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Abstract
In this paper, we study strong solutions of some non-local difference–differential
equations linked to a class of birth–death processes arising as discrete approximations
of Pearson diffusions by means of a spectral decomposition in terms of orthogonal
polynomials and eigenfunctions of some non-local derivatives. Moreover, we give
a stochastic representation of such solutions in terms of time-changed birth–death
processes and study their invariant and their limit distribution. Finally, we describe
the correlation structure of the aforementioned time-changed birth–death processes.

Keywords Subordinator · Bernstein function · Classical orthogonal polynomial of
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Mathematics Subject Classification (2020) 60K15 · 33C45 · 60G22

1 Introduction

Birth–death processes constitute a fundamental class of continuous-timeMarkov chain
that are widely used in applications such as, for instance, evolutionary dynamics [39]
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and queueing theory [26]. In particular, one can achieve a complete characterization
of birth–death processes by families of classical orthogonal polynomials of discrete
variable. This theory, linked to the solution of the Stieltjes moment problem, has been
widely studied by Karlin and McGregor in their seminal papers [22,25].

As birth–death processes are linked to difference–differential equations, frac-
tionalization of such processes can be used to study the solutions of fractional
difference–differential equations. Indeed, with this idea in mind, a fractional version
of the Poisson process has been introduced in [10,11] and fractional versions of some
birth–death processes, for instance, in [40–42].

In the case of Pearson diffusions, one can use a spectral approach to study strong
solutions of fractional backward and forward Kolmogorov equations and, at the same
time, define the fractional Pearson diffusions bymeans of a time-change via an inverse
stable subordinator (see, for instance, [31–33]). The same approach has been used to
study the case of fractional immigration-death processes in [8]. Let us also stress out
that this approach can be used to study a fractional M/M/∞ queue or a fractional
M/M/1 queue with acceleration of service (for some models of fractional queues, we
refer to [6,7,17]).

However, one could consider a time-change with a different inverse subordinator.
In such case, in place of the fractional derivative in time, one obtains a more general
non-local operator. Such kind of operators have been introduced in [27] for the class of
complete Bernstein functions and extended in [49] for any Bernstein function. A first
step towards the theory of general time-changed Pearson diffusions has been achieved
in [20].

In this work, we describe a general theory for non-local solvable birth–death pro-
cesses in terms of orthogonal polynomials, where such processes are defined bymeans
of a time-change with a general inverse subordinator. In particular, we focus on the
strong solutions of general non-local backward and forward Kolmogorov equations
associated to such processes and on the stochastic representation of such solutions. In
particular, the paper is structured as follows:

– In Sect. 2 we introduce the theory of solvable birth–death processes as discrete
approximations of Pearson diffusions and we state the main hypotheses we need
on the starting birth–death process;

– In Sect. 3 we give some preliminaries on inverse subordinators and non-local time
derivatives. In particular we focus on the eigenvalue equation for such derivatives
and on some upper bounds for the eigenfunctions. Let us stress out that some prop-
erties of such eigenfunctions are expressed in [27,28] in the complete Bernstein
case, in [36] in the special case and in [4] in the general case. Moreover, a series
expansion in terms of convolutions of potential densities in the special Bernstein
case is obtained in [4];

– In Sect. 4 we focus on the spectral decomposition of the strong solutions of
non-local forward and backward Kolmogorov equations in terms of orthogonal
polynomials of discrete variable and eigenfunctions of the non-local time deriva-
tives;

– In Sect. 5 we introduce the time-changed birth–death processes and we study the
stochastic representation of the aforementioned strong solutions in terms of such
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processes. In particular we obtain that the time-changed process still admits the
same invariant measure that is also the limit measure for any starting distribution;

– Finally, in Sect. 6 we study the correlation structure of the time-changed birth–
death processes in terms of the potential measure of the involved subordinator
and the eigenfunctions of the non-local time derivatives. In particular, the non-
stationarity of the process is evident in the expression of the covariance, thus, to
give some information on the memory of the process, we have to refer to a non-
stationary extension of the definition of long-range and short-range dependence
suggested by the necessary conditions given in [12, Lemmas 2.1 and 2.2].

2 Solvable Birth–Death Processes

Let us fix a filtered space (Ω, {Ft }t∈R+ ,P) and consider a Birth–Death process
{N (t), t ≥ 0} on it. Let us denote by E ⊆ Z its state space, that will be finite or
at most countable. In particular we can always suppose that E ⊆ N0 and is a seg-
ment, i.e. for any n1, n2 ∈ E and n ∈ N0 such that n1 ≤ n ≤ n2 it holds n ∈ E ,
with min E = 0. For a Birth–Death process N (t) we can consider the semigroup
Tt : f ∈ b �→ Tt f (y) = Ey[ f (N (t))] where b is a suitable Banach sequence space
containing c0 (i.e. the space of infinitesimal sequences) whenever E = N0, while
b = R

|E | if E is finite. Since we will consider Birth–Death processes with a stationary
measurem, we will always set b = �2(m) (which is equivalent to R|E | if E is finite).
Let us recall that the generator G of a Birth–Death process can be always expressed as

G f (x) = (b(x) − d(x))∇+ f (x) + d(x)Δ f (x), x ∈ E,

where d(x) are the death rates, b(x) are the birth rates (recalling that d, b must be
non-negative in E), ∇± are the first-order forward and backward finite differences
defined as

∇+ f (x) = f (x + 1) − f (x) ∇− f (x) = f (x) − f (x − 1)

and Δ is the second-order central finite difference

Δ f (x) = f (x + 1) − 2 f (x) + f (x − 1) = ∇−∇+ f (x).

Let us stress out that G is actually a tridiagonal matrix, possibly infinite if E = N0.
Moreover, as Tt is defined on �2(m), also the generator G admits �2(m) as domain.

Here we want to introduce some birth–death version of Pearson diffusions (see, for
instance, [32]). To do this, we refer to the theory of birth–death polynomials, whose
main papers are [22,25].

Definition 1 We say the process N (t) is solvable if

– N (t) is irreducible and recurrent;
– the spectrum of G is purely discrete with non-positive eigenvalues (λn)n∈E such
that λ0 = 0 and λn < 0 for any n ≥ 1;
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– its eigenfunctions (Pn)n∈E are classical orthogonal polynomials of discrete vari-
able with orthogonality measure m which is the invariant and stationary measure
of N (t);

– the function m(x) = m({x}) solves the following discrete Pearson equation:

∇+(d(·)m(·))(x) = (b(x) − d(x))m(x) (1)

– d(·) is a polynomial of degree at most 2 and b(·) − d(·) is a polynomial of degree
at most 1.

Concerning solvable birth–death processes, they arise as lattice approximations of
Pearson diffusions. In particular, one has in such case

λn = n∇+(b(·) − d(·))(x) + 1

2
n(n − 1)Δd(x).

Concerning classical orthogonal polynomials of discrete variable, we mainly refer to
[38,46]. Their orthogonality relation is expressed as

∑

x∈E

Pn(x)Pm(x)m(x) = d2nδn,m, n, m ∈ E

where δn,m is Kronecker delta symbol. In particular one obtains that ‖Pn‖�2(m) = dn

and then we can introduce the normalized polynomials as Qn(x) = Pn(x)
dn

, such that

∑

x∈E

Qn(x)Qm(x)m(x) = δn,m, n, m ∈ E .

On the other hand, the function m̃(n) = 1
d2n

defines a measure on E . Thus, by

proceeding with a Gram-Schmidt orthogonalization procedure on the monomials
(1, x, x2, · · · ), we can define a family of orthogonal polynomials P̃n(x) that satis-
fies the following orthogonality condition

∑

x∈E

P̃n(x)P̃m(x)m̃(x) = 1

m(n)
δn,m, n, m ∈ E .

The family of polynomials (P̃n)n∈E is called the dual family of (Pn)n∈E , see [38]. Let
us give some examples:

– Immigration-death processes (see [2]) are defined by a constant birth rate b and
a linear death rate d(x) = dx . In such case the invariant measure is given by the
Poisson distribution m(x) = e−ρ ρx

x ! for x ∈ N, where ρ = b
d . The orthogonal

polynomials are Charlier polynomials of parameter ρ, that we denote by Pn(x) =
Cn(x; ρ) and they satisfy the self-duality relation

Pn(x) = Px (n) (2)
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and the eigenvalues are given by λn = −bn. In particular the polynomials Pn

coincide with the family of dual orthogonal polynomials P̃n . This kind of process
arises as a lattice approximation of the Ornstein-Uhlenbeck process.

– Let us consider a linear death rate d(x) = dx and a linear birth rate b(x) =
(x + β)b, with b, d, β > 0 and b < d. In such case the birth death process admits
state space E = N and the generator is given by

G = (βb + (b − d)x)∇+ + dxΔ.

Definingρ = b
d ,wehave that the orthogonal polynomials areMeixner polynomials

of parameters ρ and β, that we denote by Pn(x) = Mn(x; ρ, β) and they are
orthogonal with respect to the invariant measure

m(x) = (β)xρ
x

x !(1 − ρ)β
,

where (β)x = Γ (β+x)
Γ (β)

, which is a Pascal (or negative binomial) distribution of
parameters β and ρ. AlsoMeixner polynomials satisfy the self-duality relation (2)
and coincide with their dual polynomials. Finally, let us observe that the eigen-
values are given by λn = −(d − b)n. This process is called the Meixner process
and arises as lattice approximation of the Cox-Ingersoll-Ross process. Meixner
processes are discussed for instance in [23].

– Another case is given by a linear death rate d(x) = dx and a linear decreasing
birth rate b(x) = (N − x)b with b, d > 0 and N ∈ N. In such case the birth–death
process admits finite state space E = {0, . . . , N } and the generator is given by

G = (Nb − (b + d)x)∇+ + dxΔ.

Defining p = b
b+d and q = 1 − p, we achieve the invariant distribution given by

m(x) =
(

N

x

)
px q N−x

which is a Binomial distribution over E . The orthogonal polynomials are
Krawtchouk polynomials of parameters N and p, that we denote by Pn(x) =
Kn(x; N , p) and satisfy the self-duality relation (2). The eigenvalues of the genera-
tor are given byλn = −n(b+d). Let us recall that this is actually a time-continuous
version of the Ehrenfest urn model (see, for instance, [24]).

