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Abstract
In this paper,wegeneralize the concept of gammabridge in the sense that the lengthwill
be random, that is, the time to reach the given level is random. The main objective of
this paper is to show that certain basic properties of gamma bridges with deterministic
length stay true also for gamma bridges with random length. We show that the gamma
bridge with random length is a pure jump process and that its jumping times are
countable and dense in the random interval bounded by 0 and the random length.
Moreover, we prove that this process is aMarkov process with respect to its completed
natural filtration as well as with respect to the usual augmentation of this filtration,
which leads us to conclude that its completed natural filtration is right continuous.
Finally, we give its canonical decomposition with respect to the usual augmentation
of its natural filtration.
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1 Introduction

The gamma process has proven very successful when modelling accumulation pro-
cesses. Early studies by Hammersley [14], Moran [21], Gani [13], Kendall [18],
Kingman [19] addressed the modelling of water stored in and released from reser-
voirs and accumulation related to storage in general. Dufresne et al. [9] show how to
employ the gamma process to model liabilities of insurance portfolios for continuous
claims. For these risk models, the fixed budget horizon of one year is assumed. The
authors investigate furthermore the gamma process in the setting of ruin theory and
supply ruin probabilities in form of tables. The gamma process replaces the compound
processes used traditionally. In Emery and Yor [12] and Yor [25], gamma bridges were
studied and their application to stop loss reinsurance and credit risk management was
pointed out in Brody et al. [8]. This work introduces and focusses on random gamma
bridges, which model accumulated losses of large credit portfolios in credit risk man-
agement. These studies were continued by Hoyle et al. in a series of papers, see, e.g.
Hoyle and Mengütürk [16]. In a further article, pricing at an intermediate time is
studied Hoyle et al. [15]. Returning to the starting point accumulation processes for
storage, we refer to recent developments in Chan et al. [10] for further references.
Numerical results may be found in Assmusen and Hobolth [2].

In this paper, we generalize the concept of a gamma bridge to random times, at
which the bridge is pinned, to study amongst others its Markov property and to give
its decomposition semi-martingale. There are two recent works in which bridges with
random length are studied. The first by Bedini et al. [5] studies related properties
of the Brownian bridge with random length, and the second by Erraoui and Louriki
[11] studies Gaussian bridges with random length. In both works, existence of an
explicit expression for the bridge with random length is exploited. Applications for
the gamma bridge with random length suggest itself for accumulation processes in
financial mathematics, see [3].

The paper is organized as follows. Section 2 begins by recalling the definitions and
someproperties of gammaprocesses andgammabridges of deterministic length,which
will be used throughout the paper. In Sect. 3, we define the gamma bridge with random
time τ whichwill be denoted by ζ andwe consider the stopping time property of τ with
respect to the right continuous and completed filtration Fζ,c

+ generated by the process
ζ . Moreover, we give the conditional distribution of τ and ζu given ζt for u > t > 0.
Next, we establish the Markov property of the process ζ with respect to its completed
natural filtration. As a consequence, we derive Bayesian estimates for the distribution
of the default time τ , given the past behaviour of the process ζ up to time t . After that,
we study the Markov property of the gamma bridge with random length, with respect
to Fζ,c

+ . Finally, we give its semi-martingale decomposition with respect to Fζ,c
+ .

The following notationwill be used throughout the paper: for a complete probability
space (Ω,F ,P), Np denotes the collection of P-null sets. If θ is a random variable,
thenPθ denotes the lawof θ underP.D denotes the space of right-continuous functions
with left limits (càdlàg) from R+ to R+, endowed with Skorohod’s topology, under
which the space D is a Polish space. If E is a topological space, then the Borel σ -
algebra over E will be denoted by B(E). The characteristic function of a set A is
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written IA. The symmetric difference of two sets A and B is denoted by AΔB. Finally
for any process Y = (Yt , t ≥ 0) on (Ω,F ,P), we define by:

(i) F
Y =

(
F Y

t := σ(Ys, s ≤ t), t ≥ 0

)
the natural filtration of the process Y .

(ii) F
Y ,c =

(
F Y ,c

t := F Y
t ∨ NP , t ≥ 0

)
the completed natural filtration of the

process Y .

(iii) F
Y ,c
+ =

(
F Y ,c

t+ := ⋂
s>t

F Y ,c
s = F Y

t+ ∨ NP , t ≥ 0

)
the smallest filtration

containing F
Y and satisfying the usual hypotheses of right-continuity and com-

pleteness.

2 Gamma and Gamma Bridge Processes

The purpose of this section is to recall the definition and someproperties of the standard
gamma process and the gamma bridge with deterministic length.

2.1 Gamma Process

By a standard gamma process (γt , t ≥ 0) on (Ω,F ,P), we mean a subordinator
without drift having the Lévy–Khintchine representation given by

E(exp(−λγt )) = exp

(
−t

∫ ∞

0
(1 − exp(−λx))

exp(−x)

x
dx

)
(1)

= (1 + λ)−t , (2)

where ν(dx) = exp(−x)

x
I(0,∞)(x) dx is the so-called Lévy measure. We note that the

formula (2) is obtained from (1) using the Frullani formula.
The following properties, inferred from (2) by means of standard arguments (see

Theorems 21.1–21.9, pp. 135–140 in Chapter 4 of Sato [22]), describe the paths of
the gamma process.

Proposition 1 The gamma process (γt , t ≥ 0) has the following properties:

(i) γ is a purely jump process;
(ii) γ is not a compound Poisson process, and its jumping times are countable and

dense in [0,∞) a.s.;
(iii) the map t �→ γt is strictly increasing and not continuous anywhere a.s.;
(iv) γ has sample paths of finite variation a.s.;
(v) γt , t > 0, follows a gamma distribution with density

fγt (x) = xt−1 exp(−x)

Γ (t)
I(0,∞)(x), (3)

where Γ is the gamma function.
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The second property means that, for any t > 0, γ has infinite activity, that is, almost
all paths have infinitely many jumps along any time interval of finite length. It is
a direct consequence of ν(R+) = +∞, whereas the fourth property arises from∫ 1

0
x ν(dx) < +∞.

Remark 1 1. It is clear that the process gamma (γt , t ≥ 0) is a process with paths
in D .

