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Abstract This review describes the development towards

actomyosin based nanodevices taking a starting point in

pioneering studies in the 1990s based on conventional in

vitro motility assays. References are given to parallel

developments using the kinesin–microtubule motor system.

The early developments focused on achieving cargo-

transportation using actin filaments as cargo-loaded shut-

tles propelled by surface-adsorbed heavy meromyosin

along micro- and nanofabricated channels. These efforts

prompted extensive studies of surface–motor interactions

contributing with new insights of general relevance in

surface and colloid chemistry. As a result of these early

efforts, a range of complex devices have now emerged,

spanning applications in medical diagnostics, biocompu-

tation and formation of complex nanostructures by self-

organization. In addition to giving a comprehensive

account of the developments towards real-world applica-

tions an important goal of the present review is to dem-

onstrate important connections between the applied studies

and fundamental biophysical studies of actomyosin and

muscle function. Thus the manipulation of the motor pro-

teins towards applications has resulted in new insights into

methodological aspects of the in vitro motiliy assay. Other

developments have advanced the understanding of the

dynamic materials properties of actin filaments.

Keywords In vitro motility assay � Heavy meromyosin �
Nanotechnology � Lab-on-a-chip � Molecular motors

Introduction

Molecular motors transport and sort cargoes in cells and

underlie both cell-, and organism-motility. As such they are

key effectors in the running of cellular fabrication and

analysis systems, e.g., those requiring transportation of

building blocks and signalling molecules between the

nucleus and the cell periphery (Hirokawa et al. 2010).

Additionally the molecular motors are key effectors in

biological self-organization from cellular to societal levels.

The growing interest to exploit molecular motor driven

systems and cytoskeletal filament components in various

applications is therefore not surprising. The efforts towards

applications (Agarwal and Hess 2010; Bakewell and Nic-

olau 2007; Goel and Vogel 2008; Hess 2011; Korten et al.

2010; Månsson et al. 2005; van den Heuvel and Dekker

2007) encompass materials science developments, e.g.,

active materials and a range of applications in nanoscience

such as self-organized pattern generation, biocomputation

and development of lab-on-a-chip devices (e.g., for medi-

cal diagnostics). In the latter type of devices, separation,

detection and readout are achieved on a single micro and/or

nanostructured chip.

The basis for the developments in the mentioned areas

has generally been the gliding in vitro motility assay (Kron

and Spudich 1986; Kron et al. 1991). In this assay, myosin

or kinesin motors are immobilized on surfaces and their

propulsion of fluorescence labelled actin filaments and

microtubules, respectively are observed under different

conditions. The developments towards motor driven

applications in nanotechnology started with largely

explorative studies. In this early work, kinesin 1 propelled

microtubules (Dennis et al. 1999; Hess et al. 2001, 2002b;

Hiratsuka et al. 2001) and myosin II (or rather heavy

meromyosin; HMM) driven actin filaments (Mahanivong
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et al. 2002; Nicolau et al. 1999; Suzuki et al. 1995, 1997)

were guided along micro-, or nanopatterned artificial

tracks. These studies, e.g., the pivotal paper (Hess et al.

2001) also demonstrated the potential to use motor pro-

pelled cytoskeletal filaments as shuttles for transportation

of nano-scale cargoes in various applications (see also

Suzuki et al. 1996). The use of the filaments as shuttles

differs from intracellular transport where the cargoes are

instead attached to the motors walking along the cyto-

skeletal tracks. The cellular paradigm for cargo transpor-

tation has been tested in some in vitro studies with surface

adsorbed microtubules (Bohm et al. 2001; Brown and

Hancock 2002; Turner et al. 1995) and some studies have

described the production of oriented actin filament tracks

(Huang et al. 2006; Interliggi et al. 2007). However, the

filament shuttle approach has advantages of increased

cargo-carrying capacity and more straightforward control

of the sliding direction by guiding along micro- and

nanofabricated tracks where active motors have been

selectively adsorbed. This guiding has later been perfected

in systematic studies using both kinesin propelled micro-

tubules (Clemmens et al. 2003a, b; Hiratsuka et al. 2001;

Moorjani et al. 2003) and myosin propelled actin filaments

(Bunk et al. 2003, 2005b; Mahanivong et al. 2002; Man-

andhar et al. 2005; Sundberg et al. 2006a, b). Recent

studies have also been performed where actin filament

bundles rather than isolated actin filaments have been used

as shuttles (Takatsuki et al. 2010, 2011).

Surface–motor interaction-mechanisms that prevent

motility on certain surfaces and that give optimized func-

tion on others have been of key importance in the devel-

opment of nano- and micropatterned surfaces for guiding

of motor propelled filaments. Systematic studies with the

goal to understand the motor–surface interactions have

therefore been performed both for the microtubule–kinesin

system (Fischer and Hess 2007; Hiratsuka et al. 2001;

Kerssemakers et al. 2006; Ozeki et al. 2009) and for

actomyosin (Albet-Torres et al. 2007, 2010; Balaz et al.

2007; Jaber et al. 2003; Månsson et al. 2008; Nicolau et al.

2007; Persson et al. 2010; Sundberg et al. 2003, 2006a).

An important goal for exploitation of molecular motors

is to achieve motor driven lab-on-a-chip systems. Whereas

such systems are among the most challenging motor driven

devices, they are also closest to the market and, recently,

actual proof-of-principle systems have been described

(Fischer et al. 2009; Lin et al. 2008). In a lab-on-a-chip (see

further above), separation, detection and readout are

achieved on a single chip. In this context molecular motor

driven transport may substitute separation processes, now

relying on fluid flow in narrow channels (microfluidics/

nanofluidics, with bulky accessory equipment) but may

also form the basis for innovative detection processes (cf.

Korten et al. 2010). In view of world population ageing

(Department of Economic and Social Affairs Population

Division 2002), there is increasing demand for cheap and

effective devices for detection of disease biomarkers for

diagnostics and disease stratification (for personalized

therapies). Device miniaturization is critical in order to

increase portability for use in primary care and in devel-

oping countries. However, also high sensitivity, with the

capability to detect low levels of analytes (e.g., disease

biomarkers) is a key issue as well as multiplexed detection

of several biomarkers simultaneously. Several advantages

of motor driven lab-on-a-chip devices in these regards will

be elaborated on below as well as the preconditions for

further development of such devices.

