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Abstract
Consider the inhomogeneous Erdős-Rényi random graph (ERRG) on n vertices for
which each pair i, j ∈ {1, . . . , n}, i �= j, is connected independently by an edge with
probability rn( i−1

n ,
j−1
n ), where (rn)n∈N is a sequence of graphons converging to a ref-

erence graphon r . As a generalisation of the celebrated large deviation principle (LDP)
for ERRGs by Chatterjee and Varadhan (Eur J Comb 32:1000–1017, 2011), Dhara and
Sen (Large deviation for uniform graphs with given degrees, 2020. arXiv:1904.07666)
proved an LDP for a sequence of such graphs under the assumption that r is bounded
away from 0 and 1, and with a rate function in the form of a lower semi-continuous
envelope. We further extend the results by Dhara and Sen. We relax the conditions on
the reference graphon to (log r , log(1 − r)) ∈ L1([0, 1]2). We also show that, under
this condition, their rate function equals a different, more tractable rate function. We
then apply these results to the large deviation principle for the largest eigenvalue of
inhomogeneous ERRGs and weaken the conditions for part of the analysis of the rate
function by Chakrabarty et al. (Large deviation principle for the maximal eigenvalue
of inhomogeneous Erdoös-Rényi random graphs, 2020. arXiv:2008.08367).
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1 Introduction

1.1 Motivation and Outline

The large deviation principle (LDP) for the Erdős-Rényi random graph (ERRG) was
introduced and proved by Chatterjee and Varadhan in their seminal paper [6]. They
viewed the sequence of ERRGs as graphons and obtained the LDP in the space of
graphons with the cut topology. With this LDP, Chatterjee and Varadhan completely
solved a long-standing open problem regarding upper tails for large deviations of
triangle counts in ERRGs. This spurred many further developments in the area of
large deviations for random graphs. We refer to [4] for an overview.

In this paper, we study the inhomogeneous Erdős-Rényi random graph, which is
a generalisation of the ERRG in that different edges do not necessarily occur with
the same probability. This probability is controlled by a reference graphon. Recently,
Dhara and Sen [7, Proposition 3.1] proved the LDP for the inhomogeneous ERRG
model under the assumption that the reference graphon r is bounded away from 0 and
1, i.e., there exists η > 0 such that η ≤ r(x, y) ≤ 1 − η for all (x, y) ∈ [0, 1]2. The
rate function J ′

r for their LDP has the form of a lower semi-continuous envelope of
another rate function Ir , which complicates its analysis.

We extend their proof to reference graphons that satisfy the mild integrability con-
dition log r , log(1− r) ∈ L1([0, 1]2). Furthermore, we show that J ′

r is also the lower
semi-continuous envelope of another, more tractable rate function Jr that is already
semi-continuous, which implies that J ′

r actually equals Jr . The relaxation of the con-
ditions broadens the scope of applications, and the simplification of the rate function
makes the LDP more suitable to such applications. As an example application, we
consider the LDP for the largest eigenvalue of an inhomogeneous ERRG. We show
that the conditions for the analysis by Chakrabarty, Hazra, DenHollander and Sfragara
[2] can partially be weakened.

Random graphs with inhomogeneities and constraints have many applications in
complex networks, physics and statistics. As a consequence, recent interest in large
deviations for inhomogeneous random graphs has grown considerably. The LDP for
ERRGs was applied by Chatterjee and Diaconis [5] to the exponential random graph,
Dhara and Sen [7] applied the LDP for inhomogeneous ERRGs to random graphs with
fixed degrees, and recently, Borgs et al. [1] proved an LDP for block models. This
paper is part of a general effort to better understand large deviations for inhomogeneous
random graphs.

Outline In Sect. 1.2, we briefly introduce the necessary concepts and definitions from
graph limit theory. The LDP for inhomogeneous ERRGs is stated in Sect. 1.3, and
the rate function is introduced. In Sect. 1.4, we introduce large deviations for the
largest eigenvalue of the inhomogeneous ERRG. The proof that the rate function is
well-defined, lower semi-continuous, and equal to the rate function of Dhara and Sen
[7] is given in Sect. 2. We generalise Dhara and Sen’s proof of the LDP upper bound
in Sect. 3. In Sect. 4, we finish by showing that the results from this paper can be used
to weaken the conditions of the analysis of the rate function for the largest eigenvalue
by Chakrabarty et al. [2].
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1.2 Graphons

A graphon is a Borel measurable function h : [0, 1]2 → [0, 1] such that h(x, y) =
h(y, x) for all (x, y) ∈ [0, 1]2. We denote the set of graphons by W . Every finite
simple graph G = (V (G), E(G)) with V (G) = [n] := {1, . . . , n} can be represented
as the graphon hG defined as

hG(x, y) =
{
1, (i, j) ∈ E(G), (x, y) ∈ B(i, j, n),

0, otherwise,
(1.1)

with B(i, j, n) := [ i−1
n , i

n ) × [ j−1
n ,

j
n ). We call hG the empirical graphon of G. Let

M denote the set of Lebesgue measure-preserving bijections φ : [0, 1] → [0, 1]. The
cut distance on W is defined as

d�(h1, h2) := sup
S,T⊂[0,1]

∣∣∣∣
∫

[0,1]2
(h1(x, y) − h2(x, y)) dx dy

∣∣∣∣ (1.2)

and the cut metric is defined as

δ�(h1, h2) := inf
φ∈M

d�(hφ
1 , h2), (1.3)

where hφ(x, y) := h(φ(x), φ(y)). See [9, Theorem 8.13] for several equivalent
definitions for δ�. The cut metric induces an equivalence relation ∼ on W where
h1 ∼ h2 if δ�(h1, h2) = 0. Define W̃ := W/∼ and denote the equivalence class of
h ∈ W by h̃. The space (W̃, δ�) is a compact metric space [9, Theorem 9.23].