2. The process (γt −γt− := et , t ≥ 0) of jumps of the gamma process (γt , t ≥ 0) is a
Poisson point process whose intensity measure is the Lévy measure of (γt , t ≥ 0),
seeTheorem1, p. 13ofBertoin [4]. For r > 0, let us denote by

(
Jr1 ≥ Jr2 ≥ · · · ) the

sequel of the lengths of jumps of the process (γt , t ∈ [0, r ]) ranked in decreasing
order. It is not difficult to see that since the intensity measure of the Poisson point

process ((t, et ), t ≥ 0)) is dt
exp(−x)

x
I(0,∞)(x) dx , the jump times

(
Ur
1 ,Ur

2 , . . .
)

constitute a sequence of i.i.d r.v.’s with uniform law on [0, r ]which is independent
from the sequence

(
Jrk , k ≥ 1

)
. Thus, we have the following representation:

γt =
∑
k≥1

Jrk I{Ur
k ≤t}, t ∈ [0, r ]. (4)

We note that: γr = ∑
k≥1 Jrk .

The next proposition gives three other useful properties of the gamma process.

Proposition 2 (i) For every r > 0, the σ -algebras, σ
(γu

γr
, u ∈ [0, r ]) and σ(γu, u ∈

[r ,∞)) are independent.
(ii) For any r > 0, (γt , 0 ≤ t ≤ r) satisfies the following equation

γt = Mr
t +

∫ t

0

γr − γs

r − s
ds, (5)

where (Mr
t , t ∈ [0, r ]) is a G (r)

t -martingale with G (r)
t = σ(γs, s ∈ [0, t] ∪ {r}).

(iii) (γt , t ≥ 0) has the Markov property with respect to its natural filtration.

Proof For (i) and (ii) See, [12]. (iii) (γt , t ≥ 0) has the Markov property since it is a
Lévy process. 
�

For a deeper investigation on the properties of the gamma process, we refer to
Kyprianou [20], Sato [22] and Yor [25].

2.2 Gamma Bridge with Deterministic Length

A bridge is a stochastic process that is pinned to some fixed point at a fixed future
time. In this section, we define the gamma bridge with deterministic length and we
give some important properties of this process. For fixed r > 0, we define the gamma
bridge of length r by setting
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Definition 1 Let r ∈ (0,+∞). The map ζ r : Ω �−→ D defined by

ζ rt (ω) := γt∧r (ω)

γr (ω)
, t ≥ 0, ω ∈ Ω, (6)

is the bridge associated with the standard gamma process (γt , t ≥ 0). Then, clearly
ζ r0 = 0 and ζ rr = 1.We refer to ζ r as the standard gamma bridge of length r associated
with γ . We note that ζ r is also called the Dirichlet process with parameter r .

We note that the process ζ r is really a function of the variables (r , t, ω), and for
technical reasons, it is convenient to have certain joint measurability properties.

Lemma 1 The map (r , t, ω) �−→ ζ rt (ω) of
(
(0,+∞) × R+ × Ω,B

(
(0,+∞)

) ⊗
B(R+) ⊗ F

)
into (R+,B(R+)) is measurable. In particular, the t-section of

(r , t, ω) �−→ ζ rt (ω): (r , ω) �−→ ζ rt (ω) is measurable with respect to the σ -algebra
B

(
(0,+∞)

) ⊗ F , for all t ≥ 0.

Proof Since the map (r , t) �−→ t ∧ r is Lipschitz continuous and t �→ γt is càdlàg
for almost all ω ∈ Ω , the map (r , t, ω) �−→ ζ rt (ω) can be obtained as the pointwise
limit of sequences of measurable functions. So, it is sufficient to use standard results
on the passage to the limit of sequences of measurable functions. 
�
As a consequence, we have the following corollary.

Corollary 1 The map (r , ω) �−→ ζ rt (ω) of
(
(0,+∞) × Ω,B

(
(0,+∞)

) ⊗ F
)
into

(D,B (D)) is measurable.

A number of properties of the gamma bridge ζ r sample paths can be easily deduced
from the corresponding properties of the gamma sample paths. Hence, we have

Proposition 3 The gamma bridge ζ rt , t ≥ 0, has the following properties:

(i) ζ r is a purely jump process, and its jumping times are countable and dense in
[0, r ] a.s.;

(ii) the map t �→ ζ rt is strictly increasing and not continuous anywhere in [0, r ] a.s.;
(iii) ζ r has sample paths of finite variation in [0,+∞) a.s.;
(iv) ζ r has the following representation:

ζ rt =
∑
k≥1

Jrk∑
j≥1

Jrj
I{Ur

k ≤t}, t ≥ 0. (7)

We now turn to distributional properties of the gamma bridge.

Proposition 4 (i) For all 0 < t < r , the random variable ζ rt has a beta distribution
β(t, r − t), i.e. its density function is given by

ϕζ rt
(x) = Γ (r)

Γ (t)Γ (r − t)
xt−1(1 − x)r−t−1

I(0,1)(x). (8)
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(ii) For any 0 = t0 < t1 < · · · < tn = r , the vector
(
ζ rt1 − ζ rt0 , . . . , ζ

r
tn − ζ rtn−1

)
is

independent from γr , with density

Γ (r)∏n
i=1 Γ (ti − ti−1)

n∏
i=1

xti−ti−1−1
i

with respect to the Lebesgue measure dx1 . . . dxn−1 (or, as well, dx2 . . . dxn) on
the simplex

{(x1, . . . , xn) : xi ≥ 0, x1 + · · · + xn = 1} .

(iii) For all t < u < r and x ∈ (0, 1), the regular conditional law of ζ ru given ζ rt = x
is given by:

P(ζ ru ∈ dy|ζ rt = x)

= Γ (r − t)

Γ (u − t)Γ (r − u)

(y − x)u−t−1(1 − y)r−u−1

(1 − x)r−t−1 I{x<y<1} dy. (9)

In the same spirit as in Proposition2, we have

Proposition 5 (i) ζ r is a Markov process with respect to its natural filtration.
(ii) ζ r satisfies the following equation

ζ rt = Nr
t +

∫ t

0

1 − ζ rs

r − s
ds, t ∈ [0, r ], (10)

where (Nr
t , t ∈ [0, r ]) is a Fζ r -martingale.