– Another interesting case is given by a quadratic one. Indeed let us consider for
some d > 0 and α, β, N ∈ N

d(x) = dx(N + β + 1 − x) b(x) = d[N (α + 1) + x(N − 1 − α) − x2].
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Let us observe that b(N ) = 0, thus the state space of the process is given by
E = {0, . . . , N }. Moreover, its generator is given by

G = d(N (α + 1) − (β + α + 2)x)∇+ + dx(N + β + 1 − x)Δ

with eigenvalues
λn = −dn[n + 1 + α + β].

The invariant measure of this birth–death process is an hypergeometric distribution
on E given by

m(x) =
(

α + x

x

)(
β + N − x

N − x

)

and the orthogonal polynomials are the Hahn polynomials, that we denote by
Pn(x) = Hn(x;α, β, N ). In this case we do not have self-duality relation, but the
family of dual Hahn polynomials, that we denote by P̃n(x) = Rn(x;α, β, N ), is
linked to the Hahn polynomials by the relation

Hn(x;α, β, N ) = Rx (n(n + α + β + 1);α, β, N ).

This particular birth–death process is a lattice approximation of the Jacobi process.
For such process, we refer directly to [46].

In the examples we have not only the lattice approximations of the light-tailed Pearson
diffusions, but also another process, which is the continuous-time Ehrenfest urn pro-
cess. Hence, we can observe that with the definition of solvable birth–death process
we do not only cover these lattice approximations, but we also gain some other birth–
death processes that are not covered in the theory of light-tailed Pearson diffusions
(see [32,33]).

Let us also recall that if we consider the matrix p(t) = (p(t, x; y))x,y∈E where
p(t, x; y) = P(N (t + s) = x |N (s) = y) is the transition probability function, then
p(t) solves both the so-called backward and forward equations (see [46])

p′(t) = G · p(t) p′(t) = p(t) · G.

In particular we can consider the adjoint operator L of G (still defined on �2(m)) such
that p′(t) = Lp(t). For this reason, we refer to L as the forward operator. Let us
observe that for a birth–death process N (t) the forward operator L is defined as

L f (x) = −∇−((b(·) − d(·)) f (·))(x) + Δ(d(·) f (·))(x).

Moreover, let us observe that L can be considered as a (possibly infinite) tridiagonal
matrix such that p′(t) = L · p(t)t where with t we denote the transpose. Now let us
show what the orthogonal polynomials Pn(x) represent for the forward operator.

Lemma 1 Let N (t) be a solvable birth–death process with forward operatorL, invari-
ant measure m and associated family of orthonormal polynomials Qn(x). Then we
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have for any n ∈ E and any x ∈ E,

L(m Qn)(x) = m(x)λn Qn(x).

Proof We have, recalling that Δ = ∇−∇+ and that ∇− is a linear operator,

L(m Qn)(x) = −∇−((b − d)m Qn)(x) + Δ(dm Qn)(x)

= ∇−[−(b − d)m Qn + ∇+(dm Qn)](x).

Now, by discrete Leibniz rule on∇+, denoting d̃(x) = d(x +1) and m̃ = m(x +1),
we have

L(m Qn)(x) = ∇−[−(b − d)m Qn + Qn∇+(dm) + d̃m̃∇+Qn](x)

= ∇−[Qn(−(b − d)m Qn + ∇+(dm)) + d̃m̃∇+Qn](x)

= ∇−(d̃m̃∇+Qn)(x).

Now let us use again Leibniz rule on ∇− to achieve

L(m Qn)(x) = d(x)m(x)ΔQn(x) + ∇+Qn(x)∇−(d̃m̃)(x).

Now let us work with ∇−(d̃m̃)(x). We have

∇−(d̃m̃)(x) = d(x + 1)m(x + 1) − d(x)m(x).

However, by the discrete Pearson equation (1) we obtain

d(x + 1)m(x + 1) − d(x)m(x) = (b(x) − d(x))m(x)

and then we have
∇−(d̃m̃)(x) = (b(x) − d(x))m(x).

Hence, we achieve

L(m Qn)(x) = m(x)[(b(x) − d(x))∇+Qn(x) + d(x)ΔQn(x)]
= m(x)GQn(x) = m(x)λn Qn(x),

concluding the proof. �
Thuswehave, as a consequence of the discrete Pearson equation, the discrete version of
the spectral decomposition for parabolic problems with the generator and the forward
operator of a light-tailed Pearson diffusion (which is a direct consequence of the
results in [22] once we notice that in our case the spectral measure coincides with the
stationary one):
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Theorem 1 Let N (t) be a solvable birth–death process with state space E, generator
G, forward operator L, invariant measure m and family of associated orthonormal
polynomials (Qn)n∈E . Then the following assertions hold true:

– The transition probability function p(t, x; y) = P(N (t + s) = x |N (s) = y) for
x, y ∈ E and t, s ≥ 0 admit the following spectral representation:

p(t, x; y) = m(x)
∑

n∈E

eλn t Qn(x)Qn(y)

for any x, y ∈ E and t ≥ 0.
– If g ∈ �2(m) with g(x) = ∑

n∈E gn Qn(x) then the strong solution of the Cauchy
problem {

du
dt (t, y) = Gu(t, y) t ≥ 0, y ∈ E

u(0, y) = g(y) y ∈ E

is given by
u(t, y) =

∑

n∈E

gneλn t Qn(y) =
∑

x∈E

p(t, x; y)g(x).

In particular p(t, x; y) is the fundamental solution of du
dt (t, y) = Gu(t, y) and u

admits the stochastic interpretation:

u(t, y) = Ey[g(N (t))]

where Ey[·] = E[·|N (0) = y].
– If f /m ∈ �2(m) with f (x)

m(x)
= ∑

n∈E fn Qn(x) the strong solution of the Cauchy
problem {

dv
dt (t, x) = Lu(t, x) t ≥ 0, x ∈ E

v(0, x) = f (x) x ∈ E

is given by

v(t, x) = m(x)
∑

n∈E

fneλn t Qn(x) =
∑

y∈E

p(t, x; y) f (y).

In particular p(t, x; y) is the fundamental solution of dv
dt (t, x) = Lv(t, x) and, if

f ≥ 0 with ‖ f ‖�1 = 1, v admits the stochastic interpretation:

v(t, x) = P f (N (t) = x)

where P f is the probability measure obtained by conditioning with respect to the
fact that N (0) admits distribution f .

From this theorem, it is easy to determine the covariance of any solvable birth–death
process in its stationary form. First of all, let us observe that the stationary version of
N (t) admits moments of any order. This is obvious if E is finite. To show this when
E = N0, let us first show the following Proposition.
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Proposition 1 Let N (t) be a solvable birth–death process with invariant measure m
and state space E = N0. Then there exists a constant ρ < 1 and a state x0 ∈ E such
that for any x ≥ x0 it holds

m(x) ≤ ρx−x0m(x0) (3)

Proof First of all, let us observe that since b(x) and d(x) are polynomials, then
limx→+∞ b(x)

d(x+1) always exists. Moreover, we can rewrite the discrete Pearson equa-
tion as

m(x + 1) = b(x)

d(x + 1)
m(x).

Thus, we have that m is well defined if and only if

+∞∑

x=1

x∏

k=0

b(k)

d(k + 1)
< +∞.

It is easy to see that such condition implies limx→+∞ b(x)
d(x+1) ≤ 1. Let us suppose

limx→+∞ b(x)
d(x+1) = 1. This could happen only if b(x) and d(x) are polynomials of

the same degree and with the same director coefficient. However, if b(x) and d(x) are
polynomials of degree at most 1, then λn = 0 for any n ≥ 1, that is absurd. Thus, we
have that b(x) and d(x) are polynomials of degree 2. However, since λn < 0 for any
n ≥ 1, it follows that the coefficient director of d(x) must be negative. However, this
means that for x big enough it holds d(x) < 0, which is absurd. Thus, we conclude
that

lim
x→+∞

b(x)

d(x + 1)
= l < 1.

Now let us consider ρ ∈ (l, 1). Then there exists a state x0 ∈ E such that b(x)
d(x+1) < ρ

as x ≥ x0. Thus, we have
m(x + 1) < ρm(x)

for any x ≥ x0. Finally, the assertion follows from the previous inequality by induction.
�

As a direct consequence of the previous proposition we obtain

Corollary 1 Let N (t) be a solvable birth–death process with invariant distribution m
such that N (0) admits m as distribution. Then N (t) admits moments of any order.

Now we can focus on the autocovariance function of the process N (t).

Corollary 2 Let N (t) be a solvable birth–death process with invariant measure m.
Then there exists a constant a1 ∈ R such that, for any t, s ≥ 0

Covm(N (t), N (s)) = a2
1eλ1|t−s|.
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Proof First of all let us recall that the stationary version of N (t) admits moments of
any order, thus in particular also second-order moments and then the autocovariance
is well-defined. Since we are supposing that N (t) is stationary, we have, for any t ≥ s,

Covm(N (t), N (s)) = Covm(N (t − s)N (0))

Thus, let us consider t ≥ 0 and let us evaluate Covm(N (t), N (0)). To do this, let us
rewrite

Covm(N (t), N (0)) = Em[N (t)N (0)] − Em[N (t)]Em[N (0)]
= Em[N (t)N (0)] − Em[N (0)]2.

Now let us first evaluate Ex [N (t)]. Since m admits second moment then ι(x) = x is
in �2(m). Moreover, since deg(ι(x)) = 1, it can be written as a linear combination of
Q0 = 1 and Q1. Let then

ι(x) = a0 + a1Q1(x).

By the previous theorem we have that

Ex [N (t)] = a0 + a1eλ1t Q1(x)

(recalling that λ0 = 0 for any solvable birth–death process). Starting from this obser-
vation, we have that

Em[N (t)N (0)] =
∑

x∈E

xm(x)Ex [N (t)] = a0
∑

x∈E

xm(x) + a1eλ1t
∑

x∈E

xm(x)Q1(x).

As we stated before, we can write x = a0 + a1Q1(x), thus we have

Em[N (t)N (0)] = a2
0

∑

x∈E

m(x) + a0a1
∑

x∈E

Q0Q1(x)m(x)

+ a0a1eλ1t
∑

x∈E

Q0m(x)Q1(x) + a2
1eλ1t

∑

x∈E

m(x)Q2
1(x).

By using the orthonormality relation we have

Em[N (t)N (0)] = a2
0 + a2

1eλ1t .

Now let us evaluate Em[N (0)]. We have

Em[N (0)] =
∑

x∈E

xm(x) = a0 + a1
∑

x∈E

Q1(x)m(x)

= a0 + a1
∑

x∈E

Q0Q1(x)m(x) = a0.
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We finally achieve
Covm(N (t), N (0)) = a2

1eλ1t

concluding the proof. �

2.1 Classification of Solvable Birth–Death Processes

We can actually improve the result in Proposition 1 by obtaining a complete classifi-
cation of solvable birth–death processes. Indeed we have the following Proposition.

