Skip to main content

Advertisement

Log in

Synthesis of silica nanoparticles by modified sol–gel process: the effect of mixing modes of the reactants and drying techniques

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

A modified preparation of silica nanoparticles via sol–gel process was described. The ability to control the particle size and distribution was found highly dependent on mixing modes of the reactants and drying techniques. The mixture of tetraethoxysilane and ethanol followed by addition of water (Mode-A) produced monodispersed powder with an average particle size of 10.6 ± 1.40 nm with a narrow size distribution. The freeze drying technique (FD) further improved the quality of powder. In addition, the freeze dried samples have shown unique TGA decomposition steps which might be related to the well-defined structure of silica nanoparticles as compared to the heat dried samples. DSC analysis showed that FD preserved the silica surface with low shrinkage and generated remarkably well-order, narrow and bigger pore size and pore volume and also large endothermic enthalpies (ΔH FD = −688 J g−1 vs. ΔH HD = −617 J g−1) that lead to easy escape of physically adsorbed water from the pore at lower temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Iller RK (1979) The chemistry of silica. Wiley, New York

    Google Scholar 

  2. Hench LL, West JK (1990) Chem Rev 90:33

    Article  CAS  Google Scholar 

  3. Matsoukas T, Gulari E (1998) J Colloid Interface Sci 124:252. doi:10.1016/0021-9797(88)90346-3

    Article  Google Scholar 

  4. Matsoukas T, Gulari E (1989) J Colloid Interface Sci 132:13. doi:10.1016/0021-9797(89)90210-5

    Article  CAS  Google Scholar 

  5. Bogush GH, Zukoski CF (1991) J Colloid Interface Sci 142:19. doi:10.1016/0021-9797(91)90030-C

    Article  CAS  Google Scholar 

  6. Chu L, Tejedor-Tejedor MI, Anderson MA (1997) Microporous Mater 8:207. doi:10.1016/S0927-6513(96)00068-5

    Article  CAS  Google Scholar 

  7. Meixner DL, Dyer PN (1999) J Sol-Gel Sci Technol 14:223. doi:10.1023/A:1008774827602

    Article  CAS  Google Scholar 

  8. Colomer MT, Anderson MA (2001) J Non-Cryst Solids 290:93. doi:10.1016/S0022-3093(01)00815-8

    Article  ADS  CAS  Google Scholar 

  9. Enomoto N, Kumagai A, Hojo J (2005) J Ceram Soc Jpn 113:340. doi:10.2109/jcersj.113.340

    Article  CAS  Google Scholar 

  10. Stöber W, Fink A, Bohn E (1968) J Colloid Interface Sci 26:62. doi:10.1016/0021-9797(68)90272-5

    Article  Google Scholar 

  11. Van Helden AK, Jansen JW, Vrij A (1981) J Colloid Interface Sci 81:354. doi:10.1016/0021-9797(81)90417-3

    Article  Google Scholar 

  12. Tan CG, Bowen BD, Epstein N (1987) J Colloid Interface Sci 118:290. doi:10.1016/0021-9797(87)90458-9

    Article  CAS  Google Scholar 

  13. Enomoto N, Koyano T, Nakagawa Z (1996) Ultrason Sonochem 3:S105. doi:10.1016/1350-1477(96)00004-W

    Article  CAS  Google Scholar 

  14. Chen SL, Dong P, Yang GH (1997) J Colloid Interface Sci 189:268. doi:10.1006/jcis.1997.4809

    Article  CAS  Google Scholar 

  15. Sadasivan S, Rasmussen DH, Chen FP, Kannabiran RK (1998) Colloid Surf A 132:45. doi:10.1016/S0927-7757(97)00148-9

    Article  CAS  Google Scholar 

  16. Lee K, Sathyagal AN, McCormick AV (1998) Colloid Surf A 144:115. doi:10.1016/S0927-7757(98)00566-4

    Article  CAS  Google Scholar 

  17. Park SK, Kim KD, Kim HT (2002) Colloid Surf A 197:7. doi:10.1016/S0927-7757(01)00683-5

    Article  CAS  Google Scholar 

  18. Green DL, Jayasundara S, Lam YF, Harris MT (2003) J Non-Cryst Solids 315:166. doi:10.1016/S0022-3093(02)01577-6

    Article  ADS  CAS  Google Scholar 

  19. Green DL, Lin JS, Lam YF, Hu MZC, Schaefer DW, Harris MT (2003) J Colloid Interface Sci 266:346. doi:10.1016/S0021-9797(03)00610-6

