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Abstract
We prove the existence of joint limiting spectral distributions for families of random
sample covariance matrices modeled on fluctuations of discretized Lévy processes.
Thesemodelswere first considered in applications of randommatrix theory to financial
data, where datasets exhibit both strong multicollinearity and non-normality. When
the underlying Lévy process is non-Gaussian, we show that the limiting spectral dis-
tributions are distinct from Marčenko–Pastur. In the context of operator-valued free
probability, it is shown that the algebras generated by these families are asymptoti-
cally free with amalgamation over the diagonal subalgebra. This framework is used to
construct operator-valued ∗-probability spaces, where the limits of sample covariance
matrices play the role of non-commutative Lévy processes whose increments are free
with amalgamation.

Keywords Random matrix theory · Free probability · Marčenko–Pastur law · Lévy
processes · Infinite divisibility

Mathematics Subject Classification Primary: 60B20; Secondary: 60G51; Other:
35P20

1 Introduction

In this article, we are concerned with the limiting spectral behavior of a new class of
random sample covariance matrices introduced in [28]. Consider a large N × p matrix
X with random i.i.d. entries, which may be used as a model of a large dataset. If the
entries of [X]i, j are known a priori to be centered, then the p × p sample covariance
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matrix of features is given by

1

N
X†X

The bulk behavior of such amatrix is studied through its empirical spectral distribution
(ESD), the point-mass probability measure on its spectrum. In practice, many datasets
exhibit strong multicollinearity when p and N are comparably large. In this scenario,
p/N ∼ O(1), and we choose to model X as a large random matrix with stable
rectangular shape. In what follows, we implicitly take N = N (p) as a function of the
asymptotic parameter p ∈ N.

Definition 1 We say that a sequence of N × p random matrices Xp is a λ-shaped
ensemble if the collection of entries [Xp]i, j for p ∈ N, 1 ≤ i ≤ N , and 1 ≤ j ≤ p
are jointly independent, and if N/p → λ ∈ (0,∞) as p → ∞.

Describing the limiting spectral properties of matrices like 1
N XpXp and its variants

is a long-standing problem in random matrix theory. We say that a sequence of square
random matrices has a limiting spectral distribution if their (random) ESDs converge
weakly to some probability measure almost surely. The existence of a limiting spec-
tral distribution in the pure-noise case, where the entries [Xp]i, j are i.i.d. with finite
variance, was initiated by Marčenko and Pastur [17]. The criteria on Xp that ensures
1
N X†

pXp follows the Marčenko–Pastur law have a long history [3,11,21,25], with one
branch culminating in the generous conditions of Tao and Vu [23] that the collec-
tion of entries across the asymptotic parameter p shares some uniformly bounded
(2 + ε)-moment.

As the conditions for theMarčenko–Pastur law continued to weaken, its “universal-
ity” inspired a number of covariance matrix cleaning techniques, not the least of which
were applied to financial data [2,10,13]. As themotivation behind these techniqueswas
the shape and bounds on the Marčenko–Pastur law, it was suggested that real datasets
would exhibit this bulk shape when some volatility in the data could be attributed to
noise that was approximately Gaussian-like. As financial data are ubiquitously non-
Gaussian, however, efforts were made to extend the law to the heavier-tailed setting.
Along these lines, Biroli et. al. [8] investigated an ensemble of random matrices with
Student’s t column norms, while Guionnet and collaborators began a program of limit
theorems for matrices with i.i.d. heavy-tailed entries [4,5,7,9].

In [28], it was shown that intraday equity data in various markets fail to match the
scalability implied by Marčenko–Pastur with distinct values of λ. Appealing to the
heavy-tailed setting does not resolve the issue: The heavy-tailed pure-noiseMarčenko–
Pastur law described in [4] produces large eigenvalues with heavy tails themselves,
which contradicts well-observed phenomena in extreme asset returns [16,18]. In order
to address these concerns, the author considered instead a sequence of randommatrices
Xp whose columns are drawn from the fluctuations in a stochastic process Xt over
a fixed interval [0, T ]. Specifically, after discretizing the interval [0, T ] into a series
of N + 1 points ti = i · T

N with 0 ≤ i ≤ N , we let the entries [Xp]i, j follow the
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distributions:

[Xp]i, j
d= Xti − Xti−1

In this way, each column of Xp is understood to represent the fluctuations of an
independent copy of the process Xt over [0, T ].

If we continue to impose the condition that entries of Xp are i.i.d. for each p,
then Xt must be a stochastic process with independent and time-invariant increments.
Such properties specify that Xt is a Lévy process, and the entries of Xp will therefore
follow an infinitely divisible distribution. This correspondence leads naturally to the
following model.