Proposition 2 Let N (t) be a solvable birth–death process with state space E. Then
one of the following statements holds true:

– E is finite;
– N (t) is an immigration-death process;
– N (t) is a Meixner process.

In particular, if (Pn)n∈E is the family of orthogonal polynomials associated to N (t),
then either E is finite or (Pn)n∈E coincide with its dual family and Pn(x) = Px (n) for
any x, n ∈ E.

Proof First of all, suppose E = N0. Then we have limx→+∞ b(x)
d(x+1) < 1. In particular

this implies that deg b ≤ deg d. If deg d = 0, then also deg b = 0 and in such case
λn = 0 for any n ∈ N, which is absurd. Thus, deg d = 1, 2. However, we have already
seen that if deg d = 2, then, since λn < 0 for any n ≥ 1, the director coefficient of d
must be negative and this is a contradiction with the fact that d is non negative on E .
Thus, we conclude that if E = N0, then deg d = 1. Moreover, arguing as before, we
know that the director coefficient of d must be positive (since if it is negative then d is
negative for big values of x ∈ E) and, being also d(0) = 0, it must hold d(x) = dx for
some d > 0. Now let us consider b. Since we want E = N0, arguing as we did with d,
we need the director coefficient of b to be positive. Hence, we have two possibilities:

– deg b = 0, thus b > 0 is constant and we get an immigration-death process;
– deg b = 1, thus b(x) = b(x + β) for some b, β > 0 and then we get a Meixner
process (since also b < d by the condition limx→+∞ b(x+β)

d(x+1) = b
d < 1).

This concludes the proof. �
As we can see from the previous Proposition, we already discussed as examples the
unique two cases in which the state space is countably infinite, that are actually the
ones for which the proof of the main results (that will follow) are more articulated.
Let us also observe some other particular properties concerning the classification of
solvable birth–death processes:

– In the class of solvable birth–death processes we have lattice approximations of
Pearson diffusions of first spectral category. Pearson diffusions are statistically
tractable diffusions (see [19]), however, their spectral behaviour can be distin-
guished in three different classes (see [33]). The first spectral class (the one that
contains Pearson diffusions whose generators admit purely discrete spectrum) is
composed of the Ornstein-Uhlenbeck, Cox-Ingersoll-Ross and Jacobi diffusions.
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These diffusions are approximated, respectively, by immigration-death, Meixner
and Hahn birth–death processes;

– However, we do not obtain the analogous of Pearson diffusions of the second
spectral category: this is due to the fact that to obtain these, we need d(x) to
be a polynomial of degree 2 and with positive director coefficient, which goes in
contradictionwith the request that the spectrumof the generator of a solvable birth–
death process is purely discrete and non-positive togetherwith the fact that the state
space is infinite. However, if we reduce the state space to a finite segment ofN0, we
can still cover these cases, in which d(x) admits discriminantΔ ≥ 0 and d(0) = 0,
by asking that b(x) admits the first root x0 ∈ N and E = {0, . . . , x0}. If Δ > 0 we
also have to ask that the other root of d(x) is negative. In any case, these lattice
schemes do not approximate reciprocal Gamma and Fisher-Snedecor diffusions
in the support of their invariant measure, but they still provide, in some cases, an
approximation scheme for the backward and forward Kolmogorov equations in a
subset of the full support;

– Even considering a finite segment in N0, we cannot approximate by a solvable
birth–death process the Student distribution, which belongs to the third spectral
category: this is due to the fact that to achieve this approximation, d(x) must be
a polynomial of degree 2, with positive director coefficient and negative discrim-
inant, which is in contradiction with the condition d(0) = 0;

– We also get some birth–death processes that are not actual lattice approximation
of any Pearson diffusion, such as in the Ehrenfest process case, whose state space
is finite but d(x) is a polynomial of degree 1.

– In particular, let us notice that for any solvable birth–death processes N (t) such
that the polynomial b(x − 1) − d(x) is of degree 1, the invariant measurem is in
the Ord family (see [21]). Indeed if deg(b) = deg(d) = 2, we can suppose that
(since d(0) = 0)

d(x) = ãx2 + d̃1x, b(x) = ãx2 + b̃1x + b̃2.

By using the relation m(x − 1) = d(x)
b(x−1)m(x) and setting

k = 2̃a + d̃1 − b̃1, a = ã − b̃1 + b̃2
k

,

b0 = 0, b1 = d̃1 + ã

k
, b2 = ã

k
,

where k �= 0 since it is the director coefficient of the first degree polynomial
b(x − 1) − d(x), we get the equation

∇+m(x − 1)

m(x)
= a − x

(a + b0) + (b1 − 1)x + b2x(x − 1)
(4)
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which is the characterizing equation of the Ord family.
If deg(d) = deg(b) = 1, then we can suppose that

d(x) = d̃1x, b(x) = b̃1x + b̃0.

To have deg(b(x − 1) − d(x)) = 1, we need d̃1 �= b̃1. Thus, setting

k = d̃1 − b̃1 �= 0, a = b̃0 − b̃1
k

,

b0 = 0, b1 = b̃0
k

, b2 = 0,

we still get Eq. (4). In particular we get the form

∇+m(x − 1)

m(x)
= a − x

a + (b1 − 1)x
(5)

which is the characterizing equation of the Katz family. Finally, last case is
deg(d) = 1 and deg(b) = 0, that is to say

d(x) = d̃1x b(x) ≡ b̃0

in which the substitution that leads to Eq. (4) is given by

k = d̃1, a = b̃0
k

,

b0 = 0, b1 = 1, b2 = 0.

Even in this case we are actually in the Katz family. Finally, let us observe that in
such case the state space has to be infinite (since b(x) ≡ b̃0 > 0) and then we are
considering an immigration-death process (and the invariant measure is a Poisson
measure). In particular we cover all the distributions of the Katz family (see [21]).

– It is also interesting to see that we cover the Poisson, Binomial, Negative Binomial
and Hypergeometric invariant distribution cases, which are all in the cumulative
Ord family (see [1]).

3 Inverse Subordinators and Non-local Convolution Derivatives

Now let us introduce our main object of study. Let us denote by BF the convex cone
of Bernstein functions, that is to say Φ ∈ BF if and only if Φ ∈ C∞(R+), Φ(λ) ≥ 0
and for any n ∈ N

(−1)n d
nΦ

dλn
(λ) ≤ 0.
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In particular it is known that for Φ ∈ BF the following Lévy-Khintchine representa-
tion ([45]) is given

Φ(λ) = a + bλ +
∫ +∞

0
(1 − e−λt )ν(dt) (6)

where a, b ≥ 0 and ν is a Lévy measure on R
+ such that

∫ +∞

0
(1 ∧ t)ν(dt) < +∞. (7)

The triple (a, b, ν) is called the Lévy triple of Φ. Also the vice versa can be shown,
i.e. for any Lévy triple (a, b, ν) such that ν is a Lévy measure satisfying the integral
condition (7) there exists a unique Bernstein function Φ such that Eq. (6) holds. In the
rest of the paper, we suppose that a = b = 0 and ν(0,+∞) = +∞. It is also known
(see [45]) that for each Bernstein function Φ ∈ BF there exists a unique subordinator
σΦ = {σΦ(y), y ≥ 0} (i. e. an increasing Lévy process) such that

E[e−λσΦ(y)] = e−yΦ(λ).

For general notion on subordinators we refer to [13, Chapter 3] and [14]. In particular
the hypothesis b = 0 ensure that σΦ is a pure jump process, a = 0 implies that it is
not killed and ν(0,+∞) = +∞ implies that σΦ is strictly increasing (a. s.).

Let us now fix our Bernstein function Φ and its associated subordinator σΦ . Now
we can define the inverse subordinator EΦ as, for any t > 0

EΦ(t) := inf{y ≥ 0 : σΦ(y) > t}.

Under our hypotheses, we have that EΦ(t) is absolutely continuous for any t > 0 and
its sample paths are almost surely continuous. Let us denote by fΦ(s; t) its density
(see [34]). Let us recall (see [34]) that, denoting by f Φ(s; λ) the Laplace transform
of fΦ(s; t) with respect to t ,

f Φ(s; λ) = Φ(λ)

λ
e−sΦ(λ).

Now let us introduce the non-local convolution derivatives (of Caputo type) associated
with Φ. Indeed, for Φ identified by the Lévy triple (0, 0, ν), let us define the Lévy tail
ν(t) = ν(t,+∞). Now let us recall the definition of non-local convolution derivative,
defined in [27,49].

Definition 2 Let f : R+ → R be an absolutely continuous function. Then we define
the non-local convolution derivative induced by Φ of f as

dΦ

dtΦ
f (t) =

∫ t

0
f ′(τ )ν(t − τ)dτ. (8)
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Let us observe that one can define also the regularized version of the non-local con-
volution derivative as

dΦ

dtΦ
f (t) = d

dt

∫ t

0
( f (τ ) − f (0+))ν(t − τ)dτ (9)

observing that it coincides with the previous definition on absolutely continuous func-
tions. Here we will always consider the regularized form (9).

It can be shown, by Laplace transform arguments (see, for instance [4,28]) or by
Green functions arguments (see [29]), that the (eigenvalue) Cauchy problem

{
dΦ

dtΦ
eΦ(t; λ) = λeΦ(t; λ) t > 0

eΦ(0; λ) = 1

admits a unique solution for any λ > 0 and it is given by eΦ(t; λ) := E[eλEΦ(t)]
(hence, in particular, it is a completely monotone function in λ for fixed t). Let us
recall that if Φ(λ) = λα for α ∈ (0, 1), then ν(t) = t−α

Γ (1−α)
and dΦ

dtΦ
coincides with

the fractional Caputo derivative of order α. In particular this means that in this case
eΦ(t; λ) = Eα(λtα) where Eα is the one-parameter Mittag-Leffler function defined,
for t ∈ R as

Eα(t) =
+∞∑

k=0

tk

Γ (αk + 1)
.

Let us recall (see [48]) that

Eα(−λtα) ≤ 1

1 + tα
Γ (1+α)

λ

hence it is not difficult to show the following Proposition.

Proposition 3 For any λ > 0 it holds

λEα(−λtα) ≤ Γ (1 + α)

tα
.

