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Abstract
In this article,we close a gap in the literature by proving existence of invariantmeasures
for reflected stochastic partial differential equations with only one reflecting barrier.
This is done by arguing that the sequence (u(t, ·))t≥0 is tight in the space of probability
measures on continuous functions and invoking the Krylov–Bogolyubov theorem. As
we no longer have an a priori bound on our solution as in the two-barrier case, a key
aspect of the proof is the derivation of a suitable L p bound which is uniform in time.
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1 Introduction and Statement of Theorem

The aim of this paper is to argue existence of invariantmeasures for reflected stochastic
partial differential equations (SPDEs) of the form

∂u

∂t
= �u + f (x, u(t, x)) + σ(x, u(t, x))

∂2W

∂t∂x
+ η, (1.1)

where (t, x) ∈ [0,∞) × [0, 1], u satisfies Dirichlet boundary conditions u(t, 0) =
u(t, 1) = 0 and the initial data u0 lie in the space C0((0, 1))+. The measure η is a
reflectionmeasurewhichminimally pushesu upwards to ensure thatu ≥ 0.Weassume
in this paper that the drift and volatility coefficients, f , σ , are globally bounded. Such
equations were originally studied by Nualart and Pardoux in [6], and they proved
existence and uniqueness for the case where σ is constant. Donati-Martin and Pardoux
then proved existence for volatility coefficients σ which are Lipschitz with linear
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growth in [4]. Finally, Xu and Zhang proved existence and uniqueness for the equation
where f and σ satisfy Lipschitz and linear growth conditions in [10]. All of these
papers focused on the case where the spatial domain is a finite interval, [0, 1], with
Dirichlet conditions imposed on the endpoints. Otobe extended the existence theory
to the case when the spatial domain is R in [8], proving uniqueness for the case when
σ is constant. Uniqueness has also been shown by Hambly and Kalsi in [5] for the
equation on an unbounded domain provided that σ satisfies a Lipschitz condition, with
a Lipschitz coefficient which decays exponentially fast in the spatial variable.

Some interesting properties of the solutions have been proved. In [2], the contact
sets for the solutions are studied in the case where the drift, f , is zero and the volatility,
σ , is constant. In particular, it is shown that at all positive times, the solution is equal to
zero at most four points almost surely. In [13], Zambotti examines the behaviour of the
reflection measure in more detail, showing that it is absolutely continuous with respect
to Lebesgue measure in the space variable, and also that for each point x in space these
densities can be viewed as renormalised local time processes for (u(t, x))t≥0. Zhang
proved the strong Feller property of solutions in [14], and together with Xu proved a
large deviation result for sequences of solutions to such equations with vanishingly
small noise in [10].

In this paper, we are interested in invariant measures for these equations. There are
some results on this topic in the literature. Zambotti proved in [12] that the law of the
3D-Bessel bridge is an invariant measure for the equation when σ is constant. Otobe
then extended this result to the case where the spatial domain is R in [7], proving
that the invariant measure is such that the conditional law in an interval is a 3D Bessel
bridge with suitable distributions for the endpoints. For the case when the equation has
two reflecting walls, above and below the SPDE solution, existence and uniqueness
of invariant measures was proved by Yang and Zhang in [11]. The proof here relied
on the a priori bound on the infinity norm of the solution, which is provided by the
obstacles. Recently, Xie has proved that invariant measures for the one barrier case,
(1.1), are unique when they exist, provided that there exist strictly positive constants
c1 and c2 such that c1 ≤ σ(x, u) ≤ c2 in [9].

To the knowledge of the author, existence of invariant measures in the case where
there is only reflection at zero has not been proved in the literature. We close this
gap here, under the assumption that the drift and volatility coefficients are bounded.
We start by proving an L p bound for our solution when it has been multiplied by
an exponential function which dampens the value backwards in time. This control
essentially replaces the a priori bound for the two-barrier case in the argument in [11].
We are then able to prove tightness by uniformly controlling the Hölder norm of the
solution, adapting the arguments of [3] and [11] in order to do so.