Definition 2 (Sample Lévy Covariance Ensemble) Let (μ, λ) be a pair consisting of
an infinitely divisible distribution μ ∈ ID(∗) and a shape parameter λ ∈ (0,∞). A
sample Lévy covariance ensemble (SLCE) Cp driven by data (μ, λ) is a sequence of
p× p Wishart-type randommatricesCp = X†

pXp, whereXp is a λ-shaped rectangular
ensemble whose entries follow the distributions:

L
([Xp]i, j

) = μ∗1/p,
1 ≤ i ≤ N
1 ≤ j ≤ p

Themain contribution of this paper is the spectral convergence of SLCEmatrices in
Theorem 1, which extends Lemma 2 introduced in [28] to cover the case of an SLCE
driven by an arbitrary Lévy process.

Theorem 1 Let Cp be an SLCE with data (μ, λ) ∈ ID(∗) × (0,∞). Then, there
exists a unique probability distribution, denoted by �λ(μ), such that the limiting
spectral distribution of Cp is �λ(μ). Furthermore, �λ(μ) is weakly continuous in its
arguments, where continuity in μ means sequential continuity.

Our model intersects with the world of non-commutative probability in the follow-
ing way. A trivial but far reaching property of sample covariance matrices is that they
can be decomposed in terms of blocks of their observations. Writing

Xp =

⎡

⎢⎢
⎢
⎣

Xp,1

Xp,2
...

Xp,K

⎤

⎥⎥
⎥
⎦

where Xp,k consists of rows �N k−1
K + 1	 to �N k

K 	, we then have

Cp = X†
pXp =

K∑

k=1

X†
p,kXp,k =

K∑

k=1

Cp,k (1)

Each Cp,k is an SLCE with parameters (μ, λ/K ). The expression of Cp as an inde-
pendent sum of matrices with identical limiting spectral distributions parallels the
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classical case of infinite divisibility. The recent result of Au et. al. [1], connecting
operator-valued free probability and permutation-invariant random matrices, makes
this precise: The matricesCp,k in decomposition (1) are independent and permutation
invariant and therefore asymptotically free with amalgamation over the subalgebra
of diagonal matrices. Prior to this result, techniques from free probability were typi-
cally restricted to unitarily invariant ensembles of randommatrices. This development
provides a rich framework for us to understand Cp as asymptotically modeling a non-
commutative Lévy process in an operator-valued ∗-algebra.

Theorem 2 For any essentially bounded infinitely divisible distribution μ ∈ IDb(∗),
there exists an operator-valued ∗-probability space (A , τ,D,�) and a �-free Lévy
process xt ∈ A (in the sense of Definitions 6 and 8) such that

L (xt ) = �t (μ)

The outline of the article is as follows. In Sect. 2, we sketch the foundations of Lévy
processes in order to establish the decomposition in Lemma 1. The full reference for
this section is the treaty by Sato [19]. The proof of Theorem 1 is provided at the end
of Sect. 3, followed by some immediate corollaries. In Sect. 5, we use the SLCE to
construct an operator-valued ∗-algebra and an accompanying �-free Lévy process
with prescribed moments.

One might ask where these results fit into the larger context of random covariance
matrices. Our ensembles lie outside the domain of attraction for Marčenko–Pastur
(and the analogous heavy-tailed case [4]) because their entries are independent but not
identically distributed across the asymptotic parameter p. Because of the increasing
roughness of the entries, the matrices fail to meet the conditions of [23] and others.
On the other hand, they fit well into the world of covariance matrices with exploding
moments [6,14]. In these works, the i.i.d. entries of the data Xp have normalized
even moments with some prescribed behavior, following the covariance form of the
Zakharevich condition [27]. Under our normalization, this condition is equivalent to
limits of the form

pE
[[Xp]2n

i, j

] p→∞−−−→ c2n

for some even sequence c2n . From the proof of Theorem 1, we have the following: If
c2n ∈ [0,∞] is the sequence of even cumulants of an infinitely divisible probability
distribution, then it can be realized as the Zakharevich sequence of an ensemble of
random covariance matrices. We note that this includes sequences of even moments
of arbitrary probability distributions, through the moment–cumulant correspondence
given by compound Poisson processes.
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2 Decomposition of Lévy Processes

Throughout, if X is a real-valued random variable, then we write L (X) for the law

of X , a probability distribution on R. Equality in distribution X
d= Y is shorthand for

equality in law,L (X) = L (Y ).

Definition 3 A (classical) Lévy process Xt is a stochastically continuous càdlàg pro-
cess such that

1. X0
d= 0

2. Xt is real-valued for all t ≥ 0
3. For any sequence 0 ≤ t0 ≤ t1 ≤ · · · ≤ tn , all increments Xtk − Xtk−1 are jointly

independent.

