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1 Corrections

In this note, we correct claims made in [2]:

(i) It is claimed that the generalized martingale problem introduced in [2] allows
explosion in a continuous manner. However, because the cemetery A is added to
B as an isolated point, explosion can only happen by a jump and is excluded by
[2, Lemma 4.3]. In Sect.2, we explain how the setup can be adjusted to include
the possibility of explosion.

(i1) Inthe proof of [2, Proposition 4.8], it is needed that the operator A has a non-empty
resolvent set p(A), i.e., that

p(A) = {x eR: . — A) ' exists in L(B, B)} # 7.

This assumption is missing in [2]. It is, e.g., satisfied in case A is the generator of
a Cp-semigroup; see [4, Remark 1.1.3, Proposition 1.2.1].

2 A Setup Including Explosion
2.1 Modified Setup

In the following, we explain how 2, 7, and ta have to be redefined such that the
setting includes the possibility of explosion.

The original article can be found online at https://doi.org/10.1007/s10959-018-0814-4.
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For a function w: Ry — Ba, we define
Ta(@) 2inf(t e Ry (1) = A),

where, as always, inf () £ oo. Let £ to be the space of all right continuous functions
w: Ry — Ba which are cadlag on [0, 7A (w)) and satisfy w(f) = A forallt > 74 (w).
The difference in comparison with the setting in [2] is that w € {to < 0o} might not
have a left limit at 7A (w).

Denote by X the coordinate process, i.e., X;(w) = w(t) forallw € Qandt € R,
and denote by F £ o(X,,t € R,) the o-field generated by X. The proof of the
following is given in Sect.2.2.

Lemma 1 There exists a metric dg on Q2 such that (2, dg) is separable and complete
and F is the corresponding Borel o -field.

Let F = (F;);>0 be the filtration generated by X, i.e. F; 2 6(X,s € [0,1]) for
t € R,. Note that 7, is an F-stopping time, because {tp <t} = {X; = A} € F;. For
I' C B, we define

r(F)éinf(t<rA:XteForX,_eF)/\rA.

The proof of the following is given in Sect.2.3.

Lemma2 (i) IfT" C B is closed, then t(I") is an F-stopping time.
@) If 'y € I'p, € I's C .- is an increasing sequence of open sets in B such that
Upen Tn =B, then t(B\I'y) /' ta asn — o0.

We define
Ty éinf(t < TA: | Xf|| =nor|X,—| zn) ATaAn, neN.

By Lemma 2, (t,),en is a sequence of F-stopping times satisfying 7, /' 7a as
n — oo. In this modified setting, the GMP can be defined as in [2] and all results from
[2] hold. In Sect. 3, we comment on necessary changes in the proofs.

2.2 Proof of Lemma 1
We adapt the proof of [1, Lemma A.7]. Define
Q* 2 (D(R4, B) x (0, 00]) U ({wa} x {0}),
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where wa (t) = A forall € R4. For z € [0, co] and ¢t € R, we define

z, z =00,
b0 2 12(1-e™), ze (0,00,
0, z=0,
z, =00,
¢ (1) 2§ —log (1= ) Lywq). 2 € (0.00).
0, z=0.

Moreover, we define t: Q — Q* by

Hw) £ (@0 Pry(w)s Ta(®)).
Lemma 3 ¢ is a bijection.

Proof To check the injectivity, let w, @ € 2 be such that t(w) = ¢(«). In case tA (w) =
Ta(a) € {0, oo}, we clearly have w = «. In case 0 < 1A (w) = A (®¥) < 00, We can
deduce from the first coordinates of ¢(w) and ¢(«) that ® = o on [0, Tao(w)) =
[0, TA (@), which implies w = «.

To check the surjectivity, note that t(wa) = (wa, 0) and that ((w o ¢; ll[o,t) +
Alj o) = (, t) for all (w, 1) € D(R4, B) x (0, oo]. m]

Let dp be the Skorokhod metric on D(R, Ba) and let djp 0] be the arctan metric on
[0, oo]. We define

dpx[0,00] (@, 1), (@, ) = dp(®, &) + djo,00] (1, 5)

for (w, 1), (o, s) € DRy, Ba) x [0, oc], and set

A
dox = dpx[0,00] | ey -

We note that (2%, do+) is separable and complete, because it is a G5 subspace of
(D(R4+,Ba) x [0, 00], dpx[0,00])- Due to Lemma 3, we can equip €2 with the metric

do (o, @) £ do(1(w), L(a))
=dp(® 0 Grp(w), & © Prp(@)) + d[0,00](Ta (@), TA(@))

for w, @ € Q. In this case, ¢ is an isometry and (€2, dg) is separable and complete. In
the following, we equip 2 with the topology induced by the metric dq.
We now prove that 7 = B(£2). By the definition of the metric dg, the maps

