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Abstract
Possible utilization of SRF (solid recovered fuel) in the energy industry is a widely investigated topic, because even though

it is economically feasible, its complex reactions make a steady operation hard to maintain. SRF is prepared as a mixture of

the well-combustible (but not recyclable) parts of municipal and industrial waste, which consists of mainly various papers,

plastics and textiles with very different combustion characteristics. To describe the kinetics of a complex sample like this,

the utilization of more advanced methods is recommended. In this work, genetic algorithm was used to fit four different

reaction models to thermogravimetric data measured in oxidative atmosphere, and the results were compared. It was

concluded that the tested distributed activation energy model and the simple and expanded nth-order models offer only a

slightly better fitting value for this special sample, which promotes the usage of the simpler first-order model.

Keywords SRF � Reaction kinetics � Genetic algorithm � DAEM

Introduction

Solid recovered fuel (SRF) is a waste-derived fuel pro-

duced from various groups of non-hazardous municipal,

industrial and commercial wastes that are not recyclable

but still have good combustion characteristics. Its classifi-

cation is determined by the EU standard EN 15359:2011,

which helps the producers and the consumers to find a

common language when specifying the needs and hope-

fully maximizing the utilization. With the proper methods,

it is possible to create fuels with properties comparable to

classical biomasses and coals, creating the possibility of

efficient co-combustion without the need of complex boiler

reconstruction. It is important to mention that only the non-

recyclable part of the waste should be the source of SRF.

Albeit both recycling and combustion directly reduce the

amount of unprocessed landfilled waste, recycling is an

economically and environmentally more feasible process.

Regarding the most recent related directive [the Circular

Economy Package (January 2018)], EU members should

aim to reduce landfill to a maximum of 10% of municipal

solid waste by 2030. In an ambitious environment like this,

every opportunity to reduce landfill is welcomed. A very

similar type of fuel is the refuse-derived fuel (RDF), which

shows no major technological differences; the distinction is

mostly legal.

To achieve efficient boiler operations with this fuel, it is

essential to have reliable knowledge about the nature of the

relevant reactions. Thermogravimetric analysis (TGA) is a

powerful tool for this, but because of its very heteroge-

neous composition, the combustion characteristics of SRF

are challenging to determine. The main problem is that

TGA commonly works with very small samples (a few

milligrams), which assumes a very precise sampling,

measuring and evaluation process, and to create a repre-

sentative sample from a suboptimal material like this,

sometimes requires compromises.

The decomposition of solid waste-derived fuels was

investigated quite thoroughly in the past few years [1–7],

but the reaction kinetics were covered only a few times. To
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acquire the parameters describing the kinetic behavior,

different methods are available, which could be catego-

rized as model-free and model-fitting methods. For similar

fuels, the most widely used ones were collected and

compared by Cepeliogullar et al. [1]. Acceptable results

were achieved by all methods with some limitations, which

shows that there is no obviously best way to handle mixed

solid fuels; every case needs special attention and thorough

investigation. The three most commonly used model-free

methods were applied for two kind of solid wastes by

Radojevic et al. [2] in nitrogen atmosphere. A more

advanced model-fitting method was applied by

Conesa et al. [3]. Three parallel nth-order reactions were

considered in inert and air atmospheres, and the kinetic

parameters were calculated using the least squares opti-

mum seeking method. Satisfactory results were presented

in all cases, although only the pre-exponential factors were

considered different in case of the different atmospheres.

One of the most widely investigated fuels is the sewage

sludge. In the work of Niu et al. [8, 9], pure sewage sludge

with different moisture contents and its blend with coal

were evaluated using the model-free Flynn–Wall–Ozawa

(FWO) method. Another special recovered fuel type is the

automotive shredder residue (ASR), investigated by

Conesa et al. [10]. In the study, distributed activation

energy method (DAEM) was applied with least squares

optimization technique. To describe the complex reactions

of the sample, three pseudo-components were defined: 5,

15 and 30 �C min-1 heating rate, three different atmo-

spheres (0, 10 and 20% oxygen) were measured, and the

DAEM results were compared to the simple first-order

ones. The difference in inert atmosphere was small, but in

the presence of oxygen the DAEM become more reliable.

DAEM was used successfully multiple times to determine

the kinetic parameters of other complex solid fuels as well

[11–14]. The principles of the DAEM were originally

presented by Anthony et al. [15].