The proof is identical to the one of [8, Lemma 4.2].Wewant to achieve a similar bound
for any inverse subordinator. This is done by means of the following proposition.

Proposition 4 Fix t > 0. Then there exists a constant K (t) such that

λeΦ(t;−λ) ≤ K (t), ∀λ ∈ [0,+∞). (10)

Proof Let us first recall that eΦ(t;−λ) = E[e−λEΦ(t)], thus it is the Laplace transform
of fΦ(s; t)with respect to s. In particular it is completelymonotone inλ and eΦ(t; 0) =
1. Now let us recall that fΦ(0+; t) = ν(t) (see, for instance, [49, Theorem 4.1]). On
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the other hand, by the initial-value theorem (see, for instance, [18, Section 17.8]), we
have

lim
λ→+∞ λeΦ(t;−λ) = fΦ(0+; t) = ν(t) < +∞.

Hence, we can consider the continuous function λ ∈ [0,+∞] �→ λeΦ(t;−λ) ∈ R
+

and obtain (10) by Weierstrass theorem. �

Let us give some examples of Bernstein functions and associated subordinators.

– We have already referred to the α-stable subordinator, i.e. the one we get when we
choose Φ(λ) = λα for α ∈ (0, 1). In such case, extensive informations on inverse
α-stable subordinators are given in [35]. As we stated before, we have in particular
eΦ(t; λ) = Eα(λtα), where Eα is the one-parameter Mittag-Leffler function (see
[15]). As a particular property, let us recall that, if we denote by σα the α-stable
subordinator and gα the density of the random variable σα(1), then the inverse
α-stable subordinator EΦ(t) admits density

fα(s; t) = t

β
s−1− 1

β gα(ts− 1
β );

– If we fix a constant θ > 0 and defineΦ(λ) = (λ+θ)α −θα we obtain the tempered
α-stable subordinator with tempering parameter θ > 0. Denoting by σα,θ (t) this
subordinator, one can show that the density of the subordinator is given by

gα,θ (s; t) = e−θs+tθα

gα(s; t)

where gα is the density of the α-stable subordinator σα(t). An important property
to recall is that the introduction of the tempering parameter implies the existence
of all the moments of σα,θ (t) (while this is not true for σα). Inverse tempered stable
subordinators are studied for instance in [30]. Moreover, it can be shown that the
Lévy tail ν is given by

ν(t) = αθαΓ (−α; t)

Γ (1 − α)
,

where Γ (α; x) = ∫ +∞
x tα−1e−t dt is the upper incomplete Gamma function;

– ForΦ(λ) = log(1+λα) as α ∈ (0, 1)we obtain the geometric α-stable subordina-
tor. From the form of the Bernstein function associated to the geometric α-stable
subordinator, one obtains (see [47, Theorem 2.6]) that the density gG,α of the
random variable σG,α(1) (where σG,α(t) is the geometric α-stable subordinator)
satisfies the following asymptotics:

gG,α(s) ∼ sα−1

Γ (α)
as s → 0+;

gG,α(s) ∼ 2π sin
(απ

2

)
Γ (1 + α)s−α−1 as s → +∞.
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Concerning the Lévy tail ν, it cannot be explicitly expressed, but it has been shown
in [47, Theorem 2.5] that it satisfies the following asymptotic relation:

ν(t) ∼ t−α

Γ (1 − α)
as t → +∞.

– If in the previous example we consider α = 1 we obtain the Gamma subordinator.
In this specific case, one can obtain explicitly the Lévy tail ν as (see, for instance,
[47] and references therein)

ν(t) = Γ (0; t).

4 Non-local Forward and Backward Equations

Let us consider N (t) to be a solvable birth–death process with state space E and
invariant measurem and let us denote by G andL its backward and forward operators,
respectively. Let us first focus on the backward equation.

4.1 Heuristic Derivation of the Strong Solution

Let us consider a Bernstein function Φ and the Cauchy problem

{
∂Φ

∂tΦ
u(t, x) = Gu(t, x) t > 0, x ∈ E

u(0, x) = g(x) x ∈ E .
(11)

Suppose that g ∈ �2(m). Let us consider (Qn)n∈E the family of orthonormal polyno-
mials associated to N (t). Then we can decompose g as

g(x) =
∑

n∈E

gn Qn(x)

for some coefficients (gn)n∈E . Let us suppose we want to find a solution u(t, x) by
separation of variables. Thus, let us suppose u(t, x) = T (t)ϕ(x). If we substitute this
relation in the first equation of (11) we obtain the following coupled equations

{
Gϕ(x) = λϕ(x) x ∈ E
dΦ

dtΦ
T (t) = λT (t) t > 0.

Concerning the first equation, let us observe that we need to set ϕ(x) = Qn(x) (up to
a multiplicative constant) and λ = λn for some n ∈ E . Let us also recall that λn < 0.
Concerning the second equation we get

T (t) = eΦ(t; λn).
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and then we have for some n ∈ E

u(t, x) = Qn(x)eΦ(t; λn).

We can also have solutions that are linear combinations of QneΦ . Let us suppose that
we can consider eventually infinite linear combinations. Then we expect a solution of
the form

u(t, x) =
∑

n≥0

un Qn(x)eΦ(t; λn)

for some coefficients (un)n∈E . Finally, let us observe that

∑

n∈E

gn Qn(x) = g(x) = u(0, x) =
∑

n∈E

un Qn(x)

then, since the components (gn)n∈E are uniquely determined, then un = gn for any
n ∈ E .

Finally, we expect the solution to be of the form

u(t, x) =
∑

n∈E

gn Qn(x)eΦ(t; λn).

Now we want to formalize this reasoning.

4.2 The Backward Equation

Before working in the general case, we need to exploit what will be our fundamental
solution. To do this, let us show the following Lemma.

Lemma 2 Let N (t) be a solvable birth–death process with state space E, generator
G, invariant measure m and family of associated classical orthogonal polynomials
(Pn)n∈E . Then the series

pΦ(t, x; y) = m(x)
∑

n∈E

eΦ(t; λn)Qn(x)Qn(y), (12)

where Qn are the normalized orthogonal polynomials, absolutely converges for fixed
t ≥ 0 and x, y ∈ E.

Proof Let us first observe that if E is finite, then the summation (12) is actually finite.
Thus, let us consider the case in which E = N0. Let us denote by dn = ‖Pn‖�2 and let
us recall that the dual polynomials P̃n exhibit orthogonality with respect to themeasure
m̃(x) = 1

d2x
. However, since, if E = N0, N (t) is either an immigration-death process

or a Meixner process, then the dual polynomials P̃n coincide with the polynomials Pn

123



1302 Journal of Theoretical Probability (2022) 35:1284–1323

themselves. We have, by using the self-duality relation Pn(x) = Px (n),

pΦ(t, x; y) = m(x)

+∞∑

n=0

eΦ(t; λn)Qn(x)Qn(y)

= m(x)

+∞∑

n=0

m̃(n)eΦ(t; λn)Pn(x)Pn(y)

= m(x)

+∞∑

n=0

m̃(n)eΦ(t; λn)Px (n)Py(n).

Now let us denote by root(x) the set of all the roots of the polynomial Px (n). These
sets are finite with cardinality at most x . Thus, we can define

n0 = �max(root(x) ∪ root(y))� + 1.

To show the absolute convergence of the series in pΦ(t, x; y), we only need to show
the absolute convergence of

+∞∑

n=n0

m̃(n)eΦ(t; λn)Px (n)Py(n).

Let us observe (see [38, Table 2.3]) that the sign of the director coefficient of Px (both
in the Charlier than in the Meixner case) depends on the parity of x . In particular we
have that for any n ≥ n0 it holds sign(Px (n)Py(n)) = (−1)x+y . So we get

+∞∑

n=n0

∣∣m̃(n)eΦ(t; λn)Px (n)Py(n)
∣∣

≤ (−1)x+y
+∞∑

n=n0

m̃(n)Px (n)Py(n),

where we have to observe that eΦ(t; λn) ≤ 1 since λn ≤ 0. As before, the series at
the right-hand side converges if and only if

+∞∑

n=0

m̃(n)Px (n)Py(n)

converges. However, by the dual orthogonal relation and the self-duality relation of
Charlier and Meixner polynomials, we achieve

+∞∑

n=0

m̃(n)Px (n)Py(n) = 1

m(x)
δx,y
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for any x, y ∈ N, concluding the proof. �
Before exploiting the strong solution, let us show the normal convergence of some
auxiliary series of functions.

Lemma 3 Let N (t) be a solvable birth–death process with state space E = N0,
generator G, invariant measure m and family of associated classical orthogonal poly-
nomials (Pn)n≥0. Let g ∈ �2(m) such that g(x) = ∑

n≥0 gn Qn(x) for x ∈ E and
some constants (gn)n≥0, where (Qn)n≥0 are the normalized orthogonal polynomials.
Then

1. For any x ∈ E it holds
∑

n≥0 |gn Qn(x)| ≤ ‖g‖
�2(m)√

m(x)
;

2. For any fixed x ∈ E the sum
∑

n≥0 eΦ(t; λn)gn Qn(x) normally converges for
t ∈ [0,+∞);

3. For any fixed x ∈ E and T1 > 0 the series
∑

n≥0 λneΦ(t; λn)gn Qn(x) normally
converges for t ∈ [T1,+∞).

Proof Let us show property (1). Since g(x) = ∑
n≥0 gn Qn(x) and Qn is an

orthonormal basis of �2(m), it holds
∑

n≥0 g2
n = ‖g‖2

�2(m)
. In particular it holds,

by Cauchy-Schwartz inequality and self-duality relation for Charlier and Meixner
polynomials

∑

n≥0

|gn Qn(x)| =
∑

n≥0

√
m̃(n)|gn Pn(x)|

≤
⎛

⎝
∑

n≥0

m̃(n)P2
n (x)

⎞

⎠

1
2

‖g‖�2(m)

=
⎛

⎝
∑

n≥0

m̃(n)P2
x (n)

⎞

⎠

1
2

‖g‖�2(m) = ‖g‖�2(m)√
m(x)

.

