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Abstract
The paper deals with some properties of set-valued functions having bounded Riesz
p-variation. Set-valued integrals of Young type for suchmultifunctions are introduced.
Selection results and properties of such set-valued integrals are discussed. These inte-
grals contain as a particular case set-valued stochastic integrals with respect to a
fractional Brownian motion, and therefore, their properties are crucial for the investi-
gation of solutions to stochastic differential inclusions driven by a fractional Brownian
motion.
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1 Introduction

Since the pioneering work of Aumann in 1965 [6], the notion of set-valued integrals
for multivalued functions has attracted the interest of many authors from both the-
oretical and practical points of view. In particular, the theory has been developed
extensively, among others, with applications to optimal control theory, mathematical
economics, theory of differential inclusions and set-valued differential equations, see,
e.g., [1,3,4,21,23,29]. Later, the notion of the integral for set-valued functions has
been extended to a stochastic case, where set-valued Itô integrals have been studied.
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Moreover, concepts of set-valued integrals, both deterministic and stochastic, were
used to define the notion of fuzzy integrals applied in the theory of fuzzy differential
equations, e.g., [14,24]. On the other hand, in a single-valued case, one can consider
integration with respect to integrators such as fractional Brownian motion which has
Hölder continuous sample paths. In some cases, such integrals can be understood in
the sense of Young [30]. Controlled differential equations driven by Young integrals
have been studied by Lejay in [25]. A more advanced approach to controlled differen-
tial equations is based on the rough path integration theory initiated by T. Lions [26]
and further examined in [12,17]. Control and optimal control problems inspired the
intensive expansion of differential and stochastic set-valued inclusions theory. Thus,
it seems reasonable to investigate also differential inclusions driven by a fractional
Brownian motion and Young-type integrals also. Recently, in [7] the authors consid-
ered a Young-type differential inclusion, where solutions were understood as Young
integrals of appropriately regular selections of multivalued right-hand side. Set-valued
Aumann or Itô-type integrals are useful tools in the investigation of properties of solu-
tion sets to differential or stochastic inclusions and set-valued equations [2,15,16,22].
Therefore, it is quite natural to introduce set-valued Young-type integrals. Motivated
by this, the aim of this work is to introduce such set-valued integrals and to investigate
their properties, especially these which seem to be useful in the Young set-valued
inclusions theory. It is known that three of properties of Aumann set-valued integrals
are crucial in the differential inclusions theory. Namely, they are the existence of a
Castaing representation of the set of integrable selectors, decomposability of this set
and valuation of a Hausdorff distance between set-valued integrals by the distance
between integrated multifunctions (see, e.g., [20]).

Set-valued Young integrals considered in the paper deal with the class of set-valued
functions having a bounded Riesz p-variation. Such integrals contain as a particular
case set-valued stochastic integrals with respect to a fractional Brownian motion.
Therefore, in our opinion, their properties are crucial not only for the existence of
solutions to stochastic differential inclusions and set-valued stochastic differential
equations driven by a fractional Brownian motion but also for useful properties of
their solution sets.

The paper is organized as follows. In Sect. 2, we define a space of set-valued
functions of a finite Riesz p-variation. Section 3 deals with the properties of sets of
appropriately regular selections of such set-valued functions. Here, we shall establish
a new type of decomposability for sets of functions with a finite Riesz p-variation as
well as their integral property. Finally, in Sect. 4, we introduce a set-valued Young-
type integral which is based on the sets of selections examined in Sect. 3. We shall
investigate properties of this set-valued integral.

2 Finite p-Variation Set-Valued Functions

Let (X , ‖·‖) be aBanach space. Denote byComp (X) andConv (X) the families of all
nonempty and compact, and nonempty compact and convex subsets of X , respectively.
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The Hausdorff metric HX in Comp (X) is defined by

HX (B,C) = max
{
HX (B,C) , HX (C, B)

}
,

where HX (B,C) = supb∈B distX (b,C) = supb∈B infc∈C ‖c−b‖X . If X is separable,
then the space (Comp (X) , HX ) is a Polish space and (Conv (X) , HX ) is its closed
subspace. For B,C, D, E ∈ Comp (X), we have

HX (B + C, D + E) ≤ HX (B, D) + HX (C, E) (1)

where B + C := {b + c : b ∈ B, c ∈ C} denotes the Minkowski sum of B and C .
Moreover, for B,C, D ∈ Conv (X), the equality

HX (B + D,C + D) = HX (B,C) , (2)

holds, see, e.g., [23] for details.
We use the notation

‖A‖X := HX (A, {0}) = sup
a∈A

‖a‖X for A ∈ Conv (X) .

Let T > 0 and β ∈ (0, 1]. For every function f : [0, T ] → X , we define

‖ f ‖∞ = sup
t∈[0,T ]

‖ f (t)‖X and Mβ( f ) = sup
0≤s<t≤T

‖ f (t) − f (s)‖X
(t − s)β

.

By Cβ (X), we denote the space of β-Hölder-continuous ( or shortly β-Hölder) func-
tions with a finite norm

‖ f ‖β := ‖ f ‖∞ + Mβ( f ).

It can be shown that
(Cβ, ‖ · ‖β

)
is a Banach space. Similarly, for a set-valued

function F : [0, T ] → Comp (X), let

‖F‖β := ‖F‖∞ + Mβ(F)

where

‖F‖∞ = sup
t∈[0,T ]

‖F(t)‖X and Mβ(F) = sup
0≤s<t≤T

HX (F(t), F(s))

(t − s)β
.

A set-valued function F is said to be β-Hölder if ‖F‖β < ∞. By Cβ(Comp(X)), we
denote the space of all such set-valued functions. The space of β-Hölder set-valued
functions having compact and convex values will be denoted by Cβ(Conv(X)).

Let (E, d) be a metric space. For every 0 ≤ a < b ≤ T , by Πn = {ti }ni=0, we
denote a partition a = t0 < t2 < · · · < tn = b of the interval [a, b]. For every function
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f : [0, T ] → E and 1 ≤ p < ∞, we define its Young p-variation on [a, b] by the
formula

Varp( f , [a, b]) = sup
Π

n∑

i=1

(
d( f (ti−1), f (ti )

)p

and a Riesz p-variation on [a, b] by the formula

Vp( f , [a, b]) = sup
Π

n∑

i=1

(
d( f (ti−1), f (ti )

)p

(ti − ti−1)p−1 .

We denote Varp( f , [0, T ]) by Varp( f ) and Vp( f , [0, T ]) by Vp( f ), respectively.
If Varp( f ) < ∞ (resp., Vp( f ) < ∞), we call f a bounded Young (resp., Riesz)
p-variation function. The class of all functions of bounded p-variations will be denoted
by BVarp([0, T ], E) or BVp([0, T ], E), respectively. In the sequel, we denote spaces
BVarp([0, T ], E) and BVp([0, T ], E) simply by BVarp(E) and BVp(E), respec-
tively. If (X , ‖ · ‖X ) is a Banach space, then BVarp(X) or BVp(X) with norms
‖ f ‖Varp = supt∈[0,T ] ‖ f (t)‖X + (Varp( f ))1/p and ‖ f ‖Vp = supt∈[0,T ] ‖ f (t)‖X +
(Vp( f ))1/p, respectively, are Banach spaces. For X = Rd and considered with the
Euclidean norm, we will use the notation ‖x‖ instead of ‖x‖Rd .

