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Abstract
Stephenson (2018) established annealed local convergence of Boltzmann planar maps
conditioned to be large. The presentwork uses results on rerootedmulti-type branching
trees to prove a quenched version of this limit.
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1 Introduction

A planar map M is a connected planar graph, possibly with loops and multiple edges,
together with an embedding into the plane. Usually, one edge is directed and distin-
guished as the root edge. Various analytic, combinatorial, and probabilistic techniques
for studying models of random planar maps have been developed, see [3,6]. The bijec-
tion by [5] encodes planar maps as mobiles, which are vertex-labelled 4-type planar
trees. This allows for a generating procedure for certainmodels of random planarmaps
using 4-type Galton–Watson trees, see [16]. For bipartite Boltzmann planar maps, a
bijection constructed by [12] simplifies the generating procedure to use only mono-
type Galton–Watson trees. However, it is an open problem whether a full reduction to
monotype trees is possible in the non-bipartite case; hence, the need to studymulti-type
Galton–Watson trees for this purpose persists.1

Recent work by Stephenson [17] establishes local convergence of conditioned
regular critical multi-type Galton–Watson trees, and applies this convergence to a
conditioned Boltzmann planar map Mn . The main application is a limit theorem that
shows how an infinite Boltzmann planar map M̂ describes the asymptotic behaviour

1 The author thanks Sigurdur Örn Stefánsson for related comments.
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of the vicinity of the root edge of Mn as n → ∞. This generalizes local convergence
results for bipartite maps by [4] and special cases like triangulations and quadrangu-
lations by [2,14].

The present work establishes a corresponding quenched version of the limit the-
orem. Roughly speaking, the difference is that instead of studying the probability
for the vicinity of the root edge of Mn to have a certain shape, we establish laws of
large numbers for the number of corners, faces, and vertices whose vicinity has this
shape; see Theorem 1. Our main tools are quenched limits of rerooted multi-type trees
established recently in [21].2

As an application, we deduce quenched local convergence of the random planar
map Mt

n with n edges and a positive weight t > 0 at vertices. That is, Mt
n assumes a

map M with n edges with probability proportional to tv(M), with v(M) denoting the
number of vertices of M ; see Theorem 2. The vertex weighted random planar map
Mt

n is related to the study of uniform random planar graphs, see [7,11]. We apply
the quenched local convergence of Mt

n in the subsequent paper [19] to deduce local
convergence of the uniform random planar graph.

Notation

We let N0 = {0, 1, 2, . . .} denote the collection of non-negative integers, and N the
collection of positive integers. The law of a random variable X : � → S with values in
somemeasurable space S is denoted byL(X). If Y : � → S′ is a random variable with
values in some measurable space S′, we let L(X | Y ) denote the conditional law of X
given Y . All unspecified limits are taken as n → ∞. Convergence in probability and

distribution are denoted by
p−→ and

d−→ .We say an event holdswith high probability
if its probability tends to 1 as n becomes large. For any sequence (an)n≥1 of positive
real numbers, we let Op(an) denote a random variable Zn such that (Zn/an)n≥1 is
stochastically bounded.

Index of Terminology

The following list summarizes frequently used terminology.

ξ An unordered D-offspring distribution ξ = (ξ i )i∈G, page 5.
#i (·) Number of vertices of type i ∈ G, page 4.
| · |γ Sum of vertices weighted depending on their type, page 4
T (η) A ξ -Galton–Watson tree with (possibly random) root type η, page 6.
T κ Like T (κ), but non-root vertices of type κ receive no offspring, page 6.
T̂

κ
A random tree with a marked leaf of type κ . Distributed like T κ biased by the
number of vertices with type κ , page 6.

T̂ (κ) A random infinite tree with a marked vertex of type κ and a spine that grows
backwards, page 6.

2 The results of the present work were initially part of [21]. The paper was split during the review process
following a referee’s recommendation.
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T̂
κ,ι

A random tree with root type κ and a marked vertex of type ι. Obtained by
biasing T κ by the number of vertices of type ι, page 6.

T̂ (κ, ι) A random infinite tree with a marked vertex of type ι and a spine that grows
backwards, page 6.

2 Preliminaries

2.1 Local Topologies for Planar Maps

The local topology describes how similar two planar maps are in the vicinity of spec-
ified root vertices or root edges. We briefly recall relevant notions and refer the reader
to the elegant presentations by [8] for details.

LetMe denote the collection of finite planar maps with an oriented root edge. The
origin of this root edge is called the root vertex. The face to the left of the oriented
root edge is called the root face. Likewise, we let Mv denote the collection of finite
planar maps that only have a specified root vertex instead of an oriented root edge. We
also let Mf denote the collection of finite planar maps that only carry a marked root
face instead. In the following,M refers toMe,Mv, orMf , as all related concepts are
analogous for these three cases. Note that M is countably infinite.