1.3 Main Theorem

For some h ∈ W , define the random graph Gn with vertex set [n] by connecting
every pair of vertices i, j ∈ [n] with probability h( i−1

n ,
j−1
n ). Denote the law of the

empirical graphon hGn of Gn on W by Pn,h and the law of h̃Gn on W̃ by P̃n,h .
We define a sequence of random graphs as follows. Fix a graphon r ∈ W called

the reference graphon and let (rn)n∈N be a sequence of block graphons of the form

rn =
{
rn,i j , (x, y) ∈ B(i, j, n), 1 ≤ i, j ≤ n, i �= j,

0, otherwise,
(1.4)

such that 0 < r < 1 and rn → r Lebesgue-almost everywhere and in L1-norm as
n → ∞. Further assume that

log r , log(1 − r) ∈ L1([0, 1]2) (1.5)

and
‖ log rn − log r‖L1 , ‖ log(1 − rn) − log(1 − r)‖L1 → 0 (1.6)
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as n → ∞.
We show that (̃Pn,rn )n∈N satisfies an LDP. First, we define a suitable rate function.

For a ∈ [0, 1] and b ∈ (0, 1), let

R(a | b) := a log
a

b
+ (1 − a) log

1 − a

1 − b
, (1.7)

where we use the convention 0 log 0 = 0. For h, r ∈ W such that 0 < r < 1
Lebesgue-almost everywhere, this map can be extended to a map Ir onW by defining

Ir (h) =
∫

[0,1]2
R(h(x, y) | r(x, y)) dx dy. (1.8)

In the case r ≡ p, Ir is invariant under measure-preserving bijections. Hence, Ir
can be extended to W̃ as Jr (̃h) := Ir (h) [4, Proposition 5.1]. For inhomogeneous
reference graphons, this is no longer the case. To solve this problem, Dhara and Sen
extend the function to its lower semi-continuous envelope, i.e.,

J ′
r (̃h) := sup

η>0
inf

g∈B (̃h,η)
Ir (g), (1.9)

where B (̃h, η) := {g ∈ W | δ�(̃h, g̃) ≤ η}. This extension is well-defined and lower
semi-continuous [7, Lemma 2.1], but analyticmanipulation can be somewhat difficult.
Instead, we propose the following more tractable rate function:

Jr (̃h) := inf
φ∈M

Ir (h
φ). (1.10)

A priori, it is not clear whether Jr a good rate function on W̃ or even well-defined. In
Sect. 2, we show that it is, and that Jr in fact equals J ′

r under the condition (1.5). This
is one of the main results of this paper.

We are now ready to state the main theorem.

Theorem 1.1 Subject to (1.5) and (1.6), the sequence (̃Pn,rn )n∈N satisfies the large

deviation principle on (W̃, δ�) with rate n2
2 and rate function Jr , i.e., for all closed

sets F̃ ⊂ W̃ and open sets Ũ ⊂ W̃ ,

lim sup
n→∞

2

n2
log P̃n,rn (F̃) ≤ − inf

h̃∈F̃
Jr (̃h),

lim inf
n→∞

2

n2
log P̃n,rn (Ũ ) ≥ − inf

h̃∈Ũ
Jr (̃h).

(1.11)

This theorem was proved by Dhara and Sen [7, Proposition 3.1] under the condition
that there exists an η > 0 such that η ≤ r(x, y) ≤ 1 − η and η ≤ rn,i j (x, y) ≤ 1 − η

for all (x, y) ∈ [0, 1]2, n ∈ N and i �= j . The novelty in this paper lies in weakening
the conditions and showing that Jr = J ′

r .
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The proof of the lower bound requires only minor adjustments of the proof in [4].
Therefore, we only prove the upper bound in this paper. For a detailed proof of the
lower bound, we refer to [10, Sect. 6]. Throughout the rest of the paper, we implicitly
assume that (1.5) and (1.6) hold and no longer mention it in the statement of our
results.

1.4 Large Deviations for the Largest Eigenvalue

Let λn be the largest eigenvalue of the adjacency matrix of Gn . Then,
λn
n also satisfies

an LDP. Chakrabarty et al. [2] studied the rate function ψr under the conditions that
r is bounded away from 0 and 1 and of rank 1, i.e. r(x, y) = ν(x)ν(y) for some
ν : [0, 1] → [0, 1]. They analysed the scaling of the rate function and identified the
form of the minimisers near the rate function’s minimum and near the boundaries 0
and 1.