To show property (2), let us just observe that eΦ(t; λn) ≤ 1 since λn ≤ 0 and then

∑

n≥0

|eΦ(t; λn)gn Qn(x)| ≤
∑

n≥0

|gn Qn(x)|

where the series on the right-hand side is convergent and independent of t ≥ 0.
Concerning property (3), by Eq. (10) we obtain for some constant K (T1) > 0,

since eΦ(t; λn) is decreasing,

∑

n≥0

|λneΦ(t; λn)gn Qn(x)| ≤
∑

n≥0

|λneΦ(T1; λn)gn Qn(x)| ≤ K (T1)
∑

n≥0

|gn Qn(x)|,

concluding the proof. �
Now we are ready to show that for the initial datum g ∈ �2(m) our backward problem
admits a solution.
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Theorem 2 Let N (t) be a solvable birth–death process with state space E, generator
G, invariant measure m and family of associated classical orthogonal polynomials
(Pn)n∈E . Let g ∈ �2(m) such that g(x) = ∑

n∈E gn Qn(x) for x ∈ E and some
constants (gn)n∈E , where (Qn)n∈E are the normalized orthogonal polynomials. Then
the Cauchy problem

{
∂Φu
∂tΦ

(t, y) = Gu(t, y) t > 0, y ∈ E

u(0, y) = g(y) y ∈ E
(13)

admits a unique strong solution of the form

u(t, y) =
∑

n∈E

eΦ(t; λn)gn Qn(y). (14)

In particular supt≥0 ‖u(t, ·)‖�2(m) ≤ ‖g‖�2(m).
Finally pΦ(t, x; y) is the fundamental solution of (13), in the sense that it is the

strong solution of (13) for g(y) = δx (y) and for any g ∈ �2(m) it holds

u(t, y) =
∑

x∈E

pΦ(t, x; y)g(x).

Before giving the proof of the Theorem, let us state formally what we mean as strong
solution.

Definition 3 A function u(t, y) is a strong solution of the Cauchy problem (13) if:

– ∂Φu
∂tΦ

(t, y) exists for any t > 0 and y ∈ E ;

– The convolution integral in ∂Φu
∂tΦ

(t, y) is well-defined as a Bochner integral and the

differentiation operator is a strong differentiation in �2(m);
– The equations in (13) hold pointwise;
– u(t; ·) ∈ C([0,+∞); �2(m));
– ∂Φu

∂tΦ
(t; ·) ∈ C((0,+∞); �2(m)).

Proof of Theorem 2 Let us first show that u(t, y) in the form of (14) is a strong solution
for (13).

First of all, let us recall that, by definition of eΦ and Qn , it holds

G[eΦ(t; λn)Qngn](x) = eΦ(t; λn)gnGQn(x)

= λneΦ(t; λn)gn Qn(x) = ∂Φ

∂tΦ
eΦ(t; λn)gn Qn(x).

Now let us observe that if E is finite then nE ∈ N and we have that u(t, y) is a strong
solution of (13) just by linearity of the involved operators.
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Let us now suppose that E is countably infinite. First of all, let us show that the
series (14) converges in �2(m). To do this, define for N ∈ N

uN (t, y) =
N∑

n=0

eΦ(t; λn)gn Qn(y).

Now consider N < M inN and observe that, being λn ≤ 0 and eΦ(t; λn) ≤ 1, it holds

‖uN (t, ·) − uM (t, ·)‖2
�2(m)

≤
M∑

n=N

g2
n

thus, by Cauchy’s criterion, we know that the series converges in �2(m).
Now let us denote

Iν(t) =
∫ t

0
ν(τ)dτ

that is increasing and non-negative.
Let us then observe that

∫ t

0
(u(τ, y) − u(0+, y))ν(t − τ)dτ =

∫ t

0
(u(τ, y) − u(0+, y))d Iν(t − τ).

Since we have shown in Lemma 3 that the series defining u(t, y) normally converges
for fixed y ∈ E , then we can use [43, Theorem 7.16] to write:

∫ t

0
(u(τ, y)−u(0+, y))ν(t−τ)dτ =

+∞∑

n=0

(∫ t

0
(eΦ(τ ; λn) − 1)ν(t − τ)dτ

)
Qn(y)gn .

(15)
As next step, we want to differentiate under the series sign. However, we have to show
uniform convergence for t in any compact set [T1, T2] of the series of the derivatives
to use [43, Theorem 7.17]. Recalling (9), one has

+∞∑

n=0

∂

∂t

(∫ t

0
(eΦ(τ ; λn) − 1)ν(t − τ)dτ

)
Qn(y)gn =

+∞∑

n=0

∂Φ

∂tΦ
eΦ(t; λn)Qn(y)gn

=
+∞∑

n=0

λneΦ(t; λn)Qn(y)gn

that normally converges by statement (3) of Lemma 3.
Hence we obtain, differentiating on both sides in (15),

∂Φ

∂tΦ
u(t, y) =

+∞∑

n=0

∂Φ

∂tΦ
eΦ(t; λn)Qn(y)gn =

+∞∑

n=0

eΦ(t; λn)GQn(y)gn .
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Now let us recall that G = (b(x) − d(x))∇+ + d(x)Δ, hence we have to show that
we can exchange ∇+ with the sign of series. This is due to the commutative property
of normally convergent series. Indeed we have

∇+
+∞∑

n=0

eΦ(t; λn)Qn(y)gn =
+∞∑

n=0

eΦ(t; λn)Qn(y + 1)gn −
+∞∑

n=0

eΦ(t; λn)Qn(y)gn

= lim
N→+∞

(
N∑

n=0

eΦ(t; λn)Qn(y + 1)gn −
N∑

n=0

eΦ(t; λn)Qn(y)gn

)

= lim
N→+∞

N∑

n=0

eΦ(t; λn)∇+Qn(y)gn =
+∞∑

n=0

eΦ(t; λn)∇+Qn(y)gn

where all the passages are justifiedby the fact that the two series
∑+∞

n=0 eΦ(t; λn)Qn(y+
1)gn ,

∑+∞
n=0 eΦ(t; λn)Qn(y)gn both normally converge by Lemma 3. The same holds

for Δ. Thus, we finally have

∂Φ

∂tΦ
u(t, y) =

+∞∑

n=0

eΦ(t; λn)GQn(y)gn = Gu(t, y)

for any t > 0. Concerning the initial datum, we have

u(0, y) =
∑

n∈E

gn Qn(y) = g(y).

Now let us show strong continuity of u in [0,+∞) and of ∂Φ

∂tΦ
u in (0,+∞). These

properties are obvious as E is finite, thus let us suppose E = N0. Concerning the
continuity of u, let us show it in 0+, since for any other t ∈ (0,+∞) the proof is
analogous. We have

‖u(t, ·) − g(·)‖2
�2(m)

=
+∞∑

n=1

(1 − eΦ(t; λn))
2g2

n .

Now fix ε > 0. Since (gn)n≥0 belongs to �2, there exists n(ε) ≥ 0 such that∑+∞
n=n(ε) g2

n ≤ ε. By using the fact that (1 − eΦ(t; λ))2 ≤ 1 for any λ < 0, we
get

‖u(t, ·) − g(·)‖2
�2(m)

=
n(ε)∑

n=1

(1 − eΦ(t; λn))2g2
n + ε.

Sending t → 0+ (using the fact that eΦ(t; λn) is continuous in t and that the first
summation is finite) and then ε → 0+ we obtain strong continuity of u. Let us discuss
the continuity of ∂Φ

∂tΦ
u in (0,+∞). To do this, let us consider t0 ∈ [t1, t2] with t1 > 0.
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We have, for any t ∈ [t1, t2], arguing as before and using (10),

∥∥∥∥
∂Φ

∂tΦ
u(t, ·) − ∂Φ

∂tΦ
u(t0, ·)

∥∥∥∥
2

�2(m)

=
∥∥∥∥∥
∑

n∈E

λn(eΦ(t; λn) − eΦ(t0; λn))Qn(·)gn

∥∥∥∥∥

2

�2(m)

=
+∞∑

n=0

λ2n(eΦ(t; λn) − eΦ(t0; λn))2g2
n

≤
n(ε)∑

n=0

λ2n(eΦ(t; λn) − eΦ(t0; λn))2g2
n + K (t1)ε.

Thus, sending t → t0 (observing that the first sum is finite) and then ε → 0+ we
obtain the desired continuity. Uniqueness follows easily from the fact that (Qn)n≥0 is
an orthonormal system in �2(m) hence the coefficients are unique.
Now let us show the bound of the �2(m) norm. We have

‖u(t, ·)‖2
�2(m)

=
+∞∑

n=0

e2Φ(t; λn)g
2
n ≤

+∞∑

n=0

g2
n = ‖g‖�2(m) .

We only have to show the second property of Definition 3. Let us first show that the
convolution integral involved in the Φ-derivative ∂Φ

∂tΦ
u(t, ·) is a Bochner integral. To

do this, we can use Bochner’s theorem (see [3, Theorem 1.1.4]). We just have to show
that ∫ t

0
‖u(τ, ·) − u(0+, ·)‖�2(m) ν(t − τ)dτ < +∞;

to do this, we will work with the square of this quantity. By Jensen’s inequality (see
[44, Theorem 3.3]) we have

(∫ t

0
‖u(τ, ·) − u(0+, ·)‖�2(m) ν(t − τ)dτ

)2

≤ Iν(t)
∫ t

0
‖u(τ, ·) − u(0+, ·)‖2

�2(m)
ν(t − τ)dτ

= Iν(t)
∫ t

0

+∞∑

n=1

(1 − eΦ(τ ; λn))2g2
nν(t − τ)dτ,
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and then, by monotone convergence theorem and the fact that 0 ≤ 1− eΦ(t; λn) ≤ 1,

(∫ t

0
‖u(τ, ·) − u(0+, ·)‖�2(m) ν(t − τ)dτ

)2

≤ Iν(t)
+∞∑

n=1

∫ t

0
(1 − eΦ(τ ; λn))2ν(t − τ)dτg2

n

≤ I 2ν (t) ‖g‖�2(m) < +∞,

concluding the proof of the statement.
Next, let us show that the differential involved in ∂Φ

∂tΦ
u(t, y) is a strong differential

in �2(m), that is to say

lim
h→0

∥∥∥∥
1

h

(∫ t+h

0
(u(t + h − τ, ·) − u(0+, ·))ν̄(τ )dτ

−
∫ t

0
(u(t − τ, ·) − u(0+, ·))ν̄(τ )dτ

)
−

+∞∑

n=0

λneΦ(t; λn)Qngn

∥∥∥∥∥ �2(m) = 0.

