Skip to main content
Log in

Synthesis and photocatalytic activity of TiO2 nanoparticles prepared by sol–gel method

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

TiO2 nanoparticles were synthesized via sol–gel method by using TiCl4 ethanol solution as precursor. The effects of gelatinization time and calcination temperature were determined. X-ray diffraction measurements showed that TiO2 nanoparticles were polycrystalline with anatase phase and transform to rutile phase at high temperatures. The effects of gelatinization time and calcination temperature were examined using atomic force microscopy, field emission scanning electron microscopy, and photoluminescence spectra. Particle size increased from 58 to 89 nm when gelatinization time was increased from 1 to 5 days. Moreover, particle size increased from 58 to 111 nm when calcination temperature was increased from 500 to 900 °C. Photoluminescence intensity decreased when gelatinization time and calcination temperature increased. Photocatalytic properties of TiO2 nanoparticles were evaluated by photocatalytic degradation of methylene blue (MB) in water under UV light irradiation. The outcomes indicated that TiO2 nanoparticles exhibited efficient photocatalytic activity of up to 68 % after 180 min as shown by the degradation of MB aqueous solution.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107(7):2891

    Article  Google Scholar 

  2. Lee S, Cho IS, Lee JH, Hoe Kim D, Wook Kim D, Young Kim J, Shin H, Lee J, Jung H, Park N, Kim K, Jae Ko M, Hong K (2010) Two-step sol–gel method-based TiO2 nanoparticles with uniform morphology and size for efficient photo-energy conversion devices. Chem Mater 22(6):1958

    Article  Google Scholar 

  3. Yang D, Liu H, Zheng Z, Yuan Y, Zhao J, Waclawik E, Ke X, Zhu H (2009) An efficient photocatalyst structure: TiO2(B) nanofibers with a shell of anatase nanocrystals. J Am Chem Soc 131(49):17885

    Article  Google Scholar 

  4. Choi SK, Kim S, Lim SK, Park H (2010) Photocatalytic comparison of TiO2 nanoparticles and electrospun TiO2 nanofibers: effects of mesoporosity and interparticle charge transfer. J Phys Chem C 114(39):16475

    Article  Google Scholar 

  5. Chuangchote S, Jitputti J, Sagawa T, Yoshikawa S (2009) Photocatalytic activity for hydrogen evolution of electrospun TiO2 nanofibers. ACS Appl Mater Interfaces 1(5):1140

    Article  Google Scholar 

  6. Song MY, Kim DK, Ihn KJ, Jo SM, Kim DY (2004) Electrospun TiO2 electrodes for dye-sensitized solar cells. Nanotechnology 15(12):1861

    Article  Google Scholar 

  7. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 283:37

    Article  Google Scholar 

  8. Diebold U (2003) The surface science of titanium dioxide. Surf Sci Rep 28:53

    Article  Google Scholar 

  9. Carp O, Huisman CL, Reller A (2004) Photoinduced reactivity of titanium dioxide. Solid State Chem 32:33

    Article  Google Scholar 

  10. Sclafani A, Palmisano L, Schiavello M (1990) Influence of the preparation methods of titanium dioxide on the photocatalytic degradation of phenol in aqueous dispersion. J Phys Chem 94(2):829

    Article  Google Scholar 

  11. Yu J, Wang G, Cheng B, Zhou M (2007) Effects of hydrothermal temperature and time on the photocatalytic activity and microstructures of bimodal mesoporous TiO2 powders. Appl Catal B Environ 69:171

    Article  Google Scholar 

  12. Kresge CT, Leonowica ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359:710

    Article  Google Scholar 

  13. Barbe CJ, Arendse F, Comte P, Jirousek M, Lenzmann F, Shklover V, Gratzel M (1997) Nanocrystalline titanium oxide electrodes for photovoltaic applications. Am Ceram Soc 80(12):3157

    Article  Google Scholar 

  14. Bessekhouad Y, Robert D, Weber JV (2003) Preparation of TiO2 nanoparticles by Sol–Gel route. Int J Photoenergy 5:153

    Article  Google Scholar 

  15. Gholami M, Bahar M, Azim-Araghi ME (2012) The preparation of TiO2 nanoparticles and investigation of its electrical properties as CO2 gas sensor at room temperature. Elixir Chem Phys Lett 48:9626