We collect some properties of functions of bounded Vp-variation in the following
proposition.

Proposition 1 [10,11] Let f : [0, T ] → E. Then, for every 1 ≤ p < ∞, the following
conditions hold:

(a) For every [a, b] ⊂ [0, T ] and a ≤ t ≤ b we have

Vp( f , [a, t]) + Vp( f , [t, b]) = Vp( f , [a, b]).

(b) if f ∈ BVp(E), then V1( f , [a, b]) ≤ (b − a)1−1/p
(
Vp( f , [a, b]))1/p for every

[a, b] ⊂ [0, T ], (Jensen inequality).
(c) if ( fn) is a sequence such that limn→∞ d( fn(t), f (t)) = 0 for every t ∈ [a, b],

then Vp( f , [a, b]) ≤ lim infn→∞ Vp( fn, [a, b]).
(d) if X is a reflexive Banach space and f ∈ BVp(X), then f admits a strong

derivative f ′ and Vp( f , [a, b]) = ∫ b
a ‖ f ′(t)‖p

X dt , (Riesz theorem).

Let (X , ‖ · ‖) be a Banach space, and let Πm : 0 = t0 < t1 < · · · < tm = T be a
partition of the interval [0, T ]. Given a set-valued function F : [0, T ] → Comp (X),
we set

Vp(F,Πm) :=
m∑

i=1

H p
X (F (ti ) , F (ti−1))

(ti − ti−1)p−1 .
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Then, by a Riesz p-variation on [0, T ], we mean the quantity

Vp(F) := sup
Πm

Vp(F,Πm).

By BVp(Comp (X)), we denote the space of all set-valued functions from [0, T ]
into Comp (X) having finite Riesz p-variation.

3 Selections of Finite p-Variation Set-Valued Functions

Let T > 0 be given and let F : [0, T ] → Comp(X) be a measurable set-valued
function. A measurable function f : [0, T ] → X is called a measurable selection of
F if f (t) ∈ F(t) for all t ∈ [0, T ]. For 1 ≤ p < ∞, define the set

SL p (F) = { f ∈ L p([0, T ], X) : f (t) ∈ F(t) a.e. t ∈ [0,T]}.

SL p (F) is a closed subset of L p([0, T ], X). It is nonempty if F is p-integrably
bounded, i.e., if there exists g ∈ L p([0, T ] such that ‖F(t)‖X ≤ g(t) for a.e.
t ∈ [0, T ]. In such a case, there exists a sequence ( fn) ⊂ SL p (F) such that
F(t) = { fn(t)}∞n=1 for all t ∈ [0, T ]. The sequence ( fn) is called an L p-Castaing
representation for F . For other properties of measurable set-valued functions and
their measurable selections, see, e.g., [5].

Definition 1 Let F : [0, T ] → Comp(Rd) be a set-valued function. For 1 ≤ p < ∞,
define

SVp (F) := { f ∈ BVp(R
d) : f (t) ∈ F(t), t ∈ [0, T ]},

the set of selections of F with a bounded Riesz p-variation.

Let F ∈ Cβ
(
Comp

(
Rd

))
. Such set-valued functions need not admit any Hölder

or even continuous selection, see, e.g., [10]. However, considering the smaller class
BVp

(
Comp

(
Rd

)) ⊂ Cβ
(
Comp

(
Rd

))
, the following selection theorem holds true.

Proposition 2 [11] Let F : [0, T ] → Comp(Rd) be a set-valued function. If F ∈
BVp(Comp(Rd)) for some 1 ≤ p < ∞, then there exist a function φ ∈ BVp(Rd) and
a sequence of equi-Lipschitzian functions (gn)∞n=1 with Lipschitz constants Ln ≤ 1
such that taking fn := gn ◦ φ, we have Vp( fn, [a, b]) ≤ Vp(F, [a, b]) for every
0 ≤ a < b ≤ T and F(t) = { fn(t)}∞n=1 for every t ∈ [0, T ]. The set { fn}∞n=1 is a
Vp-Castaing representation for F.

Let us note that the set SVp (F) need not be closed in the topology of point conver-
gence even if F is bounded.

Example 1 The set SVp (F) need not be closed in the topology of point convergence
even if F is bounded. To see this, letW be aWiener process defined on some adequate
probability space (Ω,F , P). Let W (·, ω̄) denote its trajectory connected with a fixed
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ω̄ ∈ Ω . Then, M = supt∈[0,T ] |W (t, ω̄)| < ∞, because of continuity of trajectories
of aWiener process. Let F : [0, T ] → Comp(R1) be a set-valued function defined by
formula F(t) = [−M, M] for every t ∈ [0, T ]. Let (Πn)

∞
n=1 = ({ti }ni=1)

∞
n=1 denote a

sequence of normal partitions 0 = t1 < t2 < · · · < tn = T of the interval [0, T ], and
let Wn(·, ω̄) denote regularizations of W (·, ω̄) defined by the formula below

Wn(t, ω̄) =
{
W (ti , ω̄) for t = ti
is linear for t ∈ (ti , ti+1)

.

It is clear that Wn(t, ω̄) ∈ F(t). Moreover, for a linear function g(t) = at + b, we
have Vp(g, [ti , ti+1]) = |a|p(ti+1 − ti ) < ∞. Therefore, we get by Proposition 1(a),

Vp(Wn(·, ω̄), [0, T ]) =
n−1∑

i=1

Vp(Wn(·, ω̄), [ti , ti+1])

≤ max

{ |W (ti+1, ω̄) − W (ti , ω̄)|p
(ti+1 − ti )p

, i = 1, 2, . . . , n − 1

}
·
n−1∑

i=1

(ti+1 − ti ) < ∞.

It means thatWn(·, ω̄) ∈ SVp (F). But Wn(t, ω̄) tends toW (t, ω̄) for every t ∈ [0, T ].
Since Vp(W (·, ω̄) = +∞ for every 1 ≤ p < 2, then W (·, ω̄) /∈ SVp (F).

However, the set SVp (F) is closed in the norm ‖ · ‖Vp because of Jensen inequality
‖ fn(t) − f (t)‖ ≤ max{1, T 1−1/p}‖ fn − f ‖Vp → 0 and Proposition 1(c).

Proposition 3 Let F : [0, T ] → Comp(Rd) be a set-valued function, F ∈
BVp(Comp(Rd)) for some 1 ≤ p < ∞. Let { fm}∞m=1 be the Vp-Castaing repre-
sentation of F given in Proposition 2. Then, for every f ∈ SVp (F) and every ε > 0,
there exist a finite measurable covering A1, . . . , An of the interval [0, T ] and functions
fk1 , . . . , fkn ∈ { fm}∞m=1 such that

∥∥∥∥∥∥
f −

n∑

j=1

1IA j · fk j

∥∥∥∥∥∥
L p

< ε.