QLowr> wodr,(w) € DR, Bp), Q35w+ ta(w) € [0, 0]
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are continuous. For fixed r € R, the map [0, o] 5 z — qb;l(t) € R, is Borel and,
consequently, also

QLowr> ¢ )(t)e]R+

-1
TA (w
is Borel. Because right continuous adapted processes are progressively measurable,
the map

DR, Br) xRy 3 (w,1) = () £ Y(w,1) € Ba
is Borel. We conclude that for every ¢ € R the map

Q30 o) =Y (@0 Gryw) Prp() O it <ra)) + Alirzraw)) € @

is Borel. This implies that 7 C B(2).

Note that ¢ is F/B(2*) measurable. Let f: 2 — R be a Borel function. Because
¢ is an isometry, the inverse map ¢ ~!: @* — Q is continuous and therefore Borel. We
conclude that

Qowr f@=(for Ho(w)eR

is F/B(R) measurable as composition of the B(£2*) /B(IR) measurable map f ot~ and
the F/B(2*) measurable map ¢. This implies B(£2) C F and the proof is complete. O

2.3 Proof of Lemma 2

(i). We have to show that {t(I") < ¢} € F; for all t € Ry. For x € B, we define
d(x,T') £ infyer ||x — y|| and set

M2 {xeB:dx ) <1}

n

Moreover, on {t < Tpo} wWe set
F; £ clp({Xs: s €[0,1]}) = {X;, X,—: s € [0, 1]} € B.

Because x — d(x, I') is Lipschitz continuous, the set I',, is open, and because I is
closed, I' = {x € B: d(x, ') = 0}. Define v = sup,cn T(I'y). Because I' C Ty, it
is clear that T < t(I"). Next, we show that t > t(I"). We claim that this inequality
follows if we show that

VieRy: (J(FNT, #0) S {F,NT # @) on{t < 1a). 2.1)
neN

We explain this: In case T > 7o, wehave t = 7(I") = ta. Take w € {t < ta} and let
& > 0 besuchthat ¢ < ta(w) — T(w) in case 7o (w) < co. Foreachn € N, we find a
tn € [t(Ty)(®), T(I'y)(w) + &) such that F,, (w) NT',, # @. Note that t = sup,,cy tn <
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T(w) + ¢ < ta(w) and that Fy(w) N T, # @ foralln € N. Consequently, in case
(2.1) holds we have F;(w) N T" # @, which implies 7(I')(w) < t < 7(w) + &. We
conclude that T > 7(I") as claimed. We proceed showing (2.1). Fix t € R. Because
on{t < ta}

({F T, #0} inf d(x,T) = 0},
neN xel

it suffices to show that on {t < 7}

{inf d(x,T) =0} C{F, NT #0}.

xeF;

Take w € {t < ta}. Because {@(- A #)} is compact in D(R4, B), F;(w) is compact
in B by [4, Problem 16, p. 152]. Consequently, due to its continuity, the function
x > d(x, I') attains its infimum on F;(w). Thus, because I' = {x € B: d(x, ") = 0},
ifinfyep, () d(x, ') = 0, we have F;(w) N I" # @. We conclude that (2.1) holds and
hence that T = (TI").

From the equality T = t(I"), we deduce that for all € R

r@) <1} = (z@w) <1} 22)

neN

Fix t € Ry and set Q' £ ([0, #) N Q) U {t}. We note that

{t@Cu) <t <1a} = [t Cg1) <1+ 4 < 7a)
meN
> (U X e M) N < 7a).

se@ﬂ_

(2.3)

Because I, is open, we have
t(Ty41) = inf (t <7TA: X; € Fn+1) A TA.

Thus, in case T(I'y41) < ¢ < 7Ta, the right continuity of X yields that X, ) €
clp(I'p+1) € I'yy. We conclude that on {f < 7a}

r@C) <3< | X ecs@uny € [ (X e Tl (2.4)
s€[0,¢] seQy

Now, (2.2), (2.3) and (2.4) imply that

e =r<n)=(N U er)nx £a ez,

neN SEQQ_
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Because
{tM) <t,ta <t} ={ta =t} ={X; = A} e Fy,

we conclude that t(I") is a stopping time. The proof of (i) is complete.

