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Abstract

Context Biophony is the acoustic manifestation of

biodiversity, and humans interact with biophony in

many ways. However, quantifying biophony across

urban landscapes has proven difficult in the presence

of anthrophony, or sounds generated by humans.

Improved assessment methods are required to progress

our understanding of the processes influencing bio-

phony across a variety of spatial–temporal scales.

Objectives We aimed to identify how the landscape

influences biophony, as well as the total acoustic

environment, along an urban to rural gradient. We

designed the study to quantify how soundscape–

landscape relationships change across a variety of

spatial–temporal scales.

Methods We recorded the afternoon acoustic envi-

ronment during the spring of 2016 at 30 locations in

the city of Innsbruck, Austria using a spatially

balanced random sampling design. We quantified the

total acoustic environment with the sound exposure

level (SEL) metric, and developed a new metric,

percent biophony (PB), to quantify biophony while

avoiding noise bias. We quantified relationships with

land cover (LC) classes, as well as a landscape index,

distance to nature (D2N), across 10 scales.

Results D2Nwithin 1280 m best predicted PB, while

both the LC class trees and D2N within 40 m best

predicted SEL. PB increased more throughout the

spring at locations with more natural surrounding LC,

while PB did not change significantly at locations with

more urban surrounding LC.

Conclusions LC and composite indices can serve as

reasonable predictors for the acoustic environment;

however, the relationships are scale dependent. Map-

ping soundscapes can help to illustrate possible

driving mechanisms and provide a valuable tool for

urban management and planning.

Keywords Soundscape � Scale � Urban ecology �
Hierarchical regression � Austria

Introduction

Sound is a natural property of landscapes and plays a

significant role in ecosystems (Pijanowski et al.

2011b). While many studies have investigated the

propagation (Garg and Maji 2014) and adverse
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impacts (Fritschi 2011) of noise—defined as undesir-

able sound produced by machines—modeling natural

and potentially desirable sound across urban land-

scapes is a recent and developing area of focus (Hong

and Jeon 2017). As natural sound can be beneficial to

public health and its measurement can serve as an

indicator for urban biodiversity (Zhang et al. 2016),

methods to understand its spatial variation and factors

influencing its characteristics are required by both

ecologists and urban planners (Hao et al. 2016). While

noise attenuation measures remain important, research

from soundscape ecology argues for an integrated

management approach, shifting the noise-only focus

to the broader interaction of all sounds and receivers

across the landscape (Smith and Pijanowski 2014;

Kang et al. 2016).

Soundscape ecology separates sounds into three

components: biophony—sounds created by biological

organisms (e.g., birdsong, insect stridulations, and

frog choruses), geophony—sounds from non-biolog-

ical origin (e.g., wind, running water, and rain), and

anthrophony—sounds created by human activities

(e.g., traffic noise, construction noise, and human

speech) (Pijanowski et al. 2011a). Anthrophony can be

subdivided, where sound from machines (e.g., cars,

trains, and planes) can be classified as technophony

and is usually considered to be noise, while other

anthropogenic sound (e.g., music and human speech)

is generally not considered noise (Qi et al. 2008). For

this study, we focus on the quantitative measure of the

acoustic environment (i.e. the physical sounds in the

landscape) as opposed to the soundscape that includes

how animals perceive the acoustic environment (ISO

2014).

While anthropogenic noise has been studied in

urban landscapes (e.g., Xie et al. 2011) and biophony

has been studied in natural landscapes (e.g., Fuller

et al. 2015; Gasc et al. 2018), work on biophony in

urban areas so far has focused on the impacts of noise

on animal vocalizations (see Slabbekoorn and Rip-

meester 2008). Only Joo et al. (2011) and Kuehne et al.

(2013) attempted to quantitatively measure biophony

across noisy urban environments. Joo et al. (2011)

modeled the acoustic environment from sounds

recorded at 17 locations on two transects along the

urban to rural gradient of East Lansing, Michigan and

found strong correlations between land cover and

biophony. Kuehne et al. (2013) modeled the sound–

landscape relationship at 10 lakes along the urban to

rural gradient of Seattle, Washington and found a

negative relationship between biophony and the

degree of urbanization. However, Kuehne et al.

(2013) cautioned that existing biophony metrics can

be biased in the presence of noise. Fairbrass et al.

(2017) corroborated this concern, finding that four

common acoustic indices used to quantify biophony

were biased by noise in the urban environment around

Greater London, UK.