For any integer k ≥ 0, we may consider the subsetMk ⊂ M of planar maps where
each vertex has “distance” at most k from the root. Here, “distance from the root”
refers to the graph distance from the root vertex in case of vertex-rooted maps, or the
graph distances to the ends of the root edge for edge-rooted maps. For face-rooted
maps, we define the distance as the length of some shortest path from the vertex to the
boundary of the marked face. We equip Mk with the discrete topology.

The projection

Uk : M → Mk

maps a planarmapM to the k-neighbourhoodUk(M)of its root.Depending onwhether
M refers toMe,Mv, orMf we view Uk(M) as equipped with an oriented root edge,
a root vertex, or a root face.

The local topology on the collection M is the coarsest topology that makes these
projections continuous. This projective limit topology is metrizable by

dloc(M, M ′) = 1

1 + sup{k ≥ 0 | Uk(M) = Uk(M ′)} , M, M ′ ∈ M.

The space (M, dloc) is not complete. One way to complete it, is to form the spaceM
of coherent sequences

M = {(M1, M2, . . .) | Ui (Mi+1) = Mi for all i ≥ 1} ⊂ MN.

We may interpret M as a subset of M, and extend dloc and Uk(·) in a canonical way.
This makes M a Polish space, see [8, Prop. 1] for details.
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Let (Mn)n≥1 be a sequence of random finite planar maps, and let un be either
a uniformly selected vertex, oriented edge, or face. This makes the pair (Mn, un) a
random element ofM. Here, we forget about any possibly present root ofMn , and only
consider un as the new root. Distributional convergence of (Mn, un)n≥1 is equivalent
to distributional convergence of each neighbourhood Uk(Mn, un), k ≥ 0, as n tends
to infinity. If M̂ is a random element of M, then

(Mn, un)
d−→ M̂ (1)

is equivalent to

PrUk(Mn, un) = M → PrUk(M̂) = M (2)

for each fixed integer k ≥ 0 and each finite planar map M ∈ M as n → ∞. Using
language from statistical physics, this form of convergence is also called annealed
convergence.

The collection M1(M) of probability measures on the Borel sigma algebra of M
is a Polish space with respect to the weak convergence topology. The conditional
distribution L((Mn, un) | Mn) is a random element of M1(M). We say (Mn, un)
converges in the quenched sense, if the random probability measureL((Mn, un) | Mn)

converges in distribution to a random element of M1(M). For the special case where
the limit is almost surely constant and given by the lawL(M̂) of some random element
M̂ ofM, we say (Mn, un) converges in the quenched sense towards M̂.

2.2 Limits of RerootedMulti-type Trees

Given an integer D ≥ 1, a D-type plane tree T is a plane tree where we assign to
each vertex a type from {1, . . . , D}. In particular, T has a root vertex, and for each
vertex we have a linear order on its collection of children. For 1 ≤ j ≤ D, we let
# j T denote the total number of vertices with type j . Furthermore, for any vector
γ = (γ1, . . . , γD) ∈ R

D we set

|T |γ =
D∑

i=1

γi#i T . (3)

If we distinguish a vertex v of T , we form a marked tree (T , v). The subtree
consisting of v and all its descendants is called the fringe subtree of T at v. For any
integer k ≥ 0, we may form the extended fringe subtree f [k](T , v) consisting of the
fringe subtree of T at the kth ancestor of v, marked at the vertex corresponding to v.
Of course, this only makes sense if v has height at least k in T . Otherwise, we set
f [k](T , v) to some placeholder value.
The path from v to the root of T is called the spine of the marked tree (T , v). We

may also consider marked trees where this spine has a countably infinite length, such
that v has a countably infinite number of ancestors. We let X denote the collection of
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all finite marked D-type trees and all marked D-type trees with an infinite spine such
that all extended fringe subtrees are finite.

The collection X may be endowed with a metric dX such that for all T •
1 , T •

2 ∈ X

dX(T •
1 , T •

2 ) =
{
2, f (T •

1 ) 	= f (T •
2 )

2− sup{k≥0| f [k](T •
1 )= f [k](T •

2 )}, f (T •
1 ) = f (T •

2 ).
(4)

This makes (X, dX) a Polish space, see [21, Prop. 1].
Let (Tn)n≥1 be a sequence of random finite D-type trees. Let

G0 ⊂ {1, . . . , D}

denote a non-empty subset, such that the probability for Tn to have vertices with type
in G0 tends to 1 as n becomes large. Let vn be uniformly selected among all vertices
of Tn with type in G0. Then, (Tn, vn) is a random element of X. We say (Tn, vn)

convergences in the annealed sense towards a random element T• of X, if

(Tn, vn)
d−→ T•

in the usual sense of distributional convergence of random elements of the Polish
space X. The conditional distribution L((Tn, vn) | Tn) is a random element of the
collection M1(X) of Borel probability measures on X. That is we take the tree Tn

(this is where the randomness comes from) and consider the uniform distribution on
all marked versions of Tn where the marked vertex has type in G0. We say T• is the
quenched limit of (Tn, vn), if

L((Tn, vn) | Tn)
d−→L(T•)

in the sense of distributional convergence of random elements of the Polish
space M1(X).