4. For all t, s ≥ 0, we have the time invariance of distributions Xt+s − Xs
d= Xt .

Definition 4 A probability distribution μ is said to be (classically) infinitely divisible,
μ ∈ ID(∗), if for any n ∈ N, there exists a distribution denoted by μ∗1/n such that

μ = μ∗1/n ∗ μ∗1/n ∗ · · · ∗ μ∗1/n
︸ ︷︷ ︸

n times

Here, the symbol ∗ stands for the additive convolution of probability measures. Simi-
larly, a random variable X is said to be ID(∗) if for any n ∈ N, we can write

X
d= X (n)

1 + X (n)
2 + · · · + X (n)

n

for X (n)
i i.i.d.

Theorem 3 (Lévy–Khintchine representation [19]) There is a one-to-one correspon-
dence between ID(∗) distributions and Lévy processes, such that each μ ∈ ID(∗) can
be realized as the distribution of a Lévy process Xt at unit time t = 1. Furthermore,
the cumulant generating function

ψXt (θ) = logE
[
eiθ Xt

]

for a Lévy process Xt is well defined as a continuous function of θ ∈ R and has a
representation given by

1

t
ψXt (θ) = iaθ − b2

2
θ2 +

∫

R

[
eiθx − 1 − iθx1[−1,1](x)

]
d	(x) (2)

The unique triplet (a, b,	), called the data of Xt , consists of constants a ∈ R and
b ≥ 0, and a nonnegative Borel measure 	 on R with no atom at zero, such that for
any ε > 0 (or, equivalently, for only ε = 1), we have

	
(
R\[−ε, ε]) < ∞,

∫ ε

−ε

x2 d	(x) < ∞
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The Borel measure 	 is called the Lévy measure of Xt . We write μ∗t = L (Xt ), well
defined for all t ≥ 0.

We recall that the cumulants κn are defined in terms of the moment–cumulant
formula, which states that for a random variable X with finite moments m j [X ] =
E[X j ] up to order n, they are the unique values κ j [X ] such that the following n
equations are satisfied:

m j [X ] =
∑

π

∏

B∈π

κ|B|[X ], j = 1, 2, . . . , n (3)

Here, each sum runs over all partitions π of the sets {1, 2, . . . , j} and the elements
B ∈ π are subsets of {1, 2, . . . , j}.
Corollary 1 The cumulants κn[Xt ], when they are finite, are given by the expressions

κn[Xt ] = t
∫

R

xnd	(x), n ≥ 3 (4)

Definition 5 A Lévy process Xt with data (a, b,	) is said to be essentially bounded
if the support of 	 is contained on some bounded interval [−B, B] with B > 0. If
μ ∈ ID(∗) is infinitely divisible such that L (Xt ) = μ, then we say μ is essentially
bounded if Xt is. We write IDb(∗) for the set of all essentially bounded probability
distributions.

Sato [19] provides a thorough account of essentially bounded Lévy processes. If
the support of 	 is contained in (−∞, B] for some minimal B ≥ 0, then the super-
exponential moments

E

[
eβ Xt log Xt

∣
∣ Xt > 0

]
= E

[
Xβ Xt

t

∣
∣ Xt > 0

]

are finite for all 0 < β < 1/B and infinite for all β > 1/B, independent of t > 0.
The cumulant generating functionψXt (θ) can also be extended to an entire function in
the argument θ ∈ C when Xt is essentially bounded. The key property of essentially
bounded functions is that they are precisely those Lévy processes cumulants whose
size grows at most exponentially, such that the sequence

n
√|κn[Xt ]|

is bounded.
The following lemma shows that all Lévy processes can be decomposed into the

independent sum of an essentially bounded process and a compound Poisson process
with arbitrarily small probability of activation. Recall that a compoundPoisson process
is a Lévy process realized by the random sum

Pt
d=

Nrt∑

j=1

ζ j
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where ζ j are i.i.d. random variables drawn from some fixed distribution, and Nt is a
standard Poisson process which is independent of the ζ j . The value r > 0 is called
the rate of Pt , and when Nrt = 0 (the sum is empty) we say that Pt failed to activate.
We note that the probability of this event is equal to

P[Nrt = 0] = P
[
Poisson with parameter r t is zero

] = e−r t

Compound Poisson processes have a convenient description in terms of their jumps
ζ j : Their cumulant generating functions are given by

1

t
ψPt (θ) = r

(
E[eiθζ1 ] − 1

)
= r

∫

R

(
eiθx − 1

)
dFζ1(x) (5)

where E[eiθζ1 ] is the characteristic function of the jump distribution ζ j .

Lemma 1 Let Xt be a Lévy process, and let r > 0 be a fixed constant. Then, there
exists a decomposition

Xt
d= Xb

t + Pt

where Xb
t is an essentially bounded Lévy process, and Pt is an independent compound

Poisson process with rate less than or equal to r .