Thus, in most cases, either nitrogen or other inert gas

was used as the atmosphere for the TGA measurements. It

is feasible, if the aim of the work is identifying the various

gases released or using as an input in a model for pyrolysis

technology. However, the combustion kinetics of solid (not

just waste-derived) fuels are more rarely investigated,

which is understandable, as during combustion the reac-

tions are much complex and harder to distinguish. Also, it

is much harder to taken a proper TGA measurement,

because in combustible atmosphere the pyrolytic and

combustion reactions occur simultaneously, and the sam-

ples tend to self-ignite resulting in unrealistic behavior in

the measured graphs, which makes most kinetic evaluation

method unreliable [10]. But there are cases, for example if

the determined kinetic parameters supposed to be used as

an input for a physical model with combustion, where it is

necessary to consider combustion in the kinetics as well.

Instead of distinguishing every possible reaction, it is

common to substitute them with only a few pseudo-reac-

tion groups. Identifying the origin of these is quite chal-

lenging for these complex samples. In the literature, it is

common to relate them to the major waste components,

which are cellulosic materials like paper, textiles and

sometimes biomasses, and plastics [1–7]. For combustion,

this means three main reaction groups, two of which are

responsible for the volatile releases at around 300 �C and

470 �C. The first one describes the pyrolysis of all cellu-

losic materials, and the second shows the decomposition of

the plastics. The third reaction takes place between 600 and

700 �C; it is related to the combustion of all remaining

char, mostly from the cellulosic components [1–7].

The aim of this work is to simultaneously evaluate the

combustion kinetics of a complex SRF sample with the

most commonly used reaction kinetics models. The results

of the models will be compared and rated in regard to

precision and usability as an input of more complex com-

bustion models. Sensitivity analysis will be also performed

for every optimizable parameter.

Experimental

The SRF sample used in this work was provided by a

Hungarian waste processing company. The original

appearance was quite diverse in size, shape and color as

well, because of the heterogeneous composition. Before the

measurements, a representative sample was grinded, which

resulted in threadlike pieces with a width of 10–30 lm and

varying lengths in 10–1000 lm as shown in Fig. 1. The

pictures were taken by a JEOL JSM-5500LV scanning

electron microscope, with the same method used by

Bakos et al. [16].

The ultimate and proximate properties are shown in

Table 1. All parameters are measured in dry basis, which is

close to the fuel’s quality during industrial utilization

because of the natural drying during the long transfer and

storage.

A TA Instruments SDT 2960 simultaneous TG/DTA

device was used for the thermal analysis in air atmosphere

(130 mL min-1) as described in Bakos et al. [16]. The

measurements were taken at 5, 10 and 15 �C min-1. These

rates are relatively small compared to what generally used,

but on higher rates the self-ignition of sample was too

significant to get reliable results. Because of this, and to

minimize the impact of the mass and heat transfer phe-

nomena, the sample size was decided to be around 2 mg, as

it was suggested by Várhegyi et al. [14].
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Kinetic models

To describe the combustion of the sample, a model-fitting

method was selected. With the increase in numerical pos-

sibilities in the past years, the model-fitting methods tend

to became more and more powerful tools in reaction

kinetics. However, it is advisable to consider the basic

drawbacks of these kinds of calculations. These were

highlighted numerous times in the past, most recently by

Várhegyi et al. [17]. The most important is that albeit it is

really tempting to use only one measured data with one

heating rate (as it is numerically possible), the result from

that is only usable for that exact heating rate. The reason is

that in that case the system is very ill-defined, and a con-

version graph could be described with more sets of

parameters. Evaluating more conversion curves with

different heating rates simultaneously, however, obligates

the optimization process to find parameters that can fit

measurements with different heating programs at the same

time.

Equation 1 was used as the fundamental rate equation to

build up the models, where x is the conversion of the

sample defined as the ratio of the actual to final reacted

masses (Eq. 2), f xð Þ is the reaction function, which will

change in every model and kr is the reaction rate repre-

sented by Eq. 3, where A is the pre-exponential factor, E is

the activation energy, R is the universal gas coefficient and

T is the absolute temperature of the sample.

dx

dt
¼ krf xð Þ ð1Þ

x tð Þ ¼ m0 � m tð Þ
m0 � minf

ð2Þ

kr ¼ A exp � E

RT

� �
ð3Þ

As it was mentioned before, to describe the kinetics of

this kind of samples, it is common to consider three sub-

components, which have their own mass share ci (Eq. 4).

dx

dt
¼
X3
1

ciAi exp � Ei

RT

� �
f xð Þ ð4Þ

As the most commonly used models, three different f xð Þ
reaction functions and a distributed activation energy

model (DAEM) are considered, as shown in Table 2.

