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Abstract
We prove a law of large numbers for the range of rotor walks with random initial
configuration on regular trees and onGalton–Watson trees.We also show the existence
of the speed for such rotor walks. More precisely, we show that on the classes of trees
under consideration, even in the case when the rotor walk is recurrent, the range grows
at linear speed.
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1 Introduction

For d ≥ 2, let Td be the rooted regular tree of degree d + 1, and denote by r the root.
We attach an additional sink vertex o to the root r .We use the notation˜Td = Td\{o} to
denote the treewithout the sink vertex. For each vertex v ∈ ˜Td , we denote its neighbors
by v(0), v(1), . . . , v(d), where v(0) is the parent of v and the other d neighbors, the
children of v, are ordered counterclockwise (Fig. 1).

Each vertex v ∈ ˜Td is endowed with a rotor ρ(v) ∈ {0, . . . , d}, where ρ(v) = j ,
for j ∈ {0, . . . , d} means that the rotor in v points to neighbor v( j). Let (Xn)n∈N be
a rotor walk on Td starting in r with initial rotor configuration ρ = (ρ(v))v∈˜Td

: for

all v ∈ ˜Td , let ρ(v) ∈ {0, . . . , d} be independent and identically distributed random
variables, with distribution given by P[ρ(v) = j] = r j with

∑d
j=0 r j = 1. The rotor
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walk moves in this way: at time n, if the walker is at vertex v, then it first rotates the
rotor to point to the next neighbor in the counterclockwise order and then it moves
to that vertex, that is Xn+1 = v(ρ(v)+1) mod (d+1). If the initial rotor configuration is
random, then once a vertex has been visited for the first time, the configuration there
is fixed. A child v( j) of a vertex v ∈ Td is called good if ρ(v) < j , which means
that the rotor walk will first visit the good children before visiting the parent v(0) of
v. Remark that v has d − ρ(v) good children. The tree of good children for the rotor
walk (Xn), which we denote T good

d , is a subtree of Td , where all the vertices are good
children. Let us denote by Rn = {X0, . . . , Xn} the range on˜Td = Td\{o} of the rotor
walk (Xn) up to time n, that is, the set of distinct visited points by the rotor walk (Xn)

up to time n, excluding the sink vertex o. Its cardinality, denoted by |Rn| represents
then the number of distinct visited points by the walker up to time n.

We denote by d(r , Xn) := |Xn| the distance from the position Xn at time n of the
rotor walker to the root r . The speed or the rate of escape of the rotor walk (Xn) is the
almost sure limit (if it exists) of |Xn |

n . We say that |Rn| satisfies a law of large numbers

if |Rn |
n converges almost surely to a constant. The aim of this work is to prove a law

of large numbers for |Xn| and |Rn|, that is, to find constants l and α such that

lim
n→∞

|Xn|
n

= l, almost surely,

lim
n→∞

|Rn|
n

= α, almost surely,

when (Xn) is a rotor walk with random initial rotor configuration on a regular tree and
on a Galton–Watson tree, respectively. On regular trees, these constants depend on
whether the rotor walk (Xn) is recurrent or transient on Td , a property which depends

Fig. 1 The binary tree T2
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only on the expected value E[ρ(v)] of the rotor configuration at vertex v, as shown
in [1, Theorem 6]: if E[ρ(v)] ≥ d − 1, then the rotor walk (Xn) is recurrent, and
if E[ρ(v)] < d − 1, then it is transient. Since in the case E[ρ(v)] = d − 1, the
expected return time to the root is infinite, we shall call this case a critical case, and
we say that the rotor walk is null recurrent. Otherwise, if E[ρ(v)] > d − 1, we say
that (Xn) is positive recurrent. The tree T good

d of good children for the rotor walk is a
Galton–Watson tree with mean offspring number d−E[ρ(v)] and generating function
f (s) = ∑d

j=0 rd− j s j .
The main results of this paper can be summarized into the two following theorems.

Theorem 1.1 (Range of the rotor walk) If (Xn)n∈N is a rotor walk with random initial
configuration of rotors on Td , d ≥ 2, then there exists a constant α > 0, such that

lim
n→∞

|Rn|
n

= α, almost surely.