Proof Let (a, b,	) be the data for the Lévy process Xt . Since 	(R\[−1, 1]) < ∞
and Borel measurable, it is inner regular and we have that

lim
B→∞ 	([−B, B]\[−1, 1]) → 	(R\[−1, 1])

Now, simply choose some B > 1 such that

	(R\[−1, 1]) − 	([−B, B]\[−1, 1]) < r

We can now write 	(A) = 	(A ∩ [−B, B]) + 	(A ∩ [−B, B]c) for any Borel
set A ⊆ R. It is clear that the nonnegative Borel measures 	b and 	P defined as
	b(·) = 	(· ∩ [−B, B]) and 	P (·) = 	(· ∩ [−B, B]c) are also Lévy measures;
therefore, we can write Xt as the independent sum

Xt
d= Xb

t + Pt

where Xb
t is an essentially bounded Lévy process with data (a, b,	b), and Pt is a

Lévy process with data (0, 0,	P ). If 	p(R) > 0, then Pt has cumulant generating
function

1

t
ψPt (θ) =

∫

R

[
eiθx − 1

]
d	P (x)
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This is precisely the form of a compound Poisson process with rate 	P (R) < r and
jump distribution given by the probability distribution 	P (R)−1	P (·). �

3 Proof of Main Results

Lemma 2 (Zitelli [28]) Every SLCE driven by data (μ, λ) where μ ∈ IDb(∗) has a
limiting spectral distribution �λ(μ). Furthermore, �λ(μ) is weakly continuous in its
arguments, where continuity in μ means sequential continuity.

Proof We aim to show that the λ-shaped rectangular ensemble Xp appearing in the
definition of the SLCE matrices Cp can be scaled in order to satisfy the Zakhare-
vich condition found in Benaych–Georges and Cabanal–Duvillard [6, Theorem 3.2].
Specifically, we set

Yp = √
pXp

so that Cp = 1
pY

†
pYp. We let Xt denote a Lévy process such that μ = L (X1). Then,

the entries of Yp follow the distribution of
√

pX1/p.
To show convergence of covariancematrices, it is sufficient to consider the Zakhare-

vich condition on the even moments only:

E

[∣∣ [Yp
]
1,1

∣∣2n
]

p2n/2−1 =
E

[∣∣√pX1/p
∣∣2n

]

p2n/2−1 = p E

[
X2n
1/p

]
(6)

For n ∈ N fixed, the term on the right is simply the 2nth moment of X1/p. By the
moment–cumulant formula (3), this moment can be expressed as a sum of products
of the form

2n∏

j=1

κ j
[
X1/p

]k j =
2n∏

j=1

1

pk j
κ j [X1]

k j = 1

p
∑2n

j=1 k j

2n∏

j=1

κ j [X1]
k j

with k j ∈ {0, 1, 2, . . . , 2n} such that

2n∑

j=1

j · k j = 2n (7)

Therefore, we can write (6) as a sum of terms which look like

p1−
∑2n

j=1 k j

2n∏

j=1

κ j [X1]
k j
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Condition (7) guarantees that 1−∑2n
j=1 k j ≤ 0. The terms for which 1−∑2n

j=1 k j < 0

will converge to zero as p → ∞. There is only one term such that 1−∑2n
j=1 k j = 0,

which is k j = 0 for all except k2n = 1. Therefore, as p → ∞ we have

E

[∣∣ [Yp
]
1,1

∣∣2n
]

p2n/2−1 → κ2n [X1] (8)

Since Xt is essentially bounded, κ2n [X1]1/2n is bounded, and the conditions of [6,
Theorem 3.2] aremet.We denote the limiting distribution by�λ(μ), as it only depends
on λ and the even cumulants of the distribution μ.

Continuity in the parameterλ follows similarly from the same reference. For sequen-
tial continuity of a collection of essentially bounded processes X ( j)

t , we have that the

cumulants κ2n

[
X ( j)
1

]
each converge for fixed n ∈ N. By the continuity in the c term,

we have continuity of the limiting distribution as desired. �

Proof of Theorem 1. As above, we take a Lévy process Xt such that [Xp]i, j
d= X1/p.