The first one is a simple first-order conversion function

(n = 1, Eq. 5), the second one is a more general nth-order

reaction (n 6¼ 1; Eq. 6), and the third one is expanded with

xþ zð Þm (Eq. 7) as it was suggested in the earlier work of

Várhegyi et al. [18].

The third model has the most parameters, and some of

them could be neglected in some cases, as it was already

suggested [18], because more parameters to optimize

demand more computation capacity, and in most cases, the

precision of the results could not be increased above a

limit. However, it was not investigated for this kind of

samples, so in current work it was decided to let it in the

original form. The influence of the different parameters and

their potential neglecting will be evaluated by sensitivity

analysis later in this work.

A first-order DAEM is used as the fourth test subject

(Eq. 8). This method assumes that the previously defined

three pseudo-reaction groups consist of infinite number of

subreactions, and for their activation energies, a specific

distribution could be assumed. To describe this, a Dj Eð Þ
distribution function was implemented (Eq. 9), where E0 is

the mean value of the distribution, while r is its width. Its

integral in any range of E means the probability for a

Fig. 1 SEM image of the grinded sample

Table 1 Proximate and ultimate analysis of the sample (dry basis)

Ash/mass% 21.7

Volatile/mass% 66.9

Char/mass% (by difference) 11.4

S/mass% 0.145

C/mass% 45.40

H/mass% 6.12

N/mass% 1.322

O/mass% (by difference) 47.013

LHV/kJ kg-1 17.830
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random chemical group to have its activation energy in that

range. By assuming a fine enough resolution, this also

means the proportion of the reactions in the selected range.

In this case, Gaussian distribution was considered, as it is

the simplest and the most commonly used one. Its biggest

problem is that it is symmetrical, which was already stated

that it is not true for most reaction groups [11]. In practice,

though this asymmetry is not that significant, good fitting is

still achievable by this method [10, 13, 18]. The relevance

of choosing a more complex distribution function was

investigated by Cai et al. [11].

Dj Eð Þ ¼¼ 1

rJ
ffiffiffiffiffiffi
2p

p exp � 1

2

E � E0;j

rj

� �2
 !

ð9Þ

Equation 8 also shows that the differential equation already

contains an integral, which makes an analytical solution

challenging. The problem will be solved numerically, by

considering a first-order reaction equation for a series of

independent reactions (k) with the corresponding activation

energies and with the share defined by the distribution

function. In summary, it results in the real conversion of j

pseudo-component (Eq. 10).

xj tð Þ ¼¼
X
k

r
Ek

Ek�1

Dj Ekð ÞdExk t;Eð Þ ð10Þ

Parameter fitting

Because of the high number of optimizable parameters, the

fitting was performed numerically with genetic algorithm

(GA). It is a commonly used optimum seeking method,

which is based on the Darwinian evolution theory. The

basic principles and the mathematic background are sum-

marized by McCall [19]. It works by producing generations

Table 2 List of the tested reaction models

Reaction model Applied equation

First order dx
dt

¼
P

Ai exp
Ei

RT

� �
1� xð Þ (5)

nth order dx
dt

¼
P

Ai exp � Ei

RT

� �
1� xð Þn (6)

Expanded nth order dx
dt

¼
P

Ai exp � Ei

RT

� �
xþ zð Þm 1� xð Þn (7)

Distributed activation energy model (DAEM) dx tð Þ
dt

¼
X
j

r
Ejþr

Ej�r
Dj Eð ÞdE

dxj t;Ej

� �
dt

¼
X
j

r
Ejþr

Ej�r
Dj Eð ÞdEAj exp � Ej

RT tð Þ

� �
1� xj t;Eð Þ
� �

(8)

0 700

Temperature/°C

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
on

ve
rs

io
n

100 200 300 400 500 600

15 °C min–1 calculated
15 °C min–1 measured

10 °C min–1 calculated
10 °C min–1 measured

5 °C min–1 calculated
5 °C min–1 measured

Fig. 2 Thermal decomposition

of SRF in air atmosphere with

first-order model
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of species as the solutions of the same problem with dif-

ferent parameters. Every generation is evaluated by com-

paring the results to a desired value, for example measured

data, based on which the parameters (species) resulting in

the best fits are selected and used to create the new gen-

eration. This method ensures that the difference between

the benchmark data and the results of the best parameters

converges to zero in every generation. The result of the

function generating the species should be one number at

any time, which is called the fitness value (F), and the

function that provides it is called the fitness function.
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Fig. 4 Thermal decomposition

of SRF in air atmosphere with

expanded nth-order model
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A serious drawback is that the method is very compu-

tation heavy, as the same problem is solved multiple times

with different parameters without any further simplifica-

tion, as every generation should have an exact number of

independent species that needs to be compared. However,

this independency has some benefits as well, and they can

be computed simultaneously using multi-core worksta-

tions, which significantly decreases the necessary compu-

tation time.