The constant α depends only on d and on the distribution of ρ and is given by:

(i) If (Xn)n∈N is positive recurrent, then

α = d − 1

2E[ρ(v)] .

(ii) If (Xn)n∈N is null recurrent, then

α = 1

2
.

(iii) If (Xn)n∈N is transient, then conditioned on the non-extinction of T good
d ,

α = q − f ′(q)(q2 − q + 1)

q2 + q − f ′(q)(2q2 − q + 1)

where q > 0 is the extinction probability of T good
d .

Remark that, even in the recurrent case, the range of the rotor walk grows at linear
speed, which is not the case for simple random walks on regular trees. The methods of
proving the above result are completely different for the transient and for the recurrent
case, and the proofs will be done in separate sections.

Theorem 1.2 (Speed of the rotor walk) If (Xn)n∈N is a rotor walk with random initial
configuration of rotors on Td , d ≥ 2, then there exists a constant l ≥ 0, such that

lim
n→∞

|Xn|
n

= l, almost surely.

(i) If (Xn)n∈N is recurrent, then l = 0.
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(ii) If (Xn)n∈N is transient, then conditioned on the non-extinction of T good
d ,

l = (q − f ′(q))(1 − q)

q + q2 − f ′(q)(2q2 − q + 1)
,

where q > 0 is the extinction probability of T good
d .

The constant l is in the following relation with the constant α from Theorem 1.1 in
the transient and null recurrent case:

2α − l = 1. (1)

We call this equation the Einstein relation for rotor walks. We state similar results for
rotor walks on Galton–Watson trees T with random initial configuration of rotors, and
we show that in this case, the constants α and l depend only on the distribution of the
configuration ρ and on the offspring distribution of T .

Range of rotor walks and its shape was considered also in [5] on comb lattices and
on Eulerian graphs. On combs, it is proven that the size of the range |Rn| is of order
n2/3, and its asymptotic shape is a diamond. It is conjectured in [7] that on Z

2, the
range of uniform rotor walks is asymptotically a disk, and its size is of order n2/3. In
the recent paper [3], for special cases of initial configuration of rotors on transient and
vertex-transitive graphs, it is shown that the occupation rate of the rotor walk is close
to the Green function of the random walk.

Organization of the paper. We start by recalling some basic facts and definitions
about rotor walks and Galton–Watson trees in Sect. 2. Then in Sect. 3 we prove Theo-
rem 1.1, while in Sect. 4 we prove Theorem 1.2. Then we prove in Theorem 5.3 and in
Theorem5.5 a lawof large numbers for the range and the existence of the speed, respec-
tively, for rotor walks on Galton–Watson trees. Finally, in “Appendix A” we look at the
contour function of the range of recurrent rotor walks and its recursive decomposition.

2 Preliminaries

2.1 RotorWalks

LetTd be the regular infinite rooted treewith degree d+1,with root r , and an additional
vertex o which is connected to the root and is called the sink, and let ˜Td = Td\{o}.
Every vertex v ∈ ˜Td has d children and one parent. For any connected subset V ⊂ ˜Td ,
define the set of leaves in ˜Td as ∂oV = {v ∈ ˜Td\V : ∃u ∈ V s. t. u ∼ v} as the set
of vertices outside of V that are children of vertices of V , that is, ∂oV is the outer
boundary of V . On˜T, the size of ∂oV depends only on the size of V :

|∂oV | = 1 + (d − 1)|V |. (2)