In addition to motor driven lab-on-a-chip systems I will

also briefly touch on other lines of development such as

exploitation of molecular motor driven systems for bio-

computation and self-organization phenomena. The motil-

ity based approach towards computation involves (Nicolau

et al. 2006) the coding of mathematical problems in (micro/

nano) fabricated networks followed by exploration of the

network by, e.g., motor propelled filaments. In self-orga-

nization, patterns or structures form in complex systems as

a result of local interactions of the individual elements

when the system is left to itself. Such phenomena may be

exploited for formation of unique nanostructures, surface

gradients and other patterns.

Microtubule–kinesin systems have largely been ahead of

actomyosin based systems on the road towards exploita-

tion. This may partly be a matter of chance, e.g., a greater

number of researchers in the microtubule-area happened to

focus more strongly on the field in the early 2000s. How-

ever, the dominance of microtubule–kinesin can also be

attributed to more robust cargo-transportation (Korten et al.

2010) and simpler guiding on micropatterned surfaces (due

to high flexural rigidity of microtubules) without the need

for nanofabrication. However, actomyosin has certain key

advantages such as tenfold higher speed (when using

myosin II) and greater potential for miniaturization (due to

low flexural rigidity of actin filaments).

I will here review the developments towards actomyosin

driven devices particularly those exploiting fast myosin II

driven transportation. Indeed, whenever ‘‘myosin’’ or

‘‘heavy meromyosin’’ is mentioned it refers to ‘‘myosin

II’’. The account of developments with the microtubule–

kinesin driven system (using conventional kinesin 1) is

more limited unless the results are essential for full

understanding of the developments of actomyosin based

devices. For further details on the microtubule–kinesin

system, the interested reader is referred to some quite

comprehensive review articles (Agarwal and Hess 2010;

Goel and Vogel 2008; Hess 2011; Korten et al. 2010; van

den Heuvel and Dekker 2007). In addition to a description

of the road towards applications I will also mention
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implications of the results for fundamental insight into

motion generating mechanisms, materials properties of

actin filaments and methodological aspects of in vitro

motility assays that also may be of relevance in functional

studies. Finally, possible future developments will be

considered.

Early developments (mainly before 2005)

In vitro motility assays for studies of actomyosin were

developed in the eighties (Kron and Spudich 1986; Kron

et al. 1991; Spudich et al. 1985; Toyoshima et al. 1987;

Yanagida et al. 1984) with early results of key importance

for the understanding of actomyosin function and muscle

contraction (Harada et al. 1987a, b, 1990; Prochniewicz

and Yanagida 1990; Toyoshima et al. 1987, 1989, 1990;

Uyeda et al. 1990). The developments also formed the

basis for introduction of optical tweezers in the study of

single molecule mechanical properties in the 1990s (Finer

et al. 1994; Svoboda and Block 1994). Moreover, these

pioneering studies together with some more recent papers

(Fraser and Marston 1995; Homsher et al. 1992; Warrick

et al. 1993) were of particular importance for the later

developments towards motor-driven nanodevices.

In order to exploit in vitro motility assays as a basis for

cargo transportation in nanotechnological applications it is

essential to control the sliding direction of the actin fila-

ments with nm–lm precision. The earliest studies (Suzuki

et al. 1995, 1997), relying on empiric evidence for different

protein adsorption on different surface chemistries, dem-

onstrated limitation of HMM propelled actin filament

sliding to fluoropolymer-tracks or microlithographically

produced polymethyl-methacrylate (PMMA) tracks that

were most likely hydrophobic compared to the surrounding

glass surface. The motility on polymer surfaces were here

of similar quality as on nitrocellulose. Some years later,

results were presented (Nicolau et al. 1999), using other

types of micro-patterned surfaces providing further support

that varied hydrophobicity affects motility quality. How-

ever, it was not until about 10 years later that the mecha-

nisms for the effects on surface chemistry on motility were

investigated in greater detail. Importantly, however, the

mentioned studies laid the ground for further exploration.

Subsequent to some studies using kinesin-propelled

microtubules, we (Bunk et al. 2003) thus investigated dif-

ferent resist polymers (used for nanofabrication by elec-

tron-beam lithography) as substrates in the in vitro motility

assay showing that some of them supported actin fila-

ment motility after HMM adsorption whereas motility was

largely inhibited on others. Surprisingly, poor motility was

found on PMMA (in contrast to Suzuki et al. 1997) but

good motility on another resist polymer (MRL-6000.1XP).

Based on this result, electron-beam lithography was used

to produce \200 nm wide channels with PMMA walls,

MRL-6000 floors for functional HMM adsorption and

surrounding PMMA areas for prevention of motility.

After HMM adsorption and other key in vitro motility

assay incubation steps, actin filament motility was effec-

tively guided along the nanoscale MRL-6000.1XP tracks

with only few events where filaments escaped into the

solution. The mechanism underlying the difference in

motility quality on PMMA between the studies of Suzuki

et al. (1997) and Bunk et al. (2003) were not clear at the

time. However, oxygen plasma treatment was employed

by Bunk et al., causing introduction of negatively charged

groups and hydrophilization of the PMMA surface and it

was shown later (Sundberg et al. 2006a) that poor or no

motility was observed on a PMMA surface that had been

subjected to oxygen plasma treatment whereas high-

quality motility was observed on PMMA without such

prior treatment.