The requirement that r is bounded away from 0 and 1 stems in part from the fact
that the results from [2] are obtained using the LDP by Dhara and Sen [7]. They posed
the question whether the boundedness condition could be weakened to some form
of integrability condition. In this paper, we show that the condition can partially be
relaxed to (1.5). In particular, we extend their analysis of the rate function near its
minimum.

From the LDP for inhomogeneous ERRGs, Chakrabarty et al. [2] derive the follow-
ing LDP for the largest eigenvalue. Note that for this theorem, we do not yet require
r to be of rank 1.

Theorem 1.2 Let P
∗
n denote the law of λn/n. Subject to (1.5) and (1.6), the sequence

(P∗
n)n ∈ N satisfies the LDP on R with rate n2/2 and with rate function

ψr (β) = inf
h̃∈W̃‖Th‖=β

Jr (̃h) = inf
h∈W‖Th‖=β

Ir (h), β ∈ R,
(1.12)

with Th the operator on L2([0, 1]2) defined as

Th(u)(x) =
∫

[0,1]
h(x, y)u(y) dy (1.13)

for h ∈ W , u ∈ L2([0, 1]2) and x ∈ [0, 1], and where ‖Th‖ is the operator norm of
Th with respect to the L2-norm on L2([0, 1]2).
Proof The proof is standard and follows from Theorem 1.1, combined with the obser-
vation that λn/n = ‖ThGn ‖. See [2, Theorem 1.4]. ��
Note that Chakrabarty et al. [2] already use the rate function Jr , so their result is
already an application of the results from this paper.

Put Cr = ‖Tr‖. Then, Chakrabarty et al. [2] show that the rate function ψr is
continuous and unimodal on [0, 1], with a unique zero at Cr , and that it is strictly
decreasing and strictly increasing on [0,Cr ] and [Cr , 1] respectively. Furthermore,

123



716 Journal of Theoretical Probability (2023) 36:711–727

for every β ∈ [0, 1], the set of minimisers of the variational formula for ψr (β) in
(1.12) is non-empty and compact in W̃ . For β /∈ [0, 1], ψr (β) = +∞. These results
do not require boundedness away from 0 and 1 of the reference graphon.

One of the main results by Chakrabarty et al. [2] is the scaling of the rate function
and the minimisers near β = Cr under the condition that r is bounded away from 0
and 1. We generalise it to the following theorem, which we prove in Sect. 4.

Theorem 1.3 Assume there exists ν : [0, 1] → [0, 1] such that r(x, y) = ν(x)ν(y).
Then, subject to (1.5),

ψr (β) = (1 + o(1))Kr (β − Cr )
2, β → Cr , (1.14)

with

Kr = C2
r

2Br
, (1.15)

where

Br =
∫

[0,1]2
r(x, y)3(1 − r(x, y)) dx dy. (1.16)

Furthermore, let hβ ∈ W be any minimiser of the second infimum in (1.12). Then,

lim
β→Cr

(β − Cr )
−1‖hβ − r − (β − Cr )	‖L2 = 0, (1.17)

with

	 = Cr

Br
r2(1 − r). (1.18)

1.5 Discussion

1.5.1 Conditions on the Reference Graphon

In [1], Borgs et al. proved an LDP for a block model in which the reference graphon
consists of rational-length blocks. This result was later strengthened to include blocks
of arbitrary length by Grebík and Pikhurko [8]. In their model, the reference graphon
may take on the values 0 or 1. It would be interesting to generalise both LDPs to a
single LDP for graphons that are partly block graphons (that can attain the values 0
and 1), and partly satisfy the integrability condition of this paper. Since the condition
log r , log(1 − r) ∈ L1([0, 1]2) pervades almost every step of the proof of Theorem
1.1, it appears to be difficult to obtain an LDP for arbitrary reference graphons. It
might be the case that the inhomogeneous ERRG model does not satisfy an LDP for
certain reference graphons.

1.5.2 Non-Dense Random Graphs

Graph limit theory provides the right framework for studying sequences of dense
graphs, since non-dense graphs converge to the zero graphon. A similar framework
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for non-dense graphs is still in development, so not much is known yet for large
deviations of non-dense random graphs. We refer to the bibliographical notes in [4,
Chapter 6] and [3, Sect. 3] for a short review of recent results in sparse graph limit
theory and sparse large deviations. Although this paper also considers dense random
graphs, the reference graphon is allowed to approach 0. Such reference graphons can
induce dense random graphs with non-dense subgraphs. This is in contrast to the
setting of Dhara and Sen [7], where every subgraph is also dense.

1.5.3 Rate Function for the LDP for Block Models

LikeDhara and Sen [7], Borgs et al. [1] used a lower semi-continuous envelope as their
rate function. The rate function from this paper can also be used in [1]. The authors also
derive an LDP for homomorphism densities and define a symmetric and symmetry
breaking regime. The existence of a symmetry breaking regime is only established for
specific block models, in part due to the intractable nature of the rate function. The
precise boundary between the symmetric and non-symmetric regimes was also only
identified for bipartite ERRGs, again due to the intractability of the rate function. The
results from this paper might aid in resolving the general cases.

2 The Rate Function

We show that the candidate rate function is a good rate function, i.e., does not equal
infinity everywhere and has compact level sets. Since the first requirement is clear and
W̃ is compact, it suffices to show that Jr is lower semi-continuous. First, we need to
check that Jr is well-defined on the quotient space W̃ . As a consequence of lower
semi-continuity, we prove that Jr equals the rate function J ′

r as defined by Dhara and
Sen [7] (see 1.9).

