map

land cover, moisture and topography patterns within

the study area (Table 2). For predicting CH4 flux

patterns, we were primarily interested in analyzing the

applicability of optical Sentinel-2 satellite images and

Sentinel-1 SAR data (European Space Agency, ESA)

as well as a lidar-based digital terrain model (DTM,

National Land Survey of Finland, NLS). In addition,

we included canopy and intensity metrics from aerial

lidar data, spectral and textural features from an aerial

orthophoto (NLS), and spectral indices from PlanetS-

cope satellite images (Planet Labs Inc., San Francisco,

CA, USA) in the analysis. All optical remote sensing

data (Sentinel-2, orthophoto, PlanetScope) were

cloud-free. For each field inventory plot, we calculated

features from each dataset.

Sentinel-2 satellites carry optical instruments

detecting reflected solar radiation from the Earth’s

surface at 13 different wavelength bands (Drusch et al.

2012). Optical data can be used to differentiate

vegetation and land cover types, due to diverging

reflectance properties of landscape elements. We used

the bottom-of-atmosphere reflectance Sentinel-2

image (Level-2A; atmospherically corrected with

ESA’s Sen2Cor algorithm) taken during our fieldwork

(July 8). We included 11 bands (excluding bands 8a

and 10, i.e. narrow near-infrared and cirrus respec-

tively) in the analysis and also calculated 29 different

widely used spectral indices (Table S1) with RStool-

box (Leutner et al. 2019) in R. These included indices

that capture vegetation greenness and plant commu-

nity composition such as normalized difference veg-

etation index (Rouse et al. 1974; Pettorelli et al. 2005;

McPartland et al. 2019), and soil moisture such as

water indices (Gao 1996; McFeeters 1996; Arroyo-

Mora et al. 2018).

Sentinel-1 satellites carry C-band SAR instruments

emitting microwave pulses at a central frequency of

5.405 GHz and measuring their backscatter charac-

teristics (Torres et al. 2012). The backscatter is

sensitive to land surface roughness, vegetation struc-

ture and in particular moisture and water (Widhalm

et al. 2015; Bourgeau-Chavez et al. 2016; Millard and

Richardson 2018; Karlson et al. 2019; Minasny et al.

2019). Backscatter is also dependent on incidence

angle, and it thus has been recommended to use data

with multiple incidence angles (O’Grady et al. 2014;
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Millard and Richardson 2018). We acquired ground

range Sentinel-1 data from three consecutive days

(July 7–July 9), each taken in the morning but with

different incidence angles (mean values 34.2�, 39.4�

and 44.1� respectively). We corrected the datasets

geometrically with the help of the DTM and nearest

neighborhood resampling and resampled the data to

10 m spatial resolution. We used both VH (vertical

Table 2 Details of the remote sensing data

Dataset Date Producer Spatial resolution Number and list of layers and metrics

Aerial

orthophoto

Jul 1

2018

National

Land

Survey of

Finland

0.5 m 36: four spectral layers (R, G, B, NIR), eight

GLCM texture layers for each band

Lidar digital

terrain

model

Jul 12

2018

National

Land

Survey of

Finland

0.5 points m-2 (point cloud), 2 m

(layers)

10: Elevation, slope, aspect, 5 TPIs (5 m, 10 m,

20 m, 50 m, 100 m neighbourhood radiuses),

TWI, 2 DTWs (stream networks based on the

digital terrain model (DTW-DTM) and

topographic database (DTW-NLS)

Lidar intensity

and canopy

height model

Jul 12

2018

National

Land

Survey of

Finland

0.5 points m-2 (point cloud), 2 m

(layers)

3: Canopy height model, intensity for all returns,

intensity for ground returns

Lidar canopy

metrics

Jul 12

2018

National

Land

Survey of

Finland

0.5 points m-2 (point cloud) 7 metrics for[ 1.37 m tall trees: l, SD, min,

max, kurtosis, canopy cover %, density %

Six

PlanetScope

images

May

20

2019

Jun 16

2019

Jul 8

2019

Jul 26

2019

Aug 4

2019

Sep 5

2019

Planet Labs

Inc

3 m 18: three spectral indices (GRVI, NDVI, NDWI)

for all six images

Sentinel-2 Jul 8

2019

European

Space

Agency

10 m (B, G, R, NIR); 20 m (three red-

edge bands and two SWIR bands);