It was clear that any work towards applications could

not rely on nitrocellulose as a substrate for HMM adsorp-

tion since it cannot be readily nanopatterned. On the other

hand, the motility with polymer resists as HMM adsorbing

substrates was less than perfect. Therefore, we (Sundberg

et al. 2003, 2006a, b) decided to turn to self-assembled

silane monolayers that may be readily nanopatterned and

that do not suffer from the batch-to-batch variability and

other complexities associated with nitrocellulose surface

preparations. Moreover, dichloromethylsilane (Fraser and

Marston 1995; Warrick et al. 1993) as well as more com-

plex chlorinated organopolysiloxanes (Sigmacote�, Sigma-

Aldrich Inc., e.g., Harada et al. 1990) had already been

used as surface substrates in motility assays after reacting

with surface silanols on glass. However, some variability

between experiments and labs were reported. Therefore, in

order to eliminate the complexities associated with the

siloxane polymers and the risk of polymer formation using

dichlorodimethyl silane (with two functional chlorine

groups; see further Sundberg et al. 2003) we performed in

vitro motility assay studies to compare different silaniza-

tion procedures. In these early investigations it turned out

that SiO2 and glass surfaces treated with trimethylchloro-

silane were ideal substrates for actomyosin motility and

suitable for further development of nanopatterned surfaces

for motility control. Indeed, no later results have con-

tradicted this idea (cf. Sundberg et al. 2006a; Albet-Torres

et al. 2007, 2010, Persson et al. 2010). When the silan-

ization is performed in routine lab environments (ordinary

fume hood without controlled environment as in a glove

box) it generally leads to surfaces exhibiting similar con-

tact angles with water droplets (similar wetting behavior)

as nitrocellulose (advancing contact angles 70–80�; simply

denoted ‘‘contact angles’’ below) but, not unexpectedly,
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considerably lower root-mean-square roughness (Albet-

Torres et al. 2007; Sundberg et al. 2003; based on atomic

force microscopy). The contact angle of 70–80� is lower

than that of a complete trimethylsilyl monolayer which can

be [100� (Fadeev and McCarthy 1999) but it is close to

values that are frequently reported in the literature for a

range of silanization conditions (summarized in Fadeev

and McCarthy 1999). Accordingly, the silanization proce-

dure in our hands has been robust against slightly varying

procedures (Albet-Torres et al. 2007, 2010; Persson et al.

2010; Sundberg et al. 2003, 2006a). Thus, provided that

care is taken to use dry substrates, water-free solutions and

properly cleaned and hydrophilized glass/SiO2 surfaces

(with exposed silanol groups) the resulting contact angle

has been in the range 70–80� and with good actomyosin

motility. When using vapour phase silanization of ther-

mally grown SiO2 in a fume hood (Sundberg et al. 2006a) a

tendency has been seen towards slightly higher contact

angles (80–85�) but rinsing in water usually brings the

contact angle down below 80�. In our first studies of dif-

ferent silanization procedures (Sundberg et al. 2003), we

also observed poor motility for glass and SiO2 surfaces

with low contact angle (\40�; see further below). In an

independent study of motility on various polyelectrolyte

substrates at about the same time (Jaber et al. 2003) it was

found that not only contact angle but also surface charge is

important for motility quality (see further below).

Developments from 2005 and onwards

Systematic studies of surface–protein interactions

The studies of interactions between myosin motors and

the underlying surfaces in the in vitro motility assay have

focused on the proteolytic fragment, heavy meromoyosin

whose mode of adsorption on nitrocellulose has also been

investigated under certain conditions (Toyoshima 1993).

This fragment has advantages for nanotechnological

applications compared to smaller myosin motor fragments

(such as papain S1 and chymotryptic S1) due to higher

actin filament velocity. There are also advantages of HMM

compared to full length myosin because the myosin tail

(corresponding to the light meromyosin fragment), but not

the HMM tail (‘‘subfragment 2’’), seems to interact non-

specifically with actin filaments to inhibit sliding velocity

(Guo and Guilford 2004). Furthermore, with myosin it

would probably be more difficult to obtain selective

motility on different surface chemistries since it, unlike

HMM, appears to adsorb in functional form also to some

surfaces conventionally used to block protein adsorption,

e.g., those coated with bovine serum albumin (Thedinga

et al. 1999). Finally, the actual dimensions of the myosin

molecules are similar to those of the track/channels used

for guiding of actin filaments with the risk of hindered

diffusion of myosin from solution into the channels.

As mentioned above, there were early indications that

the quality (velocity and fraction of motile filaments) of

HMM propelled actin filament sliding is correlated with the

surface charge (Jaber et al. 2003) and the surface wetting

properties (related to hydrophobicity) (Jaber et al. 2003;

Nicolau et al. 1999; Sundberg et al. 2003; Suzuki et al.

1997) as quantified by the contact angle of water droplets

(Fig. 1). Since a positively charged polylysine surface

(Harada et al. 1990) seems to give rather low velocities

(mechanisms considered in Albet-Torres et al. 2010) we

instead focused on the motility quality on negatively

charged surfaces that were made hydrophobic to different

degrees.

We found, for surfaces silanized using a range of

different monochlorosilanes (Albet-Torres et al. 2007; see

also Sundberg et al. 2003, 2006a; Vikhoreva and Månsson
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Fig. 1 HMM propelled actin filament sliding velocities are correlated

with contact angles with water droplets of HMM adsorbing surfaces.

a The principle for contact angle measurement and the relationship

between contact angle h and surface tensions cSV, cLV and cSL.

For further details, see text. b Relationship between sliding velocity

(normalized to that on nitrocellulose) and the cosine of the contact

angle of the HMM adsorbing surface. Data from Sundberg et al.

(2006a), Albet-Torres et al. (2007), and Sundberg et al. (2003)
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2010), that the sliding velocity (in the presence of viscosity

enhancing methylcellulose) increased nearly linearly with

contact angle of water droplets on the surface. If sliding

velocity is instead plotted against the cosine of the contact

angle (Fig. 1) the velocity can be more directly related to

the surface properties. Thus, according to the Young

relationship:

cSL ¼ cSV � cLV cos h ð1Þ

where cSL; cSV ; cLV and h are the solid–liquid surface ten-

sion, the solid–vapor surface tension the liquid–vapor

surface tension (constant if only water is used) and the

contact angle, respectively. The regression line in Fig. 1b

can now be used as a standard curve to obtain cos h (equal

to the ratio ðcSV � cSLÞ=cLVÞ from the observed sliding

velocity. Of importance for understanding the molecular

mechanism underlying the results of Albet-Torres et al.