Lemma 2.1 The function Ir is continuous in the L2-topology on W .

Proof Let ( fn)n∈N ⊂ W and f ∈ W such that ( fn)n∈N converges to f in L2([0, 1]2).
Note that for all h ∈ W ,

|R(h(x, y) | r(x, y))| ≤ |h(x, y) log h(x, y)| + |h(x, y) log r(x, y)|
+|(1 − h(x, y)) log(1 − h(x, y))|
+|(1 − h(x, y)) log(1 − r(x, y))|

≤ 2

e
+ | log r(x, y)| + | log(1 − r(x, y))| (2.1)

for all (x, y) ∈ [0, 1]2, where we use that x �→ x log x has a minimum − 1
e on [0, 1].

Because log r , log(1 − r) ∈ L1([0, 1]2), the bound above is integrable.
Let (nk)k∈N be a sequence of integers tending to infinity. Since fn → f as n → ∞

in L2([0, 1]2), there exists a subsequence (nkl )l∈N such that fnkl → f as l → ∞
Lebesgue-almost everywhere. By continuity, R( fnkl (x, y) | r(x, y)) → R( f (x, y) |
r(x, y)) Lebesgue-almost everywhere. By the dominated convergence theorem, using
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the bound from (2.1), we have Ir ( fnkl ) → Ir ( f ) as l → ∞. Thus, for every sequence
(nk)k∈N there exists a subsequence (nkl )l∈N such that Ir ( fnkl ) → Ir ( f ) as l → ∞.
Hence, Ir ( fn) → Ir ( f ) as n → ∞. ��

Lemma 2.2 Let f , g ∈ W be such that δ�( f , g) = 0. Then infφ∈M Ir ( f φ) =
infφ∈M Ir (gφ).

Proof Note that by [9, Corollary 8.14], δ�( f , g) = 0 if and only if there exists a
sequence (φn)n∈N ⊂ M such that ‖ f φn −g‖L2 → 0 as n → ∞. Since ‖hφ

1 −hφ
2‖L2 =

‖h1 − h2‖L2 for all h1, h2 ∈ W and φ ∈ M, we find that ‖( f φn )φ − gφ‖L2 → 0
for all φ ∈ M. Thus, by Lemma 2.1, Ir (( f φn )φ) → Ir (gφ) as n → ∞. Because this
holds for all φ ∈ M, we obtain

inf
φ∈M

Ir (g
φ) = inf

φ∈M
lim
n→∞ Ir (( f

φn )φ) ≥ inf
φ∈M

Ir ( f
φ). (2.2)

By symmetry, the reverse inequality also holds. ��

By Lemma 2.2, Jr can also be expressed as

Jr ( f̃ ) = inf
g∈B( f̃ ,0)

Ir (g), (2.3)

so
J ′
r ( f̃ ) = sup

η>0
inf

g∈B( f̃ ,η)
Ir (g) = sup

η>0
inf

g̃∈B̃( f̃ ,η)
Jr (g̃). (2.4)

Since Jr ≥ J ′
r , we have Jr = J ′

r if Jr is lower semi-continuous on W̃ .

Theorem 2.3 Subject to (1.5) and (1.6), the function Jr is lower semi-continuous
on W̃ .

Proof Let f̃ ∈ W̃ and ( f̃n)n∈N ⊂ W̃ such that f̃n → f̃ in δ�. Without loss of
generality, we may assume that fn → f in d�. Let 	n := fn − f ∈ W1 := { f − g |
f , g ∈ W}. Then, 	n → 0 in d� and by an easy computation,

Ir ( f
φ + 	φ

n ) = Ip( f
φ + 	φ

n ) + Ir ( f
φ) − Ip( f

φ)

+
∫

[0,1]2
	φ

n (x, y) log

(
1 − r(x, y)

r(x, y)

p

1 − p

)
dx dy (2.5)
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for every n ∈ N, φ ∈ M and p ∈ (0, 1). Thus,

lim inf
n→∞ Jr ( f̃n) = lim inf

n→∞ Jr ( f̃ + 	n) = lim inf
n→∞ inf

φ∈M Ir ( f
φ + 	φ

n )

= lim inf
n→∞ inf

φ∈M

(
Ip( f

φ + 	φ
n ) + Ir ( f

φ) − Ip( f
φ)

+
∫

[0,1]2
	φ

n (x, y) log

(
1 − r(x, y)

r(x, y)

p

1 − p

)
dx dy

)

≥ lim inf
n→∞

(
Ip( f + 	n) − Ip( f ) + Jr ( f̃ )

+ inf
φ∈M

∫
[0,1]2

	φ
n (x, y) log

(
1 − r(x, y)

r(x, y)

p

1 − p

)
dx dy

)

≥ Jr ( f̃ ) + lim inf
n→∞ inf

φ∈M

∫
[0,1]2

	φ
n (x, y) log

(
1 − r(x, y)

r(x, y)

p

1 − p

)
dx dy

≥ Jr ( f̃ ) + lim inf
n→∞

∫
[0,1]2

	φn
n (x, y) log

(
1 − r(x, y)

r(x, y)

p

1 − p

)
dx dy − ε=Jr ( f̃ ) − ε

(2.6)

for some p ∈ (0, 1), arbitrary ε > 0 and some sequence (φn)n∈N ⊂ M. The second
inequality follows from the lower semi-continuity of Ip on W . The last inequality

is obtained by noting that 	
φn
n → 0 in d� and log r , log(1 − r) ∈ L1([0, 1]2) and

applying [9, Lemma 8.22]. Because ε > 0 is arbitrary, the proof is complete. ��
Corollary 2.4 For all f̃ ∈ W , Jr ( f̃ ) = J ′

r ( f̃ ).