An accurate assessment of how biophony varies

across urban environments is needed to support

soundscape planning (Kang et al. 2016) and could

help improve the understanding of how urban devel-

opment impacts biodiversity (Rajan et al. 2019).

Mapping desirable components of the acoustic envi-

ronment could support holistic soundscape policies

(Smith and Pijanowski 2014; Nugent et al. 2016);

however, a better understanding of the relationship

between sound and the landscape is required (Lo-

molino et al. 2015).

Furthermore, the impact of landscape scale on

acoustic metrics has not been studied, as previous

studies have assumed different distances at which the

area surrounding a particular location contributes to its

acoustic environment. For example, Joo et al. (2011)

used percent urbanization within a radius of 300 m to

explain observed sounds, while Kuehne et al. (2013)

used a radius of 10 km.

Therefore, we aimed to:

(1) develop a method to quantify biophony in the

presence of noise;

(2) analyze the relationship between the total

acoustic environment, biophony, and land cover

(LC) characteristics at different spatial scales;

and

(3) map the total acoustic environment and bio-

phony along an urban to rural gradient through a

case study in the European Alps.

Methods

Study area and recording site selection

This study was conducted in Innsbruck, Austria, a city

in the central European Alps with a population of

131,009 in 2015 (Statistics Austria 2015) (Fig. 1a).

Innsbruck lies at the intersection of two important
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alpine trade routes: the urbanized Inn valley and the

Brenner pass, the lowest elevation transportation

crossing in the Alps. Innsbruck is surrounded by large

natural areas, including the 727 km2 Karwendel

Nature Park (VdNÖ 2019). These characteristics

result in a pronounced gradient from urban to natural

or near-natural landscapes over approximately 5 km.

The study area encompassed 42.8 km2 and ranged in

elevation between 560 and 1009 m.a.s.l.

We selected the recording locations (n = 30) using

a spatially balanced survey design (Theobald et al.

2007). The method is based on the Reversed Ran-

domized Quadrant-Recursive Raster (RRQRR) algo-

rithm, which allows for the implementation of

probability-based designs (e.g., stratified random

sampling) while maintaining spatial balance between

selected locations. We assigned LC less common in

the study area with a higher probability to ensure that

they were represented in the sampling, and excluded

impossible recording locations such as rivers, build-

ings, and roads. If we could not record at the exact

locations determined by the RRQRR algorithm due to

practical reasons (e.g., private properties), we shifted

the location to the nearest possible site. The mean

distance between the actual recording locations and

the locations generated by the RRQRR algorithm was

90 m. We recorded the coordinates of each location

with a GPS (Apple iPhone 5s) (Fig. 1b).

Sound recording scheme

We conducted the field recordings during the spring of

2016, beginning on January 27th and ending on May

2nd. We collected between 3 and 5 recordings at each

location between the hours of 14:00 and 18:00

Monday through Friday (total number of record-

ings = 125) for 5 min during each visit. We used a

handheld recorder (model: H2n, manufacturer:

ZOOM Corporation, Japan). We held the gain on the

recorder constant (? 23.4 dB), positioned the micro-

phone 1 m above the ground, and set the recorder to

capture sound in all directions (4-channel mode on the

device). The recorder mixed the signal into a stereo

waveform audio file (WAV format), and we down-

sampled each file to a sampling rate of 24 kHz/s and a

16-bit sample depth. The recorder had a flat frequency

response from 100–10,000 Hz, with a slight attenua-

tion below 100 Hz (ZOOM 2015). The reported dB

values are negative in reference to 0, which is the

microphone-specific threshold value where sound

becomes too loud and starts to get distorted.

Acoustic metrics

To avoid potential noise bias found in existing metrics

as described by Fairbrass et al. (2017), we used two

metrics to quantify the acoustic environment:

1. Sound exposure level (SEL) for quantifying the

total acoustic energy in dB/min (Merchant et al.

2015), and

2. Percent biophony (PB) for quantifying biological

sounds, defined as:

PB ¼ Abio

Atotal

ð1Þ

where Abio is the spectrogram area of biological

sounds and Atotal is the total spectrogram area

(Fig. 2a). As a spectrogram is represented digitally

as a matrix of amplitude values, with rows arranged in

increasing frequency and columns arranged in increas-

ing time, Atotal is the total number of values, or cells, in

the matrix, and Abio is the number of values containing

any amplitude of biophony. This metric equally counts

any identified biological sound, regardless of the

distance between the sound source and the

microphone.

