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Abstract
We develop a probabilistic information framework via what we call irrevocably mod-
ulated filtrations produced by non-invertible matrix-valued jump processes acting on
multivariate observationprocesses carryingnoisy signals.Under certain conditions,we
provide dynamical representations of conditional expectation martingales in systems
where signals from randomly changing information networks may get irreversibly
amalgamated or switched-off over random time horizons. We apply the framework
to scenarios where the flow of information goes through multiple modulations before
reaching observing agents. This leads us to introduce a Lie-type operator as a mor-
phism between spaces of sigma-algebras, which quantifies information discrepancy
caused by different modulation sequences. As another example, we show how ran-
dom graphs can be used to generate irrevocably modulated filtrations that lead to pure
noise scenarios. Finally, we construct systems that exhibit gradual decay of additional
sources of information through the choice of spectral radii of the modulators.

Keywords Stochastic information networks · Modulated sigma-algebras · Random
bridge processes

Mathematics Subject Classification 60G · 60H

1 Introduction

It is common to observe random systems in physics, engineering, neuroscience, biol-
ogy and economics, where agents in the environment, in whichever form they can be
represented by, are governed by the processing of complex information on a dynamic
basis. This is perhaps one of the reasons why we see a significant collection of scien-
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tific literature devoted to some form of stochastic filtering; e.g., see [8] for an account
of Kalman filter alone.

Numerous theoretical and practical questions can be studied as part of information
processing, e.g., properties of the observation process (what is the process), the nature
of information dissemination (how it diffuses), characteristics and objectives of the
agents (who processes the information) and so forth. For example, a vector-valued
observation process, say {ξ t }t≥0 commonly takes a linear form ξ t = Z+ ηt , where Z
is some random vector representing the signal (e.g., message, image, payoff etc.) and
{ηt }t≥0 is some independent stochastic process representing noise (see [1, 2, 7, 9, 22]
and references therein)—it is also possible to systematically go beyond an additive
form for observation processes and study their mathematical properties (see [23, 25,
36]). For the aforementioned who aspect, a natural habitat for information processing
arises in control problems, where agents aim to maximize an objective (e.g., a utility
function) and make decisions accordingly (see [3, 4, 6, 14, 33] and references therein).
This paper is concerned with the how aspect; given an observation process in some
form, how does information spread out from where it originates to where it reaches.
We focus on finite-time systems due their practical relevance in inference problems,
where signals are revealed without noise only at some future point in time—models
over infinite-time horizons can be embedded into our framework just as well.

In [34], a relevant setup has been constructed by allowing information to dynam-
ically switch on and off, where a stochastic differential equation (SDE) was derived
for a class of conditional expectation martingales (i.e., the filter) governed by
this mechanism—let us recall the SDE of [34][Proposition 1.1]: Let Z be some
square-integrable random variable (i.e., the signal), {P t }t∈[0,T ] ∈ {0, 1}n be a
mutually independent vector-valued càdlàg stochastic jump process with T < ∞,
and {ξ t }t∈[0,T ] ∈ R

n be a noisy observation process such that each coordinate
{ξ (i)

t }t∈[0,T ] ∈ R takes the anticipative form ξ
(i)
t = Z(t/T ) + σ (i)β

(i)
tT , where

{β(i)
tT }t∈[0,T ] is an independent Brownian bridge noise and σ (i) ∈ (0,∞) is the signal-

to-noise ratio for i = 1, . . . , n. For the rest of the paper, we use ⊗ to denote the
Hadamard product of Rn-valued vectors—i.e., the Hadamard product of two R

n-
valued vectors is an R

n-valued vector produced by element-wise multiplications.

Proposition 1.1 Let the filtration {F P,ξ
t }t∈[0,T ] be given by

F P,ξ
t = σ

({Pu ⊗ ξu}0≤u≤t , {Pu}0≤u≤t
)
,

and define Jt = {i : P(i)
t = 1}, Ct = ∑

u≤t 1{Pu �= Pu−} and �k = inf{t : Ct = k}
with �0 = 0. Then, the {F P,ξ

t }-martingale {Z P
t }t∈[0,T ] where Z P

t := E[Z |F P,ξ
t ] −

E[Z ] admits the representation

Z P
t =

Ct∑

k=1

1{J�k−1 �= ∅}
(∫ �k−

�k−1

�̃(k−1)
u dW (k−1)

u

)

+ 1{J�Ct
�= ∅}

(∫ t

�Ct

�̄(Ct )
u dW (Ct )

u

)

+
∑

u≤t

�Z P
u
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for t < T , where {W (k−1)
t } is an {F P,ξ

t }-Brownian motion between jump times,

{�̃(k−1)
t } is an {F P,ξ

t }-adapted process for k = 1, . . . ,Ct + 1, and �Z P
t �= 0 if

and only if Jt\Jt− �= ∅.

Each process {ξ (i)
t }t∈[0,T ] above is called a Brownian information process (BRB) of

the Brody–Hughston information-based framework, which forms the basis of a fruitful
research stream that found numerous applications and developments in quantummea-
surement theory and stochastic reduction dynamics in [10, 11, 13, 29], mathematical
finance and price dynamics in [18, 19, 21], theory of stochastic processes in [23, 24,
30, 35] and Markovian optimal election problems of [31].

In Proposition 1.1, the flow of information is dynamically modulated by being
switched on and off randomly before reaching observing agents, whomake their infer-
ence on Z based on the filtration {F P,ξ

t }t∈[0,T ] on anL2-best-estimate basis. Note that

ξ t can be recovered from F P,ξ
t if and only if P t = 1 for any t ∈ [0, T ]. In this paper,

we shall extend this behavior significantly i) by augmenting {ξ t }t∈[0,T ] from BRBs to
Gaussian random bridges (GRBs) of [30] that generalize Gaussian processes includ-
ing Gaussian bridges of [17, 28] and ii) through what we call irrevocably modulated
filtrations by using degenerate matrix-valued stochastic processes { P̂ t }t∈[0,T ] ∈ R

n×n

(matrices will be denoted with the ˆ hat) acting on {ξ t }t∈[0,T ], where filtrations in a
system are more broadly given by the following:

F P̂,ξ
t = σ({ P̂u ξu}0≤u≤t , { P̂u}0≤u≤t ), (1)

that can lead to dynamic affine mixing of information. This leads to randomly formed
dynamic information networks that bring forth numerous non-trivial complexities,
where closed-form solutions for the conditional expectations are no longer available
in general, even in the pure Markovian case. We shall provide key conditions for the
setup to remain analytical for explicit computations, without necessarily having to
resort to numerical methods. It turns out that one such condition is for the rows of
the singular matrix { P̂ t }t∈[0,T ] to be mutually orthogonal—which the system in [34]
happens to satisfy. In fact, for GRBs with continuous paths, this will show that the
SDE in Proposition 1.1 is of a fundamental structure, where {P t }t∈[0,T ] ∈ R

n takes
the more general form

P t =
[
||P (1)

t ||L2 , . . . , ||P (i)
t ||L2 , . . . , ||P (n)

t ||L2

]	
, (2)

given that P (i)
t ∈ R

n is the vector constructed from the i th row of the matrix P̂ t .
Thus, we can reach a family of SDEs that generalize the functional form as given in
Proposition 1.1 by introducing a modulated GRB {ξ̄ t }t∈[0,T ] (as will be detailed), and
a mapping between two modulated sigma-algebras as follows:

σ({ P̂u ξu}0≤u≤t , { P̂u}0≤u≤t ) 
→ σ
(
{Pu ⊗ ξ̄u}0≤u≤t , { P̂u}0≤u≤t

)
. (3)
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We shall highlight a related stream of research called compressed sensing (see [12,
15, 16, 26, 27]) providing important results on signal recovery in undetermined linear
systems, where we encounter noisy observations ξ = ÂZ+η, with Â anm×n matrix
for m < n. This stream studies regularization problems of the form min‖Z‖L1 such
that ‖ ÂZ − ξ‖L2 ≤ ε ∈ R, and hence, differs from ours in their focus and direction,
but the mathematical setups have overlaps, where compressed sensing can be studied
as a specific scenario in our dynamic modulation framework.

2 Stochastic Setup

We adopt the convention sup ∅ = −∞ and work on a probability space (	,F ,P)

equipped with a filtration {Ft }t≤∞, where F∞ = F . We work with right-continuous
complete filtrations and stay over a finite-time interval T = [0, T ] for some T < ∞;
we also denote T− = [0, T ). We choose ω ∈ 	 outside P-null sets and drop it from
relevant expressions.

For modeling signals, we employ some random vector Z ∈ L2(	,F ,P) with law
ν  P and a state-space (Rn,B(Rn)), where B(Rn) is the Borel σ -field. We denote
the marginals of Z as Z (i) for i = 1, . . . , n. Every stochastic process we consider
has càdlàg paths; that is, if {Xt }t∈T is a stochastic process, then for any ω ∈ 	

we have X .(ω) ∈ D(T,Rn), where D(T,Rn) is the Skorokhod space of Rn-valued
càdlàg paths for n ∈ N+. We note that the law of càdlàg processes can be fully
characterized by their finite-dimensional distributions using Kolmogorov extension
theorem, which is highly useful for our framework since, for example, the definition
of {ξ t }t∈T (Definition 2.1 below) relies on finite-dimensional distributions. In addition,
since every càdlàg process that is adapted is also progressively measurable, stochastic
integrals (e.g., integrals involving modulated information processes) that will appear
in this paper are adapted, a property we need for dynamical representations of L2-
best-estimates. We shall write FX

t = σ({Xs} : 0 ≤ s ≤ t) for the natural filtration,
where FX

t ⊂ Ft . We let {Xt }t∈T be a multivariate Gaussian process with a positive-
definite covariance kernel K̂s,t for all {s, t} ∈ T, where E[Xt ] = 0 for any t ∈ T

without loss of generality. The coordinates of {Xt }t∈T are denoted as {X (i)
t }t∈T for

i = 1, . . . , n. Finally, we shall use Ck(T,Rn) ⊂ D(T,Rn) for Rn-valued continuous
functions with continuous derivatives up to kth order. To model noisy observations on
Z, we call GRBs from [30] due to their canonical anticipative form that is natural for
signal processing (see Proposition 2.2).

Definition 2.1 Let {ξ t }t∈T be anRn-valued {Ft }-adapted stochastic process such that:
i) ξ T = Z, and ii) For all m ∈ N+, every 0 ≤ t (i)1 < . . . < t (i)m < T and

(x (i)
1 , . . . , x (i)

m ) ∈ R
m for i = 1 . . . , n,
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P

(
n⋂

i=1

ξ
(i)

t (i)1

≤ x (i)
1 , . . . , ξ

(i)

t (i)m
≤ x (i)

m

∣∣ ξ T = z

)

= P

(
n⋂

i=1

X (i)

t (i)1

≤ x (i)
1 , . . . , X (i)

t (i)m
≤ x (i)

m | XT = z

)

,

ν-a.e. z. Then, {ξ t }t∈T is an R
n-valued GRB, with F ξ

t = σ({ξ s} : 0 ≤ s ≤ t) for any
t ∈ T.