Moreover, for every f ∈ SVp (F) and every ε > 0, there exist n ≥ 1, a partition
Πn : 0 = t0 < t1 < · · · < tn = T and functions fk0 , . . . , fkn ∈ { fm}∞m=1 such that

∥∥∥∥∥∥
f −

n−1∑

j=0

1I[t j ,t j+1) · fk j

∥∥∥∥∥∥∞
< ε.

Proof Since SVp (F) ⊂ SL p (F) and the Vp-Castaing representation of F is also an
L p-Castaing representation of F introduced in [9], then the proof follows by Lemma
1.3 of [20].
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We prove second inequality. Let f ∈ SVp (F) be arbitrary taken. There exists δ

such that ‖ f (t) − f (s)‖ < ε/3 and ‖ fm(t) − fm(s)‖ < ε/3 for every |t − s| < δ

(see Proposition 1). Let us take a partition Πn : 0 < δ < 2δ < · · · < nδ < T . Since
f (t) ∈ { fm(t)}∞m=1, then for every k = 0, 1, . . . , n there existsmk such that ‖ f (kδ)−
fmk (kδ)‖ < ε/3. Therefore, ‖ f (t) − fmk (t)‖ < ε for t ∈ [kδ,min{(k + 1)δ, T }].
Thus,

∥∥∥∥∥
f −

n−1∑

k=0

1I[tk ,tk+1) · fmk

∥∥∥∥∥
∞

=
∥∥∥∥∥
f −

n−1∑

k=0

1I[kδ, min{(k+1)δ, T }] · fmk

∥∥∥∥∥
∞

≤ ε.

��
Let us note that a similar approximation property with respect to Vp-variation norm

need not hold true.
Nowwe introduce the notion ofVp-decomposable selections of set-valued functions

and investigate their properties.
Let (Ω,A, μ) be a measure space. A set Λ ⊂ L p(Ω,A, IRd) is said to be L p-

decomposable, if for every f1, f2 ∈ Λ and every A ∈ A one has 1IA · f1+1IA∼ · f2 ∈ Λ,
where A∼ denotes the complement of the set A in Ω . For any L p-decomposable sets
H,K ⊂ L p(Ω,A, IRd), the Minkowski sum H + K is again an L p-decomposable
subset of the space L p(Ω,A, IRd).

For a given set B ⊂ L p(Ω,A, IRd), we denote the set {∑n
k=1 1IAk · βk : Ak ∈

A, βk ∈ B, n = 1, 2, . . .} by decL p (B) and call it an L p-decomposable hull of a set
B.

By decL p (B), we denote a closed L p-decomposable hull of a set B. Similarly as in
the case of convex and closed convex hulls, they are the smallest L p-decomposable
and closed L p-decomposable sets containing the set B, respectively.

From this, it follows that the set SL p (F) consisting of all L p-selectors of a
given measurable set-valued function F is always L p-decomposable and therefore,
SL p (F) = decL p (SL p (F)). Conversely, if a closed set Λ ⊂ L p(Ω,A, IRd) is L p-
decomposable, then there exists a measurable set-valued function F : Ω → Rd such
that Λ = SL p (F), (see [20]). For other properties of L p-decomposable sets, see [19].

L1-decomposability of the set of L1-selectors of a given measurable set-valued
function F is crucial for investigating properties of a set-valued Aumann integral of
F defined by the formula

∫

A
F(t) dμ =

{∫

A
f (t) dμ : f ∈ SL1(F)

}
.

Unfortunately, the set SVp (F) need not be L p-decomposable for any p ≥ 1, and
therefore, if one defines a set-valued Young integral in the Aumann’s sense, it is
difficult to obtain its reasonable properties. This leads to the idea of a different type
of decomposability called Vp-decomposability.

It follows from Proposition 1(d) that a function f belongs to BVp(Rd) if and only
if its strong derivative f ′ belongs to L p([0, T ]), f (t) = f (0) + ∫ t

0 f ′(s) ds and
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Vp( f , [0, t]) = ∫ t
0 ‖ f ′(s)‖p ds for every t ∈ [0, T ]. This property has been inspiring

to the following definition.

Definition 2 A set Λ ⊂ BVp
(
Rd

)
is Vp-decomposable (decomposable in the sense

of its Riesz p-variation) if for every f1, f2 ∈ Λ and every a ∈ [0, T ] the function
f = f1 ⊕a f2 defined by

f (t) = f1(0) +
∫ t

0

(
1I[0,a)(s) · f ′

1(s) + 1I[a,T ](s) · f ′
2(s)

)
ds

belongs to the set Λ.
For a given set B ⊂ BVp

(
Rd

)
by decVp (B), we denote a Vp-decomposable hull

of a set B, i.e., the smallest Vp-decomposable set containing the set B.

Remark 1 Every function f = f1 ⊕a f2 from Definition 2 can be represented by the
formula

f (t) =
{
f1(t) for 0 ≤ t < a
f2(t) − f2(a) + f1(a) for a ≤ t ≤ T

.

Moreover, for every B ⊂ BVp(
(
Rd

)
, we have

decVp (B) = { f ∈ BVp

(
Rd

)
: f (t) = f1(0) +

∫ t

0

( m−1∑

i=0

1I[ti ,ti+1)(s) · f ′
i (s)

)
ds :

Πm : 0 = t0 < · · · < tm = T , m = 1, 2, . . . , fi ∈ B, i = 1, . . . ,m}.
Definition 3 A set R ⊂ BVp

(
Rd

)
is called an integral if there exist x0 ∈ Rd and a

measurable and p-integrably bounded set-valued function Φ : [0, T ] → Conv(Rd)

such that

R = x0 +
∫

Φ(s) ds =
{
f ∈ BVp(R

d) : f (·) = x0 +
∫ ·

0
φ(s) ds, φ ∈ SL p (Φ)

}
.

We denote by R(t) the set

R(t) = { f (t) : f (·) ∈ R} =
{
x0 +

∫ t

0
φ(s) ds, φ ∈ SL p (Φ)

}

.

Theorem 1 Let R ⊂ BVp(Rd) be an integral. Then, R is closed with respect to the
norm ‖ · ‖∞ and Vp-decomposable.