To compute Abio, we implemented a biophony

isolation algorithm that first adaptively removes

background noise, leaving only distinct foreground

acoustic events, and then secondly removes all non-

biophony foreground events resulting in a spectrogram

containing only biophony. To adaptively remove

background noise, we applied a modified adaptive

level equalization (ALE) algorithm, which was orig-

inally developed for speech endpoint detection by

Lamel et al. (1981), but later applied to remove

background noise in recordings of the acoustic envi-

ronment by Towsey and Planitz (2011) and Towsey

(2013).

To isolate biophony after removing background

noise, we identified each foreground event with a

region-labelling algorithm (implemented in the SciPy

label function) (Jones et al. 2001). Then, all events

containing energy below 1000 Hz were removed as

they were likely technophony or geophony. All events

containing energy above 11,000 Hz were also
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removed, as they were likely caused by small vibra-

tions in the microphone housing. Lastly, with only

biophony remaining in the spectrogram, PB was

computed (Fig. 2b).

To assess the performance of the biophony isolation

algorithm, we manually inspected all resulting bio-

phony-only spectrograms and classified each into one

of three categories: level 1, level 2, or level 3. We

considered level 1 to contain the best results with the

algorithm performing as intended, level 2 to contain

minor errors though good overall performance, and

level 3 to contain frequent errors though still

acceptable performance.

LC characteristics

Around each sampling location, we computed the

percent area of individual LC classes, as well as the

average value of a composite landscape index,

distance to nature (D2N), within 10 radii (5, 10, 20,

40, 80, 160, 320, 640, 1280, and 2560 m). Each

successive radius doubles the previous, and the range

represents different landscape scales (Fig. 3). LC data

were derived from the Land Information System

Austria (LISA), which provides a current and detailed

vector-based dataset with 13 LC classes (Banko et al.

2014). We only included 4 LC classes in our analyses

Fig. 1 a Study location, b recording and weather station locations, and c study area with land cover (LC)
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as we excluded LC classes that covered less than 10%

of the study area (Fig. 1c). D2N represents the amount

of anthropogenic influence on the landscape that

incorporates both the degree of naturalness of a

location, as well as distance to natural habitat, with

values ranging from 0 (completely natural) to 1

(completely urbanized) (Rüdisser et al. 2012).

D2N was calculated by multiplying two indices:

degree of naturalness (Nd) and distance to natural

habitat (Dn), which are both normalized to range

between 0 and 1. Nd aims to reflect biodiversity

relevant anthropogenic interferences on plants, ani-

mals, and ecosystems and hence classifies LC cate-

gories along a seven-staged naturalness scale, namely

natural, near-natural, semi-natural, altered, cultural,

artificial with natural elements, and artificial. The

seven categories—within a theoretically continuous

interval scale—are defined by specific thresholds with

proportional stretches. Dn is defined as the distance to

the nearest natural or near-natural patch, as defined by

Nd.When calculating D2N, a cutoff value of 1000 m is

applied to Dn where all values above 1000 m are

counted equally (Rüdisser et al. 2012).

Modeling the relationship between LC

characteristics and the acoustic environment

We modeled the acoustic environment with Bayesian

multilevel regression, allowing us to estimate both

effects across all observations, as well as across all

locations. We first defined an empty model with no

predictors to see how mean SEL and PB varied

between recording locations. We defined level 1 (the

measurement level) of the model as:

ytl �Normal al þ et;r
2
y

� �
ð2Þ

where ytl is the normally-distributed estimate of PB or

SEL measured at time t and location l, al is the mean

Fig. 2 a Example of a spectrogram from a section of an original

recording, and b a spectrogram of biophony after applying the

biophony isolation algorithm by first removing background

noise and then removing foreground events with energy below

2000 Hz and above 11,000 Hz
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PB or SEL of all measurements at location l (location

mean), et is the difference of SEL or PB measured at

time t from the location mean, and r2
y is the within-

location variance in SEL or PB. We defined level 2

(the location level) of the model as:

al �Normal Mþ el; r
2
a

� �
ð3Þ

where M is the mean of all SEL or PB location means

(grand mean), el is the difference between the grand

mean and the location mean for location l, and r2
a is

the variance among the mean SEL or PB of each

location. The empty model provided a baseline

comparison for all other models and allowed us to

test our assumption that parameters influencing SEL

and PB vary between locations. With the variance

variables defined in the empty model, we computed

the intraclass correlation (ICC), defined as:

ICC ¼ r2a
r2a þ r2y

ð4Þ

The ICC quantifies the informational value of

grouping the measurements by location and ranges

from 0, meaning the measurements are completely

independent from the location, to 1, meaning that all

measurements at a location are equal (Gelman and Hill

2007).