(16)

Let us first argue as h > 0. First of all, let us rewrite the difference of the convolution
integrals in the following way

∫ t+h

0
(u(t + h − τ, y) − u(0+, y))ν̄(τ )dτ −

∫ t

0
(u(t − τ, y) − u(0+, y))ν̄(τ )dτ

=
∫ t

0
(u(t + h − τ, y) − u(t − τ, y))ν̄(τ )dτ

+
∫ t+h

t
(u(t + h − τ, y) − u(0+, y))ν̄(τ )dτ,

thus we can use the triangular inequality to achieve

∥∥∥∥
1

h

(∫ t+h

0
(u(t + h − τ, ·) − u(0+, ·))ν̄(τ )dτ

−
∫ t

0
(u(t − τ, ·) − u(0+, ·))ν̄(τ )dτ

)
−

+∞∑

n=0

λneΦ(t; λn)Qngn

∥∥∥∥∥ �2(m)

≤
∥∥∥∥∥
1

h

∫ t

0
(u(t + h − τ, ·) − u(t − τ, ·))ν̄(τ )dτ −

+∞∑

n=0

λneΦ(t; λn)Qngn

∥∥∥∥∥
�2(m)

+
∥∥∥∥
1

h

∫ t+h

t
(u(t + h − τ, ·) − u(0+, ·))ν̄(τ )dτ

∥∥∥∥
�2(m)

.
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Let us first consider the second summand. By Bochner’s theorem and the fact that ν(t)
is decreasing we have

∥∥∥∥
1

h

∫ t+h

t
(u(t + h − τ, ·) − u(0+, ·))ν̄(τ )dτ

∥∥∥∥
�2(m)

≤ ν(t)
1

h

∫ h

0
‖u(τ, ·) − u(0+, ·)‖�2(m) dτ.

Since we have already shown strong continuity of t ∈ [0,+∞) �→ u(t, ·) ∈ �2(m),
we know that τ �→ ‖u(τ, ·) − u(0+, ·)‖�2(m) is a continuous function, hence, by the
integral mean theorem, there exists θ(h) ∈ [0, h] such that

1

h

∫ h

0
‖u(τ, ·) − u(0+, ·)‖�2(m) dτ = ‖u(θ(h), ·) − u(0+, ·)‖�2(m) .

Taking the limit as h → 0+ we conclude that

lim
h→0+

1

h

∫ h

0
‖u(τ, ·) − u(0+, ·)‖�2(m) dτ = 0,

and then

lim
h→0+

∥∥∥∥
1

h

∫ t+h

t
(u(t + h − τ, ·) − u(0+, ·))ν̄(τ )dτ

∥∥∥∥
�2(m)

= 0. (17)

Now let us consider the first summand. By definition of u(t, y) we have

∫ t

0
(u(t + h − τ, y) − u(t − τ, y))ν̄(τ )dτ

=
∫ t

0

+∞∑

n=1

(eΦ(t + h − τ ; λn) − eΦ(t − τ ; λn))gn Qn(y)ν(τ )dτ.

Let us recall that for any t, s > 0 it holds |eΦ(t; λn) − eΦ(s; λn)| ≤ 1. By Lemma 3,
property 1, we have

+∞∑

n=1

|eΦ(t + h − τ ; λn) − eΦ(t − τ ; λn)||gn Qn(y)| ≤ ‖g‖�2(m)√
m(y)

,
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thus, being ν integrable in (0, t), we can use dominated convergence theorem to
achieve

∫ t

0
(u(t + h − τ, y) − u(t − τ, y))ν̄(τ )dτ

=
+∞∑

n=1

(∫ t

0
(eΦ(t + h − τ ; λn) − eΦ(t − τ ; λn))ν(τ )dτ

)
gn Qn(y).

Observing that

+∞∑

n=1

∣∣∣∣
1

h

∫ t

0
(eΦ(t + h − τ ; λn) − eΦ(t − τ ; λn))ν(τ )dτ

∣∣∣∣ |gn Qn(y)| ≤ Iν(t) ‖g‖�2(m)

h
√

m(y)

and +∞∑

n=1

|λneΦ(t; λn)||gn Qn(y)| ≤ K (t) ‖g‖�2(m)√
m(y)

for a suitable K (t), we have, being all the involved series absolutely convergent,

+∞∑

n=1

(
1

h

∫ t

0
(eΦ(t + h − τ ; λn) − eΦ(t − τ ; λn))ν(τ )dτ

)
gn Qn(y)

−
+∞∑

n=1

λneΦ(t; λn)gn Qn(y)

=
+∞∑

n=1

(
1

h

∫ t

0
(eΦ(t + h − τ ; λn) − eΦ(t − τ ; λn))ν(τ )dτ

−λneΦ(t; λn)

)
gn Qn(y). (18)

To show that the previous series converges in �2(m), let us define

SN =
N∑

n=1

(
1

h

∫ t

0
(eΦ(t + h − τ ; λn) − eΦ(t − τ ; λn))ν(τ )dτ

−λneΦ(t; λn)

)
gn Qn(y)
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and observe that, for any M > N ,

‖SM − SN ‖2
�2(m)

=
M∑

n=N+1

(
1

h

∫ t

0
(eΦ(t + h − τ ; λn)

− eΦ(t − τ ; λn))ν(τ )dτ − λneΦ(t; λn)

)2

g2
n

≤
M∑

n=N+1

((
1

h

∫ t

0
(eΦ(t + h − τ ; λn)

−eΦ(t − τ ; λn))ν(τ )dτ)2 + (λneΦ(t; λn))
2
)

g2
n

≤
(

I 2ν (t)

h2 + K 2(t)

) M∑

n=N+1

g2
n

for a suitable K (t). Being
∑+∞

n=0 g2
n convergent, by Cauchy’s criterion we know that

for any ε > 0 there exists N0 > 0 such that, for any N0 ≤ N < M , it holds∑M
n=N+1 g2

n < ε(
I2ν (t)

h2
+K 2(t)

) . In particular, choosing N0 ≤ N < M we have that

‖SM − SN ‖�2(m) < ε, thus SN converges in �2(m). In particular, this means that we
can use Parseval’s identity on the series in the right-hand side of Eq. (18), hence

∥∥∥∥∥
1

h

∫ t

0
(u(t + h − τ, ·) − u(t − τ, ·))ν̄(τ )dτ −

+∞∑

n=1

λneΦ(t; λn)Qngn

∥∥∥∥∥

2

�2(m)

=
+∞∑

n=1

(
1

h

∫ t

0
(eΦ(t + h − τ ; λn) − eΦ(t − τ ; λn))ν(τ )dτ − λneΦ(t; λn)

)2

g2
n

=
+∞∑

n=1

(
1

h

(∫ t+h

0
(eΦ(t + h − τ ; λn) − 1)ν(τ )dτ

−
∫ t

0
(eΦ(t − τ ; λn) − 1)ν(τ )dτ

)

−1

h

∫ t+h

t
(eΦ(t + h − τ ; λn) − 1)ν(τ )dτ − λneΦ(t; λn)

)2

g2
n

2 ≤
+∞∑

n=1

((
In(t + h) − In(t)

h
− λneΦ(t; λn)

)2

+ν2(t)

(
1

h

∫ h

0
(eΦ(s; λn) − 1)2ds

))
g2

n,
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where we set

In(t) =
∫ t

0
(eΦ(t − τ ; λn) − 1)ν(τ )dτ

and we used Jensen’s inequality.
Observe that In(t) is a C1 function with I ′

n(t) = λneΦ(t; λn). By Lagrange’s
theorem there exists a function θn(h) ∈ [t, t + h], for each n ≥ 1, such that

In(t + h) − In(t)

h
= I ′

n(θn(h)) = λneΦ(θn(h); λn),

and then we obtain
∥∥∥∥
1

h

∫ t+h

0
(u(t + h − τ, ·) − u(t − τ, ·))ν̄(τ )dτ

−
+∞∑

n=0

λneΦ(t; λn)Qngn

∥∥∥∥∥

2

�2(m)

2 ≤
+∞∑

n=1

(
(λneΦ(θn(h); λn) − λneΦ(t; λn))

2

+ν2(t)

(
1

h

∫ h

0
(eΦ(s; λn) − 1)2ds

))
g2

n .

Let us show that the series in the previous equation normally converges for fixed t > 0.
To do this, just observe that

+∞∑

n=1

(
(λneΦ(θn(h); λn) − λneΦ(t; λn))2

+ν2(t)

(
1

h

∫ h

0
(eΦ(s; λn) − 1)2ds

))
g2

n

≤ (2K 2(t) + ν2(t)) ‖g‖�2(m) .

Thus, we can take the limit inside the summation sign to obtain

lim
h→0+

+∞∑

n=1

(
(λneΦ(θn(h); λn) − λneΦ(t; λn))2

+ν2(t)

(
1

h

∫ h

0
(eΦ(s; λn) − 1)2ds

))
g2

n

=
+∞∑

n=1

(
λ2n lim

h→0+(eΦ(θn(h); λn) − eΦ(t; λn))2

+ν2(t) lim
h→0+

(
1

h

∫ h

0
(eΦ(s; λn) − 1)2ds

))
g2

n = 0,
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where we used the fact that eΦ(t; λn) is continuous. Last relation implies

lim
h→0+

∥∥∥∥
1

h

∫ t+h

0
(u(t + h − τ, ·) − u(t − τ, ·))ν̄(τ )dτ

−
+∞∑

n=0

λneΦ(t; λn)Qngn

∥∥∥∥∥

2

�2(m)

= 0. (19)

Combining Eqs. (17) and (19) we finally obtain

lim
h→0+

∥∥∥∥
1

h

(∫ t+h

0
(u(t + h − τ, ·) − u(0+, ·))ν̄(τ )dτ

−
∫ t

0
(u(t − τ, ·) − u(0+, ·))ν̄(τ )dτ

)
−

+∞∑

n=0

λneΦ(t; λn)Qngn

∥∥∥∥∥ �2(m) = 0.

(20)

Concerning the case h < 0, after observing that

∫ t+h

0
(u(t + h − τ, y) − u(0+, y))ν̄(τ )dτ −

∫ t

0
(u(t − τ, y) − u(0+, y))ν̄(τ )dτ

=
∫ t+h

0
(u(t + h − τ, y) − u(t − τ, y))ν̄(τ )dτ

+
∫ t

t+h
(u(t − τ, y) − u(0+, y))ν̄(τ )dτ,

one can conclude with the same argument as in the case h > 0 that

lim
h→0−

∥∥∥∥
1

h

(∫ t+h

0
(u(t + h − τ, ·) − u(0+, ·))ν̄(τ )dτ

−
∫ t

0
(u(t − τ, ·) − u(0+, ·))ν̄(τ )dτ

)
−

+∞∑

n=0

λneΦ(t; λn)Qngn

∥∥∥∥∥ �2(m) = 0.