Proof (i) From Theorem 1.3 in Blumenthal and Getoor [6], it suffices to prove that for
every bounded measurable function g we have:

E
[
g(ζ ru )|ζ rt1, . . . , ζ rtn

] = E
[
g(ζ ru )|ζ rtn

]
, (11)

for all 0 ≤ t1 < . . . < tn < u ≤ r and for all n ≥ 1.
Using Proposition 2 (i), we have

E
[
g(ζ ru )|ζ rt1, . . . , ζ rtn

] = E

[
g(

γu

γr
)|γt1

γr
, . . . ,

γtn

γr

]

= E

[
g

(
γu

γr

)
|γt1
γt2

,
γt2

γt3
, . . . ,

γtn−1

γtn
,
γtn

γr

]

= E

[
g

(
γu

γr

)
|γtn
γr

]

= E

[
g(ζ ru )|ζ rtn

]
.
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Hence, the formula (11) is proved; then, ζ r is a Markov process with respect to its
natural filtration.

(ii) We have from Proposition 2 (ii) that

γt = Mr
t +

∫ t

0

γr − γs

r − s
ds, t ∈ [0, r ],

where Mr is a martingale with respect to the filtration G (r)
t = σ(γs, s ∈ [0, t] ∪ {r}).

Then, it is easy to see that

ζ rt = Nr
t +

∫ t

0

1 − ζ rs

r − s
ds, t ∈ [0, r ], (12)

where Nr
t = Mr

t

γr
, t ∈ [0, r ]. Firstly, notice thatF ζ r

t ⊂ G (r)
t and γr isG

(r)
t -measurable

for all t ≤ r . Moreover, Eq. (12) yields, that is the process Nr is Fζ r -adapted. In view
of these considerations, as well as the fact that Mr

t is a G (r)
t -martingale we obtain

E

[
Nr
t |F ζ r

s

]
= E

[
Mr

t

γr
|F ζ r

s

]
= E

[
E

[
Mr

t

γr
|G (r)

s

]
|F ζ r

s

]

= E

[
Mr

s

γr
|F ζ r

s

]
= E

[
Nr
s |F ζ r

s

]
= Nr

s ,

for 0 ≤ s ≤ t ≤ r . It follows that (Nr
t , t ∈ [0, r ]) is aFζ r -martingale. Hence, equation

(10) is satisfied. 
�
Remark 2 We can rewrite (5) in the form

γt∧r = Mr
t∧r +

∫ t∧r

0

γr − γs

r − s
ds, t ≥ 0. (13)

Then, we obtain

ζ rt = γt∧r
γr

= Mr
t∧r
γr

+
∫ t∧r

0

1 − ζ rs

r − s
ds, t ≥ 0. (14)

For every t ≥ 0, we set N̂ r
t = Mr

t∧r
γr

. We have thus

ζ rt = N̂ r
t +

∫ t

0

1 − ζ rs

r − s
I{s<r} ds, t ≥ 0. (15)

It follows from the above proposition that (N̂ r
t , t ≥ 0) is a F

ζ r -martingale stopped
at r .
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3 Gamma Bridges with Random Length

In this section, we define and study a process (ζt , t ≥ 0)which generalizes the gamma
bridge in the sense that the time r at which the bridge is pinned is substituted by an
independent random time τ . We call it gamma bridge with random length. We prove
that the random time τ is a stopping time with respect to the completed filtration Fζ,c,
and we give the regular conditional distribution of τ and (τ, ζ.) given ζ.. Moreover,
we prove that the gamma bridge with random length ζ is an in-homogeneous Markov
process with respect to its completed natural filtration F

ζ,c as well as with respect
to F

ζ,c
+ . The last property allows us to deduce an interesting consequence, that is

the filtration F
ζ,c satisfies the usual conditions of completeness and right-continuity.

Finally, we give the semi-martingale decomposition of ζ with respect to Fζ,c
+ .

Now, we give precise definition of the process (ζt , t ≥ 0). Due to Corollary 1 we
could substitute r by a random time τ in (6). Thus, we obtain

Definition 2 Let τ : (Ω,F ,P) �−→ (0,+∞) be a strictly positive random time, with
distribution function F(t) := P(τ ≤ t), t ≥ 0. The map ζ : (Ω,F ) −→ (D,B (D))

is defined by

ζt (ω) := ζ rt (ω)|r=τ(ω), (t, ω) ∈ R+ × Ω.

Then, ζ takes the form

ζt := γt∧τ

γτ

, t ≥ 0. (16)

Since ζ is obtained by composition of two maps (r , t, ω) �−→ ζ rt (ω) and (t, ω) �−→
(τ (ω), t, ω), it is not hard to verify that the map ζ : (Ω,F ) −→ (D,B (D)) is
measurable. The process ζ will be called gamma bridge with random length τ .

As mentioned above, we work under the following standing assumption:

Assumption 1 The random time τ and the gamma process γ are independent.

Using the fact that the process ζ is obtained by the substitution of r in ζ r by the
random time τ allows us to derive a lot of information about its path properties. Hence,
we have

Proposition 6 The gamma bridge (ζt , t ≥ 0) with random length τ has the following
properties:

(i) ζ is a purely jump process, and its jumping times are countable and dense in
[0, τ ] a.s.;

(ii) the map t �→ ζt is increasing and not continuous anywhere on [0, τ ] a.s.;
(iii) ζ has sample paths of finite variation a.s.
(iv) ζ has the following representation:

ζt =
∑
k≥1

J τ
k∑

j≥1 J
τ
j
I{U τ

k ≤t}, t ≥ 0,
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where the jump times
(
U τ
1 ,U τ

2 , . . .
)
constitute a sequence of r.v.’s identically

distributed with the law given by

P
[
U τ
k ≤ t

] = P [τ ≤ t] +
∫

(t,+∞)

P
[
Ur
k ≤ t

]
Pτ (dr)

= P [τ ≤ t] + t E

[
1

τ
I(τ>t)

]
, t ≥ 0, k ≥ 1.

3.1 Stopping Time Property of �

The aim of this subsection is to prove that the random time τ is a stopping time with
respect to Fζ,c.