Before stating the main theorem of this paper, we recall the definition of a solution
to a reflected SPDE. We work on a complete probability space (�,F ,P), with W
a space-time white noise on this space. This space is equipped with the filtration
generated by W , FW

t , which can be written as

FW
t := σ({W (A) | A ∈ B([0, t] × [0, 1]}) ∨ N ,

123



Journal of Theoretical Probability (2020) 33:1755–1767 1757

where N here denotes the P-null sets. We further assume that there exist constants
C f ,Cσ > 0 such that the drift and volatility coefficients, f and σ satisfy the following
conditions:

(I) For every u, v ∈ R
+ and every x ∈ [0, 1],

| f (x, u) − f (x, v)| ≤ C f |u − v|.
(II) For every u, v ∈ R

+ and every x ∈ [0, 1],
|σ(x, u) − σ(x, v)| ≤ Cσ |u − v|.

(III) For every x ∈ [0, 1], u ∈ R
+,

| f (x, u)| ≤ C f .

(IV) For every x ∈ [0, 1], u ∈ R
+,

|σ(x, u)| ≤ Cσ .

Definition 1.1 We say that the pair (u, η) is a solution the SPDE with reflection

∂u

∂t
= �u + f (x, u(t, x)) + σ(x, u(t, x))

∂2W

∂x∂t
+ η

with Dirichlet conditions u(t, 0) = u(t, 1) = 0 and initial data u(0, x) = u0 ∈
C0((0, 1))+ if

(i) u is a continuous adapted random field on R
+ × [0, 1] such that u ≥ 0 almost

surely.
(ii) η is a random measure on R

+ × (0, 1) such that:

(a) For every t ≥ 0, η({t} × (0, 1)) = 0,
(b) For every t ≥ 0,

∫ t
0

∫ 1
0 x(1 − x)η(ds,dx) < ∞,

(c) η is adapted in the sense that for any measurable mapping ψ :

∫ t

0

∫ 1

0
ψ(s, x) η(ds,dx) isFW

t − measurable.

(iii) For every t ≥ 0 and every φ ∈ C1,2([0, t] × [0, 1]) with φ(s, 0) = φ(s, 1) = 0
for every s ∈ [0, t],
∫ 1

0
u(t, x)φ(t, x)dx =

∫ 1

0
u(0, x)φ(0, x)dx +

∫ t

0

∫ 1

0
u(s, x)

∂2φ

∂x2
(s, x)dxds

+
∫ t

0

∫ 1

0
u(s, x)

∂φ

∂t
(s, x) dxds

+
∫ t

0

∫ 1

0
f (x, u(s, x))φ(s, x)dxds
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+
∫ t

0

∫ 1

0
φ(s, x)σ (x, u(s, x))W (ds, dx)

+
∫ t

0

∫ 1

0
φ(s, x) η(ds, dx)

almost surely.
(iv)

∫ ∞
0

∫ 1
0 u(t, x) η(dt, dx) = 0.

We now state the main result of the paper, which states that reflected SPDEs of
form (1.1) have invariant measures.

Theorem 1.2 Suppose that f and σ satisfy the conditions (I)–(IV). There exists an
invariant probability measure for the reflected stochastic heat equation (1.1).

2 An Lp Bound for Solutions to Reflected SPDEs

The aim of this section is to prove the following Theorem.

Theorem 2.1 Suppose that (u, η) solves the reflected stochastic heat equation (1.1).
Assume that the drift and volatility functions, f , σ are bounded. Then, we have that,
for any α > 0 and p ≥ 1,

sup
T>0

E

[

sup
t≤T

sup
x∈[0,1]

|u(t, x)e−α(T−t)|p
]

< ∞. (2.1)

Such a bound will later enable us to obtain uniform Hölder-type estimates for the
functions u(t, ·). The first step towards obtaining this bound is understanding the
equation satisfied by ũ(t, x) := e−α(T−t)u(t, x).

Proposition 2.2 Let u solve the reflected SPDE (1.1). Let ũ(t, x) := e−α(T−t)u(t, x)
for some α, T > 0. Then, ũ solves the reflected SPDE

∂ ũ

∂t
= �ũ + f̃ (t, x, ũ(t, x)) + σ̃ (t, x, ũ(t, x))

∂2W

∂x∂t
+ η̃, (2.2)

where

1. f̃ (t, x, z) = e−α(T−t) f (x, eα(T−t)z) + αz.
2. σ̃ (t, x, z) = e−α(T−t)σ (x, eα(T−t)z).
3. η̃(dx, dt) = e−α(T−t)η(dx, dx).