60 m coastal aerosol, water vapor)

40: 11 bands and 29 spectral indices (CLG,

CLRE, CTVI, DVI, EVI, GEMI, GNDVI,

GRVI, MCARI, MNDWI, MSAVI, MSAVI2,

MTCI, NBRI, NDREI1, NDREI2, NDVI,

NDWI, NDWI2, NRVI, REIP, RVI, SATVI,

SAVI, SLAVI, SR, TTVI, TVI, WDVI)

Sentinel-1 Jul

7–9

2019

European

Space

Agency

10 m 30: VH and VV polarization GRD images from

three consecutive days, generalized using

mean filter with five different window sizes

(3 9 3, 5 9 5, 7 9 7, 9 9 9, 11 9 11)

Sentinel-2 indices are specified in Table S1

B blue, DTW depth to water, G green, GLCM grey-level co-occurrence matrix, GRD ground range detected, GRVI green–red

vegetation index, NDVI normalized difference vegetation index, NDWI normalized difference water index, NIR near infra-red, R red,
SD standard deviation, TPI topographical position index, TWI topographic wetness index, VH vertical transmit, horizontal receive,

VV vertical transmit, vertical receive, l mean
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transmit, horizontal receive) and VV (vertical trans-

mit, vertical receive) polarized bands, and reduced

speckle using mean filter with five different window

sizes (3 9 3, 5 9 5, 7 9 7, 9 9 9, 11 9 11)

(Table 2).

Topography is a major factor controlling soil

moisture and hydrological patterns within landscapes

(Murphy et al. 2007; Lidberg et al. 2020). From the

topographic DTM, we calculated following layers

with SAGA-GIS (Conrad et al. 2015): elevation,

slope, topographic position indices with different

neighborhood distances (Guisan et al. 1999), topo-

graphic wetness index (TWI, Böhner and Selige 2006)

and two depth to water (DTW) indices with stream

networks derived from DTM with minimum 4 ha

catchment area (DTW-DTM) and NLS topographic

database (DTW-NLS) respectively (Murphy et al.

2007). Of these predictors, in particular TWI and

DTW have been shown to be useful in predicting

spatial patterns of wetness (Murphy et al. 2007;

Lidberg et al. 2020) and position index has been found

to be function well in locating wetlands in depressions

(Riley et al. 2017).

As forest structure differs between forests on

mineral soil and peatlands (Thompson et al. 2016),

we also calculated seven canopy metrics from the lidar

point cloud for each larger plot using LAStools

(Isenburg 2018) (Table 2). We also included two lidar

intensity layers (all returns and ground returns only)

whose functionality in wet area mapping has been

documented (Stevens and Wolfe 2012).

For each orthophoto band, we calculated eight

different grey-level co-occurrence matrix texture

layers, since the quantification of pixel value neigh-

borhood patterns (i.e. texture) has shown to increase

distinctiveness between different land covers (Hall-

Beyer 2017). The layers were energy, entropy, corre-

lation, inverse difference moment, inertia, cluster

shade, cluster prominence and Haralick correlation

(Haralick et al. 1973) calculated with Orfeo

ToolBox (Grizonnet et al. 2017).

Wet and dry areas have disparate seasonal cycles in

their spectral properties, and it has been suggested that

multi-temporal imagery should be used (Halabisky

et al. 2018). Therefore, we used six PlanetScope

images, each from a different phenological stage. The

images were delivered as orthocorrected surface

reflectance products. To correct the minor geometrical

errors and match the data with the orthophoto, we

geometrically corrected the images with 12 reference

points by using a combination of polynomial trans-

formation and a triangulated irregular network inter-

polation as well as nearest neighbor resampling. For

each image, we calculated two vegetation indices

capable of capturing vegetation phenological dynam-

ics, i.e. normalized difference vegetation index (Rouse

et al. 1974; McPartland et al. 2019), and green–red

vegetation index (Gitelson et al. 2002; Anderson et al.

2016), and one water index, i.e. normalized difference

water index (McFeeters 1996) (Table 2).