2.3 Galton–Watson Trees

Let D ≥ 1 be an integer. A D-type Galton–Watson tree is a random locally finite
D-type plane tree defined as follows. Let ξ = (ξ i )1≤i≤D be a family of random
elements ξ i ∈ N

D
0 . For any integer 1 ≤ κ ≤ D, the ξ -Galton–Watson T (κ) starts

with a single root vertex with type κ . For all 1 ≤ i ≤ D, any vertex of type i receives
offspring vertices according to an independent copy of ξ i , with the j th coordinate (for
1 ≤ j ≤ D) corresponding to the number of childrenwith type j . For our purposes, we
will always assume that the collection of all children is ordered uniformly at random.
If η is a random element of {1, . . . , D}, independent from all previously considered
random variables, we let T (η) denote the mixture of (T (κ))1≤κ≤D that assumes T (κ)

with probability Pr η = κ for each 1 ≤ κ ≤ D. That is, here the type of the root vertex
is random and distributed like η.
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We define T κ similar to T (κ), only that non-root vertices with type κ receive no
offspring. Let us assume that

T κ is a.s. finite and E
[
#κT κ

] = 2. (5)

This allows us to define the κ-biased version T̂
κ
with distribution

Pr T̂
κ = (T κ , u) = Pr T κ = T κ (6)

for any pair (T κ , u) of a finite G-type tree T κ (with the root having type κ and all
non-root vertices of type κ having no offspring) and a non-root leaf u of T κ with type
κ .

We construct a random tree T̂ (κ) that has an infinite “backwards” growing spine
u0, u1, . . . of type κ vertices, such that u�+1 is an ancestor (not necessarily parent)
of u� for all � ≥ 0. The construction is as follows. We start with the vertex u0 that
becomes the root of an independent copy of T (κ). The vertex u1 becomes the root of
an independent copy of T̂

κ
, which has a marked leaf. All non-marked leaves of type

κ become roots of independent copies of T (κ), and we identify the marked leaf with
u0 (“glueing” the two vertices together). We proceed in this way with an ancestor u2
of u1 and so on, yielding an infinite backwards growing spine u0, u1, . . . of type κ

vertices.
The tree T̂ (κ) constitutes the multi-type analogue of Aldous’ invariant sin-tree

constructed in [1] for critical monotype Galton–Watson trees. The abbreviation sin
stands for single infinite path.

Suppose that ι ∈ {1, . . . , D} is a type. If the number of non-root type ι-vertices in
T κ has a finite nonzero expectation E , we may form the ι-biased version T κ,ι of T κ

with distribution

Pr T̂
κ,ι = (T κ , u) = Pr T κ = T κ/E (7)

for any pair (T κ , u) of a finite G-type tree T κ (with the root having type κ and all
non-root vertices of type κ having no offspring) and a non-root leaf u of T κ with type ι.
This allows us to construct the tree T̂ (κ, ι) analogous to T̂ (κ)with the only difference
being that in the construction we start with a type ι vertex u0 that becomes the root of
an independent copy of T (ι), and for u1 we use T κ,ι instead of a copy of T κ . Hence,
u1, u2, . . . have type κ , but u0 has type ι.

3 Boltzmann Planar Maps

We recall important background on Boltzmann planar maps [16] and the Bouttier–Di
Francesco–Guitter transformation [5]. Our presentation follows closely that of [17,
Sec. 5], with some additional emphasis in Sect. 3.2 on how the labels of a Boltzmann
mobile may be constructed from conditionally independent choices for each vertex of
the underlying Galton–Watson tree.
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3.1 The Boltzmann Distribution on Planar Maps

The collection of all finite planar maps with an oriented root edge and an additional
marked vertex will be denoted by M. Throughout, we let q = (qn)n≥1 denote a
family of non-negative numbers such that qn > 0 for at least one n ≥ 3. To any
element M ∈ M, we assign a weight

Wq(M) =
∏

f

qdeg( f ). (8)

Here, the index f ranges over the faces of the planar map M , and deg( f ) denotes the
degree of the face f . That is, deg( f ) is the number of half-edges on the boundary of
the face f . (The reason why we count half-edges instead of edges is that an edge on
the boundary has to be counted twice if both of its sides are incident to the face.) A
weight sequence q is said to be admissible, if

Zq :=
∑

M∈M
Wq(M) < ∞. (9)

In this case, we may form the Boltzmann distributed (vertex marked) planar map M
with distribution given by

PrM = M = Wq(M)/Zq, M ∈ M. (10)

Likewise, we may form analogously the Boltzmann planar map M̃ (and conditioned
versions thereof) by using the class of maps without a marked vertex instead of M.
Note that M̃ and M follow different distributions, as M is biased by the number of
vertices.