(ii). Because n > t(B\I',) is increasing, t(B\I',) /' t £ sup,en T(B\I',) as
n — 00. Because T < t,, it suffices to show that t > tA. For contradiction, suppose
that there exists an w € {t < ta} and set ' £ w (- A T(w)) € D(R,4, B). Then,

T(B\I)(@) =inf (t € Ry: &' (t) ¢ Ty or o/ (t—) ¢ Ty) /' 00 asn — oo.

Because 7(B\I',) is an F-stopping time by (i), so is 7 and Galmarino’s test (see [6,
Lemma I11.2.43]) implies that 7 (w) = 7T(w’) = oco. This is a contradiction and T = 7
follows. The proof of (ii) is complete. O

3 Modifications, Corrections and Comments on Proofs
3.1 [2, Lemma 4.3]

The last conclusion in [2, Lemma 4.3] is empty: In the setting of [2], it cannot happen
that X;,— = A.

3.2 [2, Lemmata 4.3, 4.5]

Due to the initial value and the possibility that X has no left limit at t,,, some bounds
in the proofs of [2, Lemmata 4.3, 4.5] are only valid on the open stochastic interval
10, 7,[[. Because singletons have Lebesgue measure zero, the arguments require no
further changes.

The last conclusion in the proof of [2, Lemma 4.5] follows from the dominated
convergence theorem.

3.3 [2, Proposition 4.8]

In the proof, it has been used that p(A*) # @, see [8, Lemma 4.1]. Because B is
separable and reflexive, its dual B* is separable and D in the proof of [2, Proposition
4.8] can be constructed more directly: The assumption p(A) # @ implies that p(A*) #
@, see [7, Theorem 5.30, p. 169]. Let D’ C B* be a countable dense subset of B* and
take A € p(A*). Now, set R(A, A*) = (A — A*)~! and define D £ {R(A, A*)x: x €
D’} C D(A*). We claim that foreach x € D(A*) there exists a sequence (x,)eny C D
such that x, — x and A*x,, — A*x in the operator norm as n — oo. To see this,
take x € D(A*) and set y = Ax + A*x. There exists a sequence (y,),en C D’ such
that y, — y asn — oo. Finally, set x, £ R(A, A*)y, € D. Because R(A, A*) €
L(B*, B*), we have x, — R(A, A*)y = x as n — o0. Moreover, the triangle
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inequality yields that
IA%x, — A%x] < llyn = Y1l + [Mllxn — x[| > Oasn — oo.

The claim is shown.

3.4 [2,Lemma 4.10]

Due to Lemma 1, it is not necessary to pass to D(R, Ba). Moreover, it can be seen
more easily that ® is Borel. Indeed, ® is continuous.

3.5 [2,Lemma 4.11]
In the proof of P-a.s.
EP[(M{\q, = M{s,) 0 01 <0y Fore] =0,
the variable n is used twice, which results in a conflict of notation. We correct the

argument: Note that 7,44 0 6 + & < T(y4k) On {§ < 7,44} for all k € N. Set
or2rat,o 0: + &. We obtain that P-a.s.

EP[(M],, — Mszr,,) °9§1{s<m|fs+s]

= lim_ EP[(M] — M) <, | Fove]
= k]l)rlgo EP [( 01 AT (n-+k) M£Arz(,,+k))1{f<rn+k} |‘7:S+§]

— T f f
a kll?éo (Mf’r/\f2<n+k)A(s+E) B MUSATQ(,1+1{)/\(S+%'))1{§<Tn+k}

=0,
by the optional stopping theorem.

3.6 [2, Section 4.3.2]

Because X has no left limit at 7, the randomAmeasure wX cannot be defined as in [2,
Eq. 4.20]. We pass to a stopped version: Let X be defined as in Eq. 4.11 in [2] and set
X" £ X 5., and

" ((,() dl dx) ZI{AX”((D);&O}&(Y AX”(a)))(dt dx)

s>0

V' (w; dt,dx) £ 1<g, ) K (X[ (@), dx)dt.