Proposition 7 For all t > 0, we haveP ({ζt = 1} � {τ ≤ t}) = 0. Then, τ is a stopping
time with respect to Fζ,c and consequently it is a stopping time with respect to Fζ,c

+ .

Proof First, we have from the definition of ζ that ζt = 1 for τ ≤ t . Then, {τ ≤ t} ⊆
{ζt = 1}. On the other hand, using the formula of total probability we obtain

P(ζt = 1, t < τ) =
∫

(t,+∞)

P(ζt = 1|τ = r)Pτ (dr)

=
∫

(t,+∞)

P(ζ rt = 1)Pτ (dr)

= 0.

The latter equality uses the fact that ζ rt is a random variable having a beta distribution
for 0 < t < r . Thus, P ({ζt = 1} � {τ ≤ t}) = 0. It follows that the event {τ ≤ t}
belongs to F ζ

t ∨ NP , for all t ≥ 0. Hence, τ is a stopping time with respect to F
ζ,c

and consequently it is also a stopping time with respect to Fζ,c
+ . 
�

In order to determine the conditional law of the random time τ given ζt , we will use
the following

Proposition 8 Let t > 0 such that F(t) > 0. Let g : R+ −→ R be a Borel function
satisfying E[|g(τ )|] < +∞. Then, P-a.s., we have

E[g(τ )|ζt ] =
∫

(0,t]
g(r)

F(t)
Pτ (dr) I{ζt=1}+

∫
(t,+∞)

g(r)φζ rt
(ζt )Pτ (dr) I{0<ζt<1}, (17)
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where the function φζ rt
is defined on R by:

φζ rt
(x) = ϕζ rt

(x)∫
(t,+∞)

ϕζ st
(x)Pτ (ds)

=
(1 − x)r

Γ (r)

Γ (r − t)∫
(t,+∞)

(1 − x)s
Γ (s)

Γ (s − t)
Pτ (ds)

I(0,1)(x), x ∈ R, r ∈ (t,+∞).

(18)

Proof Let us consider the measure μ defined on B(R) by

μ(dx) = δ1(dx) + dx,

where δ1(dx) and dx are the Dirac measure and the Lebesgue measure on B(R),
respectively. Then, for any B ∈ B(R) we have

P(ζt ∈ B|τ = r) = P(ζ rt ∈ B) =
∫
B
qt (r , x)μ(dx),

where the function qt is non-negative andmeasurable in the two variables jointly given
by

qt (r , x) = I{x=1}I{r≤t} + ϕζ rt
(x)I{0<x<1}I{t<r}.

It follows from Bayes formula (see [23], p. 272) that P-a.s.:

E[g(τ )|ζt ] =

∫
(0,+∞)

g(r)qt (r , ζt )Pτ (dr)
∫

(0,+∞)

qt (r , ζt )Pτ (dr)

=

∫
(0,t]

g(r)Pτ (dr)I{ζt=1} +
∫

(t,+∞)

g(r)ϕζ rt
(ζt )Pτ (dr)I{0<ζt<1}

F(t)I{ζt=1} +
∫

(t,+∞)

ϕζ rt
(ζt )Pτ (dr)I{0<ζt<1}

=
∫

(0,t]
g(r)

F(t)
Pτ (dr)I{ζt=1} +

∫
(t,+∞)

g(r)φζ rt
(ζt )Pτ (dr)I{0<ζt<1}.


�

123



Journal of Theoretical Probability (2020) 33:931–953 941

Corollary 2 The conditional law of the random time τ given ζt is given by

Pτ |ζt=x (x, dr) = 1

F(t)
I{x=1} I(0,t](r)Pτ (dr) + φζ rt

(x) I{0<x<1} I(t,+∞)(r)Pτ (dr)

(19)

The previous proposition can be expanded as follows:

Proposition 9 Let u > t > 0 such that F(t) > 0. Let g be a bounded measurable
function defined on (0,+∞) × R. Then, P-a.s., we have

E[g(τ, ζt )|ζt ] =
∫

(0,t]
g(r , 1)

F(t)
Pτ (dr) I{ζt=1}

+
∫

(t,+∞)

g(r , ζt )φζ rt
(ζt )Pτ (dr) I{0<ζt<1}, (20)

and

E[g(τ, ζu)|ζt ] =
∫

(0,t]
g(r , 1)

F(t)
Pτ (dr)I{ζt=1} +

∫
(t,u]

g(r , 1)φζ rt
(ζt )Pτ (dr)I{0<ζt<1}

+
∫

(u,+∞)

Gt,u(r , ζt )φζ rt
(ζt )Pτ (dr) I{0<ζt<1}. (21)

Here, the function Gt,u(r , ·) is defined by

Gt,u(r , x) := E[g(r , ζ ru )|ζ rt = x]
=

∫
R

g(r , y)Pζ ru |ζ rt =x (dy). (22)

Proof First of all, it is easy to see that (20) is an immediate consequence of Proposition
8. Now, to show (21) we begin with by splitting E[g(τ, ζu)|ζt ] as follows:

E[g(τ, ζu)|ζt ] = E[g(τ, 1)I{τ≤t}|ζt ] + E[g(τ, 1)I{t<τ≤u}|ζt ] + E[g(τ, ζu)I{u<τ }|ζt ].

We obtain from Proposition 8 that

E[g(τ, 1)I{τ≤t}|ζt ] =
∫

(0,t]
g(r , 1)

F(t)
Pτ (dr)I{ζt=1}

and

E[g(τ, 1)I{t<τ≤u}|ζt ] =
∫

(t,u]
g(r , 1)φζ rt

(ζt )Pτ (dr) I{0<ζt<1}.
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Next, we prove that

E[g(τ, ζu)I{u<τ }|ζt ] =
∫

(u,+∞)

Gt,u(r , ζt )φζ rt
(ζt )Pτ (dr) I{0<ζt<1}. (23)

Indeed, for a bounded Borel function h we have

E[g(τ, ζu)I{u<τ }h(ζt )] =
∫

(u,+∞)

E[g(r , ζ ru )h(ζ rt )]Pτ (dr)

=
∫

(u,+∞)

E[E[g(r , ζ ru )h(ζ rt )|ζ rt ]]Pτ (dr)

=
∫

(u,+∞)

E[E[g(r , ζ ru )|ζ rt ]h(ζ rt )]Pτ (dr).