When {ξ t }t∈T is viewed as a noisy observation process, each coordinate can be viewed
as an information source. We assume that each {X (i)

t }t∈T is mutually independent of
Z (i) for i = 1, . . . , n—as such, we refer to {Xt }t∈T as the driving noise of {ξ t }t∈T.

Proposition 2.2 Let K̂
∗
t,T = K̂ t,T K̂

−1
T ,T , where K̂

−1
T ,T is the inverse. Then, {ξ t }t∈T

admits the anticipative representation

ξ t
law= K̂

∗
t,T Z +

(
X t − K̂

∗
t,T XT

)
. (4)

Proof The result follows from Definition 2.1 and the orthogonal decomposition of
Gaussian processes that applies since {ξ t }t∈T given Z = z is Gaussian with K̂ T ,T

being non-singular. ��

Remark 2.3 Neither X t nor XT are F ξ
t -measurable for t ∈ T. The process {X t −

K̂
∗
t,T XT }t∈T is a Gaussian bridge (see [17]), which can also be interpreted as noise.

The signal Z is not F ξ
t -measurable for t ∈ T− and is revealed without noise at t = T

due to the representation in (4).

Note that GRBs are not necessarily Gaussian, but they generalize their corresponding
drivers over finite-timehorizons; e.g.,GRBs areGaussianwhen Z is (jointly)Gaussian.

Remark 2.4 If {X (i)
t }t∈T are mutually independent, K̂

∗
t,T is a diagonal matrix. Hence,

having K ∗(i,i)
t,T = K (i,i)

t,T /K (i,i)
T ,T , each coordinate {ξ (i)

t }t∈T for i = 1, . . . , n is an R-
valued GRB satisfying the anticipative representation

ξ
(i)
t

law= K ∗(i,i)
t,T Z (i) +

(
X (i)
t − K ∗(i,i)

t,T X (i)
T

)
. (5)

Clearly, any given {ξ t }t∈T is not necessarily Markov with respect to {F ξ
t }, and to work

with Markov GRBs, the following result is what we need.

Lemma 2.5 Any {ξ t }t∈T is Markov with respect to {F ξ
t } if and only if its driving noise

{X t }t∈T is Markov with respect to {F X
t }.

Proof See Appendix. ��
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As a highly relevant result for the next section, we will need the following special
Markovian property for {ξ t }t∈T, where each coordinatemay have its own time-change.
For this, we ask the following condition from {X t }t∈T.
Definition 2.6 We say {X t }t∈T satisfies the time-changed Markov property at t ∈ T,
if

P

⎛

⎝X t ∈ dz

∣∣
∣∣
∣∣

n⋂

i=1

ki⋂

j=1

X (i)

t (i)j
= x (i)

j

⎞

⎠ = P

(

X t ∈ dz

∣∣
∣
∣∣

n⋂

i=1

X (i)

t (i)ki

= x (i)
ki

)

, (6)

for any 0 ≤ t (i)1 < · · · < t (i)ki
< t ≤ T , for i = 1, . . . , n.

Lemma 2.7 Let {X t }t∈T satisfy the time-changed Markov property in (6) at t = T .
Then, for any B ∈ B(Rn) and t (i) ∈ T−,

P

(

Z ∈ B

∣∣∣
∣∣

n∨

i=1

F ξ (i)

t (i)

)

= P

(

Z ∈ B

∣∣∣
∣∣

n⋂

i=1

ξ
(i)
t (i)

)

. (7)

Proof See Appendix. ��

Corollary 2.8 If {X (i)
t }t∈T are mutually independent and Markov with respect to

{F X (i)

t } for i = 1, . . . , n, then (7) holds for any B ∈ B(Rn) and t (i) ∈ T−.

Proof If {X (i)
t }t∈T are mutually independent for i = 1, . . . , n,

P

⎛

⎝XT ∈ dz

∣∣∣∣
∣∣

n⋂

i=1

ki⋂

j=1

X (i)

t (i)j
= x (i)

j

⎞

⎠ =
n∏

i=1

P

⎛

⎝X (i)
T ∈ dz(i)

∣∣∣∣
∣∣

ki⋂

j=1

X (i)

t (i)j
= x (i)

j

⎞

⎠ ,

(8)

and hence, if also {X (i)
t }t∈T is Markov with respect to {F X (i)

t }, then the time-changed
Markov property in Definition 2.6 holds. ��

Definition 2.9 Let ϑ : Rn → R
n be an affine map and {X t }t∈T satisfy property (6) at

t ∈ T. If the transformed process {ϑ(X t )}t∈T also satisfies the time-changed Markov
property at t ∈ T, we say {X t }t∈T is time-changed-Markov-invariant under ϑ .

Example 2.10 Markov subclasses of Volterra processes preserve Markov property
under affine transformations. That is, if we have the kernel decomposition

X (i)
t − X (i)

0 =
∫ t

0
k(i)(t, u) dW (i)

u = k(i)
1 (t)

∫ t

0
k(i)
2 (u) dW (i)

u , (9)

123
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for i = 1, . . . , n, where each {W (i)
t }t∈T is a Brownian motion, then the linear combi-

nation

n∑

i=1

p(i)X (i)
t =

n∑

i=1

p(i)X (i)
0 +

n∑

i=1

p(i)k(i)
1 (t)

∫ t

0
k(i)
2 (u) dW (i)

u

law= X̄0 + k̄1(t)
∫ t

0
k̄2(u) dW̄u, (10)

is itself a Markov process, where {W̄t }t∈T is a Brownian motion.

Next, we introduce the (F ξ
t ,P)-martingale {Zt }t∈T by Zt = E[g(Z) |F ξ

t ] for a mea-

surable map g : Rn → R, which is the L2-best-estimate of the signal Z, given F ξ
t .

Only when g = 1(.), which is the indicator function, we shall denote this martingale

by πt (dz) = E[1(Z∈dz) |F ξ
t ] = P[Z ∈ dz |F ξ

t ] to distinguish it as a measure. We are
interested in dynamical SDE representations of filters such as {Zt }t∈T in this paper,

and we will need {ξ (i)
t }t∈T to be an (F ξ (i)

t ,P)-semimartingale to apply Itô calculus –

but {ξ (i)
t }t∈T in general is not an (F ξ (i)

t ,P)-semimartingale.

Example 2.11 If {X (i)
t }t∈T is a mutually independent (F X (i)

t ,P) fractional Brownian

motion with Hurst exponent H ∈ (0, 1), then {ξ (i)
t }t∈T admits the following represen-

tation:

ξ
(i)
t

law= X (i)
t + t2H + T 2H − |t − T |2H

2T 2H

(
Z (i) − X (i)

T

)
. (11)

Unless H = 1/2, {ξ (i)
t }t∈T is not an (F ξ (i)

t ,P)-semimartingale. Since {X (i)
t }t∈T is an

H -self-similar process, we have

Law({X (i)
t }t∈T;P) = Law({T H X (i)

t∗ }t∗∈[0,1];P) (12)

given that t∗ = t/T – see [17]. Hence, {ξ (i)
t }t∈T satisfies a scaling property such that

we have

ξ
(i)
t

law= T H
(
X (i)
t∗ + t2H∗ + 1 − |t∗ − 1|2H

2

(
T−H Z (i) − X (i)

1

))
. (13)

The following result as a corollary to [36][Proposition 2.14] is very useful for our
purposes.

Proposition 2.12 If {X t }t∈T is an (F X
t ,P)-semimartingale, {ξ t }t∈T is an (F ξ

t ,P)-
semimartingale.

For the statement below, we fix n = 1 and drop the (i) superscript for notational
convenience—multivariate expressions will naturally appear in the next section. Also,
we work with {Xt }t∈T with continuous paths, but the statement can be extended for
{Xt }t∈T with jumps, as long as {Xt }t∈T is an (F X

t ,P)-semimartingale.
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Lemma 2.13 If {Xt }t∈T is aMarkov (F X
t ,P)-semimartingale with quadratic variation

{Qt }t∈T and K ∈ C1(T), there exists an (F ξ
t ,P)-semimartingale {St (z)}t∈T− with

quadratic variation {Qt }t∈T− for any z ∈ R, such that

πt (dz) = π0(dz) exp

(∫ t

0
σu(ξ, z)dSu(z) − 1

2

∫ t

0
σu(ξ, z)2dQu

)
, (14)

for t ∈ T−, where σt (ξ, z) = K δ
t,T (z − E[Z | ξt ]) with K δ

t,T = Kt,T (Kt,t KT ,T −
Kt,T Kt,T )−1.

Proof See Appendix. ��
Proposition 2.14 Let {Xt }t∈T be aMarkovian (F X

t ,P)-martingale, where Q ∈ C1(T).
Then, {Zt }t∈T− satisfies the non-anticipative representation

Zt = Z0 +
∫ t

0
�̃u(ξu, Z)dWu, (15)

for t ∈ T−, where �̃u(ξt , Z) = (Q
′
t )
1/2(QT − Qt )

−1�t (ξt , Z), with �t (ξt , Z) =
Cov[g(Z), Z | ξt ], and {Wt }t∈T− is a (F ξ

t ,P)-Brownian motion. In addition, the pro-

cess {�t (ξt , Z)}t∈T− is an (F ξ
t ,P)-supermartingale.

Proof We have {Xt }t∈T a (F X
t ,P)-martingale and a Markov process. If Q ∈ C1(T),

using Lemma 2.13, we have the following:

πt (dz) = π0(dz) exp

(∫ t

0
σ̃u(ξ, z)dWu − 1

2

∫ t

0
σ̃u(ξ, z)2du

)
, (16)

where K δ
t,T = (QT − Qt )

−1, σ̃t (ξ, z) = (Q
′
t )
1/2σt (ξ, z), Q

′
t = dQt/dt and

{Wt }t∈T− is a (F ξ
t ,P)-Brownian motion—which follows from Lévy characterization,

Dambis–Dubins–Schwarz theorem and [36], given that Gaussian martingales satisfy
Ks,t = Qs∧t for any s, t ∈ T. The SDE in (15) is from Lebesgue integration on (16).
The (F ξ

t ,P)-supermartingale property of {�t (ξt , Z)}t∈T− follows from Doob–Meyer
decomposition theorem. ��
Remark 2.15 If {Xt }t∈T is an (F X

t ,P)-Brownian motion, we are at the intersection of
GRBs and Lévy random bridges of [23]. In this case, Qt = t and Q

′
t = 1 for all t ∈ T,

and we get expressions as provided in the Brody–Hughston information framework
[11, 18].

3 Irrevocably Modulated Information

Let { P̂ t }t∈T ∈ R
n×n be a mutually independent matrix-valued stochastic process with

finite activity where F P̂
t = σ({ P̂ s} : 0 ≤ s ≤ t), that is singular for all t ∈ T, except

123
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when it is the identity matrix—i.e., when P̂ t = Î t for the identity matrix Î t . When
we say that the matrix-valued random variable P̂ t is mutually independent, we do not
mean that the elements of P̂ t are mutually independent with respect to each other (i.e.,
entries of the matrix can be dependent on one another), but rather that these elements
are mutually independent with respect to Z and ξ t for every t ∈ T.