We have the following version of [2, Lemmata 4.17, 4.18, 4.19]:

Lemma4 Foralln € N the random measure 1" is (F¥ | P)-optional with 2F -o -finite
Doléans measure and (F* | P)-predictable compensator v".
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Because the proofs of [2, Lemmata 4.17, 4.18] contain typos and the proof of [2,
Lemma 4.19] requires some minor modification, as the set Z; x Z; has not all claimed
properties, we give a proof:

Proof Due to [3, Theorem IV.88B, Remark below], the set {AX" # 0} is F? -thin.
Hence, [6, I1.1.15] yields that " is F¥-optional. It follows as in [9, Example 2, pp.
160] that M 5,, is 2P o -finite. Next, we show that v" is F” -predictable with PP

o-finite Doléons measure Mf:,. Form € Nweset G, £ {x € B: ||x| > %} U {0}.
Let W be a nonnegative 2P @ Z(B)-measurable function which is bounded by a
constant ¢ > 0. Because P-a.s.

W15, 116, *vi <cm sup K(x,{z € B: |z] > 1}) < oo,
e

we conclude that M 5, is 2P o -finite. Furthermore, the process

Wx'" = lim Wl 116, *V"
m—00
is F¥ -predictable as the pointwise limit of an F¥-predictable process. We conclude
that v” is an F” -predictable random measure.
It remains to show that v" is the (F”, P)-predictable compensator of . Let Z,

be the collection of sets A x {0} for A € ]-'(f and [[0, £]) for all F¥-stopping times &,
and let Z; be the collection of all sets

G2 {xeB: ((x, y1)s ..o, (x, ) € A} € B(B), 3.1

for A € B(RY), ¥is...»y; € D(A*) and d € N. Note that M:,,(A x {0} x G) =
ML (A x {0} x G) =0 forall A € 7 and G € B(B). Fix an F”-stopping time &
and the cylindrical set G given by (3.1). Denote Y £ ((X", i oo (X" 7). By
[2, Lemma 4.7], we obtain

EPI:II[O‘é]IXG*Mgo] = EPI:1|[0,§]|><A*M§::| = EPI:II[O,E]IXG*I)QO]’

which implies le = le,)l on Z; x Z,. Take a norming sequence (x,;)neN C B* of
unit vectors, see p. 522 in [5] for a definition, and note that

By & {x € B vl > b= [ {x € B: 10 a0l > 3}
keN

Form, k € N set
y(m, k) £inf(r € Ry: 1" ([0, 1] X By) > k) Am.
The dominated convergence theorem yields that

M ((A x B) N ([0, y (m, )]l X Bu)) = Ma((A x B) N ([0, y (m, k)] x By))

@ Springer



Journal of Theoretical Probability (2020) 33:1791-1800 1799

forall A x B € Z| x Z,. Now, we conclude from the uniqueness theorem for measures
that MF, = M, on the trace o-field (2 ® B(B)) N ([0, y (m, k)] x (By U {0})).
Finally, taking k, m — oo and using the monotone convergence theorem show that
le,, = M", on 2F ® B(B). The proof is complete. O

i

The candidate density process Z can be defined as in [2, Lemma 4.21] with /,LX and
vX replaced by i and v".

3.7 [2, Lemmata 4.21, 4.22]

In the proofs, the process X should be replaced by X.

3.8 [2, Proposition 3.7]

The representation of the CMG densities and the function V¥ in [2, Lemma 4.23]
should be multiplied by 1y, <7,}. Moreover, in all Lebesgue integrals X_ should be
replaced by X.

3.9 [2,Lemma 3.16]

Instead of the Yamada—Watanabe argument, the uniqueness also follows from the
observation that for a pseudo-contraction semigroup (S;);>0 and a square integrable
Lévy process L the law of fo S._sdLg is completely determined by L. This can be
seen with the approximation argument used in the proof of [11, Theorem 9.20].

4 Final Comment

Above [2, Proposition 3.9] it is noted that “in a non-conservative setting, one can try to
conclude existence from an extension argument in a larger path space, [but] in this case
one has to prove that the extension is supported on (€2, F)” as defined in [2]. The larger
path space, to which this comment refers, is the path space defined in this correction
note. In our modified setting, it follows from Parthasarathy’s extension theorem (see
[10]) that under the assumptions imposed in [2] the GMP (A, b’, a, K', n, tTa—) has
a solution whenever the GMP (A, b, a, K, n, tao—) has a solution. This observation
extends [2, Theorem 3.6].
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