We fit several models with a set of measurement-

level and location-level variables as predictors

(Table 1) with non-informative priors. Because the

LC classes are correlated, we fit separate models for

each location-level variable. All models can be

generally defined as:

measurement-level

ytl �Normal al þ blVt; r
2
y

� �
ð5Þ

location-level

al �Normal ca þ calUl; r
2
a

� �
ð6Þ

bl �Normal cb þ cblUl; r
2
b

� �
ð7Þ

priors

ca �Normal 0; 1000ð Þ ð8Þ

cal �Normal 0; 1000ð Þ ð9Þ

cb �Normal 0; 1000ð Þ ð10Þ

cbl �Normal 0; 1000ð Þ ð11Þ

Fig. 3 Radii surrounding a recording location at the edge of a

city park

Table 1 Variables used to model sound exposure level (SEL)

and percent biophony (PB)

Variable Units

Measurement level

Time Weeks from start

Temperature �C
Wind speed m/s

Precipitation mm

Barometric pressure hPa

Location level

LC—buildings Percent area within radiia

LC—other constructed areas Percent area within radii

LC—trees Percent area within radii

LC—herbaceous vegetation Percent area within radii

D2N (ranges from 0 to 1) Average value within radii

aRadii include the separate areas within a 5, 10, 20, 40, 80, 160,

320, 640, 1280, and 2560-m radius around each location
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r2y �Uniform 0; 100ð Þ ð12Þ

r2a �Uniform 0; 100ð Þ ð13Þ

r2b �Uniform 0; 100ð Þ ð14Þ

where U and V are vectors of location-level and

measurement-level variables, respectively, a and b
represent vectors of regression parameters of the

measurement-level variables at each location l, and all

c symbols represent vectors of regression parameters

of the location-level variables. The weather-related

measurement-level variables were taken from a

weather station located near the center of the study

area that records observations every 10 min (station

id: 11,302, name: INNSBRUCK-UNIV, maintained

by the Austrian federal agency ‘‘Zentralanstalt für

Meteorologie und Geodynamik’’).

To assess the performance of each model, we

computed the widely applicable information criterion

(WAIC) as defined in Vehtari et al. (2017), where

lower WAIC values indicate better performance. To

compare models, we set DWAIC = 0 for the best

performing model and computed DWAIC for all

remaining models, where larger DWAIC values indi-

cate reduced performance. In addition, we computed

R2 as defined in Gelman and Hill (2007) for the

location-level parameters to assess the amount of

variance explained by the LC classes and D2N.

Gelman and Pardoe (2006) caution that R2 is not the

best measure of model fit; however, they recognize the

utility for communicating the variance explained by

the model. Therefore, we included R2 to assist with

model interpretation.

To check the validity of the best performing

models, we performed visual predictive checks of

the posterior distribution. While not a fully objective

and quantitative approach, Gelman and Shalizi (2013)

argue that visual model checking is currently the most

reliable for Bayesian multilevel models, as well as

simple and intuitive. Following this approach, we

simulated data (representing future or alternative

observations) by drawing from the posterior distribu-

tion of the fitted models to verify that the models were

able to replicate datasets visually similar to the

observations, meaning they captured the structure of

the observed data.

Mapping the acoustic environment

To create maps across the entire study area, we used

the parameter values from the best performing models

to compute the estimated PB and SEL at grid points

spaced at the scale identified as the most relevant, and

then applied a regularized spline interpolation follow-

ing Papadimitriou et al. (2009).

Implementation and software

We performed the RRQRR location-selection algo-

rithm using the create sample network tool in ArcGIS

10 Desktop, and we implemented all other analyses in

the Python programming language (Python 3.6). We

performed the modeling in the PyMC3 package

(Salvatier et al. 2016) and saved all code in Jupyter

notebooks for reproducibility (Kluyver et al. 2016).