We denote the space of all possible P̂ t ’s as P(n), write P (i)
t ∈ R

n as the n × 1
vector formed from the i th row of P̂ t , and denote its (i, j)th element as P(i, j)

t ∈ R

for i, j = 1, . . . , n. We can implicitly consider Rm×n matrices for m < n by fixing
(m − n) rows of { P̂ t }t∈T to the zero vector 0	—i.e., we can represent scenarios we
see in compressed sensing (see [15]) while remaining in P(n). We now introduce the
following main object.

Definition 3.1 Let F P̂,ξ
t = σ({ P̂u ξu}0≤u≤t , { P̂u}0≤u≤t ). We call {F P̂,ξ

t }t∈T an irre-

vocably modulated filtration with respect to {F ξ
t }t∈T, if P( P̂ t = Î t ) = 0 for any

t ∈ T.

Whenever P̂ t �= Î t , the pair ( P̂ tξ t , P̂ t ) does not provide full knowledge on the original
vector ξ t for any t ∈ T. Therefore, the action of P̂ t in general shrinks the information
content of ξ t irreversibly at that t ∈ T, especially since P̂ t is mutually independent
of Z and ξ t for every t ∈ T. For the remaining, to keep the special case of full access
to the original ξ t , we shall not necessarily impose P( P̂ t = Î t ) = 0, but always keep
P( P̂ t �= Î t ) ≥ 0 for any t ∈ T.

Remark 3.2 If { P̂ t }t∈T is diagonal, then F P̂,ξ
t = σ({Pu ⊗ ξu}0≤u≤t , {Pu}0≤u≤t ),

where {P t }t∈T ∈ R
n is a vector-valued process having the same law of {diag( P̂ t )}t∈T;

where diag( P̂ t ) is the Rn-valued diagonal of P̂ t for any t ∈ T. Therefore, F P̂,ξ
t is a

generalization of the σ -algebra given in Proposition 1.1.

Since { P̂ t }t∈T ismutually independent of Z, its standalone appearance in {F P̂,ξ
t }t∈[0,T ]

does not help with inference. Thus, even if agents in the system are aware of the
modulation itself, they still cannot resolve the irrevocably modified information that
is either switched-off or mixed via a linear combination. This simplifies calculations
without losing the crux of our objective, and in fact, in certain cases, it does not even
matter whether we separately add { P̂ t }t∈T or not, as stated below.

Remark 3.3 Let { P̂ t }t∈T be diagonal such that P(i,i)
t ∈ {0, 1} for all t ∈ T for i =

1, . . . , n. Then, { P̂ t }t∈T is {σ({ P̂u ξu}0≤u≤t )}t∈T-adapted if and only if {ξ t }t∈T is
continuous and P[ξ (i)

t = 0] = 0 for all t ∈ (0, T ] and i = 1, . . . , n.

Wecannowdefine {Z P̂
t }t∈T as the (F P̂,ξ

t ,P)-martingale givenby Z P̂
t =E[g(Z) |F P̂,ξ

t ],
for some measurable g : Rn → R. Accordingly, we define the (F P̂,ξ

t ,P)-martingale

{π P̂
t }t∈T by π P̂

t ( dz) = P(Z ∈ dz |F P̂,ξ
t ), when g(.) is the indicator function.

Proposition 3.4 Z P̂
t = E[Zt |F P̂,ξ

t ].
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Proof Let {Ht }t∈T be Ht = σ({ξu}0≤u≤t , { P̂u}0≤u≤t ). Since { P̂ t ξ t }t∈T projects

{ξ t }t∈T to an information subspace, {F P̂,ξ
t }t∈T ⊆ {Ht }t∈T is an enlargement. Thus,

Z P̂
t = E[Z∗

t |F P̂,ξ
t ], where Z∗

t = E[g(Z) |Ht ]. We further have Z∗
t = Zt since

{ P̂ t }t∈T is mutually independent. ��
Remark 3.5 If P( P̂ t = Î t ) = 1 for all t ∈ T, {Z P̂

t }t∈T = {Zt }t∈T P-a.s.

In full generality, the filter {Z P̂
t }t∈T does not admit closed-form solutions, and one

would need numericalmethods to estimate it. Nonetheless, we can still navigate toward
an analytical setup where explicit computations can be hoped for. As a start, we choose
{X t }t∈T to beMarkovwith respect to {F X

t }, where {X (i)
t }t∈T aremutually independent

across i = 1, . . . , n. In addition, we ask that P(P (i)
t = 0, ξ t = 0) = 0 for all t ∈ T

and i = 1, . . . , n. We shall also work with {X (i)
t }t∈T such that K (i,i)

s,t = Ks,t for all
s, t ∈ T and i = 1, . . . , n for parsimony, which can be relaxed.

Lemma 3.6 Let τ
(i)
t = 0 ∨ sup{u : ||P (i)

u ||L2 �= 0, u ∈ [0, t]} for t ∈ T and i =
1, . . . , n. If P (i)

u ∈ { p(i), 0} for some p(i) �= 0 ∈ R
n for all u ≤ t , and if {X t }t∈T

satisfies time-changed Markov invariance under the action of each p(i), then

Z P̂
t =

∫

Rn
g(z)P

[
Z ∈ dz

∣∣∣ ξ̄ τ t
, F P̂

t

]
, (17)

where {ξ̄u}u≤t given { P̂u}u≤t is a GRB with ξ̄ τ t
= [ξ̄ (1)

τ
(1)
t

, . . . , ξ̄
(n)

τ
(n)
t

]	 and τ t =
[τ (1)

t , . . . , τ
(n)
t ]	, such that

ξ̄ (i)
u

law=
{
X̄ (i)
u + K ∗

u,T

(
Z̄ (i) − X̄ (i)

T

)
if ||P (i)

u ||L2 �= 0,

0 if ||P (i)
u ||L2 = 0,

(18)

with X̄u satisfying Pu ⊗ X̄u = P̂uXu for u ≤ t , where {P t }t∈T ∈ R
n is

P t =
[
||P (1)

t ||L2 , . . . , ||P (i)
t ||L2 , . . . , ||P (n)

t ||L2

]	
, (19)

and Z̄ (i) = || p(i)||−1
L2 ( p

(i))	Z when ||P (i)
u ||L2 �= 0 and Z̄ (i) = 0 otherwise.

Proof See Appendix. ��
Remark 3.7 If Z = Z1, and each element of p(i) is positive, then

Z̄ (i) = Z
|| p(i)||L1

|| p(i)||L2
, (20)

so that signal modulation acts as the ratio of the L1 and L2 norms of p(i) for any
i = 1 . . . , n.

123



Journal of Theoretical Probability (2023) 36:845–875 855

As of this point, without loss of generality, p(i) is normalized such that 〈 p(i) p(i)〉 = 1
for all i = 1 . . . , n, unless stated otherwise. Thus, ||P (i)

t ||L2 = 1 ⇒ τ
(i)
t = t and

||P (i)
t ||L2 = 0 ⇒ τ

(i)
t < t .

Remark 3.8 One can model {P (i)
u }u≤t ∈ { p(i), 0} for i = 1, . . . , n by introducing a

mutually independent stochastic process {Yu}u≤t ∈ R
n such that

P (i)
u = 1{(Y (i)

u ∈ Y(i))} p(i), (21)

for some Y(i) ∈ B(R). We call {Yu}u≤t an exogenous signal corrupter process.

Although Lemma 3.6 provides a significantly simplified expression, it still does not
necessarily offer a closed-form solution. The reason is as follows: Note that (17) and

(79) give rise to a time-changed kernel-valued process { P̂u�̂τ u P̂
	
u }u≤t , given that

�̂τ t =

⎡

⎢
⎢⎢⎢⎢⎢
⎢
⎣

ψ
τ

(1)
t ,τ

(1)
t

, . . . , 0, . . . , 0,
...

...
...

0, . . . , ψ
τ

(i)
t ,τ

(i)
t

, . . . , 0,
...

...
...

0, . . . , 0, . . . , ψ
τ

(n)
t ,τ

(n)
t

,

⎤

⎥
⎥⎥⎥⎥⎥
⎥
⎦

, (22)

where each time-changed coordinate in (22) is as follows:

ψ
τ

(i)
t ,τ

(i)
t

= K−1
T ,T (K

τ
(i)
t ,τ

(i)
t
KT ,T − K

τ
(i)
t ,T

K
τ

(i)
t ,T

). (23)

Although the kernel P̂ t �̂τ t P̂
	
t is well defined, it is singular since det( P̂ t �̂τ t P̂

	
t ) =

0 (unless P̂ t = Î t ), which blocks us from reaching explicit expressions involving
conditional density functions and may give rise to redundancy issues (i.e., superfluous
information). In order to drive around this block, we need the conditional measure in
(79) to accept the following factorization:

P

⎛

⎝Z ∈ dz

∣∣
∣∣∣∣

n⋂

i=1

ki⋂

j=1

ξ̄
(i)

t (i)j
= x (i)

j ,

k∗⋂

j=1

P̂ t j

⎞

⎠

=
∏n

i=1 P

(
X̄ (i)

t (i)ki

∈ dx (i)
ki

∣∣∣ X (i)
T = z̄(i),

⋂k∗
j=1 P̂ t j

)
ν(dz)

∫
Rn

∏n
i=1 P

(
X̄ (i)

t (i)ki

∈ dx (i)
ki

∣∣
∣ X (i)

T = z̄(i),
⋂k∗

j=1 P̂ t j

)
ν(dz)

,

which removes any redundancy and singularity issues, and brings us to the result
below.
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Proposition 3.9 If {X t }t∈T is Markov under affine transformations and 〈 p(i) p( j)〉 = 0
for all i �= j , then the following holds:

Z P̂
t =

∫
Rn g(z)

∏n
i=1 h

(
z̄(i), ξ̄ (i)

τ
(i)
t

, τ
(i)
t

)
ν(dz)

∫
Rn

∏n
i=1 h

(
z̄(i), ξ̄ (i)

τ
(i)
t

, τ
(i)
t

)
ν(dz)

, (24)

where the map h : R × R × T → R+ above is

h(z̄(i), ξ̄ (i)

τ
(i)
t

, τ
(i)
t ) = exp

(
K δ

τ
(i)
t ,T

(
z̄(i)ξ̄ (i)

τ
(i)
t

− 1

2
(z̄(i))2K ∗

τ
(i)
t ,T

))
, (25)

given that K δ

τ
(i)
t ,T

= K ∗
τ

(i)
t ,T

ψ−1
τ

(i)
t ,τ

(i)
t
, for t ∈ T−.