A MATLAB code was developed for the calculation

using the built-in genetic algorithm function provided by

the Optimization Toolbox [20] that handles parallel cores

as default as well. Equation 11 shows the method to gen-

erate the fitness values, which is the sum of the square

differences of the measured and the calculated data at
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Fig. 5 Thermal decomposition

of SRF in air atmosphere with

DAEM

Table 3 Kinetic parameters in case of three parallel first-order reac-

tions, FV: 2:51� 10�4

Reaction 1 2 3

A/s-1
4:02� 105 4:34� 105 2:83� 105

E/J mol-1 86,829 108,348 135,578

c 0.47 0.38 0.13

Table 4 Kinetic parameters in case of three parallel nth-order reac-

tions, F: 2:31� 10�4

Reaction 1 2 3

A/s-1
9:13� 104 1:86� 105 8:42� 104

E/J mol-1 79,304 104,081 126,336

c 0.53 0.35 0.12

n 1.52 1.38 1.43

Table 5 Kinetic parameters in case of three parallel expanded nth-

order reactions, F: 2:28� 10�4

Reaction 1 2 3

A/s-1
8:19� 104 1:86� 105 9:55� 104

E/J mol-1 77,560 103,154 124,488

c 0.52 0.36 0.12

m 0.25 0.14 0.47

n 1.61 1.49 1.13

z 0.0165 0.0788 0.01

Table 6 Kinetic parameters in case of DAEM with three parallel first-

order reactions, F: 2:07� 10�4

Reaction 1 2 3

A/s-1
2:82� 105 2:01� 105 4:99� 104

E0/J mol-1 85,134 104,020 122,770

c 0.49 0.38 0.13

r/J mol-1 2462 3550 2040

560 T. Sz}ucs et al.
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every time step. This also should be divided by the number

of measurement point in cases of the different heating

rates, as the duration is longer in case of lower rates with

more measurement points, which would increase the

impact of those slower measurements.

F ¼
X
i

P
j xm tð Þ � xc tð Þð Þ2

Nj

ð11Þ

Measurements with different heating rates were evaluated

together, so every parameter set provided only one fitness

value based on the difference of all three conversion cases,

as it was detailed earlier.

Least squares method as the central element of the

process has another benefit, as its structure is quite robust,

and the actual reaction models can be changed easily while

letting most of the code intact.

Sensitivity analysis

To evaluate the influence of the parameters, a local sensi-

tivity analysis was performed, which means that the

parameter changes were calculated around the optimal

values found by the genetic algorithm. The minimum and

maximum values of these sets were generated as Eq. 12

shows for a general, already optimized popt parameter as

pSA;min and pSA;max.

pSA;min ¼ popt � 0:5popt

pSA;max ¼ popt þ 0:5popt
ð12Þ
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The evaluation was performed as it was suggested by

Cai et al. [21], so the influence of the various parameters on

the fitness value was classified in three different groups:

poor, medium or high. Poor influence was considered,

when Fr (the actual fitness value relative to the optimized

one) was under 2 at 50% deviation, in case of medium it

should be above 2 at least at pSA;min or pSA;max and below

102 at both ends, and for high, it should be above 102 at

least at one end.

Results and discussion

Experimental results

Figure 2 presents the conversion of measured thermal

decomposition of SRF in air (dashed lines), at three heating

rates with the estimated graphs provided by the first-order

model (continues lines). The optimized parameters were

the pre-exponential factor, the activation energy and the

mass fraction of all three pseudo-components, which is

eight parameters all in all, because the third mass fraction

is derived from the other two, so unity is ensured in all

species of all generations.

Three reaction groups (cellulosic materials, plastics and

the remaining char) were considered based on the common

method in other papers, as it was detailed earlier. These

reaction groups are very general; they could be divided to

smaller parts, but without special measurements [3] that

would be only speculation, as the composition of the

sample is very diverse. Moreover, more reaction groups

would not lead to more precise results, so it would not have

any practical benefits.
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Figures 3–5 show the same measured conversion graphs

with the results of the nth-order and the expanded nth-order

models and the DAEM as continuous lines, respectively.

An interesting observation on the experimental (dashed)

curves in Fig. 2 is that an elevated heating rate systemat-

ically results in a decreasing amount of char remaining

after the second step. This may show a certain capability of

char for further gasification if more time (slower temper-

ature increase) is available. Also note that none of the

investigated models handle this behavior (Figs. 2–5) as

char fractions are considered constant in all cases.