3 The Upper Bound

The proof of the upper bound is an adaptation of the proof by Dhara and Sen [7,
Proposition 3.1]. It suffices to prove the following result.

Theorem 3.1 Let ε > 0 and f̃ ∈ W̃ . Then, there exists an η(ε) > 0 such that, for all
η ∈ (0, η(ε)),

lim sup
n→∞

log P̃n,rn (B̃( f̃ , η)) ≤ − inf
g∈B( f̃ ,4ε)

Ir (g) + ε, (3.1)

with B̃( f̃ , η) = {g̃ ∈ W̃ | δ�( f̃ , g̃) ≤ η} and B( f̃ , 4ε) = {g ∈ W | δ�( f̃ , g̃) ≤ 4ε}.
The proof is done via the level-n approximants (rn)n∈N of r , which are of the form
(1.4), with

rn,i j := n2
∫
B(i, j,n)

r(x, y) dx dy. (3.2)

Dhara and Sen show that the distributions 1
n2

logPn,rn are well-approximated by
1
n2

Pn,rk for n large enough and some fixed k and that the rate function Ir is well-
approximated by Irk for k large enough. In the case that r is bounded away from 0 and
1, Dhara and Sen use Lipschitz continuity of the logarithm on a closed interval. If r
tends to 0, logPn,rn and logPn,rk might differ by large amounts as n → ∞. Thus, we
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require more control over the approximation in this paper. We obtain this by precisely
counting the points in the unit square where log rn and log rk are far apart and showing
that this area tends to 0 sufficiently fast. The proof is given in Sect. 3.2. In Sect. 3.1,
we show that the rate function induced by the level-n approximants approximates the
rate function induced by r well. In Sect. 3.3, we finish the proof of Theorem 3.1. This
part of the proof does not require r to be bounded away from 0 and 1. Hence, this
section does not contain any original content, but we still include it for the sake of
completeness.

3.1 Block Graphon Approximants

By [4, Proposition 2.6], the level-n approximants converge to r in L1-norm, and
convergence almost everywhere follows from the Lebesgue differentiation theorem
for sets of bounded eccentricity [11, Chapter 3, Corollary 1.7]. The following lemma
shows that the level-n approximants satisfy (1.6). The second lemma is a generalisation
of [7, Lemma 2.3].

Lemma 3.2 ‖ log rn − log r‖L1 → 0 and ‖ log(1 − rn) − log(1 − r)‖L1 → 0 as
n → ∞.

Proof First, note that, for (x, y) ∈ B(i, j, n),

| log rn(x, y)| = − log n2
∫
B(i, j,n)

r(u, v) du dv ≤ n2
∫
B(i, j,n)

− log r(u, v) du dv.

(3.3)
The equality follows from the fact that 0 ≤ r ≤ 1, and the inequality follows from
Jensen’s inequality. This upper bound is integrable, since

∑
1≤i, j≤n

n2
∫
B(i, j,n)

− log r(u, v) du dv = ‖ log r‖L1 < ∞. (3.4)

By the dominated convergence theorem and the fact that rn converges to r almost
everywhere, ‖ log rn−log r‖L1 → 0. The proof that ‖ log(1−rn)−log(1−r)‖L1 → 0
is completely analogous. ��
Lemma 3.3 Let r ∈ W and (rn)n∈N ⊂ W that satisfy (1.5) and (1.6). Then, Irn ( f̃ ) →
Ir ( f̃ ) uniformly over f ∈ W as n → ∞.

Proof First note that ‖ log rn − log r‖L1 → 0 and ‖ log(1− rn) − log(1− r)‖L1 → 0
by Lemma 3.2. Furthermore, for all f ∈ W ,

|Irn ( f ) − Ir ( f )|
=

∣∣∣∣
∫

[0,1]2

(
f (x, y) log

rn(x, y)

r(x, y)
+ (1 − f (x, y)) log

1 − rn(x, y)

1 − r(x, y)

)
dx dy

∣∣∣∣
≤ ‖ log rn − log r‖L1 + ‖ log(1 − rn) − log(1 − r)‖L1 .

(3.5)
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Hence, by the definition of the rate function on W̃ ,

∣∣Jrn ( f̃ ) − Jr ( f̃ )
∣∣ =

∣∣∣∣ inf
φ∈M

Irn ( f
φ) − inf

φ∈M
Ir ( f

φ)

∣∣∣∣ ≤ sup
φ∈M

∣∣Irn ( f φ) − Ir ( f
φ)

∣∣
≤ ‖ log rn − log r‖L1 + ‖ log(1 − rn) − log(1 − r)‖L1 . (3.6)

Since the bound is uniform over all f̃ ∈ W̃ , we obtain the desired result. ��

3.2 Approximation by a Fixed Block Graphon

The following lemma is a generalisation of [7, Lemma 3.2].