Proof Having p(i) mutually orthogonal for i = 1, . . . , n and Pu ⊗ X̄u = P̂uXu for
all u ≤ t , by using Corollary 2.8, it follows that {X̄u}u≤t satisfies the aforementioned
factorization. Thus, the corresponding conditional density functions exist and the result
follows from Lemma 3.6. ��
Definition 3.10 Let {Jt }t∈T and {J C

t }t∈T be set-valued processes given by Jt = {i :
||P (i)

t ||L2 = 1}, and J C
t = {i : ||P (i)

t ||L2 = 0}, respectively.
Since Jt ∪ J C

t = I for all t ∈ T, using Proposition 3.9 and Definition 3.10, we can
further decompose (24) into Jt -driven orthogonal components as follows:

Z P̂
t =

∫
Rn g(z) exp

(
K δ
t,T

∑
i∈Jt

(
z̄(i)ξ̄ (i)

t − 1
2 (z̄

(i))2K ∗
t,T

))
φC
t ( z̄)ν(dz)

∫
Rn exp

(
K δ
t,T

∑
i∈Jt

(
z̄(i)ξ̄ (i)

t − 1
2 (z̄

(i))2K ∗
t,T

))
φC
t ( z̄)ν(dz)

, (26)

given that the function-valued process {φC
u }u≤t is

φC
t : z̄ 
→

{∏
i∈J C

t
h(z̄(i), ξ̄ (i)

τ
(i)
t

, τ
(i)
t ) if J C

t �= ∅,

1 if J C
t = ∅,

(27)

where τ
(i)
t < t for all i ∈ J C

t . The Jt -decomposition in (26) will be useful in the next

section when we provide dynamical SDE representations for {Z P̂
t }t∈T.

Example 3.11 Let { P̂u}u≤t be diagonal such that P (i)
u ∈ {e(i), 0} for all u ≤ t , where

e(i) ∈ R
n is the standard basis vector such that only the i th coordinate of e(i) is 1 and

the rest is 0, for i = 1, . . . , n. Then, we have

h(z̄(i), ξ̄ (i)

τ
(i)
t

, τ
(i)
t ) = h(z(i), ξ (i)

t , t), for all i ∈ Jt . (28)
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This is the case when information flows switch on and off without getting mixed with
each other. If we further set Z = Z1, g(Z) = g(Z), and choose each {X (i)

t }t∈T to be
a Brownian motion, we get the setup of [34].

Remark 3.12 The piecewise-enlarged filtrations introduced in [29] used for stochastic
quantum reduction can be recovered by imposing the following:

1. p(i) = e(i) for i = 1 . . . , n,
2. J0 �= ∅ and J C

0 �= ∅,
3. {|Jt |}t∈T is non-decreasing, where |.| is the cardinality.

Then, {F P̂,ξ
t }t∈T is an example of a piecewise-enlarged filtration of {FJ0

t }t∈T, where
we defined FJ0

t = σ({ξ (i)
u }0≤u≤t : i ∈ J0).

We conclude this section by extending {P (i)
u }u≤t ∈ { p(i), 0} to {P (i)

t }t∈T, where
T− = ⋃m

d=1 T
d for some m ∈ N+ such that {P (i)

t }t∈Td ∈ { p(d,i), 0} for i = 1, . . . , n
and d = 1, . . . ,m. This allows us to augment Proposition 3.9 toward a broader class of
{ P̂ t }t∈T, and consequently, toward filters taking more general forms. First, we slightly
extend Definition 2.6, where we say {Xd

t }t∈T for d = 1, . . . ,m satisfies the joint
time-changed Markov property at T ∈ T, if

P

⎛

⎝
m⋂

d=1

Xd
T ∈ dzd

∣∣∣
∣∣∣

m⋂

d=1

n⋂

i=1

kd,i⋂

j=1

X (d,i)

t (d,i)
j

= x (d,i)
j

⎞

⎠

= P

(
m⋂

d=1

Xd
T ∈ dzd

∣∣∣∣
∣

m⋂

d=1

n⋂

i=1

X (d,i)

t (d,i)
kd,i

= x (d,i)
kd,i

)

, (29)

for any 0 ≤ t (d,i)
1 < · · · < t (d,i)

kd,i
< T , for i = 1, . . . , n, d = 1, . . . ,m. For below,

T
d = [Td−1, Td) for d = 1, . . . ,m, where T0 = 0 and Tm = T . We also define the

set-valued process {Tt }t∈T− where Tt = {d : Td−1 ≤ t} for any t ∈ T−, that tracks
the time periods.

Proposition 3.13 Let τ
(d,i)
t = 0 ∨ sup{u : ||P (i)

u ||L2 = 1, u ∈ [Td−1, t]} for t ∈ T
d

and i = 1, . . . , n and d = 1, . . . ,m, where P (i)
u ∈ { p(d,i), 0} for some normalized

p(d,i) �= 0 ∈ R
n for all u ∈ T

d . Given that Pud ⊗ X̄
d
ud = P̂ud Xud , if [X̄1

u1 , . . . , X̄
m
um ]

satisfy property (29) under each p(d,i), then

Z P̂
t =

∫

Rn
g(z)P

⎡

⎣Z ∈ dz

∣∣∣∣
∣∣

⋂

d∈Tt
ξ̄
d
τ d
t
, F P̂

t

⎤

⎦ , (30)
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where {ξ̄dt }t∈Td given { P̂ t }t∈Td is a GRB with ξ̄
d
τ d
t

= [ξ̄ (d,1)

τ
(d,1)
t

, . . . , ξ̄
(d,n)

τ
(d,n)
t

]	 and τ d
t =

[τ (d,1)
t , . . . , τ

(d,n)
t ]	, such that

ξ̄
(d,i)
t

law=
{
X̄ (d,i)
t + K ∗

t,T

(
Z̄ (d,i) − X̄ (d,i)

T

)
if ||P (i)

t ||L2 = 1,

0 if ||P (i)
t ||L2 = 0,

(31)

with Z̄ (d,i) = ( p(d,i))	Z when ||P (i)
t ||L2 = 1 and Z̄ (d,i) = 0 otherwise, for t ∈ T

d .

Proof Following the same logic as in Lemma 3.6, we have

π P̂
t (dz) = P

⎛

⎝Z ∈ dz |
∨

d∈Tt
σ
(
{Pu ⊗ ξ̄

d
u}u∈Td , { P̂u}u∈Td

)
⎞

⎠

= P

⎛

⎝Z ∈ dz |
∨

d∈Tt
σ
(
{ξ̄ (d,i)(τ (d,i)

u )}u∈Td : i = 1, . . . , n, { P̂u}u∈Td

)
⎞

⎠ .

(32)

Then, using a generalized version of Lemma 2.7 extended for the joint property in
(29)—which we shall omit to avoid repetition—we get the following:

P

⎛

⎝Z ∈ dz

∣∣∣∣
∣∣

|Tt |⋂

d=1

n⋂

i=1

kd,i⋂

j=1

ξ̄
(d,i)

t (d,i)
j

= x (d,i)
j ,

k∗⋂

j=1

P̂ t j

⎞

⎠

= P

⎛

⎝Z ∈ dz

∣∣∣∣∣
∣

|Tt |⋂

d=1

n⋂

i=1

ξ̄
(d,i)

t (d,i)
kd,i

= x (d,i)
kd,i

,

k∗⋂

j=1

P̂ t j

⎞

⎠ ,

and the rest of the proof follows in a similar way as in Lemma 3.6. ��
For the next statement, we define {φ̄(i)

τ
(i)
t

}t∈T as the {|Tt |}t∈T × 1 vector-valued process

φ̄
(i)

τ
(i)
t

=
⎡

⎢
⎣

ξ̄ (1,i)(τ
(1,i)
t )

...

ξ̄ (|Tt |,i)(τ (|Tt |,i)
t )

⎤

⎥
⎦ =

⎡

⎢
⎣

ξ̄ (1,i)(τ
(1,i)
t )

...

ξ̄ (d,i)(τ
(d,i)
t )

⎤

⎥
⎦ forTt = {1, . . . , d}, t ∈ T. (33)

Note that for each (i), {φ̄(i)

τ
(i)
t

}t∈T is a vector-valued process that is non-decreasing in

its dimension. Similarly, we define the {|Tt |}t∈T × 1 vector {Z̄(i)
t }t∈T by

Z̄
(i)
t =

⎡

⎢
⎣

Z̄ (1,i)

...

Z̄ (|Tt |,i)

⎤

⎥
⎦ =

⎡

⎢
⎣

Z̄ (1,i)

...

Z̄ (d,i)

⎤

⎥
⎦ forTt = {1, . . . , d}, t ∈ T. (34)
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Proposition 3.14 Keep the setup in Proposition 3.13. If 〈 p(a,i) p(b, j)〉 = 0 for all
i �= j , then

Z P̂
t =

∫
Rn g(z)

∏n
1=1 H( z̄(i)t , φ̄

(i)

τ
(i)
t

, τ
(i)
t )ν(dz)

∫
Rn

∏n
1=1 H( z̄(i)t , φ̄

(i)

τ
(i)
t

, τ
(i)
t )ν(dz)

, (35)

where the map H : R|Tt | × R
|Tt | × T → R+ is given by

H( z̄(i)t , φ̄
(i)

τ
(i)
t

, τ
(i)
t ) = exp

(
−1

2

(
φ̄

(i)

τ
(i)
t

− μ
τ

(i)
t

( z̄t )
)	

�̂
−1
τ

(i)
t

(
φ̄

(i)

τ
(i)
t

− μ
τ

(i)
t

( z̄t )
))

,

(36)

with μ
τ

(i)
t

( z̄t ) = K−1
T ,T [K

τ
(1,i)
t ,T

z̄(1,i), . . . , K
τ

(|Tt |,i)
t ,T

z̄(|Tt |,i)]	, and the |Tt | × |Tt |
kernel matrix

�̂
τ

(i)
t

=

⎡

⎢⎢
⎣

ψ
τ

(1,i)
t ,τ

(1,i)
t

, . . . , p(i)
(1,|Tt |)ψτ

(1,i)
t ,τ

(|Tt |,i)
t

...
...

p(i)
(|Tt |,1)ψτ

(|Tt |,i)
t ,τ

(1,i)
t

, . . . , ψ
τ

(|Tt |,i)
t ,τ

(|Tt |,i)
t

,

⎤

⎥⎥
⎦ , (37)

where p(i)
( j,k) = p( j,i)( p(k,i))	, for i = 1 . . . , n and t ∈ T−.

Proof The proof follows similar to Proposition 3.9, since 〈 p(a,i) p(b, j)〉 = 0 for all
i �= j implies

P

(
m⋂

d=1

X̄
d
T ∈ d z̄d

∣∣∣∣∣

m⋂

d=1

n⋂

i=1

X̄ (d,i)

t (d,i)
kd,i

= x (d,i)
kd,i

)

=
n∏

i=1

P

(
m⋂

d=1

X̄ (d,i)
T ∈ z̄(d,i)

∣∣∣∣∣

m⋂

d=1

X̄ (d,i)

t (d,i)
kd,i

= x (d,i)
kd,i

)

, (38)

for i = 1, . . . , n, d = 1, . . . ,m. When �̂
−1
τ

(i)
t
exist for all i = 1, . . . , n, the conditional

densities exist, and the result follows from Proposition 3.13. ��
Remark 3.15 One can consider multiple signal vectors Zα ∈ L2(	,F ,P) with
(Rnα ,B(Rnα )), noisy observation processes {ξα

t }t∈T ∈ R
nα and { P̂α

t }t∈T ∈ R
nα×nα

from P(nα) for α = 1 . . . ,m for some m ∈ N+—here, nα highlights that the dimen-
sions may vary with respect to α. If all are mutually independent across α = 1 . . . ,m,
then we simply have

P

(

Z1 ∈ dz1, . . . , Zm ∈ dzm
∣∣∣∣
∣

m∨

α=1

F P̂
α
,ξα

tα

)

=
m∏

α=1

π P̂
α

tα (dzα), (39)
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given that π P̂
α

tα (dzα) = P(Zα ∈ dzα |F P̂
α
,ξα

tα ), where each can be calculated using
Proposition 3.14 under the given constraints, by setting g = 1(.) and applying their
own time changes.