3.2 Mobiles Obtained from Branching Processes

A pointed map from M is said to be positive, neutral, or negative, if the origin of
the directed root edge is closer, equally far away, or farther away from the marked
vertex than the destination of the root edge. We let M+, M0, and M− denote the
corresponding subclasses of M, and form the sums Z+

q , Z
0
q , and Z−

q as in (9), but
with the sum index constrained to the corresponding subclass. For all x, y ≥ 0, we
define the bivariate series

f •(x, y) =
∑

k,k′≥0

(
2k + k′ + 1

k + 1

)(
k + k′

k

)
q2+2k+k′xk yk

′
, (11)

f 
(x, y) =
∑

k,k′≥0

(
2k + k′

k

)(
k + k′

k

)
q1+2k+k′xk yk

′
. (12)

If the weight sequence q is admissible, we may define an irreducible 4-type offspring
distribution ξ = (ξ)1≤i≤4 as follows. Vertices of the first type produce a geometric
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number of vertices of the third type:

Pr ξ1 = (0, 0, k, 0) = 1

Z+
q

(
1 − 1

Z+
q

)k

, k ≥ 0. (13)

Vertices of the second type always produce a single offspring vertex of the fourth type,
that is

Pr ξ2 = (0, 0, 0, 1) = 1. (14)

Vertices of the third and fourth type only produce offspring of the first or second type.
Their coordinates ξ3,1, ξ3,2 and ξ4,1, ξ4,2 are determined by

E[xξ3,1 yξ3,2 ] =
f •(x Z+

q , y
√
Z0
q)

f •(Z+
q ,

√
Z0
q)

(15)

E[xξ4,1 yξ4,2 ] =
f 
(x Z+

q , y
√
Z0
q)

f 
(Z+
q ,

√
Z0
q)

. (16)

Here, we have used that the denominators in (15) and (16) are finite. This follows from
[16, Prop. 1], see Sect. 3.4 for details.

For a type κ = 1 or κ = 2, we consider the following sampling procedure. The
result is a random 4-type tree where the offspring is ordered and each vertex v receives
a label �(v) with �(v) ∈ Z if v has type 1 or 3, and �(v) ∈ 1

2 + Z otherwise.

1. Consider the ξ -Galton–Watson tree T (κ) that starts with a single vertex of type
κ . We consider the offspring vertices as ordered in a uniformly selected manner.

2. For each vertex v of type 3 or 4 in T (κ) with outdegree d ≥ 1, let v0 denote its
parent and let v1, . . . , vd denote its ordered offspring. For ease of notation, we
set vd+1 := v0. Note that v0, . . . , vd all have types in {1, 2}. Uniformly select a
(d + 1)-dimensional vector

βT (κ)(v0) = (a0, . . . , ad)

satisfying the following two conditions:
(a)

∑d
i=0 ai = 0.

(b) For all 0 ≤ i ≤ d:

If vi and vi+1 both have type 1, then ai ∈ {−1, 0, 1, . . .}.
If vi and vi+1 both have type 2, then ai ∈ {0, 1, 2, . . .}.
If vi and vi+1 have different types, then ai ∈ {−1/2, 1/2, 3/2, . . .}.

3. Assign to each vertex v ∈ T (κ) a label �(v) in a unique way satisfying the
following conditions.

(a) The root of T (κ) receives label 0 if it has type 1 and label 1/2 if it has type 2.
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(b) Vertices of type 3 or 4 receive the same label as their parent.
(c) If a vertex v of type 3 or 4 has offspring v1, . . . , vd with d ≥ 1, then set

(a0, . . . , ad) := βT (κ)(vi ) and set �(vi ) := �(v) + ∑i−1
j=0 a j for all 1 ≤ i ≤ d.

This construction produces a so-called mobile. We emphasize that in the second
step we choose for any vertex v of type 3 or 4 the vector βT (κ)(v) at random in a
way that depends only on the ordered list of offspring vertices of v, their types, and
the type of v (since it determines the type of its parent). In combinatorial language,
(T (κ),βT (κ)) is a special case of a multi-type enriched plane tree. We refer to it as
the canonical decoration of T (κ).

3.3 The Bouttier–Di Francesco–Guitter Transformation

We let T+ denote an independent copy of (T (1),βT (1)). We let T0 denote the result of
taking two independent copies of (T (2),βT (2)) and identifying their roots. Let (T , β)

be a possible finite outcome of T+ or T0, and let (�(v))v∈T denote the corresponding
labels. The Bouttier–Di Francesco–Guitter transformation [5] associates a planar map

(T , β) to the decorated tree (T , β) in such a way that

– the number of vertices of the map equals 1 + #1T ,
– the number of edges of the map equals #1T + #3T + #4T − 1,
– and the number of faces of the map equals #3T + #4T .