(21)

Combining Eqs. (20) and (21) we finally obtain Eq. (16).
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Now let us show that pΦ(t, x; y) is the fundamental solution. Let us consider a
function g ∈ �2(m). Then we have

∑

x∈E

pΦ(t, x; y)g(x) =
∑

x∈E

m(x)

(
∑

n∈E

eΦ(t; λn)Qn(x)Qn(y)

)
g(x)

=
∑

n∈E

Qn(y)eΦ(t; λn)
∑

x∈E

m(x)Qn(x)g(x)

=
∑

n∈E

Qn(y)eΦ(t; λn)gn = u(t, y)

where we could exchange the order of the series since or E is finite, and then the sums
are finite, or E is countably infinite and all the series involved are normally convergent
in compact sets containing t .

Finally, let us observe that if, for some z ∈ E , g(x) = δz(x), then

u(t, y) =
∑

x∈E

pΦ(t, x; y)δz(x) = pΦ(t, z; y),

concluding the proof. �

4.3 The Forward Equation

Now let us apply the same strategy to study the Cauchy problem associated with L.
Theorem 3 Let N (t) be a solvable birth–death process with state space E, forward
operator L, invariant measure m and family of associated classical orthogonal poly-
nomials (Pn)n∈E . Let f /m ∈ �2(m) such that f (x) = m(x)

∑
n∈E fn Qn(x) for

x ∈ E and some constants ( fn)n∈E , where (Qn)n∈E are the normalized orthogonal
polynomials. Then the Cauchy problem

{
∂Φv
∂tΦ

(t, x) = Lv(t, x) t > 0, x ∈ E

v(0, x) = f (x) x ∈ E
(22)

admits a unique strong solution of the form

v(t, x) = m(x)
∑

n∈E

eΦ(t; λn) fn Qn(x), (23)

such that supt≥0 ‖v(t, ·)‖�2(m) ≤ ‖ f /m‖�2(m). Finally pΦ(t, x; y) is the fundamental
solution of (13), in the sense that it is the strong solution of (13) for f (x) = δy(x)

and for any f /m ∈ �2(m) it holds

v(t, x) =
∑

y∈E

pΦ(t, x; y) f (y).
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Proof Let us first observe, by Lemma 1

Lm(x)eΦ(t; λn) fn Qn(x) = eΦ(t; λn) fnLz→x (m(z)Qn(z))(x)

= λneΦ(t; λn) fnm(x)Qn(x) = ∂Φ

∂tΦ
m(x)eΦ(t; λn) fn Qn(x).

Thus, the exact same strategy of the proof of Theorem 2 leads to formula (23) and
uniqueness follows as before. Concerning the estimate on the norm, it holds, sincem
is a probability measure and then m(x) ≤ 1,

‖v(t, x)‖2
�2(m)

=
∑

x∈E

m(x)

(
m(x)

∑

n∈E

eΦ(t; λn) fn Qn(x)

)2

≤
∑

x∈E

m(x)

(
∑

n∈E

fneΦ(t; λn)Qn(x)

)2

=
∑

n∈E

f 2n e
2
Φ(t; λn) ≤ ‖ f /m‖2

�2(m)
.

Moreover, let us observe that

∑

y∈E

pΦ(t, x; y) f (y) = m(x)
∑

y∈E

(
∑

n∈E

eΦ(t; λn)Qn(x)Qn(y)

)
f (y)

m(y)
m(y)

= m(x)
∑

n∈E

eΦ(t; λn)Qn(x)
∑

y∈E

Qn(y)
f (y)

m(y)
m(y)

= m(x)
∑

n∈E

eΦ(t; λn) fn Qn(x) = v(t, x).

Finally, observe that if, for some fixed z ∈ E , f (y) = δz(y), then obviously f /m ∈
�2(m) and we have

v(t, x) =
∑

y∈E

pΦ(t, x; y) f (y) =
∑

y∈E

pΦ(t, x; y)δz(y) = pΦ(t, x; z)

concluding the proof. �
Remark 1 One also obtains the following estimate on the norm:

sup
t≥0

‖v(t, ·)/m(·)‖�2(m) ≤ ‖ f /m‖�2(m) .

Next step is to identify some processes such that pΦ(t, x; y) is its transition probability
function (in some sense) and then give some stochastic representation of the strong
solutions of the Cauchy problems (14) and (23).
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5 Non-local Solvable Birth–Death Processes

Let us now consider a solvable birth–death process N and the subordinator σΦ asso-
ciated to the Bernstein function Φ, with its inverse EΦ . Let us suppose N and EΦ are
independent.

Definition 4 Thenon-local solvable birth–death process inducedby N andΦ is defined
as

NΦ(t) := N (EΦ(t)) (24)

for any t ≥ 0, where EΦ(t) is independent of N (t). Moreover, we define its transition
probability function

pΦ(t, x; y) := P(NΦ(t) = x |NΦ(0) = y).

We used the same notation for the transition probability function and the fundamental
solution of the Cauchy problems (14) and (23). Indeed, we can show the following
result.

Theorem 4 The transition probability function pΦ(t, x; y) coincides with the series
defined in Lemma 2.

Proof Let us first observe that NΦ(0) = N (0) almost surely (since EΦ(0) = 0 almost
surely), thus, by a simple conditioning argument, we have

pΦ(t, x; y) =
∫ +∞

0
p(s, x; y) fΦ(s, t)ds.

Now let us recall, by Theorem 1, that

p(s, x; y) = m(x)
∑

n∈E

eλn t Qn(x)Qn(y)

thus we have

pΦ(t, x; y) = m(x)

∫ +∞

0

∑

n∈E

eλns Qn(x)Qn(y) fΦ(s, t)ds.

If E is finite, we conclude the proof. So let us suppose E = N0. Recalling the notation
in the proof of Lemma 2, let us define

n0 = �max(root(x) ∪ root(y))� + 1.
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and let us split the summation in two parts. We have

pΦ(t, x; y) = m(x)

∫ +∞

0

n0∑

n=0

Qn(x)Qn(y)eλns fΦ(s, t)ds

+ m(x)

∫ +∞

0

+∞∑

n=n0+1

Qn(x)Qn(y)eλns fΦ(s, t)ds.

Now let us observe that we can exchange the integral sign with the first summation by
linearity of the integral, while in the second summation this can be done by Fubini’s
theorem, being the integrands of fixed sign (exactly the sign is determined by (−1)x+y

since Qn(x)Qn(y) = m̃(n)Px (n)Py(n)). Thus, we have

pΦ(t, x; y) =m(x)

n0∑

n=0

Qn(x)Qn(y)

∫ +∞

0
eλns fΦ(s, t)ds

+ m(x)

+∞∑

n=n0+1

Qn(x)Qn(y)

∫ +∞

0
eλns fΦ(s, t)ds

= m(x)

+∞∑

n=0

Qn(x)Qn(y)

∫ +∞

0
eλns fΦ(s, t)ds.

Finally, let us recall that, by definition

∫ +∞

0
eλns fΦ(s, t)ds = E[eλn EΦ(t)] = eΦ(t; λn),

concluding the proof. �
By using this result, we can achieve some stochastic representation of the solutions of
the Cauchy problems (14) and (23). Indeed we have the following result.

Proposition 5 Let NΦ(t) be the non-local solvable birth–death process associated to
N (t) and Φ. Suppose N (t) admits state space E. Then

1. For g ∈ �2(m) the function u(t, y) = Ey[g(NΦ(t))] (whereEy[·] = E[·|NΦ(0) =
y]) is strong solution of (14);

2. For f /m ∈ �2(m) such that f ≥ 0 and
∑

x∈E f (x) = 1, denoting by P f the
probability measure obtained by P conditioning with the fact that NΦ(0) admits
distribution f , then the function v(t, x) = P f (NΦ(t) = x) is strong solution of
(23).

Proof To show assertion 1, let us observe that

u(t, y) = Ey[g(NΦ(t))] =
∑

x∈E

g(x)pΦ(t, x; y),
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obtaining that u(t, y) is the strong solution of (13) by Theorem 2.
Concerning assertion 2, we have

v(t, x) = P f (NΦ(t) = x) =
∑

y∈E

f (y)pΦ(t, x; y)

obtaining that v(t, x) is the strong solution of (22) by Theorem 3. �

Finally, this proposition allows us to obtain the invariant distribution of NΦ(t) and
show that it is also the limit distribution.

Corollary 3 Let NΦ(t) be the non-local solvable birth–death process associated to
N (t) and Φ. Suppose N (t) admits state space E. Then

1. If NΦ(0) admits distribution m, then NΦ(t) admits distribution m for any t ≥ 0;
2. If NΦ(0)admits distribution f such that f /m ∈ �2(m), then limt→+∞ P f (NΦ(t) =

x) = m(x).

Proof Let us first showproperty (1). To do this, let us observe that 1 ∈ �2(m) sincem is
a probabilitymeasure. Thus, recall, by Proposition 5, that v(t, x) = Pm(NΦ(t) = x) is
a strong solutionof (22).Nowweneed to determinemn such that

∑
n∈E mn Qn(x) = 1.

Let us recall that Q0(x) = 1 while deg(Qn(x)) = n for any n = 1, . . . , nE , thus we
have m0 = 1 and mn = 0 for any n = 1, . . . , nE . Moreover, let us recall that λ0 = 0,
since 1 ∈ K er(G). Hence we have, by Theorem 3,

v(t, x) = m(x)
∑

n∈E

eΦ(t; λn)Qn(x)mn = m(x)

and NΦ(t) admits m as distribution.
Now let us suppose NΦ(0) admits f as distribution with f /m ∈ �2(m). By Propo-

sition 5 we have that v(t, x) = P f (NΦ(t) = x) is a strong solution of (22) hence it
holds

v(t, x) = m(x)
∑

n∈E

eΦ(t; λn)Qn(x) fn = m(x) f0 + m(x)
∑

n∈E
n≥1

eΦ(t; λn)Qn(x) fn .

Let us determine f0. We have, by definition of scalar product in �2(m),

f0 =
∑

x∈E

m(x)
f (x)

m(x)
Q0 =

∑

x∈E

f (x) = 1

hence we have
v(t, x) = m(x) + m(x)

∑

n∈E
n≥1

eΦ(t; λn)Qn(x) fn .
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Now let us consider the summation part. First of all, let us recall thatm is a probability
measure, hence m(x) ≤ 1. We have

∑

x∈E

m(x) f 2(x) ≤
∑

x∈E

m(x)
f 2(x)

m2(x)
= ‖ f /m‖�2(m)

hence f ∈ �2(m). By Lemma 3 we know that
∑

n∈E
n≥1

eΦ(t; λn)Qn(x) fn normally

converges, hence we can take the limit as t → +∞ under the summation sign.
Now let us observe that limt→+∞ EΦ(t) = +∞ almost surely. On the other hand,

we have eλn EΦ(t) ≤ 1, thus we can use monotone convergence theorem to achieve

lim
t→+∞ eΦ(t; λn) = E[ lim

t→+∞ eλn EΦ(t)] = 0.