Proof This can be shown by testing the equation and a change of variables. ��
We now present some estimates for the heat kernel. We will then be able to bound

the solutions to our SPDEs by first writing them in mild form and then applying these
estimates, together with Burkholder’s inequality and Hölder’s inequality.

Proposition 2.3 Let G denote the Dirichlet heat kernel on [0, 1]. The following esti-
mate holds:
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sup
x∈[0,1]

∫ ∞

0

∫ 1

0
G(s, x, y)dyds < ∞.

Proof We have the following expression for G

G(s, x, y) = 2
∞∑

k=1

e−k2π2s sin(kπx) sin(kπ y).

Calculating, we have that

∫ ∞

0

∫ 1

0
G(t, x, y) dydt

= 2

∣
∣
∣
∣
∣

∫ ∞

0

∫ 1

0

∞∑

k=1

e−k2π2t sin(kπx) sin(kπ y) dydt

∣
∣
∣
∣
∣

≤ 2
∫ ∞

0

∫ 1

0

∞∑

k=1

e−k2π2t | sin(kπ y)| dydt = 2
∞∑

k=1

∫ ∞

0
e−k2π2t

(∫ 1

0
| sin(kπ y)|dy

)

dt

≤ 2
∞∑

k=1

∫ ∞

0
e−k2π2tdt =

∞∑

k=1

2

k2π2 = 1

3
. ��

Proposition 2.4 The following estimates hold for p > 4

1. For every 0 ≤ s ≤ t such that |t − s| ≤ 1

sup
x≥0

[∫ t

s

(∫ 1

0
G(t − r , x, z)2dz

)p/(p−2)

dr

](p−2)/2

≤ Cp|t − s|p−4/4.

2. For every 0 ≤ s ≤ t such that |t − s| ≤ 1

sup
x≥0

[∫ s

0

(∫ 1

0
(G(t − r , x, z) − G(s − r , x, z)2dz

)p/(p−2)

dr

](p−2)/2

≤ Cp|t − s|p−4/4.

3. For every x, y ∈ [0, 1]

sup
t≥0

[∫ t

0

(∫ 1

0
(G(t − r , x, z) − G(t − r , y, z)2dz

)p/(p−2)

dr

](p−2)/2

≤ Cp|x − y|p−4/2.

Proof We note that

G(t, x, y) = 1√
4π t

n=∞∑

n=−∞

[

exp

(

− (x − y + 2n)2

4t

)

− exp

(

− (x + y + 2n)2

4t

)]

.
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We can write this as

1√
4π t

[

exp

(

− (x − y)2

4t

)

− exp

(

− (x − y)2

4t

)

− exp

(

− (x + y − 2)2

4t

)]

+ L(t, x, y),

where L is a smooth function which vanishes at t = 0. To control the contributions
of the first three terms, see the Proof of Proposition A.1 and Proposition A.4 in [5]
for details. Note that the constants will not depend on t for this case. The residual
component L can also be controlled by differentiating under the sum. ��

Equipped with these heat kernel estimates, we can now prove the following bound
on the white noise term which will appear in the mild form for ũ.

Proposition 2.5 Suppose that σ is bounded and α > 0. Define for t ≤ T , x ∈ [0, 1]

I T2 (t, x) :=
∫ t

0

∫ 1

0
e−α(T−s)G(t − s, x, y)σ (y, u(s, y))W (dy, ds).

Then for p ≥ 1 and γ ∈ (0, 1),

sup
T>0

E

[

sup
s,t∈[0,T ],s 
=t

sup
x,y∈[0,1],x 
=y

(
|I T2 (t, x) − I T2 (s, y)|

|t − s|γ /4 + |x − y|γ /2

)p ]

< ∞.

Proof Fix n ∈ N such that n ≤ �T �. Let t, s ∈ [n, n + 1] ∩ [0, T ] and x, y ∈ [0, 1].
Assume without loss of generality that s ≤ t . We have that

E

[
|I T2 (t, x) − I T2 (s, y)|p

]

≤ CpE

[∣
∣
∣
∣
∣

∫ t

s

∫ 1

0
e−α(T−r)G(t − r , x, z)σ (z, u(r , y))W (dz, dr)

∣
∣
∣
∣
∣

p]

+ CpE

[∣
∣
∣
∣
∣

∫ s

0

∫ 1

0
e−α(T−r)σ (z, u(r , z))(G(t − r , x, z) − G(s − r , x, z))W (dz, dr)

∣
∣
∣
∣
∣

p]

+ CpE

[∣
∣
∣
∣
∣

∫ s

0

∫ 1

0
e−α(T−r)σ (z, u(r , z))(G(s − r , x, z) − G(s − r , y, z))W (dz, dr)

∣
∣
∣
∣
∣

p]

.