CH4 regressions and upscaling with maps

We evaluated how much variance of measured CH4

fluxes can be explained with different explanatory

predictor sets and what kind of differences there are in

the upscaled landscape-level fluxes and their spatial

patterns when using 20 different CH4 maps. We

constructed the first map with the land cover classi-

fication so that we assigned the mean measured CH4

flux estimate for each land cover type (classification

accuracy 76%, Table 1, Fig. 1, Supplementary mate-

rial). The following 19 maps were generated with

regression-based techniques, in which predictors were

remote sensing features and plot-based vegetation

measures. We produced 15maps in which we included

all CH4 measurement data (n = 279) in one regression

(Table 3). Initially, we tested 14 different predictor set

options, and we further tested if a smaller number of

predictors would notably increase the regression

performance ([ 3%-point increase in explained vari-

ance) in each predictor set option. Consequently, we

included a regression with three DTM-based predic-

tors (elevation, TWI, DTW-NLS) as it had higher

performance than regression with all DTM predictors.

The subsequent four maps were produced so that we

first divided the CH4 measurement data before

regressions into sinks (n = 194) and sources

(n = 85). We tested two options for separating sinks

and sources in the landscape: separation of sinks and

sources based on land cover types (Table 1) and

separation of sinks and sources with a binary classi-

fication in which training data consisted of CH4 flux

measurement plots. In the sink and source regressions,

we tested two different predictor sets: all predictors

and remote sensing predictors (i.e. options 1 and 3 in

Table 3).
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To produce CH4 maps other than land cover-based

maps, we conducted random forest regressions (Brei-

man 2001) and binary classifications with 500 trees.

Random forest is insensitive to overfitting and can thus

be used in remote sensing analyses with several

predictors (Belgiu and Dragut 2016). We tested one-

third of all predictors at each tree node (square root of

all predictors in binary classifications). We evaluated

model performance with random forest out-of-bag

assessment in which two-thirds of the data was used

for training and the rest for validation for each tree.

This method has been reported to result in a slightly

conservative estimate of model performance (Clark

et al. 2010). As the result of the random forest may

slightly change between different random forest runs,

we conducted 100 random forest runs for each

predictor set option. For each regression, we calcu-

lated mean, minimum and maximum explained vari-

ance (random forest pseudo R2 = 1 - (mean squared

error)/variance(response)), root mean square error

(RMSE) and normalized RMSE (nRMSE; i.e. RMSE

divided by the range of observed values). For binary

classifications, we calculated overall classification

accuracy.

To remove irrelevant predictors from the final

regressions and binary classifications, we reduced the

number of predictors with Boruta (Kursa and Rudnicki

2010), which is a random forest wrapper predictor

selection algorithm. We used mean decrease accuracy

variable importance measure. We chose those

variables to final random forest models, which were

not rejected during 999 random forest runs in Boruta

(i.e. their importance was not statistically significantly

lower than that of randomly shuffled shadow vari-

ables). We also calculated mean predictor importance

scores over the Boruta runs, and Pearson correlation

coefficients between the predictors and CH4 flux.

Analyses were conducted in R with packages ran-

domForest (Liaw andWiener 2002) and Boruta (Kursa

and Rudnicki 2010).

For those remote-sensing based maps that included

predictors only from one dataset and for maps

combining Sentinel-1 and Sentinel-2 datasets, we

produced pixel-based maps with the spatial resolution

being as it was in the input data (Table 2). For the other

regression-based maps, we utilized a geographic

object-based image analysis approach with Baatz

and Schäpe (2000) segmentation in TerraView

(Câmara et al. 2008), and calculated similar predictors

to each segment as for each field inventory plot

(Table 2). For regressions including plot-based veg-

etation predictors, we utilized maps of those predictors

(map production described in Supplementary mate-

rial). We segmented the aerial orthophoto with the

following parameter information: minimum segment

size 100 (25 m2), similarity threshold 0.15, weight for

color 0.75, and weight for compactness 0.5. The final

average segment size was 50 m2. Finally, to quantify

differences in the spatial patterns between maps, we

resampled all maps into 10 m resolution and

Table 3 Datasets included

as explanatory predictors in

different random forest

models

aIncludes plot-based

vegetation measures of

fuzzy plant community

cluster membership values,

PFT-specific and total

biomass and leaf area index,

and land cover classification
bIncludes aerial orthophoto,

lidar intensity and canopy

metrics, and PlanetScope

imagery
cOnly three DTM features:

elevation, TWI, DTW-NLS

Regression no Vegetationa Sentinel-1 Sentinel-2 DTM Other remote sensingb

1 x x x x x

2 x – – – –

3 – x x x x

4 – x – – –

5 – – x – –

6 – – – x –

7 – – x x x

8 – x – x x

9 – x x – x

10 – x x – –

11 – x – x –

12 – – x x –

13 – x x x –

14 – – – – x

15 – – – xc –
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calculated a standard error of the mean map and

pairwise Pearson correlation coefficients.

Results

The measured CH4 fluxes at the catchment during the

campaign in the first half of July 2019 varied between

sinks and sources (-662–14,211 lg CH4 m
-2 h-1). In

general, peatlands were sources (on average 2573 lg
CH4 m

-2 h-1) while forests and tundra onmineral soil

were sinks (on average - 154 and - 133 lg CH4

m-2 h-1 respectively) (Fig. 2, Table S11). However,

some of the plots on drier peatlands (bogs and

paludified forests) were weak sinks, and some of the

plots on mineral soil were weak sources (Fig. 2).

Combined regressions for sinks and sources

explained 59–76% of the variance in CH4 fluxes,

while sink regressions explained 21–24% and source

regressions 58–59% (Table 4). In the binary sink and

source classifications, mean classification accuracy

was 96.5% (minimum to maximum 95.7–97.1%) and

96.6% (96.1–97.1%) in classification with all predic-

tors and classification with remote sensing predictors,

respectively.

In the regressions with all data, most of the

regressions with remote sensing predictors only had

higher performance than regressions with plot-based

vegetation predictors. Nevertheless, the regression

combining remote sensing and plot-based vegetation

predictors had the highest performance (Table 4). Of

the different remote sensing regressions, regression

omitting DTM had the highest performance, and

Fig. 2 Boxplot of measured CH4 fluxes for each land cover type

in a peatlands and b forest and tundra on mineral soil. Positive

values indicate sources and negative values sinks. The number

of observations is given in Table 1. The centerline presents

median, box interquartile range and whiskers extend 1.5 times

the interquartile range. Observations beyond the whisker extent

are plotted separately
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Table 4 Mean percentage of explained variance, root mean squared error (RMSE) and normalized root mean squared error

(nRMSE) over 100 random forest runs for each regression

Predictor set Explained

variance (%)

RMSE (lg
m-2 h-1)

nRMSE (%) Predicted values for the catchment

(lg m-2 h-1)

CH4 sources

(%)

All predictors 75.7 (74.5–76.9) 1179

(1149–1208)

7.9 (7.7–8.1) 379 (-277 to 8884) 29.8

Plot predictors 69.3 (68.1–70.3) 1325

(1302–1350)

8.9 (8.8–9.1) 277 (-284 to 9218) 27.0

Land cover map n.a n.a n.a 304 (-224 to 6810) 17.4

Remote sensing based maps

w/o DTM 74.4 (73.4–75.5) 1209

(1184–1232)

8.1 (8.0–8.3) 420 (-301 to 10,062) 38.5

All remote sensing

data

74.1 (72.6–75.4) 1218

(1186–1251)

8.2 (8.0–8.4) 409 (-313 to 9310) 41.1

w/o Sentinel-2 74.1 (72.9–75.2) 1217

(1191–1243)

8.2 (8.0–8.4) 413 (-289 to 9274) 37.6

Sentinel-1 & DTM 73.2 (71.9–74.3) 1237

(1212–1267)

8.3 (8.1–8.5) 424 (-283 to 9072) 37.8

w/o Sentinel-1 72.9 (71.4–74.4) 1243

(1210–1279)

8.4 (8.1–8.6) 385 (-248 to 8973) 41.5

Sentinel-1 only 72.8 (71.8–73.8) 1247

(1224–1269)