Proof If R is an integral, then for every t ∈ [0, T ] R(t) is a closed subset of Rd by
Theorem 8.6.7 of [5]. Let ( fn)∞n=1 ⊂ R be a sequence convergent to some f with
respect to the norm ‖ · ‖∞. Since R is an integral, then fn(t) = x0 + ∫ t

0 φn(s) ds for
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some φn ∈ SL p (Φ). But fn(0) = x0 and therefore, f (0) = x0. Moreover, since Φ is
p-integrably bounded by some function g ∈ L p([0, T ]), then supn Vp( fn) ≤ ‖g‖L p .
It follows from Proposition 1(c) that Vp( f ) ≤ ‖g‖L p . Therefore, f ∈ BVp(Rd)

and f (t) = x0 + ∫ t
0 f ′(s) ds. Since Φ is p-integrably bounded and has closed and

bounded values, then the set SL p (Φ) is closed, bounded and convex in L p([0, T ]).
Therefore, it is weakly compact there. Thus, there exists a subsequence (φnk ) of (φn)

weakly convergent to some φ ∈ SL p (Φ). Let J : L p([0, T ]) → C([0, T ]) be a
linear operator defined by formula J (ψ) = x0 + ∫ ·

0 ψ(s) ds. Since J is norm-to-norm
continuous, then it is also weak-to-weak continuous. Thus, fnk = x0 + ∫ ·

0 φnk (s) ds
tends weakly to x0 + ∫ ·

0 φ(s) ds. But ( fnk ) tends to f = x0 + ∫ ·
0 f ′(s) ds in ‖ · ‖∞

norm. Thus, φ = f ′, and therefore, f ′ ∈ SL p (Φ). This implies f ∈ R, which proves
the closedness of R.

Now let us take f1, f2 ∈ R. There exist a set-valued function Φ and functions
φ1, φ2 ∈ SL p (Φ) such that f1(t) = x0 + ∫ t

0 φ1(s) ds and f2(t) = x0 + ∫ t
0 φ2(s) ds for

every t ∈ [0, T ]. Let a ∈ [0, T ] be arbitrarily taken and let γ (t) = 1I[0,a)(s) · φ1(s) +
1I[a,T ](s)·φ2(s). Thenγ ∈ SL p (Φ) and therefore, f = f1⊕a f2 = x0+

∫
γ (s) ds ∈ R.

It means that R is Vp-decomposable. ��
Theorem 2 Let R ⊂ BVp(Rd), R(0) = x0, be bounded, Vp-decomposable, convex
and closed with respect to the norm ‖ · ‖∞. Then, R is an integral.

Proof Assuming that R ⊂ BVp(Rd), let f1, f2 ∈ R and a ∈ [0, T ] be arbitrarily
taken. If f = f1 ⊕a f2, then f ∈ R by the assumption of Vp-decomposability. We
define the set M by the formula

M =
{
φ ∈ L p([0, T ]) : x0 +

∫
φ(s) ds ∈ R

}
.

Then, M is convex in L p([0, T ]). It is bounded and closed in L p([0, T ]) by Proposi-
tion 1(d).

SinceR(0) = x0, thenR = { fα : fα = x0 + ∫
f ′
α(s) ds; f ′

α ∈ M}. We will show
that the set M is L p-decomposable in L p([0, T ], β([0, T ]), λ), i.e., we will show that
for every set A ∈ β([0, T ]) and any φ,ψ ∈ M , the function γ = 1IA · φ + 1IA∼ · ψ

belongs to the set M . β([0, T ]), as usual, denotes here the Borel σ algebra of subsets
of the interval [0, T ], and λ is a Lebesgue measure.

We take a partition Πn : 0 = t0 < t1 < · · · < t2n < t2n+1 = T and the
set A of the form A = ⋃n

i=0[t2i , t2i+1). Since R is Vp-decomposable, it is easy to
see that taking any f1, . . . , f2n+1 ∈ R a function f given by the formula f (t) =
x0 + ∫ t

0

∑2n
i=0 1I[ti ,ti+1)(s) · f ′

i+1(s) ds belongs to R. Therefore, taking f ′
2i = φ for

i = 1, 2, . . . n and f ′
2i+1 = ψ for i = 0, 1, . . . n, we have

x0 +
∫

γ (s) ds = x0 +
∫ (

1IA(s) · φ(s) + 1IA∼(s) · ψ(s)
)
ds

= x0 +
∫ t

0
f ′(s) ds ∈ R.

It means that γ ∈ M .
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Let M = ⋃∞
n=1

⋃
Πn

{B ⊂ [0, T ] : B = ⋃n−1
i=0 [t2i , t2i+1)}. Then, M is a ring

generating aσ -algebraβ([0, T ]).Wewill show thatM is amonotone class also. To this
end, assume that (Ai )

∞
i=1 ⊂ M and Ai ⊂ Ai+1. We prove that the set A = ⋃∞

i=1 Ai

belongs toM.We can find an infinite partitionΠ∞ : 0 = t0 < t1 < t2 < · · · of [0, T ],
and taking Ãk = ⋃k

i=0[t2i , t2i+1), we get Ãk ⊂ Ãk+1 ⊂ A and A = limk→∞ Ãk =⋃∞
k=1 Ãk . Therefore, 1IA(s) = limk→∞ 1I Ãk

(s) for every s ∈ [0, T ]. Since the sets

( Ãk)
∼
form a decreasing family, then a sequence (1I

( Ãk )
∼(s)) is a decreasing sequence

of functions convergent to 1IA∼(s), where A∼ = ⋂∞
k=1( Ãk)

∼.
Let us take any φ,ψ ∈ M , A = ⋃∞

i=0[t2i , t2i+1), and let γ (s) = 1IA(s) · φ(s) +
1IA∼(s) ·ψ(s). Then, γ (s) = limk→∞ γk(s), where γk(s) = 1I Ãk

(s) ·φ(s)+1I
( Ãk)

∼(s) ·
ψ(s). It was shown in the first part of the proof that γk(s) ∈ M , because of x0 +∫

γk(s) ds ∈ R. We show that γ ∈ M , i.e., that f = x0 + ∫
γ (s) ds ∈ R. We know

that fk = x0 + ∫
γk(s) ds ∈ R. We have

‖ fk − f ‖∞ = sup
t∈[0,T ]

∥∥∥∥

∫ t

0
(γk(s) − γ (s)) ds

∥∥∥∥ ≤
∫ T

0
‖γk(s) − γ (s)‖ ds.

However, γk(s) → γ (s) a.e. and the sequence ‖γk(s) − γ (s)‖ admits a p-integrable
majorant 2|φ(s)| + 2|ψ(s)|. Therefore, ‖ fk − f ‖∞ → 0. Since R is closed by the
assumption, then f ∈ R and therefore, γ ∈ M .

We have shown that the set

W = {A ∈ β([0, T ]) : 1IA · φ + 1IA∼ · ψ ∈ M if φ,ψ ∈ M}

contains a ring generating β([0, T ]) and a monotone class

Λ =
⋃

Π∞

{

A, A∼ ⊂ [0, T ] : A =
∞⋃

i=0

[t2i , t2i+1)

}

.