    Article  PubMed  CAS  Google Scholar 

  20. Nagao D, Osuzu H, Yamada A, Mine E, Kobayashi Y, Konno M (2004) J Colloid Interface Sci 279:143. doi:10.1016/j.jcis.2004.06.041

    Article  PubMed  CAS  Google Scholar 

  21. Kim SS, Kim HS, Kim SG, Kim WS (2004) Ceram Int 30:171. doi:10.1016/S0272-8842(03)00085-3

    Article  CAS  Google Scholar 

  22. Rahman IA, Vejayakumaran P, Sipaut CS, Ismail J, Abu Bakar M, Adnan R, Chee CK (2006) Ceram Int 32:691. doi:10.1016/j.ceramint.2005.05.004

    Article  CAS  Google Scholar 

  23. Rahman IA, Vejayakumaran P, Sipaut CS, Ismail J, Abu Bakar M, Adnan R, Chee CK (2007) Colloid Surf A 294:102. doi:10.1016/j.colsurfa.2006.08.001

    Article  CAS  Google Scholar 

  24. Bogush GH, Zukoski CF (1991) J Colloid Interface Sci 142:1. doi:10.1016/0021-9797(91)90029-8

    Article  CAS  Google Scholar 

  25. Greenwood NN, Earnshaw A (1998) Chemistry of the elements, 2nd edn. Butterworth Heinemann, Oxford

    Google Scholar 

  26. Gregory JK, Clary DC, Liu K, Brown MG, Saykally RJ (1997) Science 275:814. doi:10.1126/science.275.5301.814

    Article  PubMed  CAS  Google Scholar 

  27. Brinker CJ, Scherer GW (1990) Sol-gel science. Academic Press, San Diego

    Google Scholar 

  28. Chen G, Wang W (2007) Dry Technol 25:29. doi:10.1080/07373930601161179

    Article  CAS  Google Scholar 

  29. Choi MJ, Briançon S, Andrieu J, Min SG, Fessi H (2004) Dry Technol 22:335. doi:10.1081/DRT-120028238

    Article  CAS  Google Scholar 

  30. Brunauer S, Deming LS, Deming WE, Teller E (1940) J Am Chem Soc 62:1723. doi:10.1021/ja01864a025

    Article  CAS  Google Scholar 

  31. Vansant EF, Van Der Voort P, Vrancken KC (1995) Characterization and chemical modification of the silica surface. Elsevier, Amsterdam

    Google Scholar 

  32. Barrett EP, Joyner LG, Halenda PP (1951) J Am Chem Soc 73:373. doi:10.1021/ja01145a126

    Article  CAS  Google Scholar 

  33. Yuaga S, Okabayahi M, Ohno H, Suzuki K, Kusumoto K (1988) US Patent 4, 764:497

  34. Ek S, Root A, Peussa M, Niinistö L (2001) Thermochim Acta 379:201. doi:10.1016/S0040-6031(01)00618-9

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors appreciate Ministry of Higher Education for financial support of this research under Fundamental Research Grant Scheme (FRGS, Grant No: 203/PKIMIA/671174). M. Jafarzadeh would like to express his gratitude to Universiti Sains Malaysia (USM) for USM-Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Rahman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jafarzadeh, M., Rahman, I.A. & Sipaut, C.S. Synthesis of silica nanoparticles by modified sol–gel process: the effect of mixing modes of the reactants and drying techniques. J Sol-Gel Sci Technol 50, 328–336 (2009). https://doi.org/10.1007/s10971-009-1958-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-009-1958-6

Keywords

Navigation