(2007) it should be mentioned that the increase in contact

angle in their study was associated with reduced negative

surface charge (as indicated by surface zeta potential

measurements). On basis of these results and more recent

studies of HMM configurations and function on TMCS-

derivatized surfaces, pure SiO2/glass and differently

charged lipid bilayers, a model for HMM adsorption

emerges. Whereas this model should certainly be applica-

ble to different silanized surfaces similar to those studied

by Albet-Torres et al. (2007) it may also be applicable to

some (but not all) other types of surfaces with varying

hydrophobicity (see further below). A key element of the

model is the idea that the relationship between velocity and

contact angle is attributed to different fractions of HMM

molecules being adsorbed in different configurations

(Fig. 2). (Albet-Torres et al. 2010; Månsson 2010; Måns-

son et al. 2008; Sundberg et al. 2006a; Vikhoreva and

Månsson 2010). In contrast, the total HMM density on the

different surfaces did not appear to differ appreciably. This

was suggested by both ATPase assays applied to surface

adsorbed HMM (Persson et al. 2010; Sundberg et al.

2006a) and by measurements of changes in HMM fluo-

rescence in the incubation solution during incubation of the

motility assay flow cell (Persson et al. 2010). In the HMM

configuration that propels actin filaments most effectively

(Fig. 2a) HMM seems to be adsorbed to the surface only

via the conformationally unstable C-terminal region (site of

Fig. 2 Model illustrating HMM adsorption in different configura-

tions. a Configuration with best actin propelling function believed to

dominate on moderately hydrophobic surfaces like those derivatized

with TMCS. The diagram to the right illustrates that the HMM

molecules in this configuration are likely to be vigorously fluctuating

due to thermal motion, creating a distribution of mass with some of

the heads reaching[50 nm above the surface in accordance with the

equipartition theorem and the stiffness of the coiled-coil subfragment

2 region. The two horizontal dashed lines in the diagram illustrate

HMM layer thicknesses on TMCS derivatized SiO2 surfaces on basis

of two different interpretations of quartz crystal microbalance (QCM)

data. The horizontal full line represents the height above the surface

of HMM held actin filaments according to fluorescence interference

contrast (FLIC) microscopy. b Configuration that may be more likely

to occur at intermediate contact angles, low temperature (with

reduced thermal motion) and low HMM surface densities (see further

Månsson et al. 2008). c Configurations most likely without HMM

binding and HMM propelling capability believed to dominate on

negatively charged hydrophilic surfaces. Reprinted, with permission

from Persson et al. (2010). Copyright (2010) American Chemical

Society. The QCM and FLIC-microscopy based analyses are also

from this reference
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chymotryptic cleavage to obtain HMM from myosin), i.e.,

a region where the coiled-coil tends to unfold (see Walker

and Trinick 1986). As a result of this mode of adsorption,

the heads may extend appreciably away from the surface

(Albet-Torres et al. 2010; Persson et al. 2010). This con-

figuration is believed to completely dominate on moder-

ately hydrophobic surfaces (TMCS) whereas the available

evidence is consistent with HMM adsorption to pure glass/

SiO2, preferably via positively charged loops in the actin

binding region (Albet-Torres et al. 2010; Månsson et al.

2008; Persson et al. 2010). This idea is consistent with

high-speed atomic force microscopy images (Ando et al.

2001a; for movies see Ando et al. 2001b) where myosin V

is imaged while adsorbed to freshly cleaved mica[a silicate

mineral with, generally low contact angle and negative

surface charge (Yang et al. 2007)]. Whereas such surface

adsorbed heads seem to exhibit catalytic activity (Persson

et al. 2010; Sundberg et al. 2006a) the rate of ATP turnover

is appreciably reduced for a large fraction of the heads

(considerably larger fraction than seen on TMCS-deriva-

tized SiO2) (Balaz et al. 2007). Interestingly, the presence

of a fraction of heads with low ATP-turnover rate (prob-

ably those immobilized on the surface) is reminiscent of

the, so called super-relaxed state in muscle. In this state,

myosin heads exhibit particularly low ATP turnover when,

as postulated, being parked in an ordered helical arrange-

ment on the thick filament backbone (Hooijman et al. 2011;

Stewart et al. 2010). In terms of the model summarized in

Fig. 2, the actin propelling configuration of HMM (Fig. 2a)

becomes increasingly populated with increased contact

angle of the surface [associated with reduced negative

surface charge (Albet-Torres et al. 2007)] at the expense of

configurations where HMM is adsorbed via the head part

(Fig. 2b, c). In addition to expected increase in velocity

with increased density (Uyeda et al. 1990) of the actin

propelling HMM molecules (Fig. 2a) the velocity may also

increase as a result of fewer HMM molecules in the con-

figuration in Fig. 2c. This may, for instance, be expected if

there are appreciable non-specific interactions between the

HMM tail regions and the actin filaments.

The increased sliding velocity for a contact angle up to

approximately 80� is broadly consistent with studies by

Nicolau et al. (2007) who used glass and various polymers

for HMM adsorption and found increased velocity with an

increase in contact angle up to approximately 70� but a

reduction in velocity for higher contact angles. The rela-

tionship between velocity and contact angle was however,

different in a study (Kolli et al. 2010) comparing motility

on nitrocellulose (contact angle *87�), microcontact

printed poly(amidoamine) dendrimers (contact angle

*47�) and 3-mercaptopropyl trimethoxysilane (*68�).

Here, no motility was found on the silanized surface but

similar motility was observed on nitrocellulose and the

dendrimer, in spite of widely varying contact angles. This

suggests that the relationship between contact angle and

velocity on silanized surfaces cannot be universally

extrapolated to other surface chemistries. Clearly, several

factors are important, out of which surface charge and

roughness (Albet-Torres et al. 2007) (uncorrelated with

contact angle but possibly related to polymer formation)

have already been pointed out. Particularly for high contact

angles ([70�) the effects on velocity show appreciable

variability. Whereas Nicolau et al. (2007) found a decrease

in velocity for contact angles [70�, Kolli et al. (2010)

obtained high-quality motility on nitrocellulose with con-

tact angle [80�. In our studies (unpublished) we have

observed reduced velocity in occasional experiments with

more extensive silanization and a contact angle beyond

80�. Because the HMM molecules (according to the equi-

partition theorem) will execute vigorous thermal motion

around a surface attachment point in the C-terminal region

(see Fig. 2a) the head regions will frequently hit the surface

and if this is hydrophobic beyond a certain level, one may

expect increased risk of entropically driven unfolding. In

this connection, it should also be mentioned that (Jaber

et al. 2003) observed lack of motility and actin binding by

HMM immobilized on a hydrophobic surface.

