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1 Corrections

In this note, we correct claims made in [2]:

(i) It is claimed that the generalized martingale problem introduced in [2] allows
explosion in a continuous manner. However, because the cemetery � is added to
B as an isolated point, explosion can only happen by a jump and is excluded by
[2, Lemma 4.3]. In Sect. 2, we explain how the setup can be adjusted to include
the possibility of explosion.

(ii) In the proof of [2, Proposition 4.8], it is needed that the operator A has a non-empty
resolvent set ρ(A), i.e., that

ρ(A) �
{
λ ∈ R : (λ − A)−1 exists in L(B,B)

} �= ∅.

This assumption is missing in [2]. It is, e.g., satisfied in case A is the generator of
a C0-semigroup; see [4, Remark 1.1.3, Proposition 1.2.1].

2 A Setup Including Explosion

2.1 Modified Setup

In the following, we explain how �, τn and τ� have to be redefined such that the
setting includes the possibility of explosion.

The original article can be found online at https://doi.org/10.1007/s10959-018-0814-4.
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For a function ω : R+ → B�, we define

τ�(ω) � inf(t ∈ R+ : ω(t) = �),

where, as always, inf(∅) � ∞. Let � to be the space of all right continuous functions
ω : R+ → B� which are càdlàg on [0, τ�(ω)) and satisfyω(t) = � for all t ≥ τ�(ω).
The difference in comparison with the setting in [2] is that ω ∈ {τ� < ∞} might not
have a left limit at τ�(ω).

Denote by X the coordinate process, i.e., Xt (ω) = ω(t) for all ω ∈ � and t ∈ R+,
and denote by F � σ(Xt , t ∈ R+) the σ -field generated by X . The proof of the
following is given in Sect. 2.2.

Lemma 1 There exists a metric d� on � such that (�, d�) is separable and complete
and F is the corresponding Borel σ -field.

Let F = (Ft )t≥0 be the filtration generated by X , i.e. Ft � σ(Xs, s ∈ [0, t]) for
t ∈ R+. Note that τ� is an F-stopping time, because {τ� ≤ t} = {Xt = �} ∈ Ft . For
	 ⊆ B, we define

τ(	) � inf
(
t < τ� : Xt ∈ 	 or Xt− ∈ 	

) ∧ τ�.

The proof of the following is given in Sect. 2.3.

Lemma 2 (i) If 	 ⊆ B is closed, then τ(	) is an F-stopping time.
(ii) If 	1 ⊆ 	2 ⊆ 	3 ⊆ · · · is an increasing sequence of open sets in B such that⋃

n∈N 	n = B, then τ(B\	n) ↗ τ� as n → ∞.

We define

τn � inf
(
t < τ� : ‖Xt‖ ≥ n or ‖Xt−‖ ≥ n

) ∧ τ� ∧ n, n ∈ N.

By Lemma 2, (τn)n∈N is a sequence of F-stopping times satisfying τn ↗ τ� as
n → ∞. In this modified setting, the GMP can be defined as in [2] and all results from
[2] hold. In Sect. 3, we comment on necessary changes in the proofs.

2.2 Proof of Lemma 1

We adapt the proof of [1, Lemma A.7]. Define

�
 �
(
D(R+,B) × (0,∞]) ∪ ({ω�} × {0}),
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where ω�(t) = � for all t ∈ R+. For z ∈ [0,∞] and t ∈ R+, we define

φz(t) �

⎧
⎪⎨

⎪⎩

t, z = ∞,

z
(
1 − e−t

)
, z ∈ (0,∞),

0, z = 0,

φ−1
z (t) �

⎧
⎪⎪⎨

⎪⎪⎩

t, z = ∞,

− log
(
1 − t

z

)
1{t<z}, z ∈ (0,∞),

0, z = 0.

Moreover, we define ι : � → �
 by

ι(ω) � (ω ◦ φτ�(ω), τ�(ω)).

Lemma 3 ι is a bijection.

Proof To check the injectivity, letω, α ∈ � be such that ι(ω) = ι(α). In case τ�(ω) =
τ�(α) ∈ {0,∞}, we clearly have ω = α. In case 0 < τ�(ω) = τ�(α) < ∞, we can
deduce from the first coordinates of ι(ω) and ι(α) that ω = α on [0, τ�(ω)) =
[0, τ�(α)), which implies ω = α.