Lemma 3.4 Let r ∈ W and (rn)n∈N ⊂ W that satisfy (1.5) and (1.6). For all ε > 0
sufficiently small, there exist N0 = N0(ε) and N1 = N1(ε) such that for all n ≥ N1 ≥
k ≥ N0, f ∈ W and η > 0,∣∣∣∣ 1n2 logPn,rn (B( f̃ , η)) − 1

n2
logPn,rk (B( f̃ , η))

∣∣∣∣ < ε, (3.7)

where rk is the level-k approximant of r as defined in Sect. 3.1.

Proof Let ε > 0. Since ‖ log rn − log r‖L1, ‖ log rn − log r‖L1 → 0 and ‖ log(1 −
rn)− log(1−r)‖L1 , ‖ log(1−rn)− log(1−r)‖L1 → 0 by Lemma 3.2, there exists an
N0 ∈ N such that ‖ log rn− log rk‖L1 < ε/4 and ‖ log(1−rn)− log(1−rk)‖L1 < ε/4
for all n ≥ k ≥ N0.

Note that

Pn,rn (B( f̃ , η)) =
∫
B( f̃ ,η)

exp

(
log

dPn,rn

dPn,rk

)
dPn,rk . (3.8)

Fix n ≥ k ≥ N0, and let g ∈ W be of the form (1.4). Denote by rn,uv and guv the
values of rn and g in B(u, v, n) respectively. Then,

1

n2

∣∣∣∣log dPn,rn
dPn,rk

(g)

∣∣∣∣ = 1

n2

∣∣∣∣∣∣∣∣∣∣
∑

1≤i≤ j≤k

∑
u<v(

u−1
n , v−1

n

)
∈B(i, j,k)

(
guv log

rn,uv

rk,i j

+ (1 − guv) log
1 − rn,uv

1 − rk,i j

)∣∣∣∣
≤ 1

n2

∑
1≤i≤ j≤k

∑
u<v(

u−1
n , v−1

n

)
∈B(i, j,k)

(∣∣∣∣log rn,uv

rk,i j

∣∣∣∣ +
∣∣∣∣log 1 − rn,uv

1 − rk,i j

∣∣∣∣
)

≤ 1

n2

∑
1≤i, j≤k

∑
1≤u,v≤n(

u−1
n , v−1

n

)
∈B(i, j,k)

(∣∣∣∣log rn,uv

rk,i j

∣∣∣∣ +
∣∣∣∣log 1 − rn,uv

1 − rk,i j

∣∣∣∣
)

(3.9)
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The quantity above closely resembles ‖ log rn − log rk‖L1 + ‖ log(1− rn) − log(1−
rk)‖L1 , except that it ‘over-counts’ part of [0, 1]2 and ignores other parts. We will
make this precise.

For points ( u−1
n , v−1

n ) ∈ [0, 1]2 such that B(u, v, n) ⊂ B(i, j, k) for i, j with( u−1
n , v−1

n

) ∈ B(i, j, k), we have

1

n2

∣∣∣∣log rn,uv

rk,i j

∣∣∣∣ = ‖ log rn − log rk‖L1(B(u,v,n)). (3.10)

Now define

Ci, j,k :=
{
(u, v) ∈ [0, 1]2

∣∣∣∣
(
u − 1

n
,
v − 1

n

)
∈ B(i, j, k), B(u, v, n) �⊂ B(i, j, k)

}
, (3.11)

and
An :=

⋃
1≤i, j≤k

⋃
(u,v)∈Ci, j,k

(B(u, v, n) ∩ B(i, j, k)). (3.12)

The set Ci, j,k consists of the right-most and top-most points in the square B(i, j, k),
and the set An is the part of [0, 1]2 which is over-counted in (3.9). For (u, v) ∈ Ci, j,k ,

1

n2

∣∣∣∣log rn,uv

rk,i j

∣∣∣∣
= 1

n2λ(B(u, v, n) ∩ B(i, j, k))
‖ log rn − log rk‖L1(B(u,v,n)∩B(i, j,k))

≤ k2‖ log rn − log rk‖L1(B(u,v,n)∩B(i, j,k)),

(3.13)

where we use that λ(B(u, v, n) ∩ B(i, j, k)) = ( ik − u−1
n )(

j
k − v−1

n ) ≥ 1
k2n2

. Hence,

1

n2
∑

1≤i≤ j≤k

∑
u<v(

u−1
n , v−1

n

)
∈B(i, j,k)

∣∣∣∣log rn,uv

rk,i j

∣∣∣∣

= 1

n2
∑

1≤i≤ j≤k

∑
u<v(

u−1
n , v−1

n

)
/∈Ci, j,k

∣∣∣∣log rn,uv

rk,i j

∣∣∣∣

+ 1

n2
∑

1≤i≤ j≤k

∑
u<v(

u−1
n , v−1

n

)
∈Ci, j,k

∣∣∣∣log rn,uv

rk,i j

∣∣∣∣
≤ ‖ log rn − log rk‖L1([0,1]2\An)

+ k2‖ log rn − log rk‖L1(An)
.