A rotor configuration ρ on ˜Td is a function ρ : ˜Td → N0, with ρ(x) ∈ {0, . . . , d},
which can be interpreted as following: each vertex v ∈ ˜Td is endowedwith a rotor ρ(v)
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(or an arrow) which points to one of the d + 1 neighbors. We fix from the beginning a
counterclockwise ordering of the neighbors v(0), v(1), . . . , v(d), which represents the
order in which the neighbors of a vertex are visited, where v(0) is the parent of v, and
v(1), . . . , v(d) are the children. A rotor walk (Xn) on Td is a process where at each
time step n, a walker located at some vertex v ∈ ˜Td first increments the rotor at v, i.e.,
it changes its direction to the next neighbor in the counterclockwise order, and then
the walker moves there. We start all our rotor walks at the root r , X0 = r , with initial
rotor configuration ρ0 = ρ. Then Xn represents the position of the rotor walk at time
n, and ρn the rotor configuration at time n. The rotor walk is also used as rotor-router
walk in the literature. At each time step, we record not only the position of the walker,
but also the configuration of rotors, which changes only at the current position. More
precisely, if at time n the pair of position and configuration is (Xn, ρn), then at time
n + 1 we have

ρn+1(x) =
{

ρn(x) + 1 mod (d + 1), if x = Xn

ρn(x), otherwise.

and Xn+1 = X (ρn+1(Xn))
n . As defined above, (Xn) is a deterministic process once ρ0 is

determined. Throughout this paper, we are interested in rotor walks (Xn) which start
with a random initial configuration ρ0 of rotors, which makes (Xn) a random process
that is not a Markov chain.

Random initial configuration. For the rest of the paper, we consider ρ a random
initial configuration on ˜Td , in which (ρ(v))v∈˜Td

are independent random variables
with distribution on {0, 1, . . . , d} given by

P[ρ(v) = j] = r j , (3)

with
∑d

j=0 r j = 1. If ρ(v) is uniformly distributed on the neighbors, then we call
the corresponding rotor walk uniform rotor walk. Depending on the distribution of
the initial rotor configuration ρ, the rotor walk can exhibit one of the following two
behaviors: either the walk visits each vertex infinitely often, and it is recurrent, or each
vertex is visited at most finitely many times, and it escapes to infinity, and this is the
transient case. For rotorwalks on regular trees, the recurrence–transience behaviorwas
proven in [1, Theorem 6], and the proof is based on the extinction/survival of a certain
branching process, which will also be used in our results. Similar results on recurrence
and transience of rotor walks on Galton–Watson trees have been proven in [6].

For the rotor configuration ρ on ˜Td , a live path is an infinite sequence of vertices
v1, v2, . . . each being the parent of the next, such that for all i , the indices k for which
vi+1 = v

(k)
i satisfy ρ(v) < k. In other words, v1, v2, . . . is a live path if and only if

all v1, v2, . . . are good, and a particle located at vi will be sent by the rotor walker
forward to vi+1 before sending it back to the root. An end in Td is an infinite sequence
of vertices o = v0, v1, . . ., each being the parent of the next. An end is called live if
the subsequence (vi )i≥ j starting at one of the vertices o = v0, v1, . . . is a live path.
The rotor walk (Xn) can escape to infinity only via a live path.
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2.2 Galton–Watson Trees

Consider a Galton–Watson process (Zn)n∈No with offspring distribution ξ given by
pk = P[ξ = k]. We start with one particle Z0 = 1, which has k children with
probability pk ; then each of these children independently has children with the same
offspring distribution ξ , and so on. Then Zn represents the number of particles in the
n-th generation. If (ξni )i,n∈N are i.i.d. random variables distributed as ξ , then

Zn+1 =
Zn
∑

i=1

ξni ,

and Z0 = 1. Starting with a single progenitor, this process yields a random family tree
T , which is called a Galton–Watson tree. The mean offspring number m is defined as
the expected number of children of one particlem = E[ξ ]. In order to avoid trivialities,
we will assume p0 + p1 < 1. The generating function of the process is the function
f (s) = ∑∞

k=0 pks
k and m = f ′(1). If is well known that the extinction probability of

the process, defined as q = limn→∞ P[Zn = 0], which is the probability the process
ever dies out, has the following important property.

Theorem 2.1 (Theorem 1, page 7, in [2]) The extinction probability of (Zn) is the
smallest nonnegative root of s = f (s). It is 1 if m ≤ 1 and < 1 if m > 1.