To check the surjectivity, note that ι(ω�) = (ω�, 0) and that ι(ω ◦ φ−1
t 1[0,t) +

�1[t,∞)) = (ω, t) for all (ω, t) ∈ D(R+,B) × (0,∞]. ��

Let dD be the Skorokhod metric on D(R+,B�) and let d[0,∞] be the arctan metric on
[0,∞]. We define

dD×[0,∞]((ω, t), (α, s)) � dD(ω, α) + d[0,∞](t, s)

for (ω, t), (α, s) ∈ D(R+,B�) × [0,∞], and set

d�
 � dD×[0,∞]
∣∣
�
×�
.

We note that (�
, d�
) is separable and complete, because it is a Gδ subspace of
(D(R+,B�) × [0,∞], dD×[0,∞]). Due to Lemma 3, we can equip � with the metric

d�(ω, α) � d�
(ι(ω), ι(α))

= dD(ω ◦ φτ�(ω), α ◦ φτ�(α)) + d[0,∞](τ�(ω), τ�(α))

for ω, α ∈ �. In this case, ι is an isometry and (�, d�) is separable and complete. In
the following, we equip � with the topology induced by the metric d�.

We now prove that F = B(�). By the definition of the metric d�, the maps

� � ω �→ ω ◦ φτ�(ω) ∈ D(R+,B�), � � ω �→ τ�(ω) ∈ [0,∞]
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are continuous. For fixed t ∈ R+, the map [0,∞] � z �→ φ−1
z (t) ∈ R+ is Borel and,

consequently, also

� � ω �→ φ−1
τ�(ω)(t) ∈ R+

is Borel. Because right continuous adapted processes are progressively measurable,
the map

D(R+,B�) × R+ � (ω, t) �→ ω(t) � Y (ω, t) ∈ B�

is Borel. We conclude that for every t ∈ R+ the map

� � ω �→ ω(t) = Y (ω ◦ φτ�(ω), φ
−1
τ�(ω)(t))1{t<τ�(ω)} + �1{t≥τ�(ω)} ∈ �

is Borel. This implies that F ⊆ B(�).
Note that ι is F/B(�
) measurable. Let f : � → R be a Borel function. Because

ι is an isometry, the inverse map ι−1 : �
 → � is continuous and therefore Borel. We
conclude that

� � ω �→ f (ω) = (( f ◦ ι−1) ◦ ι)(ω) ∈ R

isF/B(R)measurable as composition of theB(�
)/B(R)measurablemap f ◦ι−1 and
theF/B(�
) measurable map ι. This implies B(�) ⊆ F and the proof is complete. ��

2.3 Proof of Lemma 2

(i). We have to show that {τ(	) ≤ t} ∈ Ft for all t ∈ R+. For x ∈ B, we define
d(x, 	) � inf y∈	 ‖x − y‖ and set

	n �
{
x ∈ B : d(x, 	) < 1

n

}
.

Moreover, on {t < τ�} we set

Ft � clB({Xs : s ∈ [0, t]}) = {Xs, Xs− : s ∈ [0, t]} ⊆ B.

Because x �→ d(x, 	) is Lipschitz continuous, the set 	n is open, and because 	 is
closed, 	 = {x ∈ B : d(x, 	) = 0}. Define τ � supn∈N τ(	n). Because 	 ⊆ 	n , it
is clear that τ ≤ τ(	). Next, we show that τ ≥ τ(	). We claim that this inequality
follows if we show that

∀t ∈ R+ :
⋂

n∈N
{Ft ∩ 	n �= ∅} ⊆ {Ft ∩ 	 �= ∅} on {t < τ�}. (2.1)

We explain this: In case τ ≥ τ�, we have τ = τ(	) = τ�. Take ω ∈ {τ < τ�} and let
ε > 0 be such that ε < τ�(ω) − τ(ω) in case τ�(ω) < ∞. For each n ∈ N, we find a
tn ∈ [τ(	n)(ω), τ (	n)(ω)+ ε) such that Ftn (ω)∩	n �= ∅. Note that t � supn∈N tn ≤
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τ(ω) + ε < τ�(ω) and that Ft (ω) ∩ 	n �= ∅ for all n ∈ N. Consequently, in case
(2.1) holds we have Ft (ω) ∩ 	 �= ∅, which implies τ(	)(ω) ≤ t ≤ τ(ω) + ε. We
conclude that τ ≥ τ(	) as claimed. We proceed showing (2.1). Fix t ∈ R+. Because
on {t < τ�}

⋂

n∈N
{Ft ∩ 	n �= ∅} ⊆ {

inf
x∈Ft

d(x, 	) = 0
}
,

it suffices to show that on {t < τ�}
{
inf
x∈Ft

d(x, 	) = 0
} ⊆ {Ft ∩ 	 �= ∅}.