Kinetic parameters

The fitting for the devolatilization (which is more than 80%

of the whole process) is acceptable even in case of the

simplest first-order model. The main differences start

around 500 �C, where the char combustion occurs. Table 3

shows the kinetic parameters found for the decomposition.

The fitness value was 2:51� 10�4.

To increase the quality of the fitting, the applied reaction

model should be improved. Three upgraded methods, a

basic and an expanded nth-order reaction model and a

DAEM were used for that as described earlier. Also, it was

decided to let the mass fractions of the reaction groups

slightly vary as well, which means that the exact amount of

the various components is part of the model, not defined or

measured in any other independent way.

Table 4 shows the results of the optimization for the nth-

order reactions, Table 5 for the expanded nth-order model

and Table 6 for the DAEM. The distribution of activation

energies is shown in Fig. 6.

It can be seen that letting n differ from unity led to an

improved fitness value, which was only slightly increased

in case of the expanded model. The lowest fitness value

came from the DAEM, which resulted in approximately

20% decrease compared to the first-order model as Fig. 7

shows.

The pre-exponential factors and activation energies are

similar for the first three models and slightly different for

the DAEM. These values are hard to be compared to the

results of other works with similar samples, as those tend to

highly scatter. Conesa et al. [3] with a similar method

calculated much higher pre-exponential factors (with
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magnitudes of 106, 1019 and 1021) with also higher acti-

vation energies between 98 and 325 kJ mol-1. However, in

case of the nth-order model, the reaction orders were below

unity, or almost 3 in one case.

Cepeliogullar et al. [1] showed pre-exponential factor

with the same magnitude and similar activation energies,

with a different model-fitting method (Coats–Redfern) and

only for pyrolysis. For the reaction order, five values were

tested as parameters between 0 and 2, and it was shown

that A and E were increasing linearly with that. The best fit

was found at n = 1.5, which is close to the reaction orders

of this work’s models.

Luo et al. [22] investigated separately the major com-

ponents of solid wastes with macro-TGA and FWO

method. Here the activation energies of the biomass com-

ponents were between 23 and 51 kJ mol-1, and for the

plastics, they were between 33 and 76 kJ mol-1. These

values are a slightly smaller than the ones reported here.

It is clear that with the freedom of the model-fitting

methods, it is possible to create infinite number of equally

correct models with very different parameters, but it is

clear that these values are not comparable without clari-

fying the measurement technique, the applied model and

the used method.

Sensitivity analysis

Figures 8–11 show the changing of the relative fitness

value (Fr ¼ Fi=Fopt) for the previously described sets of

parameters.

It can be seen that in case of a first-order model, the

impact of the activation energies is the biggest and

approximately proportional to the corresponding mass

fractions. The pre-exponential factors have much smaller,

but still relevant impact with the same mass fraction-based

distribution. This tendency stays in case of the other

models as well (Table 7).

It is also clear for the more complex models that the sole

effect of the new parameters is quite poor, and the increment

rather comes from the modified model structure. In case of

the two nth-order models, the reaction order has medium

impact, which is a little higher for the expanded model.

Given the expanded model, the parameter m has quite low,

and z almost non-existent relevance, so those parameters

could be neglected, as it was suggested earlier [18].
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Fig. 11 Sensitivity analysis of the DAEM

Table 7 Sensitivity levels of parameters

First order

E High High Medium

A Medium Medium Poor

nth order

E High High Medium

A Medium Medium Poor

n Medium Medium Poor

Expanded nth order

E High High Medium

A Medium Medium Poor

z None None None

m Poor Poor None

n Medium Medium None

DAEM

E0 High High Medium

r None None None

A Medium Medium Poor
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Conclusions

In case of complex solid fuels, choosing the correct reaction

function could increase the fitness of a kinetic model.

However, this complexity could lead to precision problems,

especially if oxidative atmosphere is used during the mea-

surements. This should be avoided at all cost, for which

detailed suggestions are available in the literature, but if the

future application demands suboptimal operation condi-

tions, the already slightly flawed measured data could not be

improved by choosing a more precise reaction model.

To investigate this problem, four different reaction

models were applied to the thermal decomposition of a

quite heterogeneous sample, which is also inclined to self-

ignite. For the numerical optimization, genetic algorithm

was used, and it was observed that although there is clear

improvement in the fitness value in case of more complex

models, that difference is not significant. The impact of the

additional parameters was also investigated using sensi-

tivity analysis, and as it was expected, their relevance is

close to negligible compared to the activation energy.
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