Using (22), for t < u < r , we get

E[g(τ, ζu)I{u<τ }h(ζt )] =
∫

(u,+∞)

E[Gt,u(r , ζ
r
t )h(ζ rt )]Pτ (dr)

= E[Gt,u(τ, ζt )I{u<τ }h(ζt )].

It follows from (20), that P-a.s.

E[Gt,u(τ, ζt )I{u<τ }|ζt ] =
∫

(u,+∞)

Gt,u(r , ζt ) φζ rt
(ζt )Pτ (dr) I{0<ζt<1}. (24)

This induces that

E[g(τ, ζu)I{u<τ }h(ζt )] = E

[∫
(u,+∞)

Gt,u(r , ζt )φζ rt
(ζt )Pτ (dr) I{0<ζt<1} h(ζt )

]
.

Hence, the formula (23) is proved and then the proof of the proposition is completed.

�

3.2 Markov Property of � and Bayes Estimate of �

In this part, we prove that the gamma bridge ζ with random length τ is an in-
homogeneous Markov process with respect to its completed natural filtration F

ζ,c.

Theorem 1 The process (ζt , t ≥ 0) is an F
ζ -Markov process. That is, for any t ≥ 0,

we have
E[ f (ζt+h)|F ζ

t ] = E[ f (ζt+h)|ζt ],P-a.s., (25)

for all t, h ≥ 0 and for every bounded measurable function f .

123



Journal of Theoretical Probability (2020) 33:931–953 943

Proof First, we would like to mention that since ζ0 = 0 almost surely it is easy to see
that

E[ f (ζt+h)|F ζ
0 ] = E[ f (ζt+h)|ζ0].

Let us assume t > 0. As I{ζt=0} = I{τ≤t} P-a.s, we rewrite E[ f (ζt+h)|F ζ
t ] as follows:

E[ f (ζt+h)|F ζ
t ] = E[ f (ζt+h)|F ζ

t ]I{τ≤t} + E[ f (ζt+h)|F ζ
t ]I{t<τ }

= f (1)I{ζt=1} + E[ f (ζt+h)|F ζ
t ]I{t<τ }.

So, it remains to show that

E[ f (ζt+h)I{t<τ }|F ζ
t ] = E[ f (ζt+h)I{t<τ }|ζt ], P − a.s.

To do this, it is enough to verify that

∫
A∩{t<τ }

f (ζt+h)dP =
∫
A∩{t<τ }

E[ f (ζt+h)|ζt ]dP, (26)

for all A ∈ F ζ
t . We start by remarking that, for t > 0, F ζ

t is generated by

ζtn , αn := ζtn−1

ζtn
, αn−1 = ζtn−2

ζtn−1

, . . . , α2 = ζt1

ζt2
, α1 := ζt0

ζt1
,

0 < t0 < t1 < · · · < tn = t for n running through N. Then, by the monotone
class theorem it is sufficient to prove (26) for sets A of the form A = {ζt ∈ B, α1 ∈
B1, . . . , αn ∈ Bn} with B, B1, B2, . . . , Bn ∈ B(R), n ≥ 1. Moreover, on the set
{t < τ }, we have

βk := γtk−1

γtk
= αk, k = 1, . . . , n.

Using Proposition 2 (i), then for t < r the vectors (β1, . . . , βn) and (ζ rt , ζ rt+h) are
independent. Now, taking into account all the above considerations, we have

∫
A∩{t<τ }

f (ζt+h)dP = E
[
f (ζt+h) IB×B1×···×Bn (ζt , α1, . . . , αn) I{t<τ }

]

= E[ f (ζt+h) IB×B1×···×Bn (ζt , β1, . . . , βn) I{t<τ }]
=

∫
(t,∞)

E
[
f (ζ rt+h) IB(ζ rt ) IB1×···×Bn (β1, . . . , βn)

]
Pτ (dr)

=
∫

(t,∞)

E[ f (ζ rt+h) IB(ζ rt )]Pτ (dr)E[IB1×···×Bn (β1, . . . , βn)]
= E[ f (ζt+h) IB(ζt ) I{t<τ }]E[IB1×···×Bn (β1, . . . , βn)]
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= E
[
E[ f (ζt+h)|ζt ] IB(ζt ) I{t<τ }]E[IB1×···×Bn (β1, . . . , βn)

]
= E[E[ f (ζt+h)|ζt ] IB(ζt ) I{t<τ } IB1×···×Bn (β1, . . . , βn)]
= E[E[ f (ζt+h)|ζt ] IB(ζt ) I{t<τ } IB1×···×Bn (α1, . . . , αn)]
= E[E[ f (ζt+h)|ζt ] IB×B1×···×Bn (ζt , α1, . . . , αn) I{t<τ }]
=

∫
A∩{t<τ }

E[ f (ζt+h)|ζt ] dP.

Hence, (26) is proved and this ends the proof. 
�
Corollary 3 The Markov property can be extended to the completed filtration F

ζ,c.

The aim of this proposition is to provide, using the Markov property, that the observa-
tion of ζt would be sufficient to give estimates of the time τ based on the observation
of the information process ζ up to time t .

Proposition 10 Let 0 < t < u.

(i) For each bounded measurable function g defined on (0,∞), we have P-a.s.

E[g(τ )|F ζ,c
t ] = g(τ ∧ t)I{ζt=1} +

∫
(t,+∞)

g(r)φζ rt
(ζt )Pτ (dr) I{0<ζt<1}. (27)

(ii) For each bounded measurable function defined on (0,+∞) ×R, we have P-a.s.

E[g(τ, ζt )|F ζ,c
t ] = g(τ ∧ t, 1)I{ζt=1}

+
∫

(t,+∞)

g(r , ζt )φζ rt
(ζt )Pτ (dr)I{0<ζt<1}. (28)

E[g(τ, ζu)|F ζ,c
t ] = g(τ ∧ t, 1)I{ζt=1}

+
∫

(t,u]
g(r , 1)φζ rt

(ζt )Pτ (dr)I{0<ζt<1}

+
∫

(u,+∞)

∫
R

g(r , y)Pζ ru |ζ rt =x (dy)φζ rt
(ζt )Pτ (dr)I{0<ζt<1}.