With probability 1, we have Zn → 0 or Zn → ∞ and limn P[Zn = 0] = 1 −
limn P[Zn = ∞] = q. For more information on Galton–Watson processes, we refer
to [2]. When m < 1, = 1, or > 1, we shall refer to the Galton–Watson tree as
subcritical, critical, or supercritical, respectively.

3 Range on Regular Trees

For a simple random walk on a regular tree Td , d ≥ 2, which is transient, if we denote
by Sn its range, then it is known [4, Theorem 1.2] that |Sn| satisfies a law of large
numbers:

lim
n→∞

|Sn|
n

= d − 1

d
almost surely. (4)

We prove a similar result for the range of any rotor walk with random initial config-
uration on a regular tree Td . From [1, Theorem 6], (Xn) is recurrent if E[ρ(v)] =
∑d

j=1 jr j ≥ d −1 and transient if E[ρ(v)] < d −1. The tree of good children for the

rotor walk, denoted T good
d and defined in Sect. 2.1, is then a Galton–Watson process

with offspring distribution ξ = number of good children of a vertex, given by

P[ξ = j] = rd− j , for j = 0, 1, . . . d.
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Each vertex has, independently of all the others, a number of good children with the
same distribution ξ . The mean offspring number of T good

d is m = d − E[ρ(v)]. Let
f (s) = ∑

j rd− j s j be the generating function for T good
d .

The lemma below is a key observation that is crucial for the main results of this
paper. For a proof, we refer to [1].

Lemma 3.1 Let T good
d be the tree of good children of the sink vertex of the current

rotor configuration. Then for every excursion (i.e., a rotor walk that is started at the
sink vertex and is stopped the first time it returns to the sink vertex), we have the
following:

(a) If the component of the sink vertex in T good
d is finite, then every vertex v in this

component will be visited in the excursion exactly d + 1 − E[ρ(v)] times.
(b) If the component of the sink vertex in T good

d is infinite, then the walker will escape
through the rightmost live path. Furthermore, every vertex to the right of this live
path will be visited exactly d + 1 − E[ρ(v)] times.

For proving Theorem 1.1, we shall treat the three cases separately: the positive recur-
rent, null recurrent and transient case.

3.1 Recurrent RotorWalks

In this section, we consider recurrent rotor walks (Xn) on Td , that is, once again from
[1, Theorem 6] E[ρ(v)] ≥ d − 1. Then T good

d has mean offspring number m ≤ 1,
which by Theorem 2.1 dies out with probability one. While in the case m < 1, where
the rotor walk is positive recurrent, the expected size of T good

d is finite, this is not the
case when m > 1. For this reason, we handle these two cases separately. In order to
prove a law of large numbers for the range Rn = {X0, X1, . . . , Xn} of the rotor walk
up to time n, we first look at the behavior of the rotor walk at the times when it returns
to the sink o. Define the times (τk) of the k-th return to the sink o, by: τ0 = 0 and for
k ≥ 1 let

τk = inf{n > τk−1 : Xn = o}. (5)

At time τk , the walker is at sink, all rotors in the visited set Rτk point toward the root,
while all other rotors still are in their initial configuration. Between the two consecutive
stopping times τk−1 and τk , the rotor walk performed a depth first search in the finite
subtree induced by Rτk , by visiting every child of a vertex in right to left order. For
every vertex in v ∈ Rτk , we can uniquely associate the edge (v, v(0)), with v(0) being
the unique ancestor of v, which implies that |Rτk | equals the number of edges in the
tree induced by Rτk . In a depth first search of Rτk , each edge is visited exactly two
times, and in view of the bijection above, it requires exactly 2|Rτk | steps to return to
the origin. We can then deduce that

τk − τk−1 = 2|Rτk |. (6)
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Since we are in the recurrent case, where the rotor walk returns to the sink infinitely
many times, these stopping times are almost surely finite.

3.1.1 Positive Recurrent Rotor Walks

If E[ρ(v)] > d − 1, we prove the following.

Theorem 3.2 For a positive recurrent rotor walk (Xn) on Td , with d ≥ 2 we have

lim
k→∞

|Rτk |
τk

= d − 1

2E[ρ] , almost surely.