3.1 Dynamical Representations

We keep the conditions in Proposition 3.9 to provide an SDE representation for

{Z P̂
t }t∈T, and choose {X (i)

t }t∈T with continuous paths, which already provide fairly

involved expressions for the dynamics of {Z P̂
t }t∈T. Nonetheless, the result below can

be extended for Proposition 3.14 as well as for {X (i)
t }t∈T with general càdlàg paths.

We introduce the {F P̂,ξ
t }-adapted counting processes {Ct }t∈T and {δt }t∈T as follows:

Ct =
∑

u≤t

1{ P̂u �= P̂u−} and δt = 1{Kt �= ∅}, where Kt = Jt\Jt−. (40)

Hence, Kt �= ∅ if and only if when at least one coordinate of the vector in (19) that
equals zero at t− ∈ T becomes nonzero at t ∈ T. We also have Ct ≥ ∑

u≤t δu for any
t ∈ T. Finally, we define �k = inf{t : Ct = k} with �0 = 0.

Lemma 3.16 If each {X (i)
t }t∈T is an (F X (i)

t ,P)-semimartingale with quadratic varia-

tion {Q(i)
t }t∈T and K ∈ C1(T), there exist (F P̂,ξ

t ,P)-semimartingales {S(i,k−1)
t (z̄(i))}

�k−1≤t<�k for k = 1, . . . ,Ct + 1 with quadratic variations {Q(i)
t }t∈T for any z ∈ R

n

and p(i) ∈ R
n for i = 1, . . . , n, such that

π P̂
t (dz) = π P̂

0 (dz) +
Ct∑

k=1

1{J�k−1 �= ∅}
⎛

⎝
∫ �k−

�k−1

π P̂
u (dz)

∑

i∈J�k−1

σu(ξ̄ , z̄(i)) dS(i,k−1)
u (z̄(i))

⎞

⎠

+ 1{J�Ct
�= ∅}

⎛

⎜
⎝
∫ t

�Ct

π P̂
u (dz)

∑

i∈J�Ct

σu(ξ̄ , z̄(i)) dS(i,Ct )
u (z̄(i))

⎞

⎟
⎠

+
∑

u≤t

(π P̂
u (dz) − π P̂

u−(dz))δu,

for t ∈ T−, where σt (ξ̄ , z̄(i)) = K δ
t,T (z̄(i) − E[Z̄ (i) | ξ̄ τ t

, F P̂
t ]).

Proof See Appendix. ��
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Proposition 3.17 Let {X (i)
t }t∈T be an (F X (i)

t ,P)-martingale, where Q(i) ∈ C1(T) for

i = 1, . . . , n. Then, {Z P̂
t }t∈T− satisfies

Z P̂
t = Z P̂

0 +
Ct∑

k=1

1{J�k−1 �= ∅}
∫ �k−

�k−1

∑

i∈J�k−1

�̃u(ξ̄ , Z̄ (i)) dW (i,k−1)
u

+ 1{J�Ct
�= ∅}

∫ t

�Ct

∑

i∈J�Ct

�̃u(ξ̄ , Z̄ (i)) dW (i,Ct )
u +

∑

u≤t

(Z P̂
u − Z P̂

u−)δu, (41)

for t ∈ T−, given that �̃t (ξ̄ , Z̄ (i)) = [(Q(i)
t )

′ ]1/2(Q(i)
T − Q(i)

t )−1�t (ξ̄ , Z̄ (i)) where

�t (ξ̄ , Z̄ (i)) = Cov[g(Z), Z̄ (i) | ξ̄ τ t
, F P̂

t ], and {W (i,k−1)
t }�k−1≤t<�k are (F P̂,ξ

t ,P)-
Brownian motions.

Proof Since each {S(i,k−1)
t (z̄(i))}�k−1≤t<�k from Lemma 3.16 is a continuous

(F P̂,ξ
t ,P)-semimartingale, we can decompose it as

S(i,k−1)
t (z̄(i)) = W (i,k−1)

t (z̄(i)) + A(i,k−1)
t (z̄(i)), (42)

where {W (i,k−1)
t (z̄(i))}�k−1≤t<�k is a continuous (F P̂,ξ

t ,P)-local martingale, and

the adapted continuous process {A(i,k−1)
t (z̄(i))}�k−1≤t<�k has bounded variation.

Now start with {X (i)
t }t∈T to be an (F X (i)

t ,P)-Brownian motion. Since {A(i,k−1)
t

(z̄(i))}�k−1≤t<�k has zero quadratic variation in any case and dQ
(i)
t = dt for any i ∈ I,

we have d〈W (i,k−1)
t (z̄(i)),W (i,k−1)

t (z̄(i))〉 = dt . Thus, {W (i,k−1)
t (z̄(i))}�k−1≤t<�k must

be an (F P̂,ξ
t ,P)-Brownian motion by Lévy characterization theorem. Hence, we have

π̃ P̂
t (dz) = π̃ P̂

�k−1
(dz)Ẽ (k−1)

t (ξ̄ , z), (43)

for �k−1 ≤ t < �k as a Doléans–Dade exponential, where {Ẽ (k−1)
t (ξ̄ , z)}�k−1≤t<�k

is

Ẽ (k−1)
t (ξ̄ , z) = exp

⎛

⎝
∫ t

�k−1

∑

i∈J�k−1

σu(ξ̄ , z̄(i))
(
dW (i,k−1)

u (z̄(i)) + dA(i,k−1)
u (z̄(i))

)
⎞

⎠

× exp

⎛

⎝−1

2

∫ t

�k−1

∑

i∈J�k−1

∑

j∈J�k−1

σu(ξ̄ , z̄(i))σu(ξ̄ , z̄( j))ρ(i j)
u du

⎞

⎠ ,

(44)
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given that ρ
(i j)
t is the correlation factor across {W (i,k−1)

t (z̄(i))}�k−1≤t<�k . Since

{π P̂
t }�k−1≤t<�k is an (F P̂,ξ

t ,P)-martingale, we have

E

[
Ẽ (k−1)
t (ξ̄ , z)

∣∣∣F P̂,ξ
�k−1

]
= 1. (45)

Since {W (i,k−1)
t (z̄(i))}�k−1≤t<�k is a Brownian motion, and (45) must hold, {A(i,k−1)

t

(z̄(i))}�k−1≤t<�k must be a constant P-a.s. Hence, there exists an (F P̂,ξ
t ,P)-Brownian

motion {W (i,k−1)
t }�k−1≤t<�k such that we can replace dS(i,k−1)

t (z̄(i)) = dW (i,k−1)
t .

When {X (i)
t }t∈T is amore general continuous (F X (i)

t ,P)-martingale, Dambis–Dubins–
Schwarz theorem applies through time-changed Brownian motions, and thus, we get

π P̂
t (dz) = π P̂

0 (dz) +
Ct∑

k=1

1{J�k−1 �= ∅}
⎛

⎝
∫ �k−

�k−1

π P̂
u (dz)

∑

i∈J�k−1

σ̃u(ξ̄ , z̄(i)) dW (i,k−1)
u

⎞

⎠

+ 1{J�Ct
�= ∅}

⎛

⎜
⎝
∫ t

�Ct

π P̂
u (dz)

∑

i∈J�Ct

σ̃u(ξ̄ , z̄(i)) dW (i,Ct )
u

⎞

⎟
⎠ +

∑

u≤t

(π P̂
u (dz) − π P̂

u−(dz))δu ,

where σ̃t (ξ̄ , z̄(i)) = [(Q(i)
t )

′ ]1/2σt (ξ̄ , z̄(i)) and {W (i,k−1)
t }�k−1≤t<�k are (F P̂,ξ

t ,P)-
Brownian motions. Finally, (41) follows from Lebesgue integration. ��
Note that the SDE in Proposition 3.17 is a generalization of the form in Proposi-
tion 1.1—due to the conditions imposed as part of Proposition 3.9, one can start from
an already modulated GRB {ξ̄ t }t∈T from the outset, and switch the coordinates on and
off.

Corollary 3.18 Keep the setup in Proposition 3.17. Then,

π P̂
t (dz) = π P̂

0 (dz)

( Ct∏

k=1

E (k−1)
�k

(ξ̄ , z)

)

Ê (Ct )
t (ξ̄ , z),

for t ∈ T−, where E (k−1)
�k

(ξ̄ , z) for k = 1, . . . ,Ct is given by

E (k−1)
�k

(ξ̄ , z) = exp

⎛

⎝1{J�k−1 �= ∅}
∫ �k−

�k−1

∑

i∈J�k−1

σ̃u(ξ̄ , z̄(i))dW (i,k−1)
u

⎞

⎠

× exp

⎛

⎝−1{J�k−1 �= ∅}
2

∫ �k−

�k−1

∑

i∈J�k−1

∑

j∈J�k−1

σ̃u(ξ̄ , z̄(i))σ̃u(ξ̄ , z̄( j))ρ(i j)
u du

⎞

⎠

+ 1{K�k �= ∅}
(
π P̂

�k
(dz) − π P̂

�k−(dz)
)

, (46)
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and where Ê (Ct )
t (ξ̄ , z) is the same as in (46) where (k − 1) is replaced by Ct , �k− is

replaced by t, and the jump term 1{K�k �= ∅} = 0.

Note that {Z P̂
t }t∈T jumps if and only if a previously zero coordinate of {P t }t∈T in (19)

becomes nonzero (not when a nonzero coordinate becomes zero). Also, if J�k−1 = ∅,
that is if P�k−1 = 0 in (19) and all information is lost at time �k−1 for some k =
1 . . . ,Ct , then {Z P̂

t }�k−1≤t<�k = Z P̂
�k−1

.

Remark 3.19 From Proposition 3.4, Z P̂
t = E[Zt |F P̂,ξ

t ], and hence, using Proposi-
tion 2.14,

Z P̂
t = E[g(Z)] +

n∑

i=1

E

[(∫ t

0
�̃∗

u(ξ , Z (i)) dW (i)
u

) ∣∣∣∣ F
P̂,ξ
t

]
, (47)

for t ∈ T−, given that �̃∗
t (ξ , Z (i)) = [(Q(i)

t )
′ ]1/2(Q(i)

T − Q(i)
t )−1�∗

t (ξ , Z (i)) where

�∗
t (ξ , Z (i)) = Cov[g(Z), Z (i) | ξ t ] and {W (i)

t }t∈T− are (F ξ
t ,P)-Brownian motions.