(3.14)

Since the second part tends to 0 as n → ∞, there exists an N1 = N1(ε) ≥ k such
that k2‖ log rn − log rk‖L1(An)

< ε/4 for all n ≥ N1. The argument for the terms
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∣∣∣log 1−rn,uv

1−rk,i j

∣∣∣ is completely analogous. Then

1

n2

∣∣∣∣log dPn,rn

dPn,rk
(g)

∣∣∣∣ < ε (3.15)

for all n ≥ N1 ≥ k ≥ N0. Substituting this inequality into (3.8), we obtain∣∣∣∣ 1n2 logPn,rn (B( f̃ , η)) − 1

n2
logPn,rk (B( f̃ , η))

∣∣∣∣ < ε. (3.16)

��

3.3 Proof of the Upper Bound

The rest of the proof now follows as in [7]. For the sake of completeness, we repeat
their argument in this section using the notation introduced in this paper.

LetMn be the set of permutations of n objects, and letGφn
n be the graph obtained by

relabelling the vertices of Gn with the permutation φn ∈ Mn . The following lemma
shows that there exists a finite subset T ⊂ M such that, for all n large enough, the

distribution of hG
φn
n can be approximated by hGn ,τ for some τ ∈ T .

Lemma 3.5 Let rk, f ∈ W be of the form (1.4) with k ≥ 1. Then, for any ε > 0,
there exists n0 = n0(k, ε) and a finite set T = T (k, ε) such that for all n ≥ n0 and
φn ∈ Mn, there exists τ ∈ T satisfying

Pn,rk (d�(hG
φn
n , f ) ≤ ε) ≤ Pn,rk (d�(hGn ,τ , f ) ≤ 2ε) (3.17)

Proof See [7, Lemma 3.3] ��
We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1 Fix ε > 0 and f̃ ∈ W̃ . Recall the setup of Theorem 3.1. Because
of Lemma 3.4, it suffices to prove that there exists an η(ε) > 0 such that, for all
0 < η < η(ε),

lim sup
n→∞

2

n2
log P̃n,rk (B̃( f̃ , η)) = lim sup

n→∞
2

n2
logPn,rk (B( f̃ , η)) ≤ − inf

g∈B( f̃ ,4ε)
Ir (g),

(3.18)
where k is chosen to be sufficiently large according to Lemma 3.4. Next, we apply
a version of Szeméredi’s regularity lemma, as formulated in [4, Theorem 3.1]. This
states that, for every ε > 0, there exists a finite set W(ε) ⊂ W such that, for every
finite simple graph Gn on n vertices, there exist φn ∈ Mn and h ∈ W(ε) such that

hG
φn
n ∈ B(h, ε).
Let Gn be a graph drawn according to Pn,rk . Define

B(W(ε), ε) := {g ∈ W : min
h∈W(ε)

d�(g, h) ≤ ε}. (3.19)
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Then, by the result above,

{hGn ∈ B( f̃ , η)} = {hGn ∈ B( f̃ , η)}
⋂ ⎛

⎝ ⋃
φn∈Mn

{hGφn
n ∈ B(W(ε), ε)}

⎞
⎠

=
⋃

h∈W(ε)

⋃
φn∈Mn

{hGn ∈ B( f̃ , ε)} ∩ {hGφn
n ∈ B(h, ε)}.

(3.20)

Since W(ε) is a finite set, it suffices to show that

lim sup
n→∞

2

n2
logPn,rk

⎛
⎝ ⋃

φn∈Mn

{hGn ∈ B( f̃ , η)} ∩ {hGφn
n ∈ B(h, ε)}

⎞
⎠ ≤ − inf

g∈B( f̃ ,4ε)
Ir (g)

(3.21)
for all h ∈ W(ε) and η < ε. Lemma 3.5 yields that the left-hand side of (3.21) is at
most

lim sup
n→∞

2

n2
logPn,rk

⎛
⎝ ⋃

φn∈Mn

{hGφn
n ∈ B(h, ε)}

⎞
⎠

≤ lim sup
n→∞

2

n2
max

φn∈Mn

log n! Pn,rk

(
hG

φn
n ∈ B(h, ε)

)

≤ lim sup
n→∞

2

n2
max
τ∈T

logPn,rk

(
hG

φn
n ∈ B(h, 2ε)

)
,

(3.22)

where we use that |Mn| = n! and log n! = o(n2). Since T is a finite set, it is enough
to show that for each τ ∈ T ,

lim sup
n→∞

2

n2
logP

′
n,rk

(
hGn ,τ ∈ B(h, 2ε)

)
= lim sup

n→∞
2

n2
logPn,rk

(
hGn ∈ B(hτ−1

, 2ε)
)

≤ − inf
g∈B( f̃ ,4ε)

Ir (g). (3.23)

By [4, Lemma 5.4], B(hτ−1 , 2ε) is closed in the weak topology. Hence, we can apply
the LDP upper bound in the weak topology, stated in [4, Theorem 5.1]. Although that
the upper bound in the weak topology was proved only for the homogeneous ERRG,
the argument generalises to the inhomogeneous ERRG model from this paper. We
refer to [10, Sect. 4] for more detail. Thus,

lim sup
n→∞

2

n2
logP

′
n,rk

(
hGn ∈ B(hτ−1

, 2ε)
)