From the monotone class theorem, we deduce that for every φ,ψ ∈ M and every set
Q ∈ β([0, T ]) the set 1IQφ +1IQ∼ψ belongs to M . Therefore, M is L p-decomposable
and byTheorem3.1 of [20] there exists ameasurable set-valued functionΦ : [0, T ] →
Cl(Rd) such that SL p (Φ) = M = {φ ∈ L p([0, T ]) : x0 + ∫

φ(s) ds} ∈ R. It means
that R = x0 + ∫

Φ(s) ds. Since SL p (Φ) = M is convex, then Φ has convex values
by Theorem 1.5 from [20]. Moreover, Φ is p-integrably bounded by the boundedness
of M . Therefore, R should be an integral. ��
Definition 4 Let X be a real normed linear space. Let A, B ∈ Conv(X). The set C ∈
Conv(X) is said to be the Hukuhara difference A ÷ B if A = B + C . Consider a set-
valued mapping G : R1 → Conv(X). We say that G admits a Hukuhara differential
at t0 ∈ R1, if there exists a set DHG(t0) ∈ Conv(X) and such that the limits

lim
�t→0+

G(t0 + �t) ÷ G(t0)

�t
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and

lim
�t→0+

G(t0) ÷ G(t0 − �t)

�t

exist and are equal to the set DHG(t0).

For a detailed discussion of the properties and applications of the Hukuhara differen-
tiable multifunctions, we refer the reader to [23].

Now we are ready to prove the main decomposability results of the section.

Theorem 3 If a closed and bounded set R ⊂ BVp(Rd) with R(0) = x0 is Vp-
decomposable, then there exists a measurable and p-integrably bounded set-valued
function Φ : [0, T ] → Comp(Rd) such that the set-valued function t → R(t) is
Hukuhara differentiable for almost every t ∈ [0, T ] and DHR(t) = coΦ(t).

Proof Assume that a closed and bounded set R in BVp(Rd) is Vp-decomposable. It
is also closed with respect to ‖ · ‖∞. Therefore, it follows by Theorem 2 that R is an
integral, i.e., there exists a measurable and a p-integrably bounded set-valued function
Φ : [0, T ] → Comp(Rd) such that

R = x0 +
∫

Φ(s) ds =
{
f ∈ BVp(R

d) : f (·) = x0 +
∫ ·

0
φ(s) ds, φ ∈ SL p (Φ)

}
.

Since R(0) = x0, then R(t) is an Aumann integral, R(t) = x0 + ∫ t
0 Φ(s) ds =

{ f (t) = x0 + ∫ t
0 φ(s) ds, φ ∈ SL p (Φ)}. From this, we deduce that the Hukuhara

derivative DH (R(t)) exists for almost every t ∈ [0, T ] and DHR(t) = coΦ(t), see,
e.g., [29]. ��
Remark 2 If a set R ⊂ BVp(Rd) is an integral, then R(t) = x0 + ∫ t

0 Φ(s) ds for
every t ∈ [0, T ] and some measurable and p-integrably bounded set-valued function
Φ. The reverse implication need not hold as the following example shows.

Example 2 Let Φ : [0, 1] → R1 be a constant set-valued function Φ(t) ≡ [0, 1].
Let R(t) = ∫ t

0 Φ(s) ds = [0, t]. Then, R(·) is Hukuhara differentiable with
DH (R(·))(t) = Φ(t). We will show that R = SVp (R(·)) is not an integral. Let
us take f1(t) ≡ 0 and

f2(t) =
{

t for 0 ≤ t < 1/2
−t + 1 for 1/2 ≤ t ≤ 1

.

Of course, f1, f2 ∈ SVp (R(·)). However,

f (t) = ( f1 ⊕1/2 f2)(t) =
{

0 for 0 ≤ t < 1/2
−t + 1/2 for 1/2 ≤ t ≤ 1

.

Then, f (t) /∈ R(t) for t ∈ [1/2, 1], and therefore, f = ( f1⊕1/2 f2) /∈ SVp (R(·)) = R.
It means that R is not an integral.
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Theorem 4 Let F : [0, T ] → Conv(Rd) be a Hukuhara differentiable set-valued
function, F ∈ BVp(Conv(Rd)), F(0) = x0. Then, the set

IS(F) = { f ∈ BVp(R
d) : f ∈ SVp (F) and f ′ ∈ SL p (DH (F))} (3)

is Vp-decomposable and therefore, it is an integral.

Proof Really, let f , g ∈ R. Then, f , g ∈ SVp (F). Therefore, f ′, g′ ∈ L p([0, T ]) and
f ′, g′ ∈ SL p (DH (F)). Then, the function γ = 1I[0,a) · f ′ + 1I[a,T ] · g′ ∈ SL p (DH (F))

because the set SL p (DH (F)) is L p-decomposable. From this, we get ( f ⊕a g)(t) =
x0 + ∫ t

0 γ (s) ds ∈ x0 + ∫ t
0 DH (F)(s) ds = F(t). Since Vp(( f ⊕a g)) ≤ Vp( f ) +

Vp(g) < ∞, then ( f ⊕a g) ∈ SVp (F), and therefore, ( f ⊕a g) ∈ R. We proved that
R is Vp-decomposable and it is an integral by Theorem 2. ��

Let C ∈ Conv
(
Rd

)
and let σ (·,C) : Rd → R1, σ (p,C) = supy∈C < p, y >

be a support function of C . Let Σ denote the unit sphere in Rd , and let V denote a
Lebesgue measure of a closed unit ball B(0, 1) in Rd , i.e., V = πd/2/Γ (1 + d

2 ) with
Γ being the Euler function. Let pV be a normalized Lebesgue measure on B(0, 1),
i.e., dpV = dp/V . Let

M = { μ : μ is a probability measure on B(0, 1) having

the C1 − density dμ/dpV with respect to measure pV }.

Let ξμ := dμ/dpV , and let∇ξμ denote the gradient of ξμ. Byω, we denote a Lebesgue
measure on Σ . The function Stμ : Conv

(
Rd

) → Rd called a generalized Steiner
center, and given by the formula

Stμ(C) = V−1
(∫

Σ

pσ (p,C) ξμ(p) dω(p) −
∫

B(0,1)
σ (p,C) � ξμ(p) dp

)
(4)

for every μ ∈ M, has the following properties.
For A, B,C ∈ Conv

(
Rd

)
and a, b ∈ R1

Stμ(C) ∈ C , Stμ(aA + bB) = aStμ(A) + bStμ(B),

‖Stμ(A) − Stμ(B)‖ ≤ Lμ · HRd (A, B) , (5)

where Lμ = d maxp∈Σ ξμ(p) + maxp∈B(0,1) ‖ � ξμ(p)‖ (see e.g., [13]).
Since the setC1

d = {ξ ∈ C1(B(0, 1), R+) : ∫
B ξ dpV = 1} is separable, then there

exists a countable subset {ξn} ⊂ C1
d dense in C1

d with respect to supremum norm. Let
{μn} be a sequence of measures from M with densities {ξn}. It is known that every
set C ⊂ Conv(Rd) has a representation

C = {Stμ(C)}μ∈M,
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where Stμ(C) are generalized Steiner points of C given by formula (4), see also [13].
Therefore, by separability of C1

d , we have

C = {Stμn (C)}∞n=1.