From Proposition 3.17 and Remark 3.19, if we take each {X (i)
t }t∈T to be an (F X (i)

t ,P)-
martingale for i = 1, . . . , n, we see that the following holds:

E

[(∫ t

0

n∑

i=1

�̃∗
u(ξ , Z (i)) dW (i)

u

) ∣∣∣∣∣
F P̂,ξ
t

]

=
Ct∑

k=1

∫ �k−

�k−1

∑

i∈J�k−1

�̃u(ξ̄ , Z̄ (i)) dW (i,k−1)
u

+
∫ t

�Ct

∑

i∈J�Ct

�̃u(ξ̄ , Z̄ (i)) dW (i,Ct )
u +

∑

u≤t

(Z P̂
u − Z P̂

u−)δu,

where we set J0 �= ∅ and {|Jt |}t∈T to be non-decreasing. The identity above

links (F ξ
t ,P)-Brownian motions with (F P̂,ξ

t ,P)-Brownian motions, as well as
{�∗

t (ξ , Z (i))}t∈T− with {�t (ξ̄ , Z̄ (i))}t∈T− .

Proposition 3.20 For J�k−1 �= ∅, {�t (ξ̄ , Z̄ (i))}�k−1≤t<�k is an (F P̂,ξ
t ,P)-

supermartingale.

Proof Note that {Z̄ (i)
t }�k−1≤t<�k defined by Z̄ (i)

t = E[g(Z)Z̄ (i)) |F P̂,ξ
t ] is an

(F P̂,ξ
t ,P)-martingale. Also, {V̄ (i)

t }�k−1≤t<�k defined by V̄ (i)
t = Z P̂

t E[Z̄ (i)) |F P̂,ξ
t ]

is an (F P̂,ξ
t ,P)-submartingale by using Proposition 3.17 and applying Itô product

rule, where non-negative drift terms arise due to cross-products of the (F P̂,ξ
t ,P)-

Brownian motions. Thus, using Doob–Meyer theorem, we can uniquely decompose

{V̄ (i)
t }�k−1≤t<�k into an (F P̂,ξ

t ,P)-martingale plus a non-decreasing process. It fol-

lows that E[�t (ξ̄ , Z̄ (i)) |F P̂,ξ
s ] ≤ �s(ξ̄ , Z̄ (i)) for any �k−1 ≤ s < t < �k . ��
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3.2 FromMulti-Order Modulation to Information Discrepancy

Wecan employ irrevocablymodulated filtrations tomodel sequentialmulti-ordermod-
ulation, where the flow of information is exposed to multiple modifications in some
order before reaching agents. SinceP(n) is closed undermultiplication, we can choose
Ât ∈ P(n) and B̂t ∈ P(n), and consider Ât B̂t ∈ P(n) and B̂t Ât ∈ P(n), where

E

[
g(Z) | F ÂB̂,ξ

t

]
�= E

[
g(Z) | F B̂ Â,ξ

t

]
if L[ Ât , B̂t ] �= 0̂, (48)

E

[
g(Z) | F ÂB̂,ξ

t

]
= E

[
g(Z) | F B̂ Â,ξ

t

]
if L[ Ât , B̂t ] = 0̂, (49)

where 0̂ ∈ P(n) is the zero-matrix, and L : Rn×n ×R
n×n → R

n×n is the Lie bracket

such that L[ Ât , B̂t ] = Ât B̂t − B̂t Ât . Here, we have the filtrations {F ÂB̂,ξ
t }t∈T and

{F B̂ Â,ξ
t }t∈T given by the following:

F ÂB̂,ξ
t = σ

(
{ Âu B̂u ξu}0≤u≤t , { Âu B̂u}0≤u≤t

)
(50)

F B̂ Â,ξ
t = σ

(
{B̂u Âu ξu}0≤u≤t , {B̂u Âu}0≤u≤t

)
. (51)

For the non-commutative case in (48), i) neither Ât or B̂t can be Î t ∈ P(n) or
0̂ ∈ P(n), and ii) neither B̂t ξ t can be recovered from Ât B̂t ξ t nor Ât ξ t can be
recovered from B̂t Ât ξ t . Note that the singularity of { Ât }t∈T and {B̂t }t∈T is crucial
for (48)—if { Ât }t∈T and {B̂t }t∈T would instead be non-singular, then the non-
commutativity would not make any difference for signal inference, since we would

have E[g(Z) | F ÂB̂,ξ
t ] = E[g(Z) | F B̂ Â,ξ

t ] = E[g(Z) | F ξ
t ].

In order to quantify the information discrepancy caused by non-commutative
sequences of modulation, we shall introduce a Lie-type operator acting on the space
of σ -algebras.

Definition 3.21 LetF(n, ξ) be the space of all irrevocablymodulated σ -algebrasF P̂,ξ

for all possible P̂ ∈ P(n) for some ξ . Then, L∗ : F(n, ξ) ⊗ F(n, ξ) → L(n, ξ) is
such that

L∗[F P̂
α
,ξ ,F P̂

β
,ξ ] = σ

(
L[ P̂α

, P̂
β ]ξ , P̂

α
, P̂

β
)

, (52)

where L(n, ξ) is the space of all σ -algebras of the form in (52), for any P̂
α ∈ P(n)

and P̂
β ∈ P(n).

We shall sometimes use L̂
α,β = L[ P̂α

, P̂
β ] for notational convenience. Note that

if L̂
α,β = 0̂, then L∗[F P̂

α
,ξ ,F P̂

β
,ξ ] = σ( P̂

α
, P̂

β
). Although P̂

α
P̂

β ∈ P(n) due
to closure under multiplication, P(n) is not closed under the action of L , and hence,

L̂
α,β

is not necessarily an element of P(n).
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Remark 3.22 Although L(n, ξ) includes irrevocably modulated σ -algebras, it also

includes σ -algebras such as σ(ξ , P̂
α
, P̂

β
) when (L̂

α,β
)−1 exists and ξ can be recov-

ered from σ(L̂
α,β

ξ , P̂
α
, P̂

β
).

WedenotePC (n) as the spaceofRn×n non-singularmatrices, so thatP(n)
⋂

PC (n) =
{ Î}. We let Q(n) be the space of Rn×n matrices formed via L[ P̂α

, P̂
β ] for any

P̂
α ∈ P(n) and P̂

β ∈ P(n). Any {L̂α,β

t }t∈T ∈ Q(n) is {Ft }-adapted and jumps

whenever { P̂α

t }t∈T ∈ P(n) or { P̂β

t }t∈T ∈ P(n) jumps. Note that {L̂α,β

t }t∈T can jump
between P(n) and PC (n).

As an application, we can consider systems with information asymmetry, which is
a fruitful research area in mathematical economics and game theory. We can consider

regular agents Aα and Aβ having access to either F P̂
α
,ξ or F P̂

β
,ξ , respectively (but

not to both), and there may even exist another group of agents A∗ who have access

to L∗[F P̂
α
,ξ ,F P̂

β
,ξ ]—hence, whenever L̂

α,β ∈ PC (n), A∗ can recover ξ to their
advantage with better inference capability. Then, using

L∗[F P̂
α
,ξ

t ,F P̂
β
,ξ

t ] = σ
(
{L[ P̂α

u , P̂
β

u ]ξu}0≤u≤t , { P̂α

u }0≤u≤t , { P̂β

u }0≤u≤t

)
, (53)

we can provide a dynamic quantification of the information asymmetry between agents

Aα and Aβ . In doing so, we associate Z ÂB̂
t = E[g(Z) | F ÂB̂,ξ

t ] to agent Aα , Z B̂ Â
t =

E[g(Z) | F B̂ Â,ξ
t ] to agent Aβ , and define

�L∗
t = E

[
g(Z) | L∗[F ÂB̂,ξ

t ,F B̂ Â,ξ
t ]

]
, and pL

∗
t (dz) = P

(
Z ∈ dz | L∗[F ÂB̂,ξ

t ,F B̂ Â,ξ
t ]

)
.

(54)

For notational convenience, we simply write L̂t = L[ Ât B̂t , B̂t Ât ]without additional
superscripts. From L̂t , we can construct Lt ∈ R

n by

Lt =
[
||L(1)

t ||L2 , . . . , ||L(i)
t ||L2 , . . . , ||L(n)

t ||L2

]	
, (55)

where L(i)
t ∈ R

n is the n × 1 vector formed from the i th row of L̂t . Let Z̄
∗,(i)
t =

||L(i)
t ||−1

L2 (L
(i)
t )	Z when ||L(i)

t ||L2 �= 0 and Z̄∗,(i)
t = 0 otherwise, and accordingly,

define {ξ̄∗,(i)
t }t∈T for i = 1, . . . , n as

ξ̄
∗,(i)
t

law=
{
X̄∗,(i)
t + Kt,T

KT ,T

(
Z̄∗,(i) − X̄∗,(i)

T

)
if ||L(i)

t ||L2 �= 0,

0 if ||L(i)
t ||L2 = 0,

(56)

such that Lt ⊗ X̄
∗
t = L̂tX t for t ∈ T. Also, let J ∗

t = {i : ||L(i)
t ||L2 �= 0} for the

statement below.
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Corollary 3.23 Let {X t }t∈T be Markov with mutually independent coordinates. If
{L̂u}u≤t ∈ P(n), then if L(i)

u ∈ {l(i), 0} for l(i) �= 0 ∈ R
n for all u ≤ t , such that

〈l(i)l( j)〉 = 0 for all i �= j and {X t }t∈T satisfies time-changed Markov invariance
under the action of each l(i),

�L∗
t =

∫
Rn g(z)

∏
i∈J ∗

t
h(z̄∗,(i), ξ̄

∗,(i)
t , t)φC

t ( z̄∗)ν(dz)
∫
Rn

∏
i∈J ∗

t
h(z̄∗,(i), ξ̄

∗,(i)
t , t)φC

t ( z̄∗)ν(dz)
. (57)

If L̂t ∈ PC (n) at any t ∈ T, then J ∗
t = I, h(z̄∗,(i), ξ̄

∗,(i)
t , t) = h(z(i), ξ (i)

t , t) and
φC
t ( z̄∗) = 1 in (57).

For SDE representations, define τ
∗,(i)
t = 0 ∨ sup{u : ||L(i)

u ||L2 �= 0, u ∈ [0, t]} for
t ∈ T, C∗

t = ∑
u≤t 1{L̂u �= L̂u−}, δt = 1{J ∗

t \J ∗
t− �= ∅}, and finally, �∗

k = inf{t :
C∗
t = k} with �∗

0 = 0; the dynamics would then involve (L∗[F P̂
α
,ξ

t ,F P̂
β
,ξ

t ],P)-
Brownian motions.

One can surely propose alternative ways to quantify information discrepancy—

e.g., via f -divergences (see [5, 20]). In this spirit, if π ÂB̂
t (dz) = p ÂB̂

t (z)dz and

π B̂ Â
t (dz) = p B̂ Â

t (z)dz, the symmetric Kullback–Leibler divergence

2�
[
π ÂB̂
t || π B̂ Â

t

]
=

∫

Rn

(

p ÂB̂
t (z) log

(
p ÂB̂
t (z)

p B̂ Â
t (z)

)

+ p B̂ Â
t (z) log

(
p B̂ Â
t (z)

p ÂB̂
t (z)

))

dz,

(58)

can be used, which defines a metric-valued process. On the other hand, {pL∗
t (dz)}t∈T

in (54) is a measure-valued process, and it can be used to model inference dynamics
of the agent group A∗.