(29)

Proof (i) Obviously, we have

E[g(τ )|F ζ,c
t ] = E[g(τ ∧ t)I{τ�t}|F ζ,c

t ] + E[g(τ ∨ t)I{t<τ }|F ζ,c
t ].

Now, since g(τ ∧ t)I{τ�t} isF ζ,c
t -measurable, P-a.s, one has

E[g(τ ∧ t)I{τ�t}|F ζ,c
t ] = g(τ ∧ t)I{τ�t}

= g(τ ∧ t)I{ζt=1}.
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On the other hand, due to the facts that g(τ ∨ t)I{t<τ } is σ(ζs, t ≤ s ≤ +∞) ∨ NP -
measurable and ζ is a Markov process with respect to its completed natural filtration
we obtain P-a.s.

E[g(τ ∨ t)I{t<τ }|F ζ,c
t ] = E[g(τ ∨ t)I{t<τ }|ζt ],

The result is deduced from (17).
(ii) Equation (28) is an immediate consequence of (i). Concerning Eq. (29), we use

the same method which we used to prove (i). 
�
Remark 3 Theprocess ζ cannot be a homogeneousFζ -Markovprocess. Indeed, Propo-
sition 10 enables us to see that, for A ∈ B(R) and t < u, we have P-a.s.,

P(ζu ∈ A|F ζ
t ) = I{1∈A} I{ζt=1} + I{1∈A}

∫
(t,u]

φζ rt
(ζt )Pτ (dr) I{0<ζt<1}

+
∫

(u,+∞)

∫
A
I{ζt<y<1} Pζ ru |ζ rt =x (dy) φζ rt

(ζt )Pτ (dr) I{0<ζt<1},

which is clear that it does not depend only on u − t .

3.3 Markov Property with Respect to F�,c
+

We have established, in the previous section, the Markov property of ζ with respect
to its completed natural filtration F

ζ,c. In this section, we are interested in the the
Markov property of ζ with respect to F

ζ,c
+ . It has an interesting consequence which

is none other than the filtration F
ζ,c satisfies the usual conditions of completeness

and right-continuity. However, we need the following condition of on the integrability
of τ .

Assumption 2 There exists a sufficiently small α > 0 such that

E
(
τα

)
< +∞. (30)

The next theorem shows the Markov property of ζ with respect to Fζ,c
+ .

Theorem 2 The process ζ is a Markov process with respect to F
ζ,c
+ .

Proof It is sufficient to prove that for any 0 ≤ t < u and any function bounded
continuous g, we have

E[g(ζu)|F ζ,c
t+ ] = E[g(ζu)|ζt ], P − a.s. (31)

Let (tn)n∈N be a decreasing sequence of strictly positive real numbers converging to
t : that is 0 ≤ t < · · · < tn+1 < tn < · · · < t1 < u, tn ↘ t as n −→ +∞. Since g is
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bounded and F ζ,c
t+ = ∩

n
F ζ,c

tn , P-a.s., we have

E[g(ζu)|F ζ,c
t+ ] = lim

n �−→+∞E[g(ζu)|F ζ,c
tn ]. (32)

It follows from the Markov property of ζ with respect to Fζ,c that

E[g(ζu)|F ζ,c
t+ ] = lim

n �−→+∞E[g(ζu)|ζtn ], P-a.s. (33)

It remains to prove that

lim
n−→+∞E[g(ζu)|ζtn ] = E[g(ζu)|ζt ], P-a.s. (34)

The proof is splitted into two parts. In the first one, we show statement (31) for t > 0,
while in the second part we consider the case t = 0.

Let t > 0. We begin by noticing that from Proposition 10, P-a.s., we have

E[g(ζu)|ζtn ] = g(1)

(
I{ζtn=1} +

∫
(tn ,u]

φζ rtn
(ζtn )Pτ (dr)I{0<ζtn<1}

)

+
∫

(u,+∞)

Ktn ,u(r , ζtn )φζ rtn
(ζtn )Pτ (dr) I{0<ζtn<1}

= g(1)

(
I{τ≤tn} +

∫
(tn ,u]

φζ rtn
(ζtn )Pτ (dr)I{tn<τ }

)

+
∫

(u,+∞)

Ktn ,u(r , ζtn )φζ rtn
(ζtn )Pτ (dr) I{tn<τ }.

Where the function Kt,u(r , x) is defined on R by for 0 < t < u < r

Kt,u(r , x) := E[g(ζ ru )|ζ rt = x]
=

∫
R

g(y)I{x<y<1}Pζ ru |ζ rt =x (dy). (35)

Since limn−→+∞ I{tn<τ } = I{t<τ }, assertion (34) will be established if we show, P-a.s
on {t < τ }, that

lim
n−→+∞

∫
(tn ,u]

φζ rtn
(ζtn )Pτ (dr) =

∫
(t,u]

φζ rt
(ζt )Pτ (dr), (36)

and

lim
n−→+∞

∫
(u,+∞)

Ktn ,u(r , ζtn )φζ rtn
(ζtn )Pτ (dr) =

∫
(u,+∞)

Kt,u(r , ζt )φζ rt
(ζt )Pτ (dr).

(37)
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We start by proving assertion (36). The integral on the left-hand side of (36) can
be rewritten as

∫
(tn ,u]

φζ rtn
(ζtn )Pτ (dr) =

∫
(tn ,u]

ϕζ rtn
(ζtn )Pτ (dr)

∫
(tn ,+∞)

ϕζ stn
(ζtn )Pτ (ds)

I{0<ζtn<1}

=

∫
(tn ,u]

(
1 − ζtn

)r
Γ (r)

Γ (r − tn)
Pτ (dr)

∫
(tn ,+∞)

(
1 − ζtn

)s
Γ (s)

Γ (s − tn)
Pτ (ds)

I{0<ζtn<1}.

First, let us remark that the function

(t, r , x) −→ (1 − x)r
Γ (r)

Γ (r − t)

defined on {(t, r) ∈ (0,+∞)2, t < r} × (0, 1) is continuous. Using the facts that ζtn
is decreasing to ζt and P [ζt = 0] = 0, P-a.s on {t < τ }, we have

lim
n→+∞ (1 − ζtn )

r Γ (r)

Γ (r − tn)
I{tn<r} I{0<ζtn<1} = (1 − ζt )

r Γ (r)

Γ (r − t)
I{t<r} I{0<ζt<1}.