Let F : [0, T ] → Conv(Rd) be a set-valued function. Then,

Stμ

(∫ t

0
F(s) ds

)
=

∫ t

0

(
Stμ(F(s)

)
ds (6)

for every t ∈ [0, T ] by [8] and we obtain

∫ t

0
F(s) ds =

{
Stμn

(∫ t

0
F(s) ds

)}∞

n=1
=

{∫ t

0
(Stμn (F(s)) ds

}∞

n=1
. (7)

Assume that F ∈ BVp(Conv(Rd)) is Hukuhara differentiable, F(0) = x0, and con-
sider again a set IS(F) defined by (3). This set is an integral by Theorem 4. We prove
the following result.

Theorem 5 Let F ∈ BVp(Conv(Rd)) be a Hukuhara differentiable set-valued func-
tion, F(0) = x0. Then, there exists a Castaing representation { fn}∞n=1 of F with
fn ∈ IS(F) for every n = 1, 2, . . . .

Proof Since F(t) = x0 + ∫ t
0 DH (F)(s) ds, then by formula (7) we obtain

F(t) = x0 +
∫ t

0
DH (F)(s) ds = x0 +

{∫ t

0
Stμn (DH (F)(s)) ds

}∞

n=1
.

It means that the sequence { fn}∞n=1 defined by the formula fn(t) = x0 +∫ t
0 Stμn (DH (F)(s)) ds is a Castaing representation of F . Moreover, f ′

n(t) =
Stμn (DH (F)(t)) ∈ DH (F)(t). We have to show that fn ∈ BVp(Rd) and f ′

n ∈
L p([0, T ]). We know that fn(t) = x0 + ∫ t

0 Stμn (DH (F)(s)) ds = x0 + Stμn (F(t))
by equality (6). It follows from formula (5) that

‖ fn(t) − fn(s)‖ ≤ Lμ · HRd (F(t), F(s)) ,

where Lμ = d maxp∈Σ ξμ(p) + maxp∈B(0,1) ‖ � ξμ(p)‖. Therefore, for every 0 ≤
a < b <≤ T ,

Vp( fn, [a, b]) = sup
Πm

m∑

i=0

‖ fn(ti ) − fn(ti−1)‖p

(ti − ti−1)p−1

≤ Lμ sup
Πm

m∑

i=0

(
HRd (F(ti−1), F(ti ))

)p

(ti − ti−1)p−1 = LμVp(F, [a, b]) < ∞.

123



Journal of Theoretical Probability (2022) 35:528–549 541

Therefore, fn ∈ BVp(Rd).
Now, we are able to apply Corollary 3.4(a) from [11] to deduce that f ′

n sat-
isfies

∫ t
0 ‖ f ′

n(s)‖p ds < ∞. Since f ′
n is a measurable selection of DH (F), then

f ′
n ∈ SL p (DH (F)). Therefore, fn ∈ IS(F) for every n = 1, 2, . . . . ��

4 Set-Valued Young Integrals

At the beginning of this section, we recall the notion of a Young integral in a single-
valued case introduced by Young in [30]. For details, see also [17]. Let f : [0, T ] →
Rd and g : [0, T ] → Rd be given functions. For the partition Πm : 0 = t0 < t1 <

· · · < tm = T of the interval [0, T ], we consider the Riemann sum of f with respect
to g

S( f , g,Πm) :=
m∑

i=1

f (ti−1) (g(ti ) − g (ti−1)).

Let |Πm | := max{ti − ti−1 : 1 ≤ i ≤ m − 1}. Then, the following version of
Proposition 2.4 in [18] holds.

Proposition 4 Let f ∈ BVarp(Rd) and g ∈ Cα
(
R1

)
where 1/p + α > 1. Then, the

limit

lim|Πm |→0
S( f , g,Πm) =:

∫ T

0
f dg

exists and the inequality

∥∥∥∥

∫ t

s
f dg − f (s)(g(t) − g(s))

∥∥∥∥ ≤ C(α, p)
(
Varp( f )

)1/p
Mα (g) (t − s)α (8)

holds for every 0 ≤ s < t ≤ T , where the constant C(α, p) depends only on p and α.

Corollary 1 Let f1, f2 ∈ BVarp(Rd) and g ∈ Cα
(
R1

)
where 1/p + α > 1. Then,

∥∥∥∥

∫ ·

0
f1 dg −

∫ ·

0
f2 dg

∥∥∥∥
α

≤
(
‖ f1 − f2‖∞ + C(α, p)

(
Varp( f1 − f2)

)1/p)
Mα (g) (1 + T α).

In the case f ∈ Cβ(Rd) and α, β ∈ (0, 1] with α + β > 1, one can express the
Young integral by fractional derivatives. Namely, let

f0+(t) = ( f (t) − f (0+)) I(0,T ) (t) and fT−(t) = ( f (t) − f (T−)) I(0,T ) (t) .
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The right-sided and left-sided fractional derivatives of order 0 < ρ < 1 for the function
f : [0, T ] → R1 are defined by

Dρ
0+ f (t) = 1

Γ (1 − ρ)

(
f (t)

tρ
+ ρ

∫ t

0

f (t) − f (s)

(t − s)ρ+1 ds

)

and

Dρ
T− f (t) = (−1)ρ

Γ (1 − ρ)

(
f (t)

(T − t)ρ
+ ρ

∫ T

t

f (t) − f (s)

(s − t)ρ+1 ds

)
.

Then, the following result holds, see, e.g., [28].

Proposition 5 Suppose that g : [0, T ] → R1, g ∈ Cα
(
R1

)
and f ∈ Cβ

(
Rd

)
. Then,

the integral
∫ T
0 f dg exists in the sense of Riemann and

∫ T

0
f dg = (−1)ρ

∫ T

0
Dρ
0+ f0+(t)D1−ρ

T− gT−(t) dt + f (0)(g(T ) − g(0))

for every ρ ∈ (1 − α, β). Moreover, the following version of inequality (8)

∥∥∥∥

∫ t2

t1
f dg − f (t1)(g(t2) − g(t1))

∥∥∥∥ ≤ C(α, β)Mα (g) Mβ( f )(t2 − t1)
α+β

holds for every 0 ≤ t1 < t2 ≤ T , where C(α, β) depends only on α and β.

Let us consider again a set IS(F) given in (3)

IS(F) = { f ∈ BVp(R
d) : f ∈ SVp (F) and f ′ ∈ SL p (DH (F))}.

Definition 5 We define a set-valued Young integral of Hukuhara differentiable F ∈
BVp(ConvRn) with respect to a function g ∈ Cα

(
R1

)
, 1/p+ α > 1, by the formula

(IS)

∫ t

0
F dg := clRd

{∫ t

0
f dg : f ∈ IS(F)

}
,

for every 1/p + α > 1 and g ∈ Cα(R1).