Applications for surface characterization

In addition to suggesting appropriate surface functionali-

zation methods for motility supporting regions in nano-

technological applications the studies mentioned above

have led us to use TMCS-derivatized surfaces also in

fundamental biophysical studies (Vikhorev et al. 2008a)

due to more consistent and better characterized properties

than nitrocellulose. However, of greater potential interest is

the direct relationship between surface tension and sliding

velocity because it opens for use of HMM propelled actin

filament velocity to characterize surface properties. This

would be of particular relevance for characterizing narrow

nanostructured channels (cf. Fig. 1) where micro-contact

angle measurements (Sundberg et al. 2007) are not possi-

ble. This adds to and complements ideas for surface

topography characterization (Hess et al. 2002a) that has

previously been proposed as an application for kinesin

propelled microtubules.

Strategies for guiding of HMM propelled actin

filaments on a chip

Guiding of HMM propelled actin filaments to certain

regions on a chip along nano- or microscale channels/

tracks have been achieved using either topographically

(Byun et al. 2009; Mahanivong et al. 2002; Sundberg et al.

2006b) or chemically (Kolli et al. 2010; Manandhar et al.
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2005; Nicolau et al. 1999; Sundberg et al. 2006b; Suzuki

et al. 1995, 1997) defined track/channels or a combination

of these strategies (Bunk et al. 2003, 2005a, b; Byun et al.

2007; Jaber et al. 2003; Sundberg et al. 2006b). One way

(Bunk et al. 2005b; Sundberg et al. 2006b) of implement-

ing the combined strategy was by combining hydrophobic/

hydrophilic chemical patterning with the formation of

effective topographical barriers in the form of partly roofed

channels (‘‘inverted T-channels’’; Fig. 3a). This was

achieved by first opening up the channels by electron-

beam-lithography in a PMMA/LOR (lift-off-resist) layer

followed by etching of LOR to create a PMMA overhang

and treatment with oxygen plasma to make PMMA nega-

tively charged and hydrophilic. Subsequently the channel

floors were made motility supporting by vapour phase

deposition of TMCS. Channels of this type were found to

perform exceedingly well with motility of similar quality

as on non-patterned TMCS surfaces, with the motility

limited only to the tracks (Fig. 3b) and with virtually no

filaments escaping into solution.

In order to ensure unidirectional motion along the nano-

scale channels special rectifier structures could be used

(cf. Fig. 4; Hiratsuka et al. 2001; van den Heuvel et al.

2005; Vikhorev et al. 2008b). However, theoretical anal-

ysis (Sundberg et al. 2006b) has shown that the minimum

channel width (wu) for which U-turns are at all possible is

given by the following expression:

wu ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kT � Lp

2d � q � f � Gbind

s

ð2Þ

where kT is the Boltzmann factor, LP is the actin filament

persistence length, d is the width of a band along the fil-

ament (centred on the filament) where myosin heads are

available for attachment, f is the duty ratio and Gbind is the

average binding energy of the attached myosin heads. This

expression suggests (in agreement with experimental

results) that channel widths \300 nm would not allow

U-turns of HMM propelled actin filaments. The product

nheads ¼ d � q � f in Eq. 2 is the number of attached myosin

heads per lm filament length. If nheads is known, then Gbind

can be determined on basis of measurements of wu because

LP (lm) has been determined for sliding actin filaments

(Vikhorev et al. 2008a). This would complement previous

measurements obtained under different conditions (Kara-

tzaferi et al. 2004). We (Sundberg et al. 2006b) found

wu = 0.30 lm. By then inserting a value of LP in the range

7–11 lm (Vikhorev et al. 2008a) (at ionic strength 40 mM)

and assuming that d, q and f are in the ranges 26–70 nm

(Harris and Warshaw 1993; Uyeda et al. 1990)

(4000–13,000 lm-2) (Sundberg et al. 2006b), and

0.02–0.06 (Harris and Warshaw 1993; Uyeda et al. 1990)

Gbind was estimated to be in the range from 1.4 to 59 kT

with a mean value of 19 kT based on midpoint values of

the above parameters. Whereas the range based on the

extreme parameter estimates is huge (including clearly

unrealistic values, e.g., [free energy of ATP turnover

[20–25 kT]), the mean value is within the previously

determined range of 10–20 kT (Karatzaferi et al. 2004).

Obviously, the critical issue is the value of nheads. If this

could be measured directly to high precision a considerably

better estimate of Gbind would be possible.

The type of channels described above are critical for

further developments of actomyosin based nano-devices as

further considered below and it was therefore important to

know that U-turns are completely prevented for channel

widths \300 nm. Moreover, even with channel widths

approaching 1 lm, Monte-Carlo simulations of filament

paths (Nitta et al. 2006; Nitta et al. 2008) suggest that

U-turns are quite unlikely.

Cargo-transportation using actin filaments as shuttles

Model cargoes, e.g., in the form of the extracellular matrix

protein fibronectin (Vikhorev et al. 2008b), fluorescent

Fig. 3 Effective guding of HMM propelled actin filament sliding

along combined topographically and chemically defined nanoscale

channels. a Cross-section of nanoscale channel (Scanning electron

microscopy picture) with floor of TMCS-derivatized SiO2 and walls

of the polymer resists LOR and PMMA (oxygen plasma treated).

b Fluorescent actin filaments sliding in channels of the type illustrated

in A thereby tracing out channel pattern ‘‘Molecular Motors’’. Image

integrated for 6 s. Reproduced from Bunk et al. (2005a) (doi:

10.1088/0957-4484/16/6/014) with permission from the publisher

(Institute of Physics)
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nanocrystals (Månsson et al. 2004), polystyrene beads

(Kaur et al. 2010b; Suzuki et al. 1996), magnetic beads

(Kaur et al. 2010a; Marston and Holohan 2005), gold

nanoparticles (Patolsky et al. 2004) or liposomes (Takat-

suki et al. 2011) have been attached to and transported by

actin filaments or (more recently) actin filament bundles

(Takatsuki et al. 2010, 2011). The aims of these studies

range from new fundamental biophysical insights to

nanotechnological applications. Uses in fundamental

studies include: nanometer tracking (Kaya and Higuchi

2010) investigations of rotation around the filament long

axis (Suzuki et al. 1996) and application of magnetic forces

(Marston and Holohan 2005). Often cargoes have been

attached to actin via plus-end capping proteins such as

gelsolin (Marston and Holohan 2005; Suzuki et al. 1996;

Vikhoreva et al. 2008) in order to minimize possible steric

clashes with the underlying HMM surface in the case of

rotation (Sase et al. 1997) of actin filaments around their

long axis. When the purpose has been cargo-transportation

in nanotechnology or the formation of metallized actin

filaments (possibly with transportation) the cargoes have

preferably be attached along the filament for high loading

capacity or the formation of an uninterrupted actin based

nanowire.