Results

The results from the manual classification of the

biophony isolation algorithm performance show that

the approach performed as intended on 51% of the

recordings, contained minor errors on 34% of the

recordings, and contained frequent errors on 15% of

the recordings (Table 2). We considered the perfor-

mance to be acceptable as it was greatly improved

over earlier approaches implementing a constant

frequency to isolate biophony (e.g., as in Joo et al.

(2011) and Kuehne et al. (2013)). The performance

levels were associated with the content of the record-

ings, with level 1 containing light to moderate

background technophony and occasional foreground

technophony, level 2 containing areas of strong

technology-biophony overlap, and level 3 containing

strong wind, light rain, or near constant foreground

technophony (Fig. 4).

Comparing mean PB and SEL at each location with

the surrounding LC illustrates the variability in the

results, although a clear trend is discernable: PB

generally decreased with increasing urban LC while

SEL increased (Fig. 5). This trend was further demon-

strated by the negative correlation between PB and

SEL (r = - 0.69, p\ 0.001) (Fig. 6). PB increased

during the recording period (spring) (r = 0.38,

p\ 0.001), especially at locations with mean

SEL\ - 55 dBref. This is illustrated by the higher
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variation in PB at relatively quiet locations

(rPB = 9.6 when SEL\- 55 dBref) compared to

relatively loud locations (rPB = 0.7 when

SEL[- 40 dBref). SEL remained nearly constant

during the recording period (r = 0.04, p = 0.7).

Comparing the predictive accuracy of the models

suggests relative performance of landscape variables

across scales, though the results are not conclusive

because the standard error (SE) of theWAIC estimates

were large relative to the DWAIC between models.

WAIC SE ranged between 28 and 31 for PB models

and 17 and 21 for SEL models, while the maximum

DWAIC was 11 between PB models and 9 between

SEL models. Based on DWAIC, the composite

landscape index, D2N, served as the best predictor

for PB and the second-best, behind trees LC, for SEL

(Table 3). Because D2N and trees LC had the same

DWAIC, we considered both equally as the best

performing models for SEL. Unsurprisingly, devel-

oped LC classes (buildings and other constructed

areas) and D2N had a negative effect on PB and a

positive effect on SEL, while trees had a positive

effect on biophony and a negative effect on SEL.

Herbaceous vegetation, which includes land uses

ranging from intense agriculture to small residential

lawns, served as the weakest predictor for both PB and

SEL. The full model results are provided in the

Appendix.

The performance of the models across the range of

scales resulted in similar trends among the predictors,

expect for herbaceous vegetation, which was a con-

sistently weak predictor for both PB and SEL (Fig. 7).

The best performing PB models contained predictors

from larger scales (mean = 772 m for the five highest

ranked models) than for the best performing SEL

models (mean = 192 m for the five highest ranked

models). The best predictor for PB, D2N, was at a scale

of 1280 m, while the best predictors, trees LC and

D2N, were both at scales of 40 m (Fig. 8).

Time was the only measurement-level variable

included in the final models, as the remaining

variables did not increase model performance. An

ICC of 0.62 for the empty SEL model and 0.39 for the

empty PB model validated the assumption that obser-

vations within locations were not independent. R2

values of the location-level variables indicated that for

PB, D2N within 1,280 m was able to explain 91% of

variation in starting PB (i.e. the intercept a) and 70%

of the difference in time effects (i.e. the slope b). D2N

within 40 m was able to explain 56% of the starting

SEL and 69% of the difference in time effects (62%

and 28%, respectively, for trees LC within 40 m).

Comparing the ratios of the mean slope to the mean

intercept for the best performing models shows that

time had a large effect on PB but not on SEL, with

respective ratios of 0.778 and 0.004. This observation

was true for all models. The models selected to map

PB and SEL across the study area are defined as:

yt �Normal l; r2y

� �
ð15Þ

l ¼ al t½ � þ bl t½ �Tt ð16Þ

al t½ � �Normal ca þ calXl; r
2
a

� �
ð17Þ

bl t½ � �Normal cb þ cblXl; r
2
b

� �
ð18Þ

where yt is PB or SEL for observation t, T is time

(weeks) since recording began, and X is surrounding

D2N within 1,280 m and 40 m for PB and SEL,

respectively, at location l.