We have

‖(IS)

∫ t

s
F dg‖ ≤ Mα (g) ‖F‖β

(
1 + C(α, β)T β

)
(t − s)α

for 0 ≤ s ≤ t ≤ T . Since F and DH (F) take on convex values, then the sets
SVp(F) and SL p (DH (F)) are convex and therefore, IS(F) and (IS)

∫ t
0 F dg for

every t ∈ [0, T ] are convex subsets of BVp(Rd) and Rd , respectively.
The following lemma was proved in [27].
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Lemma 1 Let g ∈ Cα
(
R1

)
. Then, for every ρ ∈ (1 − α, β), there exists a positive

constant C(ρ) such that for every f1, f2 ∈ Cβ
(
Rd

)
, t ∈ [0, T ] and θ ∈ (0, 1] the

inequality

∥∥∥∥

∫ t

0
f1 dg −

∫ t

0
f2 dg

∥∥∥∥ ≤ C(ρ)
[‖ f1 − f2‖∞ + (Mβ ( f1) + Mβ ( f2))θ

β
]
θ−ρ

+ ‖ f1(0) − f2(0)‖|g(T ) − g(0)|.

holds.

Using this lemma, we are able to prove the following result.

Theorem 6 For every ρ ∈ (1 − α, β), there exists a positive constant C(ρ) such that
for every θ ∈ (0, 1], t ∈ [0, T ] and for every Hukuhara differentiable set-valued
functions F1, F2 with bounded Hukuhara derivatives, the inequality

HRd

(
(IS)

∫ t

0
F1 dg, (IS)

∫ t

0
F2 dg

)

≤ C(ρ)

(∫ T

0
HRd (DH (F1)(s), DH (F2)(s)) ds

+ (T + T 1−β)( sup
t∈[0,T ]

‖DH (F1)(t)‖ + sup
t∈[0,T ]

‖DH (F2)(t)‖)θβ

)

θ−ρ

+ Mα (g) T α

∫ T

0
HRd (DH (F1)(s), DH (F2)(s)) ds. (9)

holds.

Proof Let F : [0, T ] → Conv
(
Rd

)
be Hukuhara differentiable. If the set-

valued function DH (F)(·) is bounded, i.e., supt∈[0,T ] ‖DH (F)(t)‖ < ∞, then
‖F‖∞ ≤ T supt∈[0,T ] ‖DH (F)(t)‖ and Vp(F) ≤ T supt∈[0,T ] ‖DH (F)(t)‖p as well
as Mβ(F) ≤ T 1−β supt∈[0,T ] ‖DH (F)(t)‖ for any p ≥ 1 and β ∈ (0, 1). Thus
F ∈ BVp(Conv(Rd)) and SVp (F) �= ∅.

We obtain by Lemma 1, for any f1 ∈ IS(F1), f2 ∈, IS(F2), ρ ∈ (1 − α, β),
t ∈ [0, T ] and θ ∈ (0, 1]

∥∥∥∥

∫ t

0
f1 dg −

∫ t

0
f2 dg

∥∥∥∥

≤ C(ρ)
[‖ f1 − f2‖∞ + (Mβ ( f1) + Mβ ( f2))θ

β
]
θ−ρ + ‖ f1 − f2‖∞Mα(g)T α.
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Thus,

distRd

(∫ t

0
f1 dg, (IS)

∫ t

0
F2 dg

)

≤ C(ρ)

[

dist∞ ( f1, IS(F2)) + ( sup
f1∈IS(F1)

Mβ ( f1) + sup
f2∈IS(F2)

Mβ ( f2))θ
β

]

θ−ρ

+ dist∞ ( f1, IS(F2)) Mα(g)T α.

Hence,

HRd

(
(IS)

∫ t

0
F1 dg, (IS)

∫ t

0
F2 dg

)

≤ C(ρ)

[

H∞ (IS(F1), IS(F2)) + ( sup
f1∈IS(F1)

Mβ ( f1) + sup
f2∈IS(F2)

Mβ ( f2))θ
β

]

θ−ρ

+Mα (g) T αH∞ (IS(F1), IS(F2)) .

The same estimation holds for HRd

(
(IS)

∫ t
0 F1 dg, (IS)

∫ t
0 F2 dg

)
.

Therefore,

HRd

(
(IS)

∫ t

0
F1 dg, (IS)

∫ t

0
F2 dg

)

≤ C(ρ)

[

H∞ (IS(F1), IS(F2)) + ( sup
f1∈IS(F1)

Mβ ( f1) + sup
f2∈IS(F2)

Mβ ( f2))θ
β

]

θ−ρ

+Mα (g) T αH∞ (IS(F1), IS(F2)) . (10)

Suppose that f ∈ IS(F). Then, it is expressed as the integral, i.e., f (·) = ∫ ·
0 φ(s) ds

for some φ ∈ SL p (DH (F)) and we have

Mβ( f ) = sup
0≤s<t≤T

‖ f (t) − f (s)‖
(t − s)β

= sup
0≤s<t≤T

‖ ∫ t
s φ(τ) dτ‖
(t − s)β

.

From the other side, we get by formula (2), the equalities

Mβ(F) = sup
0≤s<t≤T

HRd (F(t), F(s))

(t − s)β

= sup
0≤s<t≤T

HRd

(∫ t
s DH F(τ ) dτ + ∫ s

0 DH F(τ ) dτ, 0 + ∫ s
0 DH F(τ ) dτ

)

(t − s)β

= sup
0≤s<t≤T

HRd

(∫ t
s DH F(τ ) dτ, 0

)

(t − s)β
= sup

0≤s<t≤T

‖ ∫ t
s DH F(τ ) dτ‖

(t − s)β
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Therefore,

Mβ( f ) ≤ Mβ(F)

and taking in the mind the beginning of the proof, we get

sup
f ∈IS(F)

‖ f ‖β ≤ ‖F‖β ≤ (T + T 1−β) sup
t∈[0,T ]

‖DH (F)(t)‖ < ∞. (11)

Let φ1 ∈ SL p (DH (F1)). Then, by Theorem 2.2 from [20], we have

inf
φ2∈SL p (DH (F2))

sup
t∈[0,T ]

∥∥∥∥

∫ t

0
φ1(s) ds −

∫ t

0
φ2(s) ds

∥∥∥∥

≤ inf
φ2∈SL p (DH (F2))

∫ T

0
‖φ1(s) − φ2(s)‖ ds =

∫ T

0
distRd (φ1(s), DH (F2)(s)) ds

≤
∫ T

0
HRd (DH (F1)(s), DH (F2)(s)) ds.

Thus,

H∞ (IS(F1), IS(F2)) ≤
∫ T

0
HRd (DH (F1)(s), DH (F2)(s)) ds.

In a similar way, we get

H∞ (IS(F2), IS(F1)) ≤
∫ T

0
HRd (DH (F1)(s), DH (F2)(s)) ds

and finally

H∞ (IS(F1), IS(F2)) ≤
∫ T

0
HRd (DH (F1)(s), DH (F2)(s)) ds.

Hence, by formula (10) together with (11), we obtain inequality (9). ��
Corollary 2 Let Fn, F be Hukuhara differentiable set-valued functions with bounded
Hukuhara derivatives satisfying

sup
t∈[0,T ]

HRd (DH (Fn)(t), DH (F)(t)) → 0 as n → ∞.