Proof For simplicity of notation, we write Rk = Rτk . The tree of good children,

T good
d = R1 is a subcritical Galton–Watson tree with mean offspring number m =

d − E[ρ] < 1, that is, it dies out almost surely. The expected size of the range up to
time τ1 is given by E[|R1|] = 1

1−m > 1. At the time τk of the k-th return to the sink
o, all rotors in the previously visited set Rk point toward the root, and the remaining
rotors are still in their initial configuration. Thus, during the time interval (τk, τk+1],
the rotor walk visits all the leaves ofRk from right to left, and at each leaf it attaches
independently a (random) subtree that has the same distribution as R1. If we denote
by Lk = |∂oRk |, then Lk+1 = ∑Lk

i=1 L1,i , where L1,i are independent copies of L1,
and (Lk) is a supercritical Galton–Watson process with mean offspring number ν (the
mean number of leaves of |R1|), which in view of (2), is given by

ν = 1 + (d − 1)E[|R1|] = 1 + d − 1

1 − m
> 1.

Moreover, P[Lk = 0] = 0. Since ν > 1, it follows from the Seneta–Heyde Theorem
(see [8]) applied to the supercritical Galton–Watson process (Lk) that there exists a
sequence of numbers (ck)k≥1 and a nonnegative random variable W such that

(i)
Lk

ck
→ W , almost surely.

(ii) P[W = 0] equals the probability of extinction of (Lk).

(iii)
ck+1

ck
→ ν.

By (2) we have |Rk | = Lk−1
d−1 almost surely, which together with Eq. (6) yields

(d − 1)
(

τk − τk−1
)+ 2 = 2(d − 1)|Rk | + 2 = 2Lk, almost surely,

and dividing by ck gives

(d − 1)

(

τk

ck
− τk−1

ck−1
· ck−1

ck

)

+ 2

ck
= 2

Lk

ck
, almost surely.
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It then follows that

(

τk

ck
− τk−1

ck−1
· ck−1

ck

)

= 2

d − 1

Lk

ck
− 2

(d − 1)ck
−−−→
k→∞

2

d − 1
W ,

since ck → ∞. Since τk
ck

and τk−1
ck−1

either both diverge or have the same limit τ �, it
follows that

(

τ � − τ �

ν

)

= 2

d − 1
W .

Thus, τk
ck

converges almost surely to an almost surely positive random variable τ �

τ � = lim
k→∞

τk

ck
=
(

1 − 1

ν

)−1 2

d − 1
W > 0.

Hence,

τk−1

τk
= τk−1

ck−1
· ck−1

ck
· ck
τk

−−−→
k→∞ τ � · 1

ν
· 1

τ �
= 1

ν
, almost surely.

Now from (6), we get

lim
k→∞

|Rk |
τk

= lim
k→∞

1

2

(

1 − τk−1

τk

)

= 1

2

(

1 − 1

ν

)

= d − 1

2(d − m)
= d − 1

2E[ρ(v)] ,

and this proves the claim. ��
Passing from the range along a subsequence (τk) to the range Rn at all times requires
additional work, because of the exponential growth of the increments (τk+1 − τk). We
next prove that the almost sure limit |Rn |

n exists.

Proof of Theorem 1.1(i) Let x1, . . . , xd be the d children of the root vertex of Td . Let
R(1)
k , . . . , R(d)

k be the range of d independent recurrent rotor walks on the treeTd with
i.i.d. initial rotor configurations, at the k-th return to the sink vertex. Moreover, let
ξ

(1)
k , . . . , ξ

(d)
k be the times of the k-th visit to the sink vertex by these rotor walks. One

can couple the original rotor walk with these d independent rotor walks in such a way
that the dynamics of the original rotor walk in the component of the tree rooted at xi
is given by the dynamics in the i-th rotor walk, for i = 1, . . . , d.