(38)
On the other hand, since the function x �−→ (1 − x)r is decreasing on (0, 1) for all
r > 0 and

0 ≤ Γ (r)

Γ (r − t)
= r t

[
1 − t(t + 1)

2r
+ O

(
1

r2

)]
, (39)

for large enough r , see [1], p. 257, 6.1.46, then for any compact subsetK of (0,+∞)×
(0, 1) it yields

sup
(t,x)∈K

(1 − x)r
Γ (r)

Γ (r − t)
I{t<r} < +∞.

Hence, P-a.s on {t < τ }, we have

sup
n∈N

(
1 − ζtn

)r
Γ (r)

Γ (r − tn)
I{tn<r} I{0<ζtn<1} < +∞. (40)

We conclude assertion (36) from the Lebesgue dominated convergence theorem.
Now, let us prove (37). Recall that the function Ktn ,u(r , ζtn ) is given by

Ktn ,u(r , ζtn ) =
∫
R

g(y)I{x<y<1}Pζ ru |ζ rtn=x (dy)|x=ζtn

= Γ (r − tn)

Γ (u − tn)Γ (r − u)

∫
R

g(y)
(y − ζtn )

u−t−1(1 − y)r−u−1

(1 − ζtn )
r−t−1 I{ζtn<y<1} dy.

123



948 Journal of Theoretical Probability (2020) 33:931–953

Since g is bounded, we deduce that Ktn ,u(r , ζtn ) is bounded. Moreover, we obtain
from the weak convergence that

lim
n→+∞ Ktn ,u(r , ζtn ) = Kt,u(r , ζt ),

P-a.s on {t < τ }. Combining the fact that Ktn ,u(r , ζtn ) is bounded, (38) and (40)
assertion (37) is then derived from the Lebesgue dominated convergence theorem.

Next, we investigate the second part of the proof, that is the case t = 0. It will be
carried out in two steps. In the first one, we assume that there exists ε > 0 such that

P(τ > ε) = 1. (41)

As in the first part, it is sufficient to verify that

lim
n−→+∞E[g(ζu)|ζtn ] = E[g(ζu)|ζ0], P-a.s. (42)

Without loss of generality, we assume tn < α ∧ ε for all n ∈ N. It is easy to see that
under condition (41), E[g(ζu)|ζtn ] takes the form

E[g(ζu)|ζtn ] = g(1)
∫

(ε,u]
φζ rtn

(ζtn )Pτ (dr)

+
∫

(u,+∞)

Ktn ,u(r , ζtn )φζ rtn
(ζtn )Pτ (dr).

On the other hand, we have

E[g(ζu)|ζ0] = E[g(ζu)] = g(1)F(u)

+
∫

(u,+∞)

∫
R

g(y)ϕζ rt
(y) dy Pτ (dr).

Then, in order to show (42) it is sufficient to prove, P-a.s, the following

lim
n−→+∞

∫
(ε,u]

φζ rtn
(ζtn )Pτ (dr) = F(u), (43)

and

lim
n−→+∞

∫
(u,+∞)

Ktn ,u(r , ζtn )φζ rtn
(ζtn )Pτ (dr)

=
∫

(u,+∞)

∫
R

g(y)ϕζ rt
(y) dy Pτ (dr). (44)
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First, for r > ε, we have

lim
n→+∞ (1 − ζtn )

r Γ (r)

Γ (r − tn)
I{tn<r}I{0<ζtn<1} = 1.

Since the gamma function is increasing on [2,∞), for r ≥ 2 + t1, we obtain

sup
n∈N

(
1 − ζtn

)r
Γ (r)

Γ (r − tn)
<

Γ (r)

Γ (r − t1)
. (45)

It follows from (30) and (39) that the function r �−→ Γ (r)

Γ (r − t1)
is Pτ -integrable on

(ε,+∞). Hence, (43) follows from a simple application of the Lebesgue dominated
convergence theorem. In the same way as in the first case (t > 0), we obtain from the
weak convergence that

lim
n→+∞ Ktn ,u(r , ζtn ) = Γ (r)

Γ (u)Γ (r − u)

∫
R

g(y) yu−1(1 − y)r−u−1
I{0<y<1} dy,

then also (44) follows from a simple application of the Lebesgue dominated conver-
gence theorem. Finally, we have to consider the general case, that is P(τ > 0) = 1.
In order to prove the Markov property of ζ with respect to F

ζ,c
+ at t = 0, it is suffi-

cient to show thatF ζ,c
0+ is P-trivial. This amounts to prove thatF ζ

0+ is P-trivial since

F ζ,c
0+ = F ζ

0+ ∨ NP . To do so, let ε > 0 be fixed and consider the stopping time
τε = τ ∨ ε. We define the process ζ

τε
t by

{
ζ

τε
t ; t ≥ 0

} := {
ζ rt |r=τ∨ε; t ≥ 0

}
.

The first remark is that the sets (τε > ε) = (τ > ε) are equal and therefore the
following equality of processes holds

ζ τε· I(τ>ε) = ζ· I(τ>ε).

Then, for each A ∈ F ζ
0+ there exists B ∈ F ζ τε

0+ such that

A ∩ (τ > ε) = B ∩ (τ > ε).

As P(τε > ε/2) = 1, according to the previous case we have that F ζ τε

0+ is P-trivial.
That is, P(B) = 0 or 1. Consequently, we obtain

P(A ∩ (τ > ε)) = 0 or P(A ∩ (τ > ε)) = P(τ > ε).

Now if P(A) > 0, then there exists ε > 0 such that P(A ∩ {τ > ε}) > 0. Therefore,
for all 0 < ε′ ≤ ε we have

P(A ∩ (τ > ε′)) = P(τ > ε′).
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Passing to the limit as ε′ goes to 0 yields P(A ∩ (τ > 0)) = P(τ > 0) = 1. It follows
that P(A) = 1, which ends the proof. 
�
Corollary 4 The filtration F

ζ,c satisfies the usual conditions of right-continuity and
completeness.