≤ − inf
g∈B(hτ−1

,2ε)
Irk (g)

≤ − inf
g∈B (̃h,2ε)

Irk (g).
(3.24)

If the event in (3.21) is empty, then the bound is trivial. In order for the event to be

non-empty, we must have that d�(̃hGn , f̃ ) ≤ η < ε and d�(̃hGn , h̃) ≤ ε, so that
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d�( f̃ , h̃) ≤ 2ε. Hence, B (̃h, 2ε) ⊂ B( f̃ , 4ε) and we obtain (3.21). The proof is
finished by letting k → ∞ and applying Lemma 3.3. ��

4 The Rate Function for the Largest Eigenvalue

We sketch the proof of Theorem 1.3 as given by Chakrabarty et al. [2]. We only give
details for Lemmas 4.1 and 4.2, which are generalisations of results in [2].

Note that when β = Cr , the infimum in (1.12) is attained at h = r andψr (Cr ) = 0.
Take β = Cr + ε with ε > 0 small, and assume that the infimum is attained by a
graphon of the form h = r + 	ε, where 	ε : [0, 1]2 → R represents a perturbation
of the graphon r .

The proof of Theorem 1.3 consists of showing that it suffices to consider 	ε of
the form ε	, identifying the optimal 	 and calculating ψr . Chakrabarty et al. [2] first
prove that Ir (r + 	ε) ≥ 2ε2 for any perturbation 	ε. The following lemma is an
adaptation of [2, Lemma 3.1 and Lemma 3.2] and shows that Ir (r + 	ε) is of order
ε2 in the case 	ε = ε	.

Lemma 4.1 If 	ε = εα	 on some measurable set B ⊂ [0, 1]2, with ε, α > 0 and
	 : [0, 1]2 → R, then the contribution of B to the cost Ir (r + 	ε) is

∫
B
R(r(x, y) + εα	(x, y) | r(x, y)) = (1 + o(1))

1

2
ε2α

∫
[0,1]2

	2

r(1 − r)
. (4.1)

Proof Because χ(a) := R(a | b) is analytic for every a ∈ [0, 1] and b ∈ (0, 1), we
have

∫
B
R(r(x, y) + εα	(x, y) | r(x, y)) =

∫
B

∞∑
n=0

1

n!χ
(n)(r)εαn	n

=
∞∑
n=0

εαn

n!
∫
B

χ(n)(r)	n,

(4.2)

where we can swap the integral and sum due to the fact that
∫
[0,1]2 |R( f (x, y) |

r(x, y))| dx dy is uniformly bounded over all f ∈ W , since log r , log(1 − r) ∈
L1([0, 1]2). Furthermore, χ(b) = χ ′(b) = 0 and χ ′′(b) = 1

b(1−b) . Hence,

∫
B
R(r(x, y) + εα	(x, y) | r(x, y)) = 1

2
ε2α

∫
B

	2

r(1 − r)
+ O(ε3α)

= (1 + o(1))
1

2
ε2α

∫
B

	2

r(1 − r)
.

(4.3)

��
From the proof of Lemma 4.1 and [2, Lemma 3.1], it follows that optimal pertur-

bations with 	ε must satisfy ‖	ε‖L2 � ε, and hence it is desirable to have 	ε = ε	.
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Chakrabarty et al. [2] argue through block graphon approximants that this is indeed
the case. For this argument, we need the following lemma, which shows that block
graphons approximate the rate function well.

Lemma 4.2 Let rn and f n be the level-n approximants of r and f ∈ W , as defined in
Sect. 3.1. Then, limn→∞ Irn ( f n) = Ir ( f ).

Proof Let ε > 0. By Lemma 3.3, IrN ( f ) → Ir ( f ) uniformly over all f ∈ W . Hence,
there exists M1 = M1(ε) such that for all N ≥ M1, |IrN ( fN ) − Ir ( fN )| < ε/2.
Furthermore, fN → f in L2 and Ir is continuous in the L2-topology inW by Lemma
2.1. Thus, there exists M2 = M2(ε) such that |Ir ( fN )− Ir ( f )| < ε/2 for all N ≥ M2.
Choosing M := max{M1, M2} completes the proof. ��

The remainder of the proof now follows as in [2]. We give a brief summary. Using
Lemma 4.1 and exploiting the property that r is of rank 1, Chakrabarty et al. [2] show
that, in the case 	ε = ε	,

ψr (Cr + ε) = (1 + o(1))Krε
2, (4.4)

with

Kr = inf
	 : [0,1]2→R∫
[0,1]2 r	=Cr

∫
[0,1]2

	2

2r(1 − r)
. (4.5)

Note that the integral in the expression above may be infinite, so the infimum is min-
imised for some	 that counteracts the expression 1

r(1−r) . Using Lagrange multipliers,
we obtain that the infimum is minimised for

	 = Cr

Br
r2(1 − r) (4.6)

and

Kr = C2
r

2Br
, (4.7)

with Br as defined in (1.16). Chakrabarty et al. [2] conclude the proof by showing
that perturbations 	ε that are not of the form 	ε = ε	 are asymptotically worse as
ε → 0. They do this via block graphons, and use Lemma 4.2.
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