Take ω ∈ {t < τ�}. Because {ω(· ∧ t)} is compact in D(R+,B), Ft (ω) is compact
in B by [4, Problem 16, p. 152]. Consequently, due to its continuity, the function
x �→ d(x, 	) attains its infimum on Ft (ω). Thus, because	 = {x ∈ B : d(x, 	) = 0},
if infx∈Ft (ω) d(x, 	) = 0, we have Ft (ω) ∩ 	 �= ∅. We conclude that (2.1) holds and
hence that τ = τ(	).

From the equality τ = τ(	), we deduce that for all t ∈ R+

{τ(	) ≤ t} =
⋂

n∈N
{τ(	n) ≤ t}. (2.2)

Fix t ∈ R+ and set Qt+ � ([0, t) ∩ Q+) ∪ {t}. We note that

{τ(	n+1) ≤ t < τ�} =
⋂

m∈N
{τ(	n+1) < t + 1

m ≤ τ�}

⊇
( ⋃

s∈Qt+

{Xs ∈ 	n+1}
)

∩ {t < τ�}. (2.3)

Because 	n+1 is open, we have

τ(	n+1) = inf
(
t < τ� : Xt ∈ 	n+1

) ∧ τ�.

Thus, in case τ(	n+1) ≤ t < τ�, the right continuity of X yields that Xτ(	n+1) ∈
clB(	n+1) ⊆ 	n . We conclude that on {t < τ�}

{τ(	n+1) ≤ t} ⊆
⋃

s∈[0,t]
{Xs ∈ clB(	n+1)} ⊆

⋃

s∈Qt+

{Xs ∈ 	n}. (2.4)

Now, (2.2), (2.3) and (2.4) imply that

{τ(	) ≤ t < τ�} =
( ⋂

n∈N

⋃

s∈Qt+

{Xs ∈ 	n}
)

∩ {Xt �= �} ∈ Ft .
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Because

{τ(	) ≤ t, τ� ≤ t} = {τ� ≤ t} = {Xt = �} ∈ Ft ,

we conclude that τ(	) is a stopping time. The proof of (i) is complete.
(ii). Because n �→ τ(B\	n) is increasing, τ(B\	n) ↗ τ � supn∈N τ(B\	n) as

n → ∞. Because τ ≤ τ�, it suffices to show that τ ≥ τ�. For contradiction, suppose
that there exists an ω ∈ {τ < τ�} and set ω′ � ω(· ∧ τ(ω)) ∈ D(R+,B). Then,

τ(B\	n)(ω
′) = inf

(
t ∈ R+ : ω′(t) /∈ 	n or ω′(t−) /∈ 	n

) ↗ ∞ as n → ∞.

Because τ(B\	n) is an F-stopping time by (i), so is τ and Galmarino’s test (see [6,
Lemma III.2.43]) implies that τ(ω) = τ(ω′) = ∞. This is a contradiction and τ = τ�

follows. The proof of (ii) is complete. ��

3 Modifications, Corrections and Comments on Proofs

3.1 [2, Lemma 4.3]

The last conclusion in [2, Lemma 4.3] is empty: In the setting of [2], it cannot happen
that Xτ�− = �.

3.2 [2, Lemmata 4.3, 4.5]

Due to the initial value and the possibility that X has no left limit at τn , some bounds
in the proofs of [2, Lemmata 4.3, 4.5] are only valid on the open stochastic interval
]]0, τn[[. Because singletons have Lebesgue measure zero, the arguments require no
further changes.

The last conclusion in the proof of [2, Lemma 4.5] follows from the dominated
convergence theorem.