Our goal is to decompose thematricesXp into the sumof two independent components,
one of which is driven by an essentially bounded process and another one is low
rank with high probability. By Lemma 1, we have a decomposition into the sum of
independent processes

Xt
d= Xb

t + Pt

where Xb
t is an essentially bounded process and Pt is a compound Poisson process

with arbitrarily small rate r > 0. Therefore, we can write each matrix Xp as

Xp = X̃p + Pp

where the entries of X̃p are i.i.d. following the distribution Xb
1/p and the entries of

Pp are i.i.d. following the distribution of P1/p. Note that this equality is not simply
in distribution, as we treat the entries of Xp as being generated by summing the
independent entries of X̃p and Pp. It follows that

rank
(
X†

pXp − X̃†
pX̃p

)
≤ 2 · [Number of columns of Xp that are different from X̃p

]

≤ 2 · [Number of columns of Pp that are nonzero
]

Each column of Pp has p independent compound Poisson entries, which each fail to
activate with probability e−r/p . The probability that all N entries fail to activate is

P
[
A specified column of Pp is all zero

] ≥ (
e−r/p)N = e−rλ

This allows us to treat the number of columns of Xp that are different from X̃p as
being bounded above by a multiple of a Bernoulli random variable with p trials and
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probability of success q ≤ 1 − e−rλ. Using the Chernoff bound on Bernoulli trials,
we get that

P

[
rank

(
X†

pXp − X̃†
pX̃p

)
≥ 4p

(
1 − e−rλ

)] ≤
( e

4

)p
(
1−e−rλ

)

Since
( e
4

)(1−e−rλ
)

< 1, it follows that

∞∑

p=1

(( e

4

)(1−e−rλ
))p

< ∞

By Borel–Cantelli, the inequality

rank
(
X†

pXp − X̃†
pX̃p

)
≥ 4p

(
1 − e−rλ

)

occurs only finitely many times almost surely.
Let ε > 0 be given, and choose r > 0 such that 4

(
1 − e−rλ

)
< ε. For this choice

of r > 0,

rank
(
X†

pXp − X̃†
pX̃p

)
≤ 4p

(
1 − e−rλ

)
< pε

almost surely for large enough p. By Lemma 2, we know that X̃†
pX̃p has a limiting

spectral distribution, which we will denote by με . Since this can be done for any
ε > 0, it follows by from the lemma of Benaych–Georges and Cabanal–Duvillard [6,
Lemma 12.2] that a limiting distribution exists for X†

pXp as well and is given by the
weak limit of limε→0+ με .

Continuity in the arguments can be derived from the continuity in the case of
essentially bounded processes. Let (μ( j), λ j ) be a sequence of data converging to
some (μ, λ), where we take μ( j) → μ in distribution. If we let 	( j) be the Lévy
measures of μ( j), it follows [19] that for any fixed B > 1

	( j) (R\[−B, B]) → 	(R\[−B, B]) (9)

Therefore, if ε > 0 is given and some r > 0 is chosen as above, a B > 1 can be
chosen uniformly across all j ∈ N. To see this, take some B1 > 1 as in Lemma 1 so
that

	(R\[−B1, B1]) <
r

2

Since (9) holds, there is some J ∈ N such that j > J implies that

∣∣∣	( j) (R\[−B1, B1]) − 	(R\[−B1, B1])
∣∣∣ <

r

2
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and therefore 	( j) (R\[−B1, B1]) < r for j > J . Now, for the finitely many
j ≤ J , we choose B > B1 so that the same condition holds, and we have
	( j) (R\[−B1, B1]) < r for all j ∈ N. Now, since weak convergence is metriz-
able, choosing an appropriate metric and applying the triangle inequality gives the
result. �

4 Consequences of Theorem 1

Corollary 2 If μ ∈ ID(∗) does not follow a normal distribution, then for every
λ ∈ (0,∞), the probability measure �λ(μ) is distinct from the Marčenko–Pastur
distribution and has an unbounded right tail. If μ ∈ IDb(∗), then �λ(μ) has expo-
nential moments of all orders.

Proof This follows from the precise statement of the theorem of Benaych–Georges
and Cabanal–Duvillard [6, Theorem 3.2]. �

By (2), a Lévy process is symmetric precisely when	 is. It follows that every Lévy
process can be symmetrized by considering a new process whose Lévy measure is
given by

	s(A) = 1

2
(	(A) + 	(−A))

for any Borel set A ⊆ R which does not contain a neighborhood of zero, where
−A = {x ∈ R : −x ∈ A}. Both the process Xt and the resulting symmetric process
X s

t can be simultaneously approximated in distribution by essentially bounded Lévy
processes with identical even cumulants. As the limiting spectral distribution of the
SLCE is independent of the odd cumulants of the original process, it is invariant under
the operation of symmetrization.

Corollary 3 Suppose μ, ν ∈ ID(∗) are infinitely divisible with Lévy measures 	μ and
	ν . If 	s

μ = 	s
ν , then �λ(μ) = �λ(ν) for all λ ∈ (0,∞).