Applying Burkholder’s inequality to each of these terms allows us to bound the right
hand side by

CpE

[∣
∣
∣
∣

∫ t

s

∫ 1

0
e−2α(T−r)G(t − r , x, z)2σ 2(z, u(r , y))dzdr

∣
∣
∣
∣

p/2
]

+ CpE

[∣
∣
∣
∣

∫ s

0

∫ 1

0
e−2α(T−r)(G(t − r , x, z) − G(s − r , x, z))2σ 2(z, u(r , z))dzdr

∣
∣
∣
∣

p/2
]

+ CpE

[∣
∣
∣
∣

∫ s

0

∫ 1

0
e−2α(T−r)(G(s − r , x, z) − G(s − r , y, z))2σ 2(z, u(r , z))dzdr

∣
∣
∣
∣

p/2
]

.
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We focus on the first of these terms and note that the arguments for the other two are
essentially the same, the difference being in which inequality from Proposition 2.4 we
apply. Since σ is bounded and s, t ∈ [n, n+1], we have that e−α(T−r)σ 2(z, u(r , z)) ≤
‖σ‖2∞e−α(T−(n+1)) for (r , z) ∈ [0, t] × [0, 1]. This gives that:

E

[∣
∣
∣
∣

∫ t

s

∫ 1

0
e−2α(T−r)G2(t − r , x, z)σ 2(z, u(r , y))dzdr

∣
∣
∣
∣

p/2
]

≤ Cσ e
−α p(T−(n+1))/2

∣
∣
∣
∣

∫ t

s

∫ 1

0
e−α(T−r)G2(t − r , x, z)dzdr

∣
∣
∣
∣

p/2

.

By Hölder’s inequality we have that

∣
∣
∣
∣

∫ t

s

∫ 1

0
e−α(T−r)G(t − r , x, z)2dzdr

∣
∣
∣
∣

p/2

≤
∫ t

s
e−α p(T−r)/2dr ×

[∫ t

s

(∫ 1

0
G(t − r , x, z)2dz

)p/(p−2)

dr

](p−2)/2

≤
∫ ∞

0
e−α pt/2dt ×

[∫ t

s

(∫ 1

0
G(t − r , x, z)2dz

)p/(p−2)

dr

](p−2)/2

.

By inequality (1) from Proposition 2.4, this is at most Cp,α|t − s|(p−4)/2. Arguing
similarly for the other terms, we obtain that for t, s ∈ [n, n + 1] ∩ [0, T ] and x, y ∈
[0, 1]

E

[
|I T2 (t, x) − I T2 (s, y)|p

]
≤ Cp,σ e

−α p(T−(n+1))/2
(
|t − s|1/2 + |x − y|

)(p−4)/2
.

Let p be large enough so that γ < (p−10)/p. We can then apply Corollary A.3 from
[1] to obtain that for t, s ∈ [n, n + 1] ∩ [0, T ] and x, y ∈ [0, 1]

|I T2 (t, x) − I T2 (s, y)| ≤ Xn(|t − s|γ /4 + |x − y|γ /2). (2.3)

almost surely, where Xn is a positive random variable such that

E
[
X p
n
] ≤ Cγ,p,σ e

−α p(T−(n+1))/2. (2.4)

Now suppose that 0 ≤ s ≤ t ≤ T , x, y ∈ [0, 1], and that there exists n < m ∈ N such
that s ∈ [n, n + 1] and t ∈ [m,m + 1]. We then have that

|I T2 (t, x) − I T2 (s, y)|
≤ |I T2 (t, x) − I T2 (t, y)| + |I T2 (t, y) − I T2 (m, y)|

+
(

m∑

i=n+2

|I T2 (i, y) − I T2 (i − 1, y)|
)

+ |I T2 (n + 1, y) − I T2 (s, y)|, (2.5)
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where we use the convention that the sum is zero if m = n + 1. By applying (2.3), we
then obtain that (2.5) is at most

Xm |x − y|γ /2 + Xm |t − m|γ /4 +
(

m∑

i=n+2

Xi−1

)

+ Xn|(n + 1) − s|γ /4. (2.6)

Since n < m, we have that |t − m| ≤ |t − s| and |(n + 1) − s| ≤ |t − s|. In addition,
if m ≥ n + 2, we have that |t − s| ≥ 1. Therefore, (2.6) can be bounded by

(
m∑

i=n

Xi

)

× (|t − s|γ /4 + |x − y|γ /2) ≤
⎛

⎝
�T �∑

i=0

Xi

⎞

⎠ (|t − s|γ /4 + |x − y|γ /2).