3.3 [2, Proposition 4.8]

In the proof, it has been used that ρ(A∗) �= ∅, see [8, Lemma 4.1]. Because B is
separable and reflexive, its dual B∗ is separable and D in the proof of [2, Proposition
4.8] can be constructedmore directly: The assumptionρ(A) �= ∅ implies thatρ(A∗) �=
∅, see [7, Theorem 5.30, p. 169]. Let D′ ⊂ B

∗ be a countable dense subset of B∗ and
take λ ∈ ρ(A∗). Now, set R(λ, A∗) � (λ − A∗)−1 and define D � {R(λ, A∗)x : x ∈
D′} ⊆ D(A∗).We claim that for each x ∈ D(A∗) there exists a sequence (xn)n∈N ⊂ D
such that xn → x and A∗xn → A∗x in the operator norm as n → ∞. To see this,
take x ∈ D(A∗) and set y � λx + A∗x . There exists a sequence (yn)n∈N ⊂ D′ such
that yn → y as n → ∞. Finally, set xn � R(λ, A∗)yn ∈ D. Because R(λ, A∗) ∈
L(B∗,B∗), we have xn → R(λ, A∗)y = x as n → ∞. Moreover, the triangle
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inequality yields that

‖A∗xn − A∗x‖ ≤ ‖yn − y‖ + |λ|‖xn − x‖ → 0 as n → ∞.

The claim is shown.

3.4 [2, Lemma 4.10]

Due to Lemma 1, it is not necessary to pass to D(R+,B�). Moreover, it can be seen
more easily that � is Borel. Indeed, � is continuous.

3.5 [2, Lemma 4.11]

In the proof of P-a.s.

EP[(
M f

t∧τn
− M f

s∧τn

) ◦ θξ1{ξ<τ�}
∣∣Fs+ξ

] = 0,

the variable n is used twice, which results in a conflict of notation. We correct the
argument: Note that τn+k ◦ θξ + ξ ≤ τ2(n+k) on {ξ < τn+k} for all k ∈ N. Set
σr � r ∧ τn ◦ θξ + ξ . We obtain that P-a.s.

EP[(
M f

t∧τn
− M f

s∧τn

) ◦ θξ1{ξ<τ�}
∣∣Fs+ξ

]

= lim
k→∞ EP[(

M f
σt

− M f
σs

)
1{ξ<τn+k }

∣∣Fs+ξ

]

= lim
k→∞ EP[(

M f
σt∧τ2(n+k)

− M f
σs∧τ2(n+k)

)
1{ξ<τn+k }

∣∣Fs+ξ

]

= lim
k→∞

(
M f

σt∧τ2(n+k)∧(s+ξ) − M f
σs∧τ2(n+k)∧(s+ξ)

)
1{ξ<τn+k } = 0,

by the optional stopping theorem.

3.6 [2, Section 4.3.2]

Because X has no left limit at τ�, the random measure μX cannot be defined as in [2,
Eq. 4.20]. We pass to a stopped version: Let X̂ be defined as in Eq. 4.11 in [2] and set
Xn � X̂ ·∧τn and

μn(ω; dt, dx) �
∑

s>0

1{�Xn
s (ω) �=0}ε(s,�Xn

s (ω))(dt, dx),

νn(ω; dt, dx) � 1{t≤τn(ω)}K (Xn
t (ω), dx)dt .

We have the following version of [2, Lemmata 4.17, 4.18, 4.19]:

Lemma 4 For all n ∈ N the randommeasureμn is (FP , P)-optionalwithP P-σ -finite
Doléans measure and (FP , P)-predictable compensator νn.
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Because the proofs of [2, Lemmata 4.17, 4.18] contain typos and the proof of [2,
Lemma 4.19] requires someminor modification, as the setZ1×Z2 has not all claimed
properties, we give a proof:

Proof Due to [3, Theorem IV.88B, Remark below], the set {�Xn �= 0} is FP -thin.
Hence, [6, II.1.15] yields that μn is FP -optional. It follows as in [9, Example 2, pp.
160] that MP

μn is P P -σ -finite. Next, we show that νn is FP -predictable with P P -

σ -finite Doléons measure MP
νn . For m ∈ N we set Gm � {x ∈ B : ‖x‖ ≥ 1

m } ∪ {0}.
Let W be a nonnegative P P ⊗ B(B)-measurable function which is bounded by a
constant c > 0. Because P-a.s.

