Skip to main content
Log in

Facile synthesis of nickel nanoparticles supported on carbon and silica matrix via a novel silica sol–gel process

  • Orginal Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this work, we introduce a modified novel silica sol–gel process to synthesize hexagonal close-packed (hcp) and face-centered cubic (fcc) nickel (Ni) nanoparticles supported on amorphous carbon and silica matrix. The supporting of amorphous carbon and silica can prevent the Ni nanoparticles from aggregating and being oxided which would result in the loss of their magnetism and dispersibility. The phase structure of the Ni nanoparticles which were obtained from the gels pyrolyzed from 250 to 350 °C is hcp structure, whereas that of the Ni nanoparticles pyrolyzed at 750 °C is fcc structure. The grain sizes of the hcp Ni nanoparticles calcined at 250 °C range from 5 to 20 nm in diameter, and that of the fcc Ni nanoparticles calcined at 750 °C range in 7–35 nm. The studies of magnetic properties of the hcp and fcc Ni nanoparticles show that both have quite different magnetic behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wagner M, Schmidt L (1995) Model catalytic oxidation reactions: oxygen with H2, NH3, and N2H4 on Rh (111). J Phys Chem 99:805–815

    Article  Google Scholar 

  2. Pankhurst QA, Connolly J, Jones S, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D: Appl Phys 36:R167

    Article  Google Scholar 

  3. Ozaki M (1989) Preparation and properties of well-defined magnetic particles. JOM 14:35–40

    Google Scholar 

  4. Moore SW (1985) Solar absorber selective paint research. Sol Energy Mater 12:435–447

    Article  Google Scholar 

  5. Liou SH, Chien CL (1988) Particle size dependence of the magnetic properties of ultrafine granular films. J Appl Phys 63:4240

    Article  Google Scholar 

  6. Lee KB, Park S, Mirkin CA (2004) Multicomponent magnetic nanorods for biomolecular separations. Angew Chem Int Ed Engl 43:3048–3050

    Article  Google Scholar 

  7. Haneda K (1987) Recent advances in the magnetism of fine particles. Can J Phys 65:1233–1244

    Article  Google Scholar 

  8. Bridger K, Watts J, Chien CL (1988) The dependence of coercivities of ultrafine Fe particles on packing fraction and microstructure. J Appl Phys 63:3233

    Article  Google Scholar 

  9. Wang Z, Kuok M, Ng S, Lockwood D, Cottam M, Nielsch K, Wehrspohn R, Gösele U (2002) Spin-wave quantization in ferromagnetic nickel nanowires. Phys Rev Lett 89:027201

    Article  Google Scholar 

  10. Che S-L, Takada K, Takashima K, Sakurai O, Shinozaki K, Mizutani N (1999) Preparation of dense spherical Ni particles and hollow NiO particles by spray pyrolysis. J Mater Sci 34:1313–1318

    Article  Google Scholar 

  11. Chen Y, Peng D-L, Lin D, Luo X (2007) Preparation and magnetic properties of nickel nanoparticles via the thermal decomposition of nickel organometallic precursor in alkylamines. Nanotechnology 18:505703

    Article  Google Scholar 

  12. Luo X, Chen Y, Yue G-H, Peng D-L, Luo X (2009) Preparation of hexagonal close-packed nickel nanoparticles via a thermal decomposition approach using nickel acetate tetrahydrate as a precursor. J Alloys Compd 476:864–868

    Article  Google Scholar 

  13. Han M, Liu Q, He J, Song Y, Xu Z, Zhu JM (2007) Controllable synthesis and magnetic properties of cubic and hexagonal phase nickel nanocrystals. Adv Mater 19:1096–1100

    Article  Google Scholar 

  14. Thompson G, Banerjee R, Zhang X, Anderson P, Fraser H (2002) Chemical ordering and texture in Ni–25 at% Al thin films. Acta Mater 50:643–651

    Article  Google Scholar 

  15. Mandal M, Kundu S, Sau TK, Yusuf S, Pal T (2003) Synthesis and characterization of superparamagnetic Ni–Pt nanoalloy. Chem Mater 15:3710–3715

    Article  Google Scholar 

  16. Chen D-H, Wu S-H (2000) Synthesis of nickel nanoparticles in water-in-oil microemulsions. Chem Mater 12:1354–1360

    Article  Google Scholar 

  17. Wu S-H, Chen D-H (2004) Synthesis and stabilization of Ni nanoparticles in a pure aqueous CTAB solution. Chem Lett 33:406–407

    Article  Google Scholar 

  18. Margeat O, Amiens C, Chaudret B, Lecante P, Benfield RE (2005) Chemical control of structural and magnetic properties of cobalt nanoparticles. Chem Mater 17:107–111

    Article  Google Scholar 

  19. Tzitzios V, Basina G, Gjoka M, Alexandrakis V, Georgakilas V, Niarchos D, Boukos N, Petridis D (2006) Chemical synthesis and characterization of hcp Ni nanoparticles. Nanotechnology 17:3750–3755