3.3 From RandomGraphs to Pure Noise Scenarios

Let {G(v, et )}t∈T be an undirected graph-valued stochastic process with n-vertices v

and randomly evolving edges {et }t∈T. Then, there exists a Laplacianmatrix Ĝt ∈ R
n×n

that canonically represents G(v, et ) at any time t ∈ T. Since each G(i)
t ∈ R

n satisfies
∑n

j=1 G
(i, j)
t = 0 for i = 1, . . . , n, {Ĝt } must be singular, and hence, Ĝt ∈ P(n).

Therefore, we can employ {G(v, et )}t∈T to generate what we specifically call a graph-
induced irrevocably modulated filtration {FG(v,e),ξ

t }t∈T given by

FG(v,e),ξ
t = σ

(
{Ĝu ξu}0≤u≤t , {G(v, eu)}0≤u≤t

)
. (59)

Surely, FG(v,e),ξ
t = F Ĝ,ξ

t , and we allow the notational difference to highlight it as
graph-induced for the statement below, where we also write π

G(v,e)
t (dz) = P(Z ∈

dz |FG(v,e),ξ
t ) = P(Z ∈ dz |F Ĝ,ξ

t ).
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Proposition 3.24 Let Z = Z1. Then, πG(v,e)
t (dz) = ν(dz) for all t ∈ T.

Proof Since {X t }t∈T is mutually independent of Z and
∑n

j=1 G
(i, j)
t = 0 for i =

1, . . . , n, any dependence on Z drops from {Ĝt ξ t }t∈T through Ĝt1 = 0 using Propo-
sition 2.2. ��
We therefore see that random graphs in the context of irrevocably modulated fil-
trations can lead to pure noise scenarios. We believe that studying irrevocably
modulated filtrations through the eigenvalues of { P̂ t }t∈T—e.g., via the spectral gap of
{G(v, et )}t∈T—may provide further insight into quantifying information shrinkage,
of which we leave details for future.

3.4 From Spectral Radius to Information Decay

Using irrevocably modulated filtrations, one can also construct systems that exhibit
gradual decaying of the impact of having additional information sources as time
progresses. As an example, allow T− = ⋃m

d=1 T
d for some m ∈ N+, and choose

{P (i)
t }t∈T1 = p(1,i) for i = 1, . . . , n over the period T

1, such that { P̂ t }t∈T1 is irre-
ducible with each entry non-negative. Using Perron–Frobenius theorem, { P̂ t }t∈T1 has
a positive eigenvalue λ∗ that is its spectral radius. Now, we ask λ∗ < 1, and for any Td

for d = 2, . . . ,m, let { P̂ t }t∈Td be such that P̂ t over t ∈ T
d is given by {( P̂ t )

d}t∈T1 .
Thus, having the spectral radius λ∗ < 1, the decay of { P̂ t }t∈T is controlled by (λ∗)d
as time progress through T

d from d = 1 into d = m. Accordingly, scenarios would

arise where each coordinate of {ξ̄dt }t∈Td , as in Proposition 3.13, converges toward each
other through T

d from d = 1 into d = m, making each information source more and
more indistinguishable as time evolves.

4 Conclusion

We develop a probabilistic information framework that embeds filtrations generated
by non-invertible matrix-valued modulators acting on noisy observation processes.
We produce dynamical representations of conditional expectations in systems where
signals from randomly changing information networks may switch-off or get irre-
versibly amalgamated over random time horizons. Since the main focus of this work
has been the modulation aspect, we chose to maintain a signal-plus-noise structure for
the observation processes without getting digressed toward what other forms informa-
tion may take. GRBs provide valuable modeling flexibility and analytic tractability,
but the framework can be applied to other processes, e.g., Lévy randombridges of [23],
Lévy information processes of [25], randomized Markov bridges of [32] and many
more—however, these classes are not necessarily closed under affine transformations
and additional care may be required.
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5 Appendix

5.1 Proof of Lemma 2.5

Proof The direction that {X t }t∈T being Markov with respect to {F X
t } implies {ξ t }t∈T

is Markov with respect to {F ξ
t } is proved in [30][Proposition 2.3]. For the opposite

direction, we first define

	(t, T ; t1 . . . , tn) = P(X t ∈ dx, XT ∈ dz | X t1 = x1, . . . , X tn = xn)
P(X t ∈ dx, XT ∈ dz)

, (60)

for 0 ≤ t1 < . . . < tn < t ≤ T . Then, if {ξ t }t∈T is Markov with respect to {F ξ
t }, we

have

P(ξ t ≤ x | ξ t1 = x1, . . . , ξ tn = xn) = P(ξ t ≤ x |ξ tn = xn)

=
∫
Rn
z
P(ξ tn ≤ xn | ξ t = x, ξ T = z)P(ξ t ∈ dx)P(ξ T ∈ dz | ξ t = x)

∫
Rn
z

∫
R
n
x
P(ξ tn ≤ xn | ξ t = x, ξ T = z)P(ξ t ∈ dx)P(ξ T ∈ dz | ξ t = x)

=
∫
Rn
z
P(X tn ≤ xn | X t = x, XT = z)P(ξ t ∈ dx)P(ξ T ∈ dz | ξ t = x)

∫
Rn
z

∫
R
n
x
P(X tn ≤ xn | X t = x, XT = z)P(ξ t ∈ dx)P(ξ T ∈ dz | ξ t = x)

=
∫
Rn
z
	(t, T ; tn)P(ξ t ∈ dx)P(ξ T ∈ dz | ξ t = x)

∫
Rn
z

∫
R
n
x
	(t, T ; tn)P(ξ t ∈ dx)P(ξ T ∈ dz | ξ t = x)

. (61)

We also have the following:

P(ξ t ≤ x | ξ t1 = x1, . . . , ξ tn = xn) = P(ξ t1 ≤ x1, . . . , ξ tn ≤ xn | ξ t = x)P(ξ t ∈ dx)
∫
R
n
x
P(ξ t1 ≤ x1, . . . , ξ tn ≤ xn | ξ t = x)P(ξ t ∈ dx)

=
∫
Rn
z
P(ξ t1 ≤ x1, . . . , ξ tn ≤ xn | ξ t = x, ξ T = z)P(ξ t ∈ dx)P(ξ T ∈ dz | ξ t = x)

∫
Rn
z

∫
R
n
x
P(ξ t1 ≤ x1, . . . , ξ tn ≤ xn | ξ t = x, ξ T = z)P(ξ t ∈ dx)P(ξT ∈ dz | ξ t = x)

=
∫
Rn
z
	(t, T ; t1 . . . , tn)P(ξ t ∈ dx)P(ξ T ∈ dz | ξ t = x)

∫
Rn
z

∫
R
n
x
	(t, T ; t1 . . . , tn)P(ξ t ∈ dx)P(ξ T ∈ dz | ξ t = x)

. (62)
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Since (61) and (62) are equal, it follows that {X t }t∈T is Markov with respect to {F X
t }.

��

5.2 Proof of Lemma 2.7

Proof Since we work over D(T,Rn), it suffices to show

P

⎛

⎝Z ∈ dz

∣∣
∣∣∣∣

n⋂

i=1

ki⋂

j=1

ξ
(i)

t (i)j
= x (i)

j

⎞

⎠ = P

(

Z ∈ dz

∣∣
∣∣∣

n⋂

i=1

ξ
(i)

t (i)ki

= x (i)
ki

)

, (63)

for all ki ∈ N+, all 0 ≤ t (i)1 < · · · < t (i)ki
< T , and all (x (i)

1 , . . . , x (i)
ki

) ∈ R
ki for

i = 1, . . . , n.
Using Definition 2.1, we can write

P

⎛

⎝Z ∈ dz

∣∣
∣
∣∣
∣

n⋂

i=1

ki⋂

j=1

ξ
(i)

t (i)j
= x (i)

j

⎞

⎠ =
P

(
⋂n

i=1
⋂ki

j=1 ξ
(i)

t (i)j
∈ dx (i)

j

∣
∣ ξ T = z

)
ν( dz)

∫
Rn P

(
⋂n

i=1
⋂ki

j=1 ξ
(i)

t (i)j
∈ dx (i)

j

∣
∣ ξ T = z

)
ν( dz)

P

(
⋂n

i=1
⋂ki

j=1 X
(i)

t (i)j
∈ dx (i)

j | XT = z
)

ν( dz)

∫
Rn P

(
⋂n

i=1
⋂ki

j=1 X
(i)

t (i)j
∈ dx (i)

j | XT = z
)

ν( dz)
.

(64)

Denoting I = {1, . . . , n} and defining the following map:

�(T ; t (i)1 , . . . , t (i)ki
: ∀i ∈ I) =

P

(
XT ∈ dz

∣∣∣∣
⋂n

i=1
⋂ki

j=1 X
(i)

t (i)j
= x (i)

j

)

P(XT ∈ dz)
, (65)

and using the time-changed Markov property in (6), we have

P

⎛

⎝Z ∈ dz

∣∣∣∣
∣∣

n⋂

i=1

ki⋂

j=1

ξ
(i)

t (i)j
= x (i)

j

⎞

⎠

=
P

(
⋂n

i=1
⋂ki

j=1 X
(i)

t (i)j
∈ dx (i)

j

)
�(T ; t (i)1 , . . . , t (i)ki

: ∀i ∈ I)ν( dz)

∫
Rn P

(
⋂n

i=1
⋂ki

j=1 X
(i)

t (i)j
∈ dx (i)

j

)
�(T ; t (i)1 , . . . , t (i)ki

: ∀i ∈ I)ν( dz)

=
P

(
⋂n

i=1 X
(i)

t (i)ki

∈ dx (i)
ki

)
�(T ; t (i)ki

: ∀i ∈ I)ν( dz)

∫
Rn P

(
⋂n

i=1 X
(i)

t (i)ki

∈ dx (i)
ki

)
�(T ; t (i)ki

: ∀i ∈ I)ν( dz)
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=
P

(
⋂n

i=1 X
(i)

t (i)ki

∈ dx (i)
ki

| XT = z
)

ν( dz)

∫
Rn P

(
⋂n

i=1 X
(i)

t (i)ki

∈ dx (i)
ki

| XT = z
)

ν( dz)
. (66)

Finally, from Definition 2.1 and (66), we get

P

⎛

⎝Z ∈ dz

∣∣
∣∣∣∣

n⋂

i=1

ki⋂

j=1

ξ
(i)

t (i)j
= x (i)

j

⎞

⎠ =
P

(
⋂n

i=1 ξ
(i)

t (i)ki

∈ dx (i)
ki

∣∣ ξ T = z
)

ν( dz)

∫
Rn P

(
⋂n

i=1 ξ
(i)

t (i)ki

∈ dx (i)
ki

∣∣ ξ T = z
)

ν( dz)
,

(67)

which in turn yields (7) for any B ∈ B(Rn). ��

5.3 Proof of Lemma 2.13

Proof First, we define kδ
t,T = ∂K δ

t,T /∂t and k∗
t,T = ∂K ∗

t,T /∂t , where K ∗
t,T =

Kt,T /KT ,T . FromProposition2.2 andLemma2.5,wegetπt (dz) = Ht (ξt )
−1ht (ξt ; dz),

where we defined the maps h : R+ × R → R+ and H : R+ × R → R+ as follows:

ht (ξt ; dz) = exp

(
K δ
t,T (zξt − 1

2
z2K ∗

t,T )