Let n be an arbitrary positive number in (τk, τk+1). Then the original rotor walk
(Xn) at time n is located in the component of the tree rooted at xi for some i . The
coupling above then gives us these two inequalities:

n ≥ ξ
(1)
k+1 + · · · + ξ

(i−1)
k+1 + ξ

(i)
k + · · · + ξ

(d)
k + k

Rn ≤ R(1)
k+1 + · · · + R(i)

k+1 + R(i+1)
k + · · · + R(d)

k + k.
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Note that the addition of k in the inequalities above is to account for the time spent at
the sink vertex in the original rotor walk. The contribution of k is negligible as n → ∞
as far as we are concerned. It then follows that

lim sup
n→∞

Rn

n
≤ lim sup

n→∞
R(1)
k+1 + · · · + R(i)

k+1 + R(i+1)
k + · · · + R(d)

k

ξ
(1)
k+1 + · · · + ξ

(i−1)
k+1 + ξ

(i)
k + · · · + ξ

(d)
k

,

where k := k(n) and i := i(n) depend on n. By Theorem 3.2, it then follows that

lim sup
n→∞

Rn

n
≤ lim sup

n→∞
α

ξ
(1)
k+1 + · · · + ξ

(i)
k+1 + ξ

(i+1)
k + · · · + ξ

(d)
k

ξ
(1)
k+1 + · · · + ξ

(i−1)
k+1 + ξ

(i)
k + · · · + ξ

(d)
k

,

for α = d−1
2E[ρ] . A direct calculation then gives us

lim sup
n→∞

Rn

n
≤ α + α lim sup

n→∞
ξ

(i)
k+1 − ξ

(i)
k

ξ
(1)
k+1 + · · · + ξ

(i−1)
k+1 + ξ

(i)
k + · · · + ξ

(d)
k

. (7)

Recall from the proof of Theorem 3.2 that there exists ck > 0 and an integrable random
variable W such that, for any i

lim
k→∞

ξ
(i)
k

ck
= W and lim

k→∞
ck+1

ck
= ν.

Let nowW1, . . . ,Wd be i.i.d random variables with the same distribution asW . It then
follows that

lim sup
n→∞

Rn

n
≤ α + α lim sup

n→∞

c−1
k

(

ξ
(i)
k+1 − ξ

(i)
k

)

c−1
k

(

ξ
(1)
k+1 + · · · + ξ

(i−1)
k+1 + ξ

(i)
k + · · · + ξ

(d)
k

)

= α + α
(ν − 1)maxi≤d Wi

ν(W1 + · · · + Wi−1) + Wi + · · · + Wd

≤ α + α(ν − 1)
maxi≤d Wi

W1 + · · · + Wd
.

The same coupling can be applied not only to the d children of the root, but also to
the vertices of Td and any given level j . This means that, for any j ≥ 0, we have

lim sup
n→∞

Rn

n
≤ α + α(ν − 1)

maxi≤d j Wi

W1 + · · · + Wd j
.
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Since W is an integrable random variable, it follows from the law of large numbers

that
maxi≤d j Wi

W1+···+Wd j
→ 0 as j → ∞. Hence, we conclude that

lim sup
n→∞

Rn

n
≤ α.

By symmetry, we can also conclude that lim infn→∞ Rn
n ≥ α. Theorem 1.1(i) now

follows. ��
If ν is the mean offspring number of the supercritical Galton–Watson process (Lk),

with Lk = |∂oRτk |, then we can also write

lim
n→∞

|Rn|
n

= 1

2

(

1 − 1

ν

)

, almost surely.

3.1.2 Null Recurrent Rotor Walks

In this section, we consider null recurrent rotor walks, that is E[ρ(v)] = d −1. Recall
the stopping times τk as defined in (5). The proofs for the law of large numbers for
the range will be slightly different, arising from the fact that the expected return time
to the sink for the rotor walker is infinite. We first prove the following.

Theorem 3.3 For a null recurrent rotor walk (Xn) on Td , d ≥ 2, we have

lim
k→∞

|Rτk |
τk

= 1

2
, almost surely.

Proof Rewriting Eq. (6), we get

1

2

(

1 − τk−1

τk

)

= |Rτk |
τk

, almost surely,

andweprove that the quotient τk−1
τk

goes