Altogether we have shown that for any s, t ∈ [0, T ] and x, y ∈ [0, 1],

|I T2 (t, x) − I T2 (s, y)| ≤
⎛

⎝
�T �∑

i=0

Xi

⎞

⎠ (|t − s|γ /4 + |x − y|γ /2). (2.7)

Let X :=
(∑�T �

i=0 Xi

)
. Calculating gives that

E

[
X P

]
= E

⎡

⎣

⎛

⎝
�T �∑

n=0

Xn

⎞

⎠

p ⎤

⎦ ≤ E

⎡

⎣

⎛

⎝
�T �∑

n=0

eα p(T−(n+1))/4X p
n

⎞

⎠

⎤

⎦

×
⎛

⎝
�T �∑

n=0

e−αq(T−(n+1))/4

⎞

⎠

p/q

,

where q = p/(p − 1). By (2.4), we obtain that this is at most

Cγ,p,σ

( ∞∑

n=0

e−α p(n+1)/4

)

×
( ∞∑

n=0

e−αq(n+1)/4

)p/q

= Cγ,p,σ,α < ∞.

Importantly, this is independent of T . By (2.7), we then have that

E

[

sup
s,t∈[0,T ],s 
=t

sup
x,y∈[0,1],x 
=y

(
|I T2 (t, x) − I T2 (s, y)|

|t − s|γ /4 + |x − y|γ /2

)p ]

≤ Cγ,p,σ,α.

Taking the supremum over T > 0 concludes the proof. ��
Corollary 2.6 Let I T2 be as in Proposition 2.5. For p ≥ 1, we have

sup
T>0

E

[

sup
t∈[0,T ]

sup
x∈[0,1]

|I T2 (t, x)|p
]

≤ Cp,σ,α.
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Proof Note that I T2 (t, 0) = 0 for every t ∈ [0, T ] almost surely. Therefore, for
x ∈ (0, 1],

|I T2 (t, x)| = |I T2 (t, x) − I T2 (t, 0)| ≤ |I T2 (t, x) − I T2 (t, 0)|
x1/4

≤ sup
s,t∈[0,T ],s 
=t

sup
x,y∈[0,1],x 
=y

|I T2 (t, x)−I T2 (s, y)|
|t − s|1/8+|x − y|1/4 .

By taking the supremum on the left hand side and then taking the L p(�)-norm, we
see that the result follows from Proposition 2.5. ��

We are now in position to prove the main Theorem for this section. Throughout
the proof, we will denote the infinity norm on [0, T ] × [0, 1] by ‖ · ‖∞,T . That is, for
f : [0, T ] × [0, 1] → R, we define

‖ f ‖∞,T := sup
t∈[0,T ]

sup
x∈[0,1]

| f (t, x)|.

Proof of Theorem 2.1 Fix T > 0. Let ũ be as in Proposition 2.2. Then ũ solves the
reflected SPDE (2.2). Let ṽ(t, x) solve the SPDE

∂ṽ

∂t
= �ṽ + f̃ (t, x, ũ(t, x)) + σ̃ (t, x, ũ(t, x))

∂2W

∂x∂t
.

We then have, by Theorem 1.4 in [6], that ‖ũ‖∞,T ≤ 2‖ṽ‖∞,T almost surely. Writing
ṽ in mild form gives

ṽ(t, x) =
∫ t

0

∫ 1

0
G(t − s, x, y) f̃ (s, y, ũ(s, y))dyds

+
∫ t

0

∫ 1

0
e−α(T−s)G(t − s, x, y)σ (s, y, ũ(s, y))W (dyds)

= : I T1 (t, x) + I T2 (t, x).