Proof In the proof of Lemma 2, the limiting distribution relies only on the even cumu-
lants of the essentially bounded process. As in the proof of Theorem 1, we take Lévy
processes Xt and Yt such that L (X1) = μ and L (Y1) = ν. The decomposition of
both process Xt and Yt into the independent sums Xb

t + Pt and Y b
t + P ′

t relies on
truncating the Lévy measures	μ and	ν on sets [−B, B]. By (4), the even cumulants
of the essentially bounded components are identical under the stated condition after
choosing B > 0 for the two processes simultaneously. Therefore, the limiting distri-
butions for matrices X̃†

pX̃p and Ỹ†
pỸp are both equal to some με . Since the limiting

distributions for both are weak limits of με , they are equal. �
By equality of the nonzero eigenvalues of X†

pXp and XpX
†
p, we have immediately

that for λ ≥ 1

�1/λ(μ
∗λ) =

(
1 − 1

λ

)
δ0 + 1

λ
�λ(μ)
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The parallels to the Marčenko–Pastur law are clear. The following corollary shows a
similar correspondence for a recent result of Shlyakhtenko and Tao [20] having to do
with the interpretation of the (scalar-valued) free semigroup μ�t in terms of unitarily
invariant minors of large matrices.

Corollary 4 Let Cp be an SLCE with data (μ, λ), with Xp as in Definition 2. For
k ∈ [1,∞), let pp and p′

p denote sequences of p × p and N × N random diagonal
matrices, respectively, whose diagonal entries are in {0, 1} and such that

lim
p→∞

1

p
Tr[pp] = lim

p→∞
1

N
Tr[p′

p] = 1

k

Then,X†
pp′

pXp has a limiting spectral distribution�λ/k(μ)andppCppp has a limiting
spectral distribution

(
1 − 1

k

)
δ0 + �kλ(μ

∗1/k)

5 Amalgamated Free Lévy Processes

Definition 6 In this article, we define an operator-valued ∗-probability space (some-
times called an algebraic probability space, see [1,24]) as a collection of data
(A , τ,D,�) such that

1. A is a ∗-algebra.
2. The pair (A , τ ) is a ∗-probability space, which is to say that τ is a faithful tracial

linear form on A with τ [1] = 1, τ [a∗a] = 0 implies a = 0, and τ [ab] = τ [ba]
for all a, b ∈ A . τ is called the expectation on A .

3. D ⊆ A is a ∗-subalgebra.
4. The conditional expectation � : A → D is a unital linear map, such that

�[d1ad2] = d1�[a]d2 for any a ∈ A , d1, d2 ∈ D .
5. The expectation and conditional expectation are compatible, such that τ [�[a]] =

τ [a] for all a ∈ A .

We takeD〈x1, . . . , xn〉 to be the algebra generated byD and the elements xi ∈ A .
We say that the (univariate) distribution of an element x ∈ A is the collection of
multi-linear maps

μx =
{

mx
n : Dn−1 → D : mx

n(d1, . . . , dn−1) = �
[
xd1xd2x . . . xdn−1x

]
, n ∈ N

}

Due to the compatibility of trace and conditional expectation, the classical moments
of an element x can be recovered as

mn[x] := τ
[
mx

n(1, . . . , 1)
] = τ [xn]

When x is self-adjoint and the sequence of moments mn[x] uniquely specifies a real-
valued probability distribution μ, we writeL (x) = μ.
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Definition 7 We say that a family of subalgebrasA1, . . . ,AK ⊆ A containingD are
free with amalgamation over D (or simply �-free) if

�[x1x2 · · · xM ] = 0

whenever xm ∈ Aim are such that �[xm] = 0 and im �= im+1 for 1 ≤ m ≤ M − 1. We
say that a family of K elements x1, . . . , xK ∈ A are �-free if the subalgebras D〈x j 〉
are �-free.

Definition 8 A �-free Lévy process xt on an operator-valued ∗-probability space
(A , τ,D,�) is a map t �→ xt ∈ A such that

1. x0 = 0 ∈ A
2. xt is self-adjoint for all t ≥ 0
3. For any sequence 0 = t0 ≤ t1 ≤ · · · ≤ tn , all increments xtk − xtk−1 ∈ A are

�-free.
4. For t, s ≥ 0, we have the time invariance of distributions μxt = μxt+s−xs .

Definition 9 Let x = (x j ) j∈J where J is some index set. A word in x is a word on the
alphabet of symbols {x j } j∈J . A bracketed word in x is a word enclosed in functional
bracket symbols �[ and ]. The set of �-monomials in x is the quotient of the smallest
monoid containingwords in x, stable under the bracketing operation, with the relations

1. �[e] ∼ e for the empty word e
2. For all w1, w2, w3

�
[
�[w1] w2 �[w3]

]
∼ �[w1]�[w2]�[w3] (10)

We takeC〈x〉� to be the space of formal linear combinations of�-monomials in x, the
so-called�-polynomials. This is a ∗-algebra in the natural way: The product of mono-
mials is concatenation of words and bracketed words, and involution on monomials
is the expression of words and bracketed words in reverse order.