)
ν(dz), and Ht (ξt ) =

∫

R

ht (ξt ; dz).
(68)

Hence, h ∈ C1,2(R+,R) and H ∈ C1,2(R+,R). Since {K ∗
t,T (Z − XT )} is a contin-

uous finite variation process, using Proposition 2.12, {〈ξt , ξt 〉}t∈T = {〈Xt , Xt 〉}t∈T is
the quadratic variation for the (F ξ

t ,P)-semimartingale {ξt }t∈T. Also, using Itô product
rule, we get π−1

t dπt = h−1
t dht − H−1

t dHt + H−2
t d 〈Ht , Ht 〉 − (ht Ht )

−1d 〈ht , Ht 〉.
Thus, we have the following:

h−1
t dht =

(
kδ
t,T zξt − z2

2

(
kδ
t,T K

∗
t,T + K δ

t,T k
∗
t,T

))
dt + z2

2

(
K δ
t,T

)2
d 〈Xt , Xt 〉 + zK δ

t,T dξt ,

(69)

H−1
t dHt =

(
kδ
t,TE[Z | ξt ]ξt − E[Z2 | ξt ]

2

(
kδ
t,T K

∗
t,T + K δ

t,T k
∗
t,T

)
)
dt

+ E[Z2 | ξt ]
2

(K δ
t,T )2d 〈Xt , Xt 〉 + E[Z | ξt ]K δ

t,T dξt , (70)

by using Fubini’s theorem. For the quadratic terms, we have

H−2
t d 〈Ht , Ht 〉 = E[Z | ξt ]2(K δ

t,T )2d 〈Xt , Xt 〉 , (71)

(ht Ht )
−1d 〈ht , Ht 〉 = zE[Z | ξt ](K δ

t,T )2d 〈Xt , Xt 〉 . (72)
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We gather the terms above as follows:

μt (ξ, z) = kδ
t,T ξt (z − E[Z | ξt ]) − 1

2

(
kδ
t,T K

∗
t,T + K δ

t,T k
∗
t,T

) (
z2 − E[Z2 | ξt ]

)
,

(73)

θt (ξ, z) = 1

2

(
K δ
t,T

)2 (
z2 − E[Z2 | ξt ]

)
+ (

K δ
t,T

)2 (
E[Z | ξt ]2 − zE[Z | ξt ]

)
,

(74)

σt (ξ, z) = K δ
t,T (z − E[Z | ξt ]) , (75)

and write π−1
t dπt compactly as

πt (dz)
−1dπt (dz) = (μt (ξ, z)dt + θt (ξ, z)d 〈Xt , Xt 〉 + σt (ξ, z)dξt )

= σt (ξ, z)

(
dξt + μt (ξ, z)

σt (ξ, z)
dt + θt (ξ, z)

σt (ξ, z)
dQt

)

� σt (ξ, z)dSt (z), (76)

where σt (ξ, z) �= 0 P-a.s since {ξt }t∈T is continuous. Using Proposition 2.12,
{St (z)}t∈T− is an (F ξ

t ,P)-semimartingale with {〈St (z), St (z)〉}t∈T− = {Qt }t∈T− for
any z ∈ R. Since {St (z)}t∈T− is continuous, (14) follows as a Doléans–Dade expo-

nential for the (F ξ
t ,P)-martingale {πt }t∈T. ��

5.4 Proof of Lemma 3.6

Proof Let ηt = P̂ t ξ t for some t ∈ T. Using Proposition 2.2, and the independence
of {X (i)

t }t∈T for i = 1, . . . , n, we can write

η
(i)
t

law= ||P (i)
t ||L2 X̄ (i)

t + K ∗
t,T

(
(P (i)

t )	Z − ||P (i)
t ||L2 X̄ (i)

T

)
given P̂ t , (77)

where X̄ (i)
t is equal in law to X (i)

t , but which is not necessarily mutually inde-

pendent across i = 1, . . . , n. Then, ηt
law= P t ⊗ ξ̄ t given P̂ t , and defining

Z̄ (i)
t = ||P (i)

t ||−1
L2 (P

(i)
t )	Z whenever ||P (i)

t ||L2 �= 0, the modified information

ξ̄ t ∈ R
n is as given in (18), which holds since ||P (i)

t ||L2 = 0 ⇒ P (i)
t = 0 for

any i = 1, . . . , n. Thus, if we also write ξ̄ (i)(u) as the value of {ξ̄ (i)
u }u≤t at u ∈ T,

since P(P (i)
u = 0, ξu = 0) = 0 for all u ∈ T, we can write

π P̂
t (dz) = P

(
Z ∈ dz | σ

(
{Pu ⊗ ξ̄u}0≤u≤t , { P̂u}0≤u≤t

))

= P

(
Z ∈ dz | σ

(
{ξ̄ (i)(τ (i)

u )}0≤u≤t : i = 1, . . . , n, { P̂u}0≤u≤t

))
, (78)

123



872 Journal of Theoretical Probability (2023) 36:845–875

since {τ (i)
u } is progressivelymeasurable with respect to {F P̂,ξ

u }u∈T. Given that {X t }t∈T
satisfies the time-changed Markov invariance, X̄ t satisfies (6) at each p(i), and thus,
using Lemma 2.7,

P

⎛

⎝Z ∈ dz

∣∣∣
∣∣∣

n⋂

i=1

ki⋂

j=1

ξ̄
(i)

t (i)j
= x (i)

j ,

k∗⋂

j=1

P̂ t j

⎞

⎠

=
P

(
⋂n

i=1 X̄
(i)

t (i)ki

∈ dx (i)
ki

∣∣∣ X̄T = z̄,
⋂k∗

j=1 P̂ t j

)
ν(dz)

∫
Rn P

(
⋂n

i=1 X̄
(i)

t (i)ki

∈ dx (i)
ki

∣∣∣ X̄T = z̄,
⋂k∗

j=1 P̂ t j

)
ν(dz)

= P

⎛

⎝Z ∈ dz

∣∣
∣∣∣∣

n⋂

i=1

ξ̄
(i)

t (i)ki

= x (i)
ki

,

k∗⋂

j=1

P̂ t j

⎞

⎠ , (79)

for all ki ∈ N+, any k∗ ≥ max(k1, . . . , kn), any 0 ≤ t (i)1 < · · · < t (i)ki
≤ t < T where

||P (i)

t (i)j
||L2 �= 0, and all (x (i)

1 , . . . , x (i)
ki

) ∈ R
ki , given that z̄(i) = || p(i)||−1

L2 ( p
(i))	z for

i = 1, . . . , n. Also, since

σ
(
{ξ̄ (i)(τ (i)

u )}0≤u≤t : i = 1, . . . , n, { P̂u}0≤u≤t

)
⊆ σ

(
{ξ̄ (i)

u }
0≤u≤τ

(i)
t

: i = 1, . . . , n, { P̂u}0≤u≤t

)
,

we can enlarge F P̂,ξ
t by defining G P̂,ξ

t = σ
(
{ξ̄ (i)

u }
0≤u≤τ

(i)
t

: i = 1, . . . , n
)∨

F P̂,ξ
t .

Then, using the tower property and (79), we get

π P̂
t (dz) = E

[
P

[
Z ∈ dz

∣∣∣∣G
P̂,ξ
t

] ∣∣∣∣F
P̂,ξ
t

]

= E

[
P

[
Z ∈ dz

∣
∣∣∣ ξ̄

(i)(τ
(i)
t ) : i = 1, . . . , n, F P̂,ξ

t

] ∣
∣∣∣F

P̂,ξ
t

]
, (80)

and (17) follows from (80), the independence of { P̂ t }t∈T, and since Z P̂
t =

∫
Rn g(z)π P̂

t (dz). ��

5.5 Proof of Lemma 3.16

Proof Since { P̂ t }t∈T has finite activity, it has finite number of jumps, and hence,

{π P̂
t }t∈T can be decomposed into a sum of its continuous and discontinuous com-

ponents through π P̂
t (dz) = π̃ P̂

t (dz) + ∑
u≤t �π P̂

u (dz), where {π̃ P̂
t }t∈T− is the

continuous part. Using (26), we define h ∈ C1,2(R+,Rn) and H ∈ C1,2(R+,Rn)
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as follows:

ht (ξ̄ t ; dz) = exp

⎛

⎝K δ
t,T

∑

i∈Jt

(
z̄(i)ξ̄ (i)

t − 1

2
(z̄(i))2K ∗

t,T

)⎞

⎠φC
t (z)ν(dz), and

Ht (ξ̄ t ) =
∫

Rn
ht (ξ̄ t ; dz).

For any t ∈ [�k−1,�k) and any k, {Jt }t∈[�k−1,�k ) and {J C
t }t∈[�k−1,�k ) are constant

processes. In addition, {φC
t (z)}t∈[�k−1,�k ) is constant since τ

(i)
t < t for i ∈ J C

t .
Keeping t ∈ [�k−1,�k), defining σt (ξ̄ , z̄(i)) as stated in the proposition, and fol-

lowing similar steps as in Lemma 2.13, where we have (π̃ P̂
t )−1dπ̃ P̂

t = h−1
t dht −

H−1
t dHt + H−2

t d 〈Ht , Ht 〉 − (ht Ht )
−1d 〈ht , Ht 〉, we gather all the derivative terms,

without presenting them explicitly, as follows:

(π̃ P̂
t (dz))−1dπ̃ P̂

t (dz) =
∑

i∈Jt

μt (ξ̄ , z̄(i))dt + θt (ξ̄ , z̄(i))d
〈
X̄ (i)
t , X̄ (i)

t

〉
+ σt (ξ̄ , z̄(i))dξ̄ (i)

t

�
∑

i∈J�k−1

σt (ξ̄ , z̄(i))dS(i,k−1)
t (z̄(i)), (81)

forJ�k−1 �= ∅, where σt (ξ̄ , z̄(i)) �= 0 P-a.s since {ξ̄ τ t
}�k−1≤t<�k is continuous with at

least one element of τ t being t . Since linear combinations of {X (i)
t }t∈T are semimartin-

gales, using Proposition 2.12 and (18), each {S(i,k−1)
t (z̄(i))}�k−1≤t<�k is an (F P̂,ξ

t ,P)-

semimartingale for any z̄ ∈ R
n with quadratic variation {〈X̄ (i)

t , X̄ (i)
t 〉}�k−1≤t<�k =

{Q(i)
t }�k−1≤t<�k . For the discontinuous part of {π P̂

u }u≤t , using Proposition 3.9 and

the continuity of {X (i)
t }t∈T, we have

∑

u≤t

�π P̂
u (dz) =

∑

u≤t

(
π P̂
u (dz) − π P̂

u−(dz)
)
1{ P̂u �= P̂u−}

=
∑

u≤t

(
π P̂
u (dz) − π P̂

u−(dz)
)
1{Ju\Ju− �= ∅}, (82)

since �π P̂
u (dz) �= 0 if and only if at least one coordinate of Pu in (19) is such that

||P (i)
u−||L2 = 0 at time u− and ||P (i)

u ||L2 = 1 at time u. Then, π̃ P̂
t = ∫ t

0 dπ̃
P̂
u plus

(82) gives the result. ��
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