The transformation 
 is as follows. We draw T in the plane and order the corners
according to the standard contour process that starts at the root vertex. Let v1, . . . , vp

denote the ordered list of vertices of type 1 or 2 that we visit in the contour process.
That is, a vertex gets visited multiple types according to the number of angular sectors
around it. We let �1, . . . , �p denote their labels. We extend these lists cyclically, so
that vi p+k = vk for i ≥ 1 and 1 ≤ k ≤ p. We add an extra vertex r with type 1 outside
of T and let its label �(r) be one less than the minimum of labels of all type 1 vertices.
For each 1 ≤ i ≤ p, we draw an arc between the vertex vi and its successor. If vi
has type 1, then the successor is the next corner in the cyclic list of type 1 with label
�i − 1. If there is no such corner, then we let r be the successor of vi . Likewise, if vi
has type 2 then the successor of vi is the next corner of type 1 with label �i −1/2, or r
if there is no such corner. It is possible to draw all arcs so that they only may intersect
at end points. We now delete the original edges of the tree T , as well as all vertices of
type 3 and 4. Vertices of type 2 get erased as well, merging the corresponding pairs of
arcs. We are left with a planar map having a marked vertex r . If the root of T has type
1, we let the root edge be the first arc that was drawn and have it point to the root of
T . If the root of T has type 2 (and hence has precisely two children, both of type 4),
we let the root edge be the result of the merger of the two arcs incident to the root of
T and let it point towards the successor of the first corner encountered in the contour
process. Figure 1 illustrates the transformation ψ for an example.

The Boltzmann distributed map M is a mixture of the random maps M+, M0, and
M− obtained by conditioning M on belonging to M+, M0, and M−. As observed
by [16], it holds that 
(T+)

d=M+ and 
(T0)
d=M0. Moreover,M− may be obtained

from M+ by reversing the direction of the root edge.
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(a) (b)

(c) (d)

Fig. 1 The correspondence between mobiles and vertex-marked rooted planar maps
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3.4 Regimes ofWeight Sequences

[16, Prop. 1] showed that the weight sequence q is admissible if and only if the system
of equations

f •(x, y) = 1 − 1

x
(17)

f 
(x, y) = y (18)

has a solution (x, y) with x > 1 such that the matrix

⎛

⎜⎝
0 0 x − 1

x
y ∂x f


(x, y) ∂y f 
(x, y) 0
x2
x−1∂x f

•(x, y) xy
x−1∂y f

•(x, y) 0

⎞

⎟⎠

has spectral radius smaller or equal to one.Any such solution (x, y)necessarily satisfies

(x, y) = (Z+
q ,

√
Z0
q). (19)

[16, Def. 1] termed an admissible weight sequence q critical, if the spectral radius of
this matrix is equal to 1. This amounts to the condition

x2 J f (x, y) + 1 = x2∂x f
•(x, y) + ∂y f


(x, y), (20)

with J f denoting the (signed) Jacobian of the function ( f •, f 
) : R2+ → (R+∪{∞})2.
It is termed regular critical, if additionally

f •(Z+
q + ε, y

√
Z0
q + ε) < ∞ (21)

for some ε > 0. As was made explicit by [17], this applies to various useful cases such
as unrestricted maps or p-angulations for arbitrary p ≥ 3. The irreducible offspring
distribution ξ is critical (or regular critical) if and only if the weight sequence q is
critical (or regular critical).

4 Quenched Local Convergence

Theorem 1 Suppose that the weight sequence q is regular critical. Let Mn denote
the q-Boltzmann planar map, conditioned on either having n vertices, or edges, or
faces. Let un denote either a uniformly selected vertex, half-edge, or face. There are
integers a ≥ 0 and d ≥ 1 and a random infinite locally finite limit map M̂ with finite
face degrees such that, in the local topology for vertex-rooted or half-edge-rooted or
face-rooted planar maps, the conditional law L((Mn, un) | Mn) satisfies

L((Mn, un) | Mn)
p−→L(M̂) (22)

123



Journal of Theoretical Probability (2022) 35:1324–1342 1335

as n ∈ a + dZ tends to infinity.

Of course, the limit object differs depending on which conditioning we choose and
which type of marking we select. The quenched limit (22) implies the annealed con-
vergence

(Mn, un)
d−→ M̂ (23)

by dominated convergence. If un denotes a uniformly selected half-edge, then (23)
is the annealed convergence established by [17, Thm. 6.1] (see also [2,4,9,14,15]),
who only required criticality in the case where Mn is the Boltzmann map with n
vertices. Drmota and Stufler [10] described a general method for deducing limits for
the vicinity of random vertices if a limit for the vicinity of random corners is known.
The method applies to regular critical Boltzmann planar maps and other settings.
Obtaining an explicit description of the limit was left as an open question in [10], and
the construction of the limit from an infinite mobile with a backwards growing spine
the proof of Theorem 1 resolves this question in the present setting.