Note that in the construction of our algebra C〈x〉�, we are implicitly assuming
that the x j are self-adjoint. When the indeterminants x are clear, we write D ⊆
C〈x〉� for the subalgebra of elements w such that �[w] = w. Similarly, D〈x j 〉 is
the subalgebra generated by bracketed words and the indeterminant x j . Elements of
D〈x j 〉 are precisely linear combinations of alternating monomials of the form

xr1
j �[w1] xr2

j �[w2] · · · �[wL ] xrL+1
j

where wl ∈ C〈x〉� and rl ∈ N.
In the context of p × p matrices, we write �[A] for the diagonal of A, that is the

matrix such that

[�[A]]i, j = δi, j [A]i, j

Let c = (C j ) j∈J be a family of p × p matrices. If q ∈ C〈x〉� is a �-polynomial
on the same index set J , then we let q(c) denote the p × p matrix formed by linear
combinations of matrix products and applications of matrix diagonalization.
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Lemma 3 (Asymptotic �-Freeness of SLCE Families) Let cp = (C(1)
p , . . . ,C(K )

p )

denote a family of K independent SLCE C(k)
p with data (μk, λk), where μk ∈ IDb(∗)

are essentially bounded. If q ∈ C〈x〉� is a �-polynomial in the indeterminants x =
(x1, . . . xK ), then the following limit exists and is finite:

lim
p→∞E

[
1

p
Tr
[
q(cp)

]]

Furthermore, let qm ∈ C〈x〉� for m = 1, . . . , M be a collection of �-polynomials,
and let εp be a sequence of p × p diagonal matrices of the form

εp = �
[(

q1(cp) − �[q1(cp)]
)

· · ·
(

qM (cp) − �[qM (cp)]
)]

Then, if qm ∈ D〈xim 〉 and im �= im+1 for each 1 ≤ m ≤ M − 1, it follows that

lim
p→∞E

[
1

p
Tr
[
ε†pεp

]]
= 0

Proof By the independence on the entries of each X(k)
p , we see that the C(k)

p are
permutation invariant, which is to say that

C(k)
p

d= S†pC
(k)
p Sp

for any p × p permutation matrix Sp. By Male’s result on heavy covariance matrices
with exploding moments [14, Corollary 2.9], and using the Zakharevich condition (8)
for SLCE driven by essentially bounded Lévy processes, it follows that the limit

lim
p→∞E

[
1

p
Tr
[
q(cp)

]]

exists and is finite for any �-polynomial q ∈ C〈x〉�. By Au et al. [1, Theorem 1.3],
families of permutation invariant matrices are asymptotically �-free in probability.
Specifically, the result shows that we have

lim
p→∞E

[
1

p
Tr
[
ε†pεp

]]
= 0 (11)

for εp as above. �
We mention that our use of [14] in order to show the existence of the limit for a �-

polynomial follows from the larger theory of graph operations on families of random
matrices, detailed fully in the recentmonograph [15].As the proof of [14, Theorem2.3]
encompasses the so-called graph monomials, the inclusion C〈x〉 ⊂ C〈x〉� ⊂ CG 〈x〉
shows that the limit exists for �-polynomials as well.
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Theorem 4 Let μk ∈ IDb(∗) and λk ∈ (0,∞) for k = 1, . . . , K . Then, there exists an
operator-valued ∗-probability space (A , τ,D,�) with self-adjoint elements xk ∈ A
such that xk are �-free and L (xk) = �λk (μk).

Proof For each pair (μk, λk), we let C(k)
p denote an SLCE such that the entries of

each X(k)
p are jointly independent of all others across the family. We write cp =

(C(1)
p , . . . ,C(K )

p ) for the K -tuple of p × p self-adjoint random matrices.
Let A0 = C〈x〉� be the space of �-polynomials in the indeterminates x =

{xk}k=1,...,K , as above. We define a tracial state τ on the �-polynomials of A0 in
the following way:

τ [q] = lim
p→∞E

[
1

p
Tr
[
q(cp)

]]

This limit exists by Lemma 3. Now, consider Zτ = {q ∈ A0 : τ [q∗q] = 0}. By
Cauchy–Schwarz on τ , we have that for n > 1

τ [(q∗q)n] = τ [
(
(q∗q)n−1q∗) q] ≤

√
τ [q(qq∗)n−1(q∗q)n−1q∗]√τ [q∗q]

which shows that τ [(q∗q)n] = 0 for all n ∈ N. Now, if q ∈ Zτ and r ∈ A0, we have

τ [(qr)∗qr ] = τ [(q∗q)(rr∗)] ≤
√

τ [(q∗q)2]
√

τ [(r∗r)2]

A similar argument on the right shows that Zτ is a two-sided ideal in A0, and so
let A = A0

/
Zτ . Take D to be the set of equivalence classes of elements from

D ⊆ C〈x〉�, this is to say the elements q ∈ A such that �[q] = q. Our data
(A , τ,D,�) are an operator-valued ∗-probability space following from properties of
the matrix trace, the matrix diagonal, and (10).