Finally, by dominated convergence theorem, we have

lim
t→+∞ v(t, x) = m(x) + m(x) lim

t→+∞
∑

n∈E
n≥1

eΦ(t; λn)Qn(x) fn

= m(x) + m(x)
∑

n∈E
n≥1

Qn(x) fn lim
t→+∞ eΦ(t; λn) = m(x),

concluding the proof. �

6 Correlation Structure of Non-local Solvable Birth–Death Processes

Let us consider the potential measure UΦ(t) = E[EΦ(t)] of the subordinator σΦ(t).
As a consequence of Corollary 2, we can directly apply [9, Theorem 2] to obtain and
expression of the covariance of NΦ(t) in terms of eΦ(t; λ1). In particular, with an easy
refinement of the proof, by using the distributional derivative of the potential function
UΦ(t), we can get rid of some hypotheses of the aforementioned Theorem.

Proposition 6 Let N (t) be a solvable birth–death process with state space E, invariant
measure m and family of associated classical orthogonal polynomials (Pn)n∈E . Let
us denote by ι : E → E the identity function and suppose that ι = a0 + a1Q1. Then
it holds, for any t ≥ s ≥ 0

Covm(NΦ(t), NΦ(s))

= a2
1

(
−λ1

∫ s

0
eΦ(t − τ ; λ1)dUΦ(τ) − 2 + 2eΦ(s; λ1) + eΦ(t; λ1)

)
.

As we expected, since we are composing a stationary process N (t) (if N (0) admitsm
as distribution) with a non-stationary one EΦ(t), NΦ(t) is not second-order stationary.
To introduce the notion of memory for our process NΦ(t), we refer to the necessary
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conditions given in [12, Lemmas 2.1 and 2.2], since, for our processes, it is easier to
work with the auto-covariance function. In particular we focus on the long memory
with respect to the initial state.

Definition 5 Given the function γ (n) = Covm(NΦ(n), NΦ(0)) for n ∈ N:

– NΦ(t) is said to exhibit long-range dependence if γ (n) ∼ �(n)n−k where �(n) is
a slowly varying function and k ∈ (0, 1);

– NΦ(t) is said to exhibit short-range dependence if
∑+∞

n=1 |γ (n)| < +∞.

In the specific case of the initial state, we have the following Proposition.

Proposition 7 Let N (t) be a solvable birth–death process with state space E, invariant
measure m and family of associated classical orthogonal polynomials (Pn)n∈E . Let
us denote by ι : E → E the identity function and suppose that ι = a0 + a1Q1. Then,
limt→+∞ Covm(NΦ(t), NΦ(0)) = 0.

Moreover, if eΦ(t; λ1) ∼ Ct−α as t → +∞ for some α ∈ (0, 1), then NΦ(t) is
long-range dependent.

Proof One has
Covm(NΦ(t), NΦ(0)) = a2

1eΦ(t; λ1),

where this identity can be achieved by direct calculations, observing that Covm(N (t),
N (0)) = a2

1eλ1t . The second assertion easily follows from last identity. �
Remark 2 Let us observe that, actually, since Covm(N (t), N (0)) = a2

1eλ1t , we can
argue by direct calculations without using the regularity hypotheses on P(EΦ(t) ≥ s).

Concerning the asymptotic behaviour of eΦ(t; λ1), one can obtain some information
by the behaviour of Φ. Indeed one has the following result.

Proposition 8 If Φ is regularly varying at 0+ with order α ∈ (0, 1), then, for any fixed
λ > 0, eΦ(t;−λ) is regularly varying at ∞ with order −α.

Proof Let us consider J (t) = ∫ t
0 eΦ(s;−λ)ds and let us observe that the Laplace-

Stieltjes transform J̄ (η) of J (t) is given by

J̄ (η) = Φ(η)

η(Φ(η) + λ)
.

Since λ is positive, one has that J̄ (η) is regularly varying at 0+ if and only if Φ(η)
η

is

(since Φ(0+) = 0 by the fact that a = 0, see, for instance, [45]). In particular, since
Φ is regularly varying at 0+ with order α, then J̄ (η) is regularly varying at 0+ with
order α − 1.

By Karamata’s Tauberian theorem (see, for instance, [37] for a compact statement
and [16] for the full proof), we know that J (t) is regularly varying at infinity with
order 1 − α. Now let us observe that J ′(t) = eΦ(t;−λ), that is monotone, hence, by
Monotone density theorem (again, see [16,37]), we have that eΦ(t;−λ) is regularly
varying at ∞ of order −α, concluding the proof. �
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Remark 3 Let us observe that the results coincideswith [36, Theorem2.1−(4)], except
for the fact that we are not asking Φ to be special or ν to be absolutely continuous and
we are not considering any hypothesis on the existence or regularity of the density of
the subordinator.

In particular we get the following Corollary.

Corollary 4 Under the hypotheses of Proposition 7, if Φ is regularly varying at 0+
with order α ∈ (0, 1), then NΦ(t) is long-range dependent.

Let us reconsider the examples given in Sect. 3 and study the asymptotic behaviour
of the covariance.

– In the case Φ(λ) = λα we can actually obtain an explicit formulation of the
autocovariance function for t ≥ s > 0:

Covm(NΦ(t), NΦ(s))

= a2
1

(
Eα(λ1tα) − λ1αtα

Γ (1 + α)

∫ s
t

0

Eα(λ1tα(1 − z)α)

z1−α
dz

)
,

where the proof of such formula is identical to the one of [31, Theorem 3.1].
Thus, we can use [31, Remark 3.3] to obtain directly long-range dependence of
the process.

– As Φ(λ) = (λ + θ)α − θα , we have that Φ(λ) is actually regularly varying at 0+
of order 1. Indeed we haveΦ(λ)/λ → αθα+1 as λ → 0+. In particular this means
that the function J (η) defined in Proposition 8 is such that J (0+) = αθα+1

λ
. By

Karamata’s Tauberian theorem, we still have limt→+∞ J (t) = αθα+1

λ
. This means

in particular that eΦ(s;−λ) is integrable in (0,+∞) and thus
∑+∞

n=1 eΦ(n;−λ) <

+∞. From this observation we obtain that in such case NΦ(t) is short-range
dependent.

– If we considerΦ(λ) = log(1+λα) forα ∈ (0, 1), thenΦ(λ) is regularly varying at
0+ of order α, since limλ→0+ log(1+λα)

λα = 1. Thus, in particular, NΦ is long-range
dependent by Corollary 4.

– Finally, ifΦ(λ) = log(1+λ), we have limλ→0+ log(1+λ)
λ

= 1 and then J (0+) = 1
λ
.

This means again that eΦ(t;−λ) is integrable in (0,+∞) and then NΦ is short-
range dependent.

Acknowledgements We would like to thank the referee for his/her comments, as they really helped to
improve the paper.

Funding Open access funding provided by Universitá degli Studi di Napoli Federico II within the CRUI-
CARE Agreement.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

123



1322 Journal of Theoretical Probability (2022) 35:1284–1323

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Afendras, G., Balakrishnan, N., Papadatos, N.: Orthogonal polynomials in the cumulative Ord family
and its application to variance bounds. Statistics 52(2), 364–392 (2018)

2. Albanese, C., Kuznetsov, A.: Affine lattice models. Int. J. Theor. Appl. Finance 8(02), 223–238 (2005)
3. Arendt, W., Batty, C.J., Hieber, M., Neubrander, F.: Vector-Valued Laplace Transforms and Cauchy

Problems. Springer, Berlin (2011)
4. Ascione, G.: Abstract Cauchy problems for the generalized fractional calculus (2021) NonLinear

Analysis (Accepted)
5. Ascione, G., Leonenko, N., Pirozzi, E.: On the transient behaviour of M/M/∞ fractional queues,

nonlocal and fractional operators. SEMA SIMAI Springer Series, 26, in press, (2021)
6. Ascione, G., Leonenko, N., Pirozzi, E.: Fractional queues with catastrophes and their transient

behaviour. Mathematics 6(9), 159 (2018)
7. Ascione, G., Leonenko, N., Pirozzi, E.: Fractional Erlang queues. Stoch. Process. Appl. 130(6), 3249–

3276 (2020)
8. Ascione, G., Leonenko, N., Pirozzi, E.: Fractional immigration-death processes. J. Math. Anal. Appl.

495(2), 124768 (2021)
9. Ascione, G., Toaldo, B.: A semi-Markov leaky integrate-and-fire model. Mathematics 7(11), 1022

(2019)
10. Beghin, L., Orsingher, E., et al.: Fractional Poisson processes and related planar random motions.

Electron. J. Probab. 14, 1790–1826 (2009)
11. Beghin, L., Orsingher, E., et al.: Poisson-type processes governed by fractional and higher-order recur-

sive differential equations. Electron. J. Probab. 15, 684–709 (2010)
12. Beran, J., Feng, Y., Ghosh, S., Kulik, R.: Long-Memory Processes. Springer, Berlin (2016)
13. Bertoin, J.: Lévy Processes, vol. 121. Cambridge University Press, Cambridge (1996)
14. Bertoin, J.: Subordinators: Examples and Applications. In: Lectures on Probability Theory and Statis-

tics, pp. 1–91. Springer (1999)
15. Bingham, N.H.: Limit theorems for occupation times ofMarkov processes. Zeitschrift fürWahrschein-

lichkeitstheorie und verwandte Gebiete 17(1), 1–22 (1971)
16. Bingham, N.H., Goldie, C.M., Teugels, J.L.: Regular Variation, vol. 27. Cambridge University Press,

Cambridge (1989)
17. Cahoy, D.O., Polito, F., Phoha, V.: Transient behavior of fractional queues and related processes.

Methodol. Comput. Appl. Probab. 17(3), 739–759 (2015)
18. Cannon, R.H.: Dynamics of Physical Systems. Courier Corporation (2003)
19. Forman, J.L., Sørensen,M.: The Pearson diffusions: a class of statistically tractable diffusion processes.

Scand. J. Stat. 35(3), 438–465 (2008)
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