It follows that

E

[
‖ũ‖p

∞,T

]
≤ Cp

(
E

[
‖I T1 ‖p

∞,T

]
+ E

[
‖I T2 ‖p

∞,T

])
. (2.8)

Bounding the I T1 term, we obtain by applying Proposition 2.3:

∣
∣
∣I T1 (t, x)

∣
∣
∣ =

∣
∣
∣
∣

∫ t

0

∫ 1

0
G(t − s, x, y) f̃ (s, y, ũ(s, y)) dyds

∣
∣
∣
∣

≤ α

∣
∣
∣
∣

∫ t

0

∫ 1

0
G(t − s, x, y)ũ(s, y) dyds

∣
∣
∣
∣ + C f

∣
∣
∣
∣

∫ t

0

∫ 1

0
G(t − s, x, y) dyds

∣
∣
∣
∣

≤ α‖ũ‖∞,T + C f

3
.
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This gives that

E

[
‖I T1 ‖p

∞,T

]
≤ Cp

α p
E

[
‖ũ‖p

∞,T

]

3p
+ Cp

C p
f

3p
.

Applying Corollary 2.6 and using inequality (2.8), we obtain that

E

[
‖ũ‖p

∞,T

]
≤ Cp,σ,α, f + α p

3p
Cp E

[
‖ũ‖p

∞,T

]
. (2.9)

Choosing α to be sufficiently small, noting that the result for larger values of α follows
from the result for smaller α, simple rearrangement of (2.9) gives that

E

[
‖ũ‖p

∞,T

]
≤ C̃ p,σ,α, f .

Since this bound is independent of T , we have the result. ��

3 Tightness of the Sequence (u(t, ·))t≥0 and Proof of Theorem 1.2

We recall that, by Arzela–Ascoli Theorem, the relatively compact sets in C0(0, 1) are
those which are equicontinuous. It follows that collections of functions for which we
can uniformly bound some Hölder norm are relatively compact. Therefore, in order
to prove tightness of (u(t, ·))t≥0, it is enough to show that

sup
T≥0

E

[

sup
x,y∈[0,1],x 
=y

|u(T , x) − u(T , y)|
|x − y|α

]

< ∞

for some α > 0. To show this, we use estimate (2.1) and follow the work of Dalang and
Zhang in [3], in which the authors prove Hölder continuity for reflected SDPEs. Since
the supremumover T appears outside the expectation, we can apply the reasoning from
Zhang [3] to ũ(t, x) = e−α(T−t)u(t, x) for each T > 0, and then take the supremum
over T .

Proof of Theorem 1.2 Let T > 0 and define ũ(t, x) := e−α(T−t)u(t, x). By Proposi-
tion 2.2, we have that (ũ, η̃) solves the reflected SPDE (2.2). Define ṽ as the solution
to the SPDE

∂ṽ

∂t
= �ṽ + f̃ (t, x, ũ(t, x)) + σ̃ (t, x, ũ(t, x))

∂2W

∂x∂t
,
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with Dirichlet boundary conditions v(t, 0) = v(t, 1) = 0 and zero initial data. We
now examine the Hölder continuity of ṽ. Writing ṽ in mild form, we have that

ṽ(t, x) =
∫ t

0

∫ 1

0
G(t − s, x, y) f̃ (s, y, ũ(s, y))dyds

+
∫ t

0

∫ 1

0
G(t − s, x, y)σ̃ (s, y, ũ(s, y))W (dy, ds) =: I T1 (t, x) + I T2 (t, x).

Fix γ ∈ (0, 1). By Proposition 2.5, we have that for p ≥ 1 there exists XT ∈ L p(�)

such that, for every s, t ∈ [0, T ] and every x, y ∈ [0, 1]

|I T2 (t, x) − I T2 (s, y)| ≤ XT (|t − s|γ /4 + |x − y|γ /2) (3.1)

almost surely, with the following uniform bound on the XT :

sup
T>0

E

[
|XT |p

]
< ∞.

We now control the Hölder norm of I T1 . We have that

|I T1 (t, x) − I T1 (s, y)| ≤
∣
∣
∣
∣

∫ t

s

∫ 1

0
G(t − r , x, z) f̃ (r , z, ũ(r , z))dzdr

∣
∣
∣
∣

+
∣
∣
∣
∣

∫ s

0

∫ 1

0
(G(t − r , x, z) − G(s − r , x, z)) f̃ (r , z, ũ(r , z))dzdr

∣
∣
∣
∣

+
∣
∣
∣
∣

∫ s

0

∫ 1

0
(G(s − r , x, z) − G(s − r , y, z)) f̃ (r , z, ũ(r , z))dzdr

∣
∣
∣
∣ .