We now consider the monomials qk(x) = xk . These are self-adjoint, and their
classical moments can be computed via the expressions

τ [xn
k ] = lim

p→∞E

[
1

p
Tr
[(

C(k)
p

)n]]

By the weak convergence of the ESD of an SLCE in Theorem 1, this equals the
nth moment of �λk (μk). The existence of exponential moments of �λk (μk) from
Corollary 2 guarantees that it is completely determined by its moment sequence, so
we have L (xk) = �λk (μk).

To see that the elements xk are �-free, let qm ∈ A for m = 1, . . . , M such that
qm ∈ D〈xim 〉 with im �= im+1 for each 1 ≤ m ≤ M − 1. These qm are precisely those
in the equivalence classes of elements D〈xim 〉. Setting

ε = �
[(

q1 − �[q1]
)

· · ·
(

qM − �[qM ]
)]

,
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we have that

τ
[
ε∗ε

] = lim
p→∞E

[
1

p
Tr
[
ε∗(cp)ε(cp)

]
]

Applying Lemma 3 to εp = ε(cp), this expression is zero, and so ε = 0. �

The realization ofA as an operator algebra is possible using the GNS construction
of Takesue [22]. We consider the inner product 〈q1, q2〉 = τ [q∗

2q1] on A , and its
Hilbert space completionH. In the non-Gaussian case, the left actionq(x) �→ xkq(x)of
the indeterminants xk onA is necessarily unbounded byCorollary 2. Instead,A forms
an O∗

p-algebra [12] and can be embedded as a ∗-subalgebra of the operators affiliated
with the von Neumann algebra B(H). In the operator-valued setting, such algebras
can be studied through the non-commutative Cauchy transform [26]; however, we do
not pursue this further. These results provide the framework to prove the existence of
�-free Lévy processes derived from the SLCE, as stated in Theorem 2.

Proof of Theorem 2 As above, we consider C〈x〉�, where x = {xt }t∈[0,∞) are inde-
terminants indexed by a continuous parameter t ≥ 0. Let {z p,i, j }p,i, j∈N denote an
infinite-dimensional array of independent random variables such that L (z p,i, j ) =
μ

∗ 1
p .
We define the tracial state as follows. For an element q ∈ C〈x〉�, let 0 ≤ t1 ≤

· · · ≤ tK be the indices of its indeterminants, and set t0 = 0. For each p ∈ N and
0 ≤ k ≤ K , take X(k)

p to be the �tK p�× p matrix with entries [X(k)
p ]i, j = z p,i, j when

1 ≤ i ≤ �tk p�, and zero otherwise. Similarly, let C(k)
p =

(
X(k)

p

)†
X(k)

p , an SLCE with

data (μ, tk). Setting cp = (C(1)
p , . . . ,C(K )

p ), we define

τ [q] = lim
p→∞E

[
1

p
Tr
[
q(cp)

]]

As in Theorem 4 this is well defined, and we take A = C〈x〉�
/

Zτ on the two-sided
ideal Zτ .

We define our non-commutative Lévy process to be the map t �→ pt ∈ A where
pt (x) = xt is a monomial in the single indeterminant xt . Note that the C

(k)
p need not

satisfy any freeness condition, but for any tk with k = 1, . . . , K as above, we have

X(k)
p − X(k−1)

p =
⎡

⎢
⎣
0(k)
1

X̂(k)
p

0(k)
2

⎤

⎥
⎦

where X̂(k)
p is a (�tk p� − �tk−1 p�) × p with i.i.d. entries following the distribution

μ
∗ 1

p , 0(k)
1 is a �tk−1 p� × p matrix of zeros, and 0(k)

2 is a (�tK p� − �tk p�) × p matrix
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of zeros. Writing Ĉ(k)
p =

(
X̂(k)

p

)†
X̂(k)

p , it follows that

C(k)
p =

k∑

j=1

Ĉ( j)
p

where the Ĉ(k)
p are independent and permutation-invariant p × p elements of an SLCE

with data (μ, tk − tk−1). Applying the asymptotic �-freeness to these Ĉ(k)
p as in

Theorem 4, it follows that the difference elements xtk − xtk−1 ∈ A are �-free. �
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