8.4 (8.2–8.5) 502 (-311 to 9905) 46.7

Sentinel-1&2 &

DTM

72.5 (71.2–73.7) 1254

(1226–1284)

8.4 (8.2–8.6) 402 (-313 to 9116) 41.8

Sentinel-1 &

Sentinel-2

72.2 (71.2–73.4) 1260

(1234–1283)

8.5 (8.3–8.6) 444 (-287 to 10,178) 42.2

Sentinel-2 & DTM 71.0 (69.8–72.7) 1287

(1249–1313)

8.7 (8.4–8.8) 396 (-273 to 8836) 40.1

Elev & TWI &

DTW

70.8 (69.7–71.9) 1292

(1268–1316)

8.7 (8.5–8.9) 426 (-381 to 10,861) 29.1

DTM only 67.3 (65.5–68.7) 1368

(1338–1404)

9.2 (9.0–9.4) 409 (-388 to 10,689) 32.4

Sentinel-2 only 66.7 (65.4–68.3) 1380

(1346–1406)

9.3 (9.0–9.5) 444 (-357 to 10,567) 49.6

w/o Sentinel-1&2

& DTM

59.3 (57.5–60.9) 1525

(1494–1559)

10.3

(10–10.5)

315 (-278 to 9380) 30.8

Sink and source regressions separately, with all predictors

Sinks regressions 24.4 (23.0–26.0) 93 (92–93) 14.0

(13.8–14.1)

Sources regressions 59.1 (57.4–61.5) 2164

(2099–2209)

15.2

(14.8–15.5)

Sink and source from land cover map 303 (-292 to 9445) 17.4

Sink and source from binary map 253 (-292 to 9445) 12.1

Sink and source regressions separately, with remote sensing predictors

Sinks regressions 20.8 (18.6–22.5) 95 (94–96) 14.3

(14.2–14.5)

Sources regressions 57.5 (55.8–59.6) 2207

(2152–2250)

15.5

(15.1–15.8)

Sink and source from land cover map 277 (-305 to 9252) 17.4
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regression omitting both Sentinel datasets and DTM

had the worst performance. Relatively good perfor-

mance was obtained in regressions with a single

remote sensing data source, with Sentinel-1 having the

highest performance followed by DTM and Sentinel-

2. However, explanatory capacities were slightly

higher when multiple data sources were included in

a regression (Table 4).

The importance of Sentinel-1 and DTM in predict-

ing CH4 flux patterns was supported by predictor

importance scores in which predictors calculated from

these data were dominating among the top-ranked

predictors in the regression including all remote

sensing predictors (Fig. S1). For Sentinel-1, mean-

filtered VH predictors from different incidence angles

and window sizes were the most important ones. In the

case of DTM, important predictors included those

predicting wetness (TWI, DTW) as well as elevation

and slope. For Sentinel-2, most important predictors

included water vapor, blue and coastal aerosol bands

and some spectral indices. In contrast, the role of other

remote sensing-based predictors was small in the

regression with all remote sensing predictors. In the

correlation analysis, the presence of wetter fen plant

community cluster, TWI, Sentinel-1 VH features,

graminoid biomass and Sentinel-2 blue band had the

highest absolute correlation with CH4 (Table S12).

Although the proportion of area with net CH4

emission was in minority within the landscape, the

land area in total acted as a net source of CH4

(Table 4). There was a considerable variation in the

proportion of sources between different maps

(12–50%), while the variation was in relative terms

smaller in landscape-level mean flux estimations

(253–502 lg CH4 m
-2 h-1).

When visually interpreting the spatial patterns of

CH4, there were notable differences between maps

produced with different predictor sets (Figs. 3, 4 and

Supplementary material). Most of the regression-

based maps erroneously predicted CH4 sources to

mountain tundra in the western part of the study area.

This pattern was the most evident with the Sentinel-1-

based map (Fig. 3d), but not visible in the DTM-based

maps (Fig. 3f), in land cover classification-based maps

(Figs. 1, 2 and 3g) nor in binary classification-based

maps (Fig. 3h). In the DTM-based maps, CH4 sources

were predicted to forests on mineral soil nearby

peatlands in the middle part of the study area.