For the first of these terms, we note that for n ∈ N and s̃, t̃ ∈ [n, n + 1], we have that
∣
∣
∣
∣
∣

∫ t̃

s̃

∫ 1

0
G(t̃ − r , x, z) f̃ (r , z, ũ(r , z))dzdr

∣
∣
∣
∣
∣

≤ (C f + α)

∣
∣
∣
∣
∣

∫ t̃

s̃

∫ 1

0
G(t̃ − r , x, z)dzdr

∣
∣
∣
∣
∣
e−α/2(T−(n+1)) sup

r∈[0,T ]
sup

z∈[0,1]

[
1 + eα/2(T−r)ũ(r , z)

]
,

(3.2)

where we make use of the bound

| f̃ (r , z, ũ(r , x)| ≤ C f e
−α(T−r) + αũ(r , x)

≤ (C f + α)e−α/2(T−r)(1 + eα/2(T−r)ũ(r , z)).
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This then gives that, for p large enough so that (p − 4)/p > γ ,

∣
∣
∣
∣
∣

∫ t̃

s̃

∫ 1

0
G(t̃ − r , x, z) f̃ (r , z, ũ(r , z))dzdr

∣
∣
∣
∣
∣

≤ C f ,αY
T e−α/2(T−(n+1))

∣
∣
∣
∣
∣

∫ t̃

s̃

∫ 1

0
G(t̃ − r , x, z)dzdr

∣
∣
∣
∣
∣

≤ C f ,αY
T e−α/2(T−(n+1))

(∫ t̃

s̃

[∫ 1

0
G(t̃ − r , x, z)dz

]2p/(p−2)

dr

)(p−2)/2p

≤ C f ,αY
T e−α/2(T−(n+1))

(∫ t̃

s̃

[∫ 1

0
G(t̃ − r , x, z)2dz

]p/(p−2)

dr

)(p−2)/2p

≤ C f ,α,pY
T e−α/2(T−(n+1))|t̃ − s̃|p−4/4p

≤ C f ,α,pY
T e−α/2(T−(n+1))|t̃ − s̃|γ /4,

where supT≥0 E
[
(Y T )p

]
< ∞. For a general s, t ∈ [0, T ] we then have that

∣
∣
∣
∣

∫ t

s

∫ 1

0
G(t − r , x, z) f̃ (r , z, ũ(r , z))dzdr

∣
∣
∣
∣ ≤C f ,α,pY

T

⎡

⎣
�T �∑

n=0

e−α/2(T−(n+1))

⎤

⎦ |t − s|γ /4

≤C f ,α,pY
T

[ ∞∑

n=0

e−α/2(n+1)

]

|t − s|γ /4

=C f ,α,pY
T |t − s|γ /4.

Arguing in the same way and applying the other estimates from Proposition 2.4, we
obtain that for every t, s ∈ [0, T ] and every x, y ∈ [0, 1]

|I T1 (t, x) − I T1 (s, y)| ≤ C f ,α,pY
T (|t − s|γ /4 + |x − y|γ /2) (3.3)

almost surely, where supT>0 E
[|Y T |p] < ∞. Setting ZT = XT + C f ,α,pY T , we

have from (3.1) and (3.3) that ZT bounds the (γ /4, γ /2)-Hölder norm of ṽ. In the
proof of Theorem 3.3 in [3] and Theorem 3.16 in [5], it is shown that the Hölder norm
of ṽ controls the Hölder norm of ũ. More precisely, we have that

|ũ(t, x) − ũ(s, y)| ≤ Cγ Z
T (|t − s|γ /4 + |x − y|γ /2)

for every t, s ∈ [0, T ] and every x, y ∈ [0, 1] almost surely. In particular, we obtain
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E

[

sup
x,y∈[0,1],x 
=y

|u(T , x) − u(T , y)|p
|x − y|γ p/2

]

= E

[

sup
x,y∈[0,1],x 
=y

|ũ(T , x) − ũ(T , y)|p
|x − y|γ p/2

]

≤ C p
γ E

[
|ZT |p

]
.

Noting that supT>0 E
[|ZT |p] < ∞ concludes the proof. ��
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