Proof See, e.g. [[6], Ch. I, Proposition (8.12)] 
�

3.4 Semi-martingale Decomposition of �

Our purpose is to derive the semi-martingale property of ζ with respect to its own
filtration Fζ,c. Firstly, we obtain from representation (15) that

ζt = N̂t +
∫ t

0
Zs ds, t ≥ 0, (46)

where the processes N̂ and Z are defined as follows:

N̂t (ω) := N̂ r
t (ω)|r=τ(ω),

and

Zt = 1 − ζt

τ − t
I{t<τ },

for (t, ω) ∈ R+ × Ω . Now, let us consider the filtration

H =
(
Ht := F ζ,c

t ∨ σ(τ), t ≥ 0
)

, (47)

which is equal to the initial enlargement of the filtration F
ζ,c by the σ -algebra σ(τ).

Since the processes ζ and Z are H-adapted, it follows from equation (46) that N̂ is
H-adapted. Moreover, τ is a stopping time with respect to H. The next proposition
will play a very important role in forthcoming developments, since it shows the semi-
martingale property of ζ with respect to H.

Proposition 11 (i) We have

E

[∫ t

0
|Zs | ds

]
< +∞,∀t ≥ 0.

(ii) The process N̂ = (N̂t , t ≥ 0) defined by

N̂t = ζt −
∫ t

0
Zsds, t ≥ 0, (48)

is a H-martingale stopped at τ .

Proof (i) We first note that Z is a non-negative process. Since s ≤ r , ζ rs has a beta
distribution β(s, r − s), E

(
ζ rs

) = s/r . So, we can see, for any t ≥ 0, that
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E

[∫ t

0
Zs ds

]
=

∫ +∞

0

∫ t∧r

0

1 − E[ζ rs ]
r − s

ds Pτ (dr)

=
∫ +∞

0

∫ t∧r

0

1

r
ds Pτ (dr) ≤ 1.

(ii) By assertion (i), the process (Zt , t ≥ 0) is integrable with respect to the Lebesgue
measure, hence N̂ is well defined. It is clear that the process N̂ is H-adapted and
N̂t = N̂τ , P-a.s, on the set {t ≥ τ }. Now, since (N̂ r

t , t ≥ 0) is a Fζ r -martingale
stopped at r we obtain, for any 0 < t1 < t2 < · · · < tn = t , n ∈ N

∗, h ≥ 0 and g
a bounded Borel function, that

E
[
(N̂t+h − N̂t )g(ζt1, . . . , ζtn , τ )

]
=

∫
(0,+∞)

E[(N̂ r
t+h − N̂ r

t )g(ζ
r
t1, . . . , ζ

r
tn , r)]Pτ (dr)

=
∫

(0,t)
E[(N̂ r

t+h − N̂ r
t )g(ζ

r
t1, . . . , ζ

r
tn , r)]Pτ (dr)

+
∫

[t,t+h)

E[(N̂ r
t+h − N̂ r

t )g(ζ
r
t1, . . . , ζ

r
tn , r)]Pτ (dr)

+
∫

[t+h,+∞)

E[(N̂ r
t+h − N̂ r

t )g(ζ
r
t1, . . . , ζ

r
tn , r)]Pτ (dr)

=
∫

(0,t)
E[(N̂ r

r − N̂ r
r )g(ζ rt1, . . . , ζ

r
tn , r)]Pτ (dr)

+
∫

[t,t+h)

E[(N̂ r
r − N̂ r

t )g(ζ
r
t1, . . . , ζ

r
tn , r)]Pτ (dr)

+
∫

[t+h,+∞)

E[(N̂ r
t+h − N̂ r

t )g(ζ
r
t1, . . . , ζ

r
tn , r)]Pτ (dr) = 0.

The desired result follows by a standardmonotone class argument. This completes
the proof. 
�

Therefore, it follows from Stricker’s Theorem [24] that ζ is a semi-martingale relative
to its natural filtration F

ζ,c. A natural question is: What is the explicit form of its
canonical decomposition?That is the problemwewant to discuss. Themethod consists
in applying the stochastic filtering theory.

Theorem 3 The canonical decomposition of ζ in its natural filtration Fζ,c is given by

ζt = Ñt +
∫ t

0
(1 − ζs)

∫
(s,+∞)

1

r − s
φζ rs

(ζs)Pτ (dr) I{0<ζs<1}ds, (49)

where (Ñt , t ≥ 0) is an F
ζ,c-martingale stopped at τ .

Proof Let us start by recalling that τ is a stopping time with respect to F
ζ,c. A well-

known result of filtering theory [7] (T1, p. 87) (or Theorem 8.1.1 and Remark 8.1.1
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[17] formore general setting) tells us that the decomposition of ζ in its natural filtration
F

ζ,c is given by

ζt = Ñt +
∫ t

0
E

(
Zs |F ζ,c

s

)
ds, (50)

where (Ñt , t ≥ 0) is an F
ζ,c-martingale stopped at τ . Therefore, we have only to

compute the conditional expectation of Zs relative to F ζ,c
s . Indeed, using (27) we

have

E

(
Zs |F ζ,c

s

)
= E

(
1 − ζs

τ − s
I{s<τ }|F ζ,c

s

)
= (1 − ζs)E

(
1

τ − s
I{s<τ }|F ζ,c

s

)

= (1 − ζs)

∫
(s,+∞)

1

r − s
φζ rs

(ζs)Pτ (dr) I{0<ζs<1}.

Hence, we derive the canonical decomposition (49) of ζ as a semi-martingale in its
own filtration F

ζ,c. 
�
Remark 4 The results of the paper can be straightforwardly extended to a large class
of gamma subordinator (γ

(η,κ)
t , t ≥ 0), η, κ > 0, with Lévy measure

ν(dx) = κ

x
exp(−ηx) I(0,∞)(x) dx

and whose law at time t is the gamma distribution with density

f
γ

(η,κ)
t

(x) = ηκt xκt−1 exp(−ηx)

Γ (κt)
I(0,∞)(x).

The Lévy–Khintchine representation is given by

E(exp(−λγ
(η,κ)
t )) = (1 + λ

η
)−κt .

On the other hand, they can be also easily extended to the gamma bridges of length r ,
starting at 0, with an arbitrary ending point a > 0

ζ rt := a
γ

(m)
t∧r

γ
(m)
r

, t ≥ 0.

For the sake of simplicity, we have therefore considered only the case η = κ = a = 1
without loss of generality.
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