Moreover, many other regression-based maps pre-

dicted CH4 sources to forests on mineral soil that were

CH4 sinks according to our fieldwork data (Fig. 2).

According to the standard error map (Fig. 3i),

differences between maps were the largest in the

peatland areas, mountain tundra areas and roadsides.

When looking at pairwise map comparisons, it could

be seen that differences between maps were the largest

between maps with predictors calculated from single

remote sensing data source and similarities increased

when maps with predictors calculated from multiple

data sources were compared (Fig. 4).

In comparison to the land cover classification-based

map, most of the regression-based maps overestimated

landscape-level fluxes, and all regression-based maps

considerably overestimated the proportion of sources.

In contrast, separate sink and source regression-based

maps slightly underestimated landscape-level fluxes

Table 4 continued

Predictor set Explained

variance (%)

RMSE (lg
m-2 h-1)

nRMSE (%) Predicted values for the catchment

(lg m-2 h-1)

CH4 sources

(%)

Sink and source from binary map 268 (-305 to 9252) 14.3

Minimum and maximum values are given in parentheses. In addition, predicted landscape-level mean CH4 flux (landscape minimum

and maximum in parentheses) and the proportion of area with net CH4 emissions

cFig. 3 Maps of predicted CH4 fluxes based on a both remote

sensing and vegetation predictors, b vegetation predictors, c all
remote sensing predictors, d Sentinel-1, e Sentinel-2, and

f digital terrain model, g sinks and sources derived from land

cover classification and regressions with all predictors, h sinks

and sources derived from binary classification and regressions

with remote sensing predictors, i standard error map over all

CH4 maps. Positive values indicate sources and negative values

sinks
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and binary classifications proportion of sources

(Table 4). Moreover, sink and source regression-based

maps had the highest correlations with land cover-

based map (Fig. 4).

Discussion and conclusions

According to our results, CH4 fluxes can be predicted

with a range of different remote sensing datasets, and

remote sensing works better than plot-based vegeta-

tion measures in explaining CH4 patterns (Table 4).

The latter is a somewhat surprising result as vegetation

has been shown to be a major controlling factor of CH4

fluxes (Turetsky et al. 2014; Abdalla et al. 2016).

Furthermore, we assessed vegetation patterns in the

plots where CH4 fluxes were measured; thus, vegeta-

tion predictors were more directly linked to plot

characteristics than remote sensing predictors. In

upscaling, vegetation predictors and concurrent maps

of vegetation have double uncertainty when compared

to upscaling solely with remote sensing data as the

vegetation maps need first to be produced with remote

sensing data. Therefore, our results suggest that maps

of vegetation may be an unnecessary step in an

upscaling process. However, they are more useful

Fig. 4 Pairwise Pearson correlation coefficients between different maps. In the figure, LC refers to land cover and RS to remote sensing
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when the amount of sampled vegetation plots is larger

than the number of chamber plots, which typically is

the case when portable CH4 measurement devices are

not used.

In regressions with all data, explanatory capacities

were relatively high (Table 4) which is probably

linked to high spatial heterogeneity in terms of

topography and land cover within the study area and

also due to considerable range in CH4 fluxes. In

previous studies, relatively high explanatory capaci-

ties have been obtained when modeling CH4 flux

patterns with remote sensing data in study areas

containing both peatlands and forests on mineral soil

(Dinsmore et al. 2017). This explanation is further

supported by the observation that the explanatory

capacities were lower in the separate sink and source

regressions in which within-regression landscape

heterogeneity and range of fluxes were smaller than

in the regressions with all data. Explanatory capacities

were higher in source than in sink regressions which is

logical as the range of fluxes were higher in source

regressions and as peatlands—where the CH4 sources

are mainly located—are spatially heterogenic in terms

of vegetation, topography and CH4 fluxes. High

classification accuracies in vegetation mapping have

been previously obtained within peatlands (Lehmann

et al. 2016; Räsänen and Virtanen 2019). To test how

well upscaling can be performed within a single

peatland, more studies employing spatially dense and

extensive flux measurements should be conducted.

Also, datasets should have ultra-high spatial resolu-

tion, preferably\ 0.5 m grain size, due to fine-scale

heterogeneities (Räsänen and Virtanen 2019).