    Google Scholar 

  16. Haghighi F, Roudbar Mohammadi S, Mohammadi P, Hosseinkhani S, Shidpour R (2013) Antifungal activity of TiO2 nanoparticles and EDTA on Candida albicans Biofilm. Infect Epidemiol Med 1(1):33

    Google Scholar 

  17. Li W, Zeng T (2011) Preparation of TiO2 anatase nanocrystals by TiCl4 hydrolysis with additive H2SO4. PLoS ONE 6(6):e21082

    Article  Google Scholar 

  18. Liu B, Wen L, Zhao X (2007) The photoluminescence spectroscopic study of anatase TiO2 prepared by magnetron sputtering. Mater Chem Phys 106:350

    Article  Google Scholar 

  19. Abellan MN, Dillert R, Gimenez J, Bahnemann D (2009) Evaluation of two types of TiO2-based catalysts by photodegradation of DMSO in aqueous suspension. J Photochem Photobiol A Chem 202:164

    Article  Google Scholar 

  20. Warren BE (1990) X-ray diffraction. Dover, New York

    Google Scholar 

  21. Spurr RA, Myers H (1957) Quantitative analysis of anatase- rutile mixtures with an X-ray diffractometer. Anal Chem 29(5):760

    Article  Google Scholar 

  22. Ladd MFC, Palmer RA (1993) Structure determination by X-ray crystallography, 3rd edn. Plenum Press, New York

    Book  Google Scholar 

  23. Sugapriya S, Sriram R, Lakshmi S (2013) Effect of annealing on TiO2 nanoparticles, Optik- Inter. J Light Electron Opt 24:4971

    Article  Google Scholar 

  24. Hurum DC, Agrios AG, Gray KA, Rajh T, Thurnauer MC (2003) Explaining the enhanced photocatalytic activity of degussa P25 mixed-phase TiO2 using EPR. J. Phys. Chem. B 107:4545

    Article  Google Scholar 

  25. Cong Y, Zhang J, Chen F, Anpo M, He D (2007) Preparation, photocatalytic activity, and mechanism of nano-TiO2 Co-doped with nitrogen and iron (III). J Phys Chem C 111(28):10618

    Article  Google Scholar 

  26. Yu JC, Yu JG, Ho WK, Zhang LZ (2002) Effects of F- doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders. Chem Mater 14:3808

    Article  Google Scholar 

  27. Yoon M, Seo M, Jeong C, Jang JH, Jeon KS (2005) Synthesis of liposome-templated titania nanodisks: optical properties and photocatalytic activities. Chem Mater 17(24):6069

    Article  Google Scholar 

  28. Ullmann F (2002) Encyclopedia of industrial chemistry. Wiley, Weinheim

    Google Scholar 

  29. Behera D, Bag B, Sakthivel R (2011) Synthesis, characterization and photoluminescence study of modified titania. Indian J Pure Appl Phys 49:754

    Google Scholar 

  30. Xiao Q, Si Z, Yu Z, Qiu G (2007) Sol–gel auto-combustion synthesis of samarium-doped TiO2 nanoparticles and their photocatalytic activity under visible light irradiation. Mater Sci Eng B 137:189

    Article  Google Scholar 

  31. Li XZ, Li FB, Yang CL, Ge KW (2001) Photocatalytic activity of WOx-TiO2 under visible light irradiation. J Photochem Photobiol A 141:209

    Article  Google Scholar 

  32. Lao JY, Wen JG, Ren ZF (2002) Hierarchical ZnO nanostructures. Nano Lett 11:1287

    Article  Google Scholar 

  33. Wang ZL, Pan ZW (2002) Junctions and networks of SnO nanoribbons. Adv Mater 14:1029

    Article  Google Scholar 

  34. Mengyue Z, Shifu C, Yaowu T (1995) Photocatalytic degradation of organophosphorus pesticides using thin films of TiO2. J Chem Tech Biotechno 64:339

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhsin A. Kudhier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabry, R.S., Al-Haidarie, Y.K. & Kudhier, M.A. Synthesis and photocatalytic activity of TiO2 nanoparticles prepared by sol–gel method. J Sol-Gel Sci Technol 78, 299–306 (2016). https://doi.org/10.1007/s10971-015-3949-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3949-0

Keywords

Navigation