Note that, aswas shown by [17, Sec. 6.3.5], in the present setting the total variational
distance between Mn (a corner-rooted map with an additional marked vertex, not to
be confused with un) and a q-Boltzmann map M̃n without a marked vertex tends to
zero as n becomes large:

lim
n→∞ dTV(Mn, M̃n) = 0. (24)

Hence, Theorem 1 also holds for M̃n .

4.1 Proof Strategy

The existence of a ≥ 0 and d ≥ 1 (which depend on the form of conditioning we use),
so thatMn is well defined for n ∈ a+ dZ large enough, was shown by [17, Lem. 6.1].
Let γ ∈ N

4
0 be either (1, 0, 0, 0) or (1, 0, 1, 1) or (0, 0, 1, 1), depending on whether

we condition on the number of vertices, edges, or faces. We also set G0 = {1} or
G0 = {1, 3, 4} or G0 = {3, 4} accordingly.

Recall that T+ denotes an independent copy of (T (1),βT (1)), and T
0 is the result of

taking two independent copies of (T (2),βT (2)) and identifying their roots. Recall also

that the Boltzmann distributed mapM is a mixture of the random maps 
(T+)
d=M+,


(T0)
d=M0, and the result M− of reversing the direction of the root edge M+.

Throughout the entire proof, a subscript n of a random tree denotes thatwe condition
the tree on the event | · |γ = n if γ = (0, 0, 1, 1), | · |γ = n − 1 if γ = (1, 0, 0, 0),
and | · |γ = n + 1 if γ = (1, 0, 1, 1). A subscript n of a random map will denote that
we condition the map accordingly on having n faces or vertices or edges.
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Let κ ∈ {1, . . . , 4} be a type. If we select a vertex vn from Tn(κ) with type in G0
uniformly at random, then by [21, Thm. 6]

L((Tn(κ), vn) | Tn(κ))
p−→L(T̂ (η)) (25)

for a random type η that only depends on ξ and γ (and not on κ). Adding canonical
decorations, this implies

L((Tn(κ),βTn(κ), vn) | Tn(κ))
p−→L(T̂ (η),β T̂ (η)

). (26)

(See also [20] for a general theoryof limits and fringedistributions of randomdecorated
or enriched trees.)

We are going to show that:

(a) The decorated tree (T̂ (η),β T̂ (η)
) corresponds to an infinite vertex-, corner-, or

face-rooted map M̂ via an extension of the Bouttier–Di Francesco–Guitter trans-
formation.

(b) The convergence (26) implies

L((M+
n , un) | M+

n )
p−→L(M̂). (27)

(c) Convergence ofM−
n follows from (27) andM0

n may be treated analogously asM+
n .

Having these intermediate results at hand, Theorem 1 immediately follows. In the
following subsection, we verify the three claims individually.

4.2 Claim (a)

In the third step of the procedure given in Sect. 3.2, we described a process for
transforming the decorations into labels. We cannot apply this process directly to
(T̂ (η),β T̂ (η)

) since the tree has an infinite backwards growing spine of ancestors
instead of a root. However, if we assign any valid label to a single vertex v (with value
in Z if v has type 1 or 3 and value in 1

2 + Z if v has type 2 or 4), then the decora-
tions determine the labels of all other vertices. Moreover, the differences in the labels
between any pair of vertices do not depend on the label we started with. Hence, let
us assign a valid label 0 or 1/2 to the marked vertex of (T̂ (η),β T̂ (η)

) (depending on
whether its type η lies in {1, 3} or {2, 4}), and extend this in a unique way according
to the decorations to labels (�(v))

v∈T̂ (η)
.

Lemma 1 The labels of the type 1 ancestors of the marked vertex in T̂ (η) have almost
surely no lower bound.

Proof First, let us observe that

T̂ (η)
d= T̂ (1, η). (28)
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This could be verified directly, or as follows: The limit in Eq. (25) is a special case of
[21, Thm. 6], which was obtained as an application of the more general theorem [21,
Thm. 1]. We could just as well have applied [21, Thm. 2, Rem. 2] instead, yielding
that (25) holds with T̂ (1, η) instead of T̂ (η). This verifies (28).