Discussion

Implementing the PB metric was necessary to accu-

rately assess biophony within the noisy study area. In

addition to SEL, we could have separately measured

the energy of biophony from our derived biophony-

only spectrograms; however, initial tests indicated that

even a small amount of residual noise could strongly

bias the results as the noise contained orders of

Table 2 Biophony

isolation algorithm

performance

Classification Count Percent Description

Level 1 64 51 Performed as intended

Level 2 42 34 Minor errors, good overall performance

Level 3 19 15 Frequent errors, acceptable performance

Total 125
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magnitude greater energy than biophony. Using

existing soundscape metrics, like the normalized

difference soundscape index where all sound above

2 kHz is counted as biophony (Kasten et al. 2012),

would have been reasonable at the locations sur-

rounded by more natural LC but largely biased by

noise at locations surrounded by more developed LC.

The PB metric is simple, as well as easy to interpret

and compare. While the biophony isolation algorithm

proved to be effective for this study, scaling it to larger

recording datasets from different landscapes would

likely require significant tuning. Therefore, the chal-

lenge of automatically and reliably identifying

biophony remains a valuable pursuit. Recently devel-

oped techniques have demonstrated promising results

and could be applied to multiple environments (e.g.,

Grill and Schlüter 2017; Bellisario et al. 2019;

Fairbrass et al. 2019). The modified ALE algorithm

that we implemented could be incorporated as a

preprocessing step to remove background noise and

further improve the performance of biophony identi-

fication algorithms.

The results of this study provide evidence to the

relevant scales on which high-resolution LC and

composite landscape indices explain variation in

components of the acoustic environment in the region

Fig. 4 Representative

performance of the

biophony isolation

algorithm for a level 1,

b level 2, and c level 3
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around a mid-sized city. We found that larger scales

better explained the spatial variation of biophony, as

measured by PB, while smaller scales better explained

total sound, as measured by SEL. In line with previous

sound–landscape relationship studies (e.g., Joo et al.

2011; Kuehne et al. 2013; Mennitt et al. 2014; Mullet

et al. 2016), we found that landscape variables, namely

individual LC classes and the composite D2N land-

scape index, can serve as important predictors of the

acoustic environment. However, our findings provide

a basis to further investigate the contribution from

processes on specific scales.

The most frequent sound sources in the recordings

provide possible explanations for the landscape scales

identified as having the strongest relationships to both

PB and SEL. By listening to all the field recordings, we

observed that nearly all technophony stemmed from

automobiles, with occasional appearances of trains

and airplanes. Because the sound power of technoph-

ony was orders of magnitude higher than that for

biophony—an observation also apparent in the results

found by Joo et al. (2011) and Kuehne et al. (2013)—

we are not surprised to find a strong relationship

between SEL and the landscape variables at a scale of

40 m, as it aligns with the scale of the road network in

the study area. Turner et al. (2018) also identified a

strong relationship between anthrophony and distance

Fig. 5 a Mean percent

biophony (PB) and b mean

sound exposure level (SEL)

at each location with

surrounding land cover

within a 1280 m and a 40 m

radius, respectively. The

locations are sorted by D2N

within a 40 m radius

Fig. 6 Relationship between percent biophony (PB) and sound

exposure level (SEL)
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to roads, and we believe that traffic noise should be a

major consideration in sampling designs and model

specifications for further studies in urban

environments.

While we observed that traffic noise was a dominate

component at many of our recording locations, other

foreground and background sources were also present.

As demonstrated by Job et al. (2016), urban acoustic

environments can be highly variable at small scales

(i.e. street scales), although global trends have also

been found on large scales (i.e. city scales) (Warren

et al. 2006).We believe that new approaches should be

developed that integrate contributions from multiple

scales that could likely improve the predictive power

of spatial acoustic models.

We observed that nearly all biophony stemmed

from birdsong, which was also reported by Joo et al.

(2011) in their study along an urban–rural gradient in

East Lansing, Michigan. The better performance of

LC variables on larger scales for predicting PB makes

Table 3 Model performance of the highest ranked models of each landscape variable for predicting sound exposure level (SEL) and

percent biophony (PB)

Variable Radius

(m)

Intercept mean

(ca)
Intercept effect

(cal)
Intercept fit

(R2)

Slope mean

(cb)
Slope effect

(cbl)
Slope fit

(R2)

WAIC

rank

PB (%)

Buildings 640 - 0.05 5.30 0.92 0.40 - 1.30 0.58 2

Other const.

areas

640 - 0.04 3.40 0.84 0.44 - 1.10 0.65 7

Trees 640 1.78 - 2.70 0.89 - 0.07 0.70 0.70 3

Herb.