    Article  Google Scholar 

  20. Jeon YT, Moon JY, Lee GH, Park J, Chang Y (2006) Comparison of the magnetic properties of metastable hexagonal close-packed Ni nanoparticles with those of the stable face-centered cubic Ni nanoparticles. J Phys Chem B 110:1187–1191

    Article  Google Scholar 

  21. Ramesh S, Koltypin Y, Prozorov R, Gedanken A (1997) Sonochemical deposition and characterization of nanophasic amorphous nickel on silica microspheres. Chem Mater 9:546–551

    Article  Google Scholar 

  22. Toneguzzo P, Viau G, Acher O, Guillet F, Bruneton E, Fievet-Vincent F, Fievet F (2000) CoNi and FeCoNi fine particles prepared by the polyol process: physico-chemical characterization and dynamic magnetic properties. J Mater Sci 35:3767–3784

    Article  Google Scholar 

  23. Yin H, Chow GM (2002) Anomalous electroless polyol deposition of FeNi powders and films. J Electrochem Soc 149:C68–C73

    Article  Google Scholar 

  24. Chinnasamy CN, Jeyadevan B, Shinoda K, Tohji K, Narayanasamy A, Sato K, Hisano S (2005) Synthesis and magnetic properties of face-centered-cubic and hexagonal-close-packed Ni nanoparticles through polyol process. J Appl Phys 97:10J309

    Article  Google Scholar 

  25. Jiang Y, Yang S, Hua Z, Huang H (2009) Sol-gel autocombustion synthesis of metals and metal alloys. Angew Chem Int Ed Engl 48:8529–8531

    Article  Google Scholar 

  26. Li PY, Syed JA, Meng XK (2012) Sol–gel preparation and characterization of NiCo and Ni3Fe nanoalloys. J Alloys Compd 512:47–51

    Article  Google Scholar 

  27. Li PY, Cao ZH, Meng XK (2012) Facile synthesis of superparamagnetic Ni–Fe ultrafine nanoalloy nanoparticles with equilibrium ordered phase structure via a sol–gel process. Dalton Trans 41:12101–12105

    Article  Google Scholar 

  28. Warren SC, Perkins MR, Adams AM, Kamperman M, Burns AA, Arora H, Herz E, Suteewong T, Sai H, Li Z, Werner J, Song J, Werner-Zwanziger U, Zwanziger JW, Grätzel M, DiSalvo FJ, Wiesner U (2012) A silica sol–gel design strategy for nanostructured metallic materials. Nat Mater 11:460–467

    Article  Google Scholar 

  29. Li P, Jiang W, Li F (2012) Non-aqueous sol–gel preparation of carbon-supported nickel nanoparticles. J Sol–Gel Sci Technol 65:359–366

    Article  Google Scholar 

  30. Liu J, Qiao SZ, Hu QH, Lu GQ (2011) Magnetic nanocomposites with mesoporous structures: synthesis and applications. Small 7:425–443

    Article  Google Scholar 

  31. Petrova N, Todorovsky D, Angelova S, Mehandjiev D (2008) Synthesis and characterization of cerium citric and tartaric complexes. J Alloys Compd 454:491–500

    Article  Google Scholar 

  32. Liu YG, Hu JH, Huang ZH, Fang MH (2011) Preparation of LiTaO3 nanoparticles by a sol–gel route. J Sol–Gel Sci Technol 58:664–668

    Article  Google Scholar 

  33. Zhang YJ, Yang YT, Liu Y, Wang YX, Yang LL, Wei MB, Fan HG, Zhai HJ, Liu XY, Liu YQ, Yang NN, Wu YH, Yang JH (2011) A novel approach to the synthesis of CoPt magnetic nanoparticles. J Phys D: Appl Phys 44:295003

    Article  Google Scholar 

  34. Guo K, Chen H-H, Guo X, Yang X-X, Xu F-F, Zhao J-T (2010) Morphology investigation of yttrium aluminum garnet nano-powders prepared by a sol–gel combustion method. J Alloys Compd 500:34–38

    Article  Google Scholar 

  35. Casu A, Casula MF, Corrias A, Falqui A, Loche D, Marras S, Sangregorio C (2008) The influence of composition and porosity on the magnetic properties of FeCo–SiO2 nanocomposite aerogels. Phys Chem Chem Phys 10:1043–1052

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (Grant Nos. 2012CB932304 and 2010CB923404), the Natural Science Foundation of China (Grant No U1232210) and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaolong Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, L., Huang, H., Tang, S. et al. Facile synthesis of nickel nanoparticles supported on carbon and silica matrix via a novel silica sol–gel process. J Sol-Gel Sci Technol 69, 130–136 (2014). https://doi.org/10.1007/s10971-013-3195-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-013-3195-2

Keywords

Navigation