Following the first demonstration of HMM driven

transportation of actin filaments with quantum dots

attached to the actin monomers via biotin–streptavidin

(Månsson et al. 2004) and similar studies for kinesin-pro-

pelled microtubules (Bachand et al. 2004), extensive

developments have followed with main focus on microtu-

bule–kinesin (Bachand et al. 2004, 2006; Carroll-Portillo

et al. 2009a, b; Diez et al. 2003; Hiyama et al. 2009, 2010;

Hutchins et al. 2007; Malcos and Hancock 2011; Raab and

Hancock 2008; Ramachandran et al. 2006; Rios and Bac-

hand 2009). The considerably fewer numbers of studies

with actomyosin in focus may have different reasons (see

Introduction) but it is generally believed that it is consid-

erably more difficult to achieve transportation using HMM

propelled actin filaments as shuttles. This may both be

attributed to: (1) few myosin binding sites per actin fila-

ment length compared to the situation for microtubules, (2)

the non-processive function and low duty ratio of myosin II

motors requiring (also according to point 1) considerably

higher motor surface density and more available interaction

sites on actin filaments and (3) possibly rotation of the actin

filament around its long axis during sliding with the risk of

steric clashes with cargoes. On the other hand, strongly

related to these challenges (Korten et al. 2010), the HMM

propelled actin filament transportation is about ten times

faster and the few actin sites are associated with a low

diameter and low flexural rigidity opening for more

extensive miniaturization. Moreover, one would also

expect that cargoes do not have a substantial effect on

velocity of HMM propelled actin filaments in contrast to

the situation with kinesin propelled microtubules. Thus, in

the latter case, the cargoes seem to act as road-blocks

(Korten and Diez 2008) for the processive motion of

kinesin with temporary stops that will translate into

reduced velocity on the motor ensemble level. Similar

effects are not expected with non-processive myosin

motors unless, of course, motion is generated by mecha-

nisms similar to those proposed, e.g., by Esaki et al. (2007).

In a dominating fraction of the recent studies of cargo-

transportation, the cargoes were attached to the microtu-

bules via streptavidin–biotin bonds using covalently

biotinylated filaments (e.g., Ramachandran et al. 2006).

A similar approach has been used (Vikhorev et al. 2008b)

to attach fibronectin to actin filaments whereas the earlier

attachment of quantum dots (Månsson et al. 2004) was

achieved using biotin–phalloidin. Whereas biotin–strepta-

vidin mediated cargo attachment is rather versatile is has

drawbacks such as the risk of formation of inter-filament

cross-links unless the cargo-attachment occurs with the

filaments immobilized to the motors on the surface

(Ramachandran et al. 2006). Such immobilization, on the

other hand, has other disadvantages, e.g., problems with

routine quality control (e.g., degree of antibody loading) in

a future real device without destroying the device. Risks of

aggregate formation also exist if homobifunctional cross-

linkers (e.g., glutaraldehyde) (Bachand et al. 2006) are

used to covalently immobilize antibodies to the cytoskel-

etal filaments. However, the more recent development of

immobilization strategies, using heterobifunctional cross-

linkers (Byeon et al. 2010; Grotzky et al. 2011; Iyer et al.

2011), overcomes this obstacle, i.e., it prevents antibody–

Fig. 4 Self-organization of HMM propelled actin filaments on

chemically and topographically nanopatterned surface as in Fig. 3.

a Design of the nanopatterned surface. b Self-organization of actin

filaments illustrated by integrating several subsequent images at 0.2 s

intervals. Brighter color corresponds to brighter fluorescence inten-

sity. The actin filaments were initially immobilized with similar

probability to HMM molecules on each of the pear-shaped loading

zones. One minute after the addition of ATP, the HMM-induced

sliding of the filaments organized them into the illustrated pattern.

Reprinted with permission, from Vikhorev et al. (2008b). Copyright

(2008) American Chemical Society
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antibody or actin–actin cross-linking. A version of this

approach, allowing attachment of polyclonal antibodies to

microtubules has been studied (Carroll-Portillo et al.

2009a) whereas a more versatile method that allows

attachment of both monoclonal and polyclonal antibodies

was applied quite recently to actin filaments (Kumar et al.

2011, 2012, manuscript submitted). This study demon-

strated that several antibody–antigen complexes could be

transported at high velocity (*10 lm/s) when attached to

HMM propelled actin filaments. Another recent develop-

ment in cargo-transportation driven by HMM is the use of

fascin-bundled actin filaments (Takatsuki et al. 2010,

2011). These bundles are similar to those existing in vivo

in filopodia of motile cells. Such bundles seem to have

cargo carrying capacity more comparable to microtubules

(e.g., transporting liposomes and bacteria) but markedly

better than for actin filaments in spite of similar velocity as

the latter. In spite of these favourable properties of the

bundles, it would also be of interest to further clarify the

limitations for cargo-transportation by isolated actin fila-

ments due to their lower complexity and lower flexural

rigidity (Claessens et al. 2006; Vikhorev et al. 2008a) of

importance for increased miniaturization. In this context it

is important to clarify what mechanisms (related to surface

charge, hydrophobicity and size of cargo) that are the

limiting factors for transportation.

Towards separation and detection devices

A range of nanostructure-based devices (Giljohann and

Mirkin 2009; Lee et al. 2004; Nam et al. 2003; Zhang et al.