vegetation

80 0.27 1.20 0.77 0.32 - 0.30 0.11 22

D2N 1280 - 0.72 8.52 0.91 0.56 - 2.00 0.70 1

SEL (dBref)

Buildings 320 - 54.71 45.70 0.70 0.20 - 0.50 0.79 7

Other const.

areas

160 - 55.65 39.80 0.90 0.21 - 0.50 0.85 3

Trees 40 - 42.76 - 13.80 0.62 0.17 0.00 0.28 1

Herb.

vegetation

1280 - 40.71 - 39.40 0.26 - 0.31 1.80 0.96 20

D2N 40 - 54.61 37.33 0.56 0.15 0.27 0.69 2

Fig. 7 Estimated predictive accuracy of a percent biophony (PB) and b sound exposure level (SEL) models with associated standard

error (SE)
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sense based on findings from studies of bird abundance

and diversity in urban areas, where patch area and

connectivity of bird habitat were identified as the most

important variables (Shanahan et al. 2011). However,

birdsong and bird density cannot be directly compared

as singing behavior varies by species (Marler and

Slabbekoorn 2004), but a better understanding of this

relationship could enable approaches that incorporate

bird behavior into models for urban biophony.

While LC variables can serve as important factors

of biophony at large scales, thereby representing

global trends, the weak relationship between LC

variables and PB at smaller scales suggests that other

landscape information is needed to help explain local

heterogeneity. For example, Pekin et al. (2012)

demonstrated that acoustic diversity was strongly

correlated with LiDAR-derived metrics of vertical

vegetation structure at a small scale (10 m) at a natural

preserve in Costa Rica. In urban environments,

anthropogenic features could both increase and

decrease birdsong. For example, Cox et al. (2016)

found that urban morphology may play a role in which

backyard feeders birds visit.

Understanding the spatial variation of biophony is

required to support efforts to quantify its value as an

ecosystem service in urban areas (Liu et al. 2014; Hao

Fig. 8 Predicted a percent biophony (PB) and b sound exposure level (SEL) across the study area using the best performing model
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et al. 2016). We likely could have produced more

accurate maps by using machine learning modeling

approaches (Mennitt et al. 2014; Mullet et al. 2016);

however, our objective of inferring LC-sound rela-

tionships rather than out of sample prediction placed

value on model simplicity and interpretability. There-

fore, the maps we created serve to visually illustrate

the inferred relationships and suggest possible mech-

anisms that may be driving each component of the

acoustic environment. Implementing a multilevel

modeling approach allowed us to take advantage of

pooling information from all observations to improve

parameter estimates within each location; however,

we did not leverage the ability of our Bayesian

approach to assign informative priors, which could be

justified and may have increased model performance.

We recommend that the impact of different priors

should be explored in similar future studies using this

modeling approach.

While we chose the recording scheme to maximize

the number of recording locations (n = 30), we found

that additional observations and recording locations

would be required to enable an analysis that simulta-

neously considers multiple landscape variables. We

believe the composite landscape index D2N serves as

an acceptable alternative to including multiple LC

classes; however, the maps resulting from the selected

models illustrate where additional landscape informa-

tion is needed. For example, the model estimations for

PB over LC classes of bare soil and bare rock are likely

too high, resulting from the relatively high D2N values

in these areas. However, bare soil and bare rock LC are

unlikely to contain high biophony. Similarly, potential

spatial autocorrelation and effects of additional envi-

ronmental factors should be incorporated. We were

surprised that including wind speed as a predictor in

SEL models did not lead to increased predictive

performance; however, it is likely that wind conditions

often vary greatly across the study area and some

recording locations were more than 5 km from the

weather station. Collecting wind speed at each loca-

tion should be a consideration for similar future

studies.

Mapping noise has been an effective attenuation

tool employed by the European Union (EU) that could

be extended to other components of the acoustic

environment. While the EU Environmental Noise

Directive does not require specific attenuation mea-

sures, member countries are required to map noise in

urban areas. The maps are intended to increase noise

awareness and organically inspire solutions. New

policies could leverage the same philosophy for

conserving low-noise areas or promoting natural

sounds (Directive 2002/49/EC 2002; Nugent et al.

2016). Towards that effort, the results of this study

suggest that scale is an important component of

analyzing the composition of acoustic environments

and should assume a larger role in developing

quantitative methods within soundscape ecology.
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