The landscape-level mean fluxes were relatively

similar in the different maps (i.e. similar landscape

composition), and the landscape was a net source of

CH4 according to all maps. However, the spatial

pattern differed strikingly between the maps (i.e. the

difference in configuration) (Table 4, Figs. 3 and 4).

The differences in spatial patterns were notably

different in particular when looking at the threshold

between sinks and sources. When compared to land

cover and binary classification-based maps, regres-

sion-based maps overestimated the proportion of

sources within the landscape and the mean CH4 flux.

On the one hand, the threshold between sinks and

sources is probably most accurately predicted in the

land cover or binary sink-source classification. This is

because both land cover classification discriminating

peatlands (mostly sources) from mineral soils (mostly

sinks) and binary classification had high classification

accuracies. On the other hand, it is more difficult to

judge which one of the landscape-level mean flux

estimates is the most accurate. Although land cover

classification-based map models well the threshold

between sinks and sources, regression-based maps can

assess the variation of CH4 fluxes within specific land

cover types. Therefore, the separate sink and source

regression-based maps could provide the most accu-

rate estimates of spatial patterns and landscape-level

mean fluxes although the regression performance was

lower in the separate sink and source regressions than

in the regressions with all data. As the classification

accuracy in the binary classification was high, we

recommend using it in regression-based CH4 map

production instead of a land cover map as it requires

smaller and simpler training data. Nevertheless, prob-

ably the most feasible option is to produce and

compare multiple different maps to evaluate the

composition and configuration of different processes

and biogeochemical fluxes within various landscapes.

The most important remote sensing predictors

included Sentinel-1 and topography. This is in line

with earlier studies in which the locations of peatlands

have been mapped with SAR and topographic data

with relatively high accuracy (Murphy et al. 2007;

Widhalm et al. 2015; Karlson et al. 2019; Lidberg et al.

2020). The highest accuracies were obtained when

remote sensing predictors were included from multi-

ple sources, but contrary to our expectations, boosts in

explanatory capacities with multi-source data were

relatively small (Table 4). Even with a single data

source, in particular Sentinel-1, high accuracy was

obtained, but accuracy dropped considerably when

Sentinel-1, Sentinel-2 and topography were omitted

from the models. Nonetheless, in pairwise map

comparisons, the spatial patterns were considerably

different between maps with predictors from a single

data source. Similarities increased when maps with

more predictors were compared (Fig. 4), which sug-

gests that the prediction of spatial patterns is more

robust with multi-source remote sensing. Therefore, in

line with previous literature (Bourgeau-Chavez et al.

2016; Karlson et al. 2019; Räsänen and Virtanen

2019), it is advisable to use multiple data sources to get

both high explanatory capacities and realistic predic-

tions of spatial patterns of CH4 fluxes.
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When looking at the importance of different

topography predictors, the regression model with only

three topographic predictors (TWI, elevation, DTW-

NLS) had a higher explanatory capacity than a model

with more topographic predictors emphasizing the

importance of these three predictors in CH4 upscaling

(Table 4). Of these predictors, TWI and DTW should

in principle model soil wetness (Murphy et al. 2007;

Lidberg et al. 2020) which is a key control of CH4

fluxes (Turetsky et al. 2014; Abdalla et al. 2016).

When looking at Sentinel-1 predictors, VH predic-

tors were more important than VV predictors which is

in line with previous research (Baghdadi et al. 2001;

Karlson et al. 2019). Our results also showed that

multiple different VH predictors (i.e. VH mean-

filtered with different window sizes and acquired with

different incidence angles) were among the most

important predictors. This suggests that it is preferable

to test, and, if necessary, include multiple diverse SAR

datasets and preprocessing options in peatland map-

ping. Additionally, as SAR is sensitive to temporal

moisture conditions (Bourgeau-Chavez et al. 2013),

data taken on different time-points, even consecutive

days, can give divergent results. Further boosts in

regression performance could have been obtained if

we had included SAR datasets from early and late

growing season and also from winter (Widhalm et al.