2005; Zheng et al. 2005), independent of molecular motors,

have been developed to improve bioanalytical systems

such as miniaturized biosensors for increased sensitivity,

rate of detection and capacity for multiplexing (Giljohann

and Mirkin 2009; Jokerst et al. 2010; Ng et al. 2010). These

devices are often combined with microfluidics based

separation/concentration (Jokerst et al. 2010; Ng et al.

2010; Whitesides 2006) but, whereas the microfluidic chips

are indeed small, bulky accessory equipment is required

(Jokerst et al. 2010; Whitesides 2006) as well as strong

driving forces for liquid transport, at least in nanofluidics

(Månsson et al. 2005). It would therefore be of great value

if molecular motor driven shuttles could instead drive

separation processes and concentrate analytes on detector

sites (Fischer et al. 2009; Lin et al. 2008). Thus, making

use of the developments of cargo-transportation and guid-

ing along nanosized tracks of filament shuttles it should be

possible to transport antibody–antigen cargoes from pick-

up zones (Brunner et al. 2007; Sundberg et al. 2006b) to

target zones (e.g., a detector) thus substituting micro-

fluidics for separation and concentration purposes. This

approach, in addition to avoiding the problems of fluidics

mentioned above, would also require truly minimal sam-

ple volumes since the analytes to be detected would be

transported without simultaneous fluid flow. Indeed, the

approach is like affinity based separation with a stationary

fluid phase and motile highly miniaturized ‘‘solid phase’’

(the filament shuttle).

Proof-of-principle concentration/separation and detec-

tion schemes have been described recently using the

microtubule–kinesin motor system. In one case (Fig. 5)

(Lin et al. 2008) biotinylated microtubules captured

fluorescent streptavidin and concentrated it several orders

of magnitude with a half-time of tens of minutes. In

another device (Fischer et al. 2009) antibodies against

glutathione-S-transferase (GST) were attached to surface

immobilized microtubules on a circular (800 lm wide)

pick-up zone using biotin–streptavidin links. This

assembly of the final device was followed by addition of

analyte (GST). Following binding of GST to the micro-

tubule-bound antibodies it was concentrated at the device

edges during a period of hours by means of kinesin driven

transport.

Fig. 5 Microstructured device

for molecular concentration.

After capture of cargoes to be

concentrated by microtubules

bound to kinesin on the sorter

regions, kinesin propels these

filaments for concentration in

the collector region coated by

Parylene. Reprinted and adapted

with permission, from Lin et al.

(2008). Copyright (2008)

American Chemical Society
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Notable for the mentioned proof-of-principle devices is

that concentration of the analyte for detection was rather slow

compared to existing high-sensitivity methods (Georganop-

oulou et al. 2005; Mulvaney et al. 2009; Nam et al. 2003;

Rissin et al. 2010) and either a simple recognition molecule

(biotin) was used or antibodies were attached to the cyto-

skeletal filaments when immobilized to kinesin (see above).

Consequently, challenges remain before a practically useful

device is achieved and steps are taken as described below.

Thus, the covalent antibody immobilization on actin

filaments via heterobifunctional cross-linkers (Byeon et al.

2010; Grotzky et al. 2011; Iyer et al. 2011) would allow

attachment of antibodies to the actin filaments in solution

thereby overcoming the limitation related to antibody

attachment via biotin–streptavidin on the device surface.

Further, by exploiting the high speed of HMM driven actin

filaments and their low flexural rigidity (Vikhorev et al.

2008a) we expect that actomyosin-driven concentration of

analyte on a target (detector) zone should be possible in

seconds which is faster than in recent high-sensitivity

methods (Georganopoulou et al. 2005; Nam et al. 2003).

Another challenge that needs to be addressed before

arriving at a clinically (or otherwise) useful device is to

extend the shelf-life to months or, preferably years. An

important finding in this connection is that we recently

(Albet-Torres and Månsson 2011) demonstrated long-term

storage (months) of fully functional in vitro motility assays

with adsorbed HMM, actin filaments and ATP-containing

assay solution in a -20 �C freezer. This may be compared

to weeks in a refrigerator (Sundberg et al. 2003). A very

exciting possibility for further improved shelf-life is to

use pharmacologic chaperones similar to that described

recently (Radke et al. 2012) to rescue motility assays that

have deteriorated as a result of ageing.

Finally, it has been recently shown that complex fluid

environments such as blood-plasma and serum may

severely affect motility (Albet-Torres et al. 2012, manu-

script submitted). Whereas dilution of the sample would

overcome the difficulties this is highly undesirable from a

sensitivity perspective. Therefore, it is of great interest to

develop pre-separation methods that allow exchange of the

complex fluid environment for optimized buffers before

exposing the cytoskeletal filament shuttles and the molec-

ular motors for the analyte of interest (whether a protein or

nucleic acid/oligonucleotide).

Other nanotechnological and materials science

applications

Self-organization of complex systems involves formation of

patterns or structures as a result of local interactions of the

individual system elements when the system is left to itself.

Such phenomena are of critical importance in biology from

molecular (e.g., thin or thick filaments of muscle) to societal

levels (swarm-like behavior of, e.g., birds) and molecular

motor driven motion and force-generation play key roles in

these contexts. Not unexpectedly, there have been efforts to

exploit self-organization phenomena in nanotechnology for

the formation of more or less complex nano-, micro- or even

macroscale structures. However, unlike in the biological

systems the building-blocks in artificial systems often suffer

from heterogeneity with respect to size, shape and intermo-

lecular interaction sites. Therefore, it is of interest to produce

hybrid systems were the perfection of biological building

blocks (e.g., actin monomers, amyloidogenic peptides) are

used to guide self-organization of non-biological molecules

or particles. This may be useful for creating structures on

different levels of hierarchial organization. Also motor dri-

ven transport of cytoskeletal filaments has been exploited in

such applications. For instance, stable or meta-stable fila-

ment bundles of different shapes and length scales may form

(Hess et al. 2005; Idan et al. 2012) in the presence of filament

cross-linking molecules as well as DNA–micotubule net-

works with DNA-fragment bound to the microtubules (Diez

et al. 2003). In the absence of cross-linkers the filaments

instead either move collectively in self-organized swarms

(Butt et al. 2010; Schaller et al. 2010; Vikhorev et al. 2008b)