Let u1, u2, . . . denote the list of type 1 ancestors of the marked vertex in T̂ (η)

(excluding the marked vertex itself, if it has type 1), so that ui+1 is an ancestor of
ui for all i ≥ 1. Then, the family of differences of labels �(ui+1) − �(ui ), i ≥ 1
are independent and identically distributed. The distribution is given by forming the

canonical decoration of T̂
1
, assigning labels accordingly with an arbitrary starting

value for the root of T̂
1
, and forming the difference of the labels between the root and

the marked leaf of T̂
1
. Thus, the labels (�(ui ))i≥1 form a randomwalk with i.i.d. steps

and a random starting value �(u1).
It is known that this random walk is centred: Indeed, consider the local weak limit

T̃ of Tn(1) established by [17], that describes the asymptotic vicinity of the root (and
not a random location) of Tn(1). The construction of T̃ is as follows. We start with

a type 1 vertex that gets identified with an independent copy of T̂
1
. All non-marked

type 1 leaves become roots of independent copies of T (1). For the marked leaf, we
proceed recursively in the same way as for the root (identifying it with the root of a

fresh independent copy of T̂
1
, and so on). Hence, T (1) has an infinite spine, obtained

by concatenating independent copies of T (1). In particular, if we form the canonical
decoration of T̃ and assign labels accordingly (with, say, a starting value 0 for the root
vertex), then the labels of the type 1 vertices of the spine form a randomwalk with i.i.d.
steps and the same step distribution as for the random walk (�(ui ))i≥1. Stephenson
[17, Proof of Lem. 6.5] showed that this step distribution has average value 0. Hence,
analogously as for [17, Lem. 6.5], it follows from [13, Thm. 9.2] that almost surely

inf
i≥1

�(ui ) = −∞.

This completes the proof. �
We may order the corners (ci )i∈Z incident to vertices of type 1 or 2 of T̂ (η) such

that for all i ∈ Z the corner ci+1 is the successor of ci in the clock-wise contour
exploration. This allows us to canonically extend the Bouttier–Di Francesco–Guitter
transformation from Sect. 3.3 to assign an infinite locally finite planar map M̂ to the
infinite labelled tree (T̂ (η), (�(v))

v∈T̂ (η)
). Here, we do not have to add an additional

marked vertex, because the labels of type 1 vertices along the backwards growing
spine of T̂ (η) have no lower bound. By construction, all faces of M̂ have finite degree.

Depending on whether un is a random vertex, half-edge, or face of Mn , we mark
M̂ as follows. Let w denote the marked vertex of T̂ (η), which has an infinite number
of ancestors. In the vertex case, w has type 1 and corresponds canonically to a vertex
of M̂. We consider M̂ as rooted at this vertex. In the face case, w has type 3 or 4
and corresponds canonically to a face. In this case, we consider M̂ as rooted at this
face. In the half-edge case, w has type 1, 3, or 4 and corresponds canonically to an
edge, which we orient according to an independent fair coin flip. In detail: If w has
type 4, then it is the only child of a non-root type 2 vertex that corresponds to the
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edge obtained by joining the arcs drawn at its two corners. Hence, w corresponds
canonically to this edge. If w has type 1, then each of its corners corresponds to the
edge we drew when visiting this corner in the contour exploration. The number of
these corners equals 1 plus the number of offspring vertices, all of which have type
3. Hence, w and its children correspond bijectively to the arcs we drew starting at a
corner of w. In particular, w corresponds canonically to an arc. Likewise, if w has
type 3 it also corresponds canonically to an edge that we drew starting at a corner of
its type 1 parent.

This verifies Claim (a).

4.3 Claim (b)

Suppose that κ = 1. The vertex vn of (Tn(κ), βTn(κ)) corresponds similarly to a
marked vertex or face or half-edge u′

n of M+
n . Modifications in the correspondence

may be required when vn or its parent is the root of Tn(κ), but the probability for this
event tends to zero and hence we may safely ignore this. Furthermore, (M+

n , un) and
(M+

n , u′
n) may not follow the same distribution (for example, when un is a uniform

vertex, then u′
n is a uniform non-marked vertex, as u′

n is never equal to the additional
vertex we added in the BDFG bijection). However, it is clear that there is an event (that
depends on n) whose probability tends to 1 as n becomes large, such that (M+

n , un) and
(M+

n , u′
n) are identically distributed when conditioned on this event. Hence, we may

also safely ignore the difference between un and u′
n . Using the continuous mapping

theorem, it hence follows from (26) that

L((M+
n , un) | M+

n )
p−→L(M̂). (29)

This verifies Claim (b).