Then,

sup
t∈[0,T ]

HRd

(
(IS)

∫ t

0
Fn dg, (IS)

∫ t

0
F dg

)
→ 0 as n → ∞. (12)
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Proof Let us note that for every n ≥ 1 we have

∣∣∣∣∣
sup

t∈[0,T ]
‖DH (Fn)(t)‖ − sup

t∈[0,T ]
‖DH (F)(t)‖

∣∣∣∣∣

≤ sup
t∈[0,T ]

HRd (DH (Fn)(t), DH (F)(t)).

Thus,

sup
t∈[0,T ]

‖DH (Fn)(t)‖ → sup
t∈[0,T ]

‖DH (F)(t)‖ as n → ∞.

Therefore, the sequence
(
supt∈[0,T ] ‖DH (Fn)(t)‖

)
n≥1 is bounded. Hence, we get by

Theorem 6

lim sup
n

(

sup
t∈[0,T ]

HRd

(
(IS)

∫ t

0
Fn dg, (IS)

∫ t

0
F d

))

≤ C(ρ)(T + T 1−β)

(

sup
n

sup
t∈[0,T ]

‖DH (Fn)(t)‖ + sup
t∈[0,T ]

‖DH (F)(t)‖
)

θβ−ρ.

Since β > ρ and θ ∈ (0, 1] is arbitrarily taken, we obtain formula (12). ��
It was proved in [20] that for measurable and p-integrably bounded set-valued

functions F1, F2 : [0, T ] → Comp(Rd), the equality

SL p
(
clRd {F1 + F2)(·)}

) = clL p {SL p (F1) + SL p (F2)} (13)

holds. Therefore, a set-valued Aumann integral satisfies

∫ t

0
(F1 + F2) dt =

∫ t

0
F1 dt +

∫ t

0
F2 dt .

We will show that a set-valued Young integral is additive also.

Theorem 7 Let F, F1, F2 ∈ BVp(Conv(Rd)) be Hukuhara differentiable with p-
integrably bounded Hukuhara derivatives, 1 < p < ∞. Let g ∈ Cα(R1), where
1/p + α > 1. Then,

(IS)

∫ t

0
(F1 + F2) dg = (IS)

∫ t

0
F1 dg + (IS)

∫ t

0
F2 dg.

Moreover, if the set F(0) is bounded in Rd , then (IS)
∫ ·
0 F dg and (IS)

∫ t
s F dg are

bounded sets in Cα(Rd) and in Rd , respectively.
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Proof We show that IS(F1 + F2) = IS(F1) + IS(F2). Let us take an arbi-
trary f ∈ IS(F1 + F2). Then, f ∈ SVp(F1 + F2), f ′ ∈ SL p (DH (F1 + F2))
and f (·) = ∫ ·

0 f ′(s) ds. Since DH (Fi )(t) takes on compact and convex values in
Rd , then f ′ ∈ SL p (DH (F1 + F2)) = clL p {SL p (DH (F1)) + SL p (DH (F2))} by
equality (13). Therefore, there exist sequences (φ1

n) ⊂ SL p (DH (F1)) and (φ2
n) ⊂

SL p (DH (F2)) such that φ1
n + φ2

n → f ′ with respect to the L p-norm convergence.
But SL p (DH (F1)) is a closed, convex and bounded subset of L p by [20], and
therefore, weakly compact. Then, there exists a subsequence (φ1

nk ) weakly conver-
gent to some φ1 ∈ SL p (DH (F1)). Similarly, passing to the subsequence if needed,
(φ2

nk ) tends weakly to some φ2 ∈ SL p (DH (F2)). Therefore, f ′ = φ1 + φ2 ∈
SL p (DH (F1)) + SL p (DH (F2)). But f (·) = ∫ ·

0 f ′(s) ds = ∫ ·
0 φ1(s) ds + ∫ ·

0 φ2(s) ds.
Since

∫ t
0 φ1(s) ds ∈ ∫ t

0 DH (F1)(s) ds = F1(t), then
∫ ·
0 φ1(s) ds ∈ IS(F1). In the

same way,
∫ ·
0 φ2(s) ds ∈ IS(F2), and therefore, IS(F1 + F2) ⊂ IS(F1) + IS(F2).

For the proof of a reverse inclusion, it is enough to note that taking f1 ∈ IS(F1) and
f2 ∈ IS(F2), their sum belongs to SVp(F1 + F2) and the sum of their derivatives
belongs to SL p (DH (F1 + F2)). Hence, f1 + f2 ∈ IS(F1 + F2).

Now let us remark that the operator J : BVp(Rd) → Rd defined by the formula
J ( f ) = ∫ t

0 f dg is linear. From this, we get

(IS)

∫ t

0
(F1 + F2) dg = J (IS(F1 + F2)) = J (IS(F1) + IS(F2))

= J (IS(F1)) + J (IS(F2)) = (IS)

∫ t

0
(F1) dg + (IS)

∫ t

0
(F2) dg.

Hence, the first statement follows.
We show that the set IS(F) is bounded in the space (BVp(Rd), ‖ · ‖Vp ). Let

f ∈ IS(F) be arbitrarily taken. By assumption, the set SL p (DH (F)) is bounded
in L p norm by some constant M . Since f ′ ∈ SL p (DH (F)), then (Vp( f ))1/p =
(
∫ T
0 ‖ f ′(s)‖p ds)1/p ≤ M .
Moreover, ‖ f (t) − f (0)‖ ≤ T 1−1/p(Vp( f ))1/p for every t ∈ [0, T ] by Proposi-

tion 1(b). This implies

‖ f ‖Vp = ‖ f ‖∞ + (Vp( f ))
1/p ≤ sup

h∈IS(F)

‖h(0)‖ + T 1−1/pM + M

Then, for every f ∈ IS(F), we get by Corollary 1

∥∥∥∥

∫ ·

0
f dg

∥∥∥∥
α

≤
(
‖ f ‖∞ + C(α, p)

(
Varp( f )

)1/p)
Mα (g) (1 + T α)

≤ sup
h∈IS(F)

‖h(0)‖ + (T 1−1/p)M + C(α, p)MT 1−1/pMα (g) (1 + T α)

= sup
h∈IS(F)

‖h(0)‖ + (T 1−1/p)M(1 + C(α, p)Mα (g) (1 + T α)).
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Using Corollary 1 once again, we obtain in a similar way

‖
∫ t

s
f dg‖ ≤

(
‖ f ‖∞ + C(α, p)

(
Varp( f )

)1/p)
Mα (g) (t − s)α

≤ sup
h∈IS(F)

‖h(0)‖ + (T 1−1/p)M(1 + C(α, p)Mα (g) T α).

Thus, we obtain the appropriate boundedness of both integrals. ��
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