with changing shape from time to time or, under other con-

ditions (Kraikivski et al. 2006), they undergo random dif-

fusion like sliding (Vikhorev et al. 2008b). The latter

behaviour can be partly controlled by chemical and topo-

graphical micro-, and/or nanopatterns and used to produce

actin filament gradients of predictable shapes (Vikhorev

et al. 2008b). By then immobilizing the actin filament to

myosin heads (by removal of ATP) the filaments can be used

as templates for attachment of a range of other molecules

[e.g., extracellular matrix proteins (Vikhorev et al. 2008b)]

by biotin–streptavidin bonds or via antibodies. This could be

relevant in applications such as tissue engineering and cell

adhesion studies where varying densities of extracellular

matrix proteins are of interest as well as for the production of

complex electrical circuits. In the latter case the filaments

may be derivatized by gold (Patolsky et al. 2004) to produce

conducting nanowires.

In order to predict self-organization phenomena of

motor propelled actin filaments on a surface the filament

paths may be simulated using a Monte-Carlo approach

where each instantaneous update (du) in angular sliding

direction is drawn from a Gaussian distribution with mean

value 0 and standard deviation given by:

SDdu ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi

vf � Dt

LP

s

ð3Þ

where vf is the sliding velocity and Dt the time interval

between successive updates in sliding direction. The
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guiding at edges such as in nanochannels may also be

simulated using the Monte-Carlo approach (Nitta et al.

2006, 2008) but inclusion of interactions between filaments

[e.g., important under filament crowding and high motor

densities (Butt et al. 2010; Kraikivski et al. 2006; Schaller

et al. 2010; Vikhorev et al. 2008b)] will require modifi-

cations (Kraikivski et al. 2006) to the simulations com-

pared to previous studies (Månsson et al. 2012; Nitta et al.

2006, 2008). The described simulation method is not only

important for predicting motor driven pattern formation but

is also important for the optimization of devices for con-

centration and separation as considered above.

In addition to the above applications in biosensing and

self-organization it is also of interest to consider biocom-

putation based on molecular motor driven filaments and

other motile objects. [for further applications, see reviews

(Agarwal and Hess 2010; Bakewell and Nicolau 2007;

Goel and Vogel 2008; Hess 2011; Korten et al. 2010;

Månsson et al. 2005; van den Heuvel and Dekker 2007)].

This motility based approach towards computation

involves (Nicolau et al. 2006) the coding of mathematical

problems in (micro/nano) fabricated networks followed by,

e.g., motor propelled filaments or ‘‘self-programmable

agents’’ such as microorganisms. It is argued by Nicolau

et al. (2006) that the motion of the agents in the confined

geometries may be regarded as a computational process

with the potential to compute ‘‘any Boolean function by

appropriately designing the structures and releasing the

agents’’. In a computational process using actin filaments,

the sliding directions, together with the obstacles, supply

the input whereas the output could be the distribution of

agents after a certain time or other measurable singnal.

Moreover, a computational process utilizing HMM

propelled actin filaments, requires a certain degree of

control of transport direction at network nodes and the

agents should only be allowed to move forward through the

network (Nicolau et al. 2006). Such prevention of U-turns

and a strict control of guiding at nodes are possible to

achieve using channels of the type described above (cf.

Fig. 1). However, for optimal performance at the nodes, it

might be necessary to apply also active gating (e.g., using

electrical fields (Riveline et al. 1998; van den Heuvel et al.

2006) or other methods (Byun et al. 2011). Additionally,

for some computations it is important to monitor the path

of individual filaments through the network, something that

requires the development of both specific detectors and

specific labelling methods for the filaments. Thus, whereas

simple versions of motor driven biocomputation devices

could be composed simply of appropriately designed net-

works fabricated using channels as in Fig. 1, more complex

versions require both gating and individually addressable

detection systems. For this reason, a complete motor driven

biocomputation device may be more challenging to

develop than lab-on-a-chip devices for separation and

concentration of analytes.

Conclusions and perspectives

Of great interest would be the quite realistic development in

the near future of practically useful and commercially viable

motor driven lab-on-a-chip systems for biosensing in med-

ical diagnostics, environmental and bioterrorism monitoring

etc. Moreover, the developments of self-organized systems

deserve further exploration. In these studies it would be of

interest not only to exploit wild-type but also engineered

biological motors (e.g., Tsiavaliaris et al. 2004) or even

artificial molecular motors (Bromley et al. 2009; Feringa

2011; Kuwada et al. 2010). For further development of

point-of-care diagnostic devices, it will be important to

perform in depth studies of the mechanisms that limit the

capability of engineered cytoskeletal filament shuttles to

transport various cargoes, from single macromolecules

to cells. Other important developments would be new

approaches for optimizing (Amrute-Nayak et al. 2010) and

stabilizing the protein components in order to increase their

shelf-life and methods to ensure the compatibility of motor

function with complex fluid environments or alternatively,

bypassing this complication by innovative approaches.

Additionally, it will be important to select appropriate

applications for the different motor system to optimally

utilize the high cargo-carrying capacity of microtubule

kinesin and the high speed and increased capability of

miniaturization associated with myosin II propelled actin

filaments. It will also be of interest to build further bridges

between fundamental studies and applications. Thus, the

manipulation of molecular motors and cytoskeletal fila-

ments for use in applications prompt highly specialized

studies that may lead to unique fundamental insights that

may not be readily obtained in conventional physiological or

biophysical studies. For instance, one problem that has been

studied in greater detail for this reason is the material

properties (e.g., persistence length) of actin filaments (Nitta

et al. 2008; Vikhorev et al. 2008a, b) and microtubules (Nitta

and Hess 2005; Nitta et al. 2008; van den Heuvel et al. 2006,

2007) and how these properties may change under different

conditions. Also the relationship between the filament per-

sistence length and the winding filament paths in the in vitro

motility assay (Duke et al. 1995) have been investigated in

some detail as well as the mode of motor adsorption to

various surface chemistries. The latter information should

be of value when interpreting in vitro motility data obtained

in fundamental biophysical studies.
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