4.4 Claim (c)

The same convergence as in (29) follows immediately for M−
n , since the vicinity

of a random point is not affected by the orientation of the root edge. As for M0
n ,

it follows from [17, Prop 2.2] that |T (2)|γ takes only values from a shifted lattice,
and has a density that varies regularly with index −3/2 along that shifted lattice. It
follows that if we condition independent copies S(1) and S(2) of T (2) on the event
|S(1)|γ + |S(2)|γ = n then

lim
n→∞min((|S(1)|γ , |S(2)|γ ) | |S(1)|γ + |S(2)|γ = n)

d−→ |T (2)|γ . (30)

This may easily be verified elementarily or be viewed as a special case for results on
general models of random partitions, see [18, Thm. 3.4, Prop 2.5]. Consequently, all
but a negligible number of vertices whose extended fringe subtree has a certain shape
will lie in a giant component with size (“size” referring to | · |γ ) m − Op(1). If we
let S denote the result of identifying the roots of S(1) and S(2) and let wn denote a
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uniformly selected vertex of the conditioned tree Sn with type in G0, then it follows
by (25) that

L((Sn, wn) | Sn) p−→L(T̂ (η)). (31)

(Recall that above we assigned a clear meaning to all occurrences of n as a subscript
of a random tree, making Sn a conditioned version of S that depends on γ .) Hence,
adding canonical decorations,

L((Sn,βSn , wn) | Sn) p−→L(T̂ (η),β T̂ (η)
). (32)

Thus, quenched convergence of M0
n towards M̂ may be deduced in exactly the same

way using the mapping theorem as for M+
n , only instead of using Eq. (26) we use

Equation (32). This verifies Claim (c).

5 Random Planar Maps with VertexWeights

Let t > 0 be a constant. We let Mt
n denote a random planar map with n edges that

assumes a map M (with n edges) with probability proportional to tv(M).

Theorem 2 The randommapMt
n admits a distributional limit M̂

t
in the local topology.

Letting cn denote a uniformly selected corner of Mt
n , it holds that

L((Mt
n, cn) | Mt

n)
p−→L(M̂

t
). (33)

Proof For any λ > 0, we may consider the weights

qn = tλn, n ≥ 1. (34)

This way, any map with n edges and m faces receives weight λ2ntm . We are going
to argue below that for any t > 0 we may choose λ so that q = (qn)n≥1 is regular
critical. By elementary identities of power series (compare with [17, Proof of Prop.
6.3]), the expressions in Eqs. (11) and (12) simplify to

f •(x, y) = t(1 − Z)

2x Z
, (35)

f 
(x, y) = tλ

(1 − λy)Z
, (36)

with

Z :=
√

1 − 4λ2x

(1 − λy)2
. (37)
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Conditions (17) and (18) may be rephrased by

Z = t

t + 2x − 2
, (38)

and

Z = − λt

y(λy − 1)
. (39)

Note that this implies x > 1. Combining the last two equalities, we obtain

λ = y

t + 2x + y2 − 2
. (40)

Plugging this expression into Eqs. (17) and (18) and noting that (38) implies x > 1
yields

y =
√
x − 1

√
t + x − 1√
x

and λ =
√
x − 1

√
x
√
t + x − 1

2(t − 2)x − t + 3x2 + 1
and x > 1. (41)

Moreover, for any triple (x, y, λ) of real numbers satisfying (41), we may easily
verify that Eqs. (17) and (18) hold (and that y > 0 and λ > 0). Plugging (41) into the
criticality condition (20) yields the complicated expression

x =2

3
− t

3
+ 1

6

√
6 3√2 3

√
−(t − 1)2t2 + 4(t − 1)t + 4 (42)

+ 1

2

√√√√√− 4(t + 1)(2t − 1)(t − 2)

9

√
3 3√−(t−1)2t2

22/3
+ (t − 1)t + 1

− 2

3
3√2 3

√
−(t − 1)2t2 + 8

9
(t − 2)2 + 8(t − 1)

3
.

This solution is strictly bigger than 1 for any t > 0 and defining y and λ accord-
ing to (41) we obtain a solution to Eqs. (17), (18), and (20). Hence, for this choice
of λ (depending on t) the weight sequence q is critical. It is clear from the expres-
sions (35), (36), (37) that q is even regular critical in this case.

Let Mn denote the corresponding regular critical q-Boltzmann planar map with n
edges. Let un denote a uniformly selected corner of Mn . As q is regular critical, it
follows by Theorem 1 that there is an infinite random planar map M̂ with finite face
degrees such that

L((Mn, un) | Mn)
p−→L(M̂). (43)

By (24), the q-Boltzmann map M̃n without a marked vertex consequently satisfies as
well

L((M̃n, un) | M̃n)
p−→L(M̂). (44)
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The random planar map M̃n assumes any planar map M with n edges, m faces and
k vertices with probability proportional to tm . That is,

Pr M̃n = M = tmcn,t (45)

for some constant cn,t > 0 that only depends on n and t . Euler’s formula entails that
m = 2 + n − k. Hence,

Pr M̃n = M = t−kc′
n,t , (46)

with c′
n,t = cn,t t2+n again only depending on n and t . Thus,

M̃n
d=M−t

n . (47)

Replacing t by t−1, Eq. (33) now follows from Eq. (44). �
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