2015; Karlson et al. 2019). This could have alleviated

problems related to mountain tundra, which was

erroneously modeled to be a significant emitter of

CH4 in the Sentinel-1-based map. Nevertheless, it has

been found that SAR backscatter is more sensitive to

vegetation structure than soil moisture in peatland

environments (Millard and Richardson 2018). More-

over, in a study that incorporated multi-temporal SAR

data in peatland detection, open peatlands were mixed

up with mountain tundra, and the misclassifications

were reduced with the help of topographic predictors

(Karlson et al. 2019).

Interestingly, of the Sentinel-2 predictors, the most

important ones were water vapor, blue and coastal

aerosol bands instead of predictors, which are usually

important in vegetation mapping, such as greenness

indices (Pettorelli et al. 2005), or water indices

sensitive to soil moisture (Arroyo-Mora et al. 2018).

Our results suggest that in CH4 flux studies, four

spectral bands is not sufficient, and higher spectral

resolution should be included. This finding is further

backed by the low importance of PlanetScope data

with four spectral bands in the regressions. When

assessing CH4 flux patterns within peatlands with fine-

scale spatial heterogeneity, preferred datasets could be

hyperspectral or multispectral sensors with at least ten

spectral bands aboard unmanned aerial vehicles.

However, the importance of different spectral features

should be further researched; in particular because the

most important spectral bands according to our study

are primarily designated for atmospheric corrections

(in particular water vapor and coastal aerosol bands) or

are sensitive to atmospheric scattering even after the

ESA Sen2Cor atmospheric correction (Drusch et al.

2012; Li et al. 2018).

There were some limitations in our study which

should be addressed in future studies. Firstly, our

measurement campaign covered only a snapshot

situation during peak summer, and we did not quantify

the seasonal or diurnal trends nor long-term balances

of CH4. The broad spatial flux patterns in fluxes would

probably be more or less similar also when evaluating

a longer time span, i.e. mineral soils and peatlands

would act as sinks and sources, respectively, but there

would be changes in the magnitude of the fluxes within

the catchment as well as within the vegetation and land

cover types. This is backed by previous studies, which

have reported that seasonal variation in CH4 flux is

largely controlled by variation in soil and air temper-

ature and moisture (Chi et al. 2020), whereas diurnal

variation is correlated in addition with changes solar

radiation and latent heat flux (GaŽovic et al. 2010;

Helbig et al. 2017; Long et al. 2010). These variables

mainly affect the temporal trends in CH4 fluxes, and

spatial variation can mostly be explained by vegeta-

tion and land cover types (Forbrich et al. 2011;

Davidson et al. 2016; Tuovinen et al. 2019; Chi et al.

2020); however, also soil temperatures may vary

considerably between land cover types, in particular

during summer (Helbig et al. 2017). Secondly, we

omitted the fluxes originating from trees in our

analysis. It has been shown that trees on mineral soil

emit CH4; for instance, emissions of an average Scots

pine tree has been measured to be 0.8% of uptake by

forest floor (Machacova et al. 2016). Therefore, future

studies should concentrate on developing remote

sensing-based spatiotemporal models for CH4 and

carbon balances that account for fluxes originating

from open peatlands, forest floors and trees.

Recently developed portable carbon analyzers and

modeling approaches presented in this article enable to
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measure and model landscape-level variation of CH4

dynamics in such detail that spatially explicit maps

can be produced. The maps produced with high

resolution remote sensing constrain uncertainties

related to CH4 fluxes and their spatial patterns. The

approach presented is applicable at various spatial

extents, but field observation data should be collected

so that it is representative for the whole region of

interest, and at smaller extents, finer resolution remote

sensing data acquired for example from unmanned

aerial vehicles should be used.
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M, Peichl M (2020) The Net Landscape Carbon Balance—

Integrating terrestrial and aquatic carbon fluxes in a man-

aged boreal forest landscape in Sweden. Glob Change Biol

26:2353–2367

Clark ML, Aide TM, Grau HR, Riner G (2010) A scalable

approach to mapping annual land cover at 250 m using

MODIS time series data: a case study in the Dry Chaco

ecoregion of South America. Remote Sens Environ

114:2816–2832

Conrad O, Bechtel B, Bock M, Dietrich H, Fischer E, Gerlitz L,

Wehberg J, Wichmann V, Böhner J (2015) System for
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