W1[[0,τm ]]1Gm
νn∞ ≤ cm sup
‖x‖≤m

K (x, {z ∈ B : ‖z‖ ≥ 1
m }) < ∞,

we conclude that MP
νn isP

P -σ -finite. Furthermore, the process

W
νn = lim
m→∞ W1[[0,τm ]]1Gm
νn

is FP -predictable as the pointwise limit of an FP -predictable process. We conclude
that νn is an FP -predictable random measure.

It remains to show that νn is the (FP , P)-predictable compensator of μn . Let Z1
be the collection of sets A × {0} for A ∈ F P

0 and [[0, ξ ]] for all FP -stopping times ξ ,
and let Z2 be the collection of all sets

G � {x ∈ B : (〈x, y∗
1 〉, . . . , 〈x, y∗

d 〉) ∈ A} ∈ B(B), (3.1)

for A ∈ B(Rd), y∗
1 , . . . , y

∗
d ∈ D(A∗) and d ∈ N. Note that MP

μn (A × {0} × G) =
MP

νn (A × {0} × G) = 0 for all A ∈ F P
0 and G ∈ B(B). Fix an FP -stopping time ξ

and the cylindrical set G given by (3.1). Denote Yn � (〈Xn, y∗
1 〉, . . . , 〈Xn, y∗

d 〉). By
[2, Lemma 4.7], we obtain

EP
[
1[[0,ξ ]]×G
μn∞

]
= EP

[
1[[0,ξ ]]×A
μYn

∞
]

= EP
[
1[[0,ξ ]]×G
νn∞

]
,

which implies MP
μn = MP

νn on Z1 × Z2. Take a norming sequence (x∗
m)m∈N ⊂ B

∗ of
unit vectors, see p. 522 in [5] for a definition, and note that

Bm �
{
x ∈ B : ‖x‖ > 1

m

} =
⋃

k∈N

{
x ∈ B : |〈x, x∗

k 〉| > 1
m

}
.

For m, k ∈ N set

γ (m, k) � inf(t ∈ R+ : μn([0, t] × Bm) > k) ∧ m.

The dominated convergence theorem yields that

MP
μn ((A × B) ∩ ([[0, γ (m, k)]] × Bm)) = MP

νn ((A × B) ∩ ([[0, γ (m, k)]] × Bm))
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for all A×B ∈ Z1×Z2. Now, we conclude from the uniqueness theorem formeasures
that MP

μn = MP
νn on the trace σ -field (P P ⊗ B(B)) ∩ ([[0, γ (m, k)]] × (Bm ∪ {0})).

Finally, taking k,m → ∞ and using the monotone convergence theorem show that
MP

μn = MP
νn onP

P ⊗ B(B). The proof is complete. ��

The candidate density process Z can be defined as in [2, Lemma 4.21] withμX and
νX replaced by μn and νn .

3.7 [2, Lemmata 4.21, 4.22]

In the proofs, the process X should be replaced by X̂ .

3.8 [2, Proposition 3.7]

The representation of the CMG densities and the function V k in [2, Lemma 4.23]
should be multiplied by 1{τn<τ�}. Moreover, in all Lebesgue integrals X− should be
replaced by X .

3.9 [2, Lemma 3.16]

Instead of the Yamada–Watanabe argument, the uniqueness also follows from the
observation that for a pseudo-contraction semigroup (St )t≥0 and a square integrable
Lévy process L the law of

∫ ·
0 S·−sdLs is completely determined by L . This can be

seen with the approximation argument used in the proof of [11, Theorem 9.20].

4 Final Comment

Above [2, Proposition 3.9] it is noted that “in a non-conservative setting, one can try to
conclude existence from an extension argument in a larger path space, [but] in this case
one has to prove that the extension is supported on (�,F)” as defined in [2]. The larger
path space, to which this comment refers, is the path space defined in this correction
note. In our modified setting, it follows from Parthasarathy’s extension theorem (see
[10]) that under the assumptions imposed in [2] the GMP (A, b′, a, K ′, η, τ�−) has
a solution whenever the GMP (A, b, a, K , η, τ�−) has a solution. This observation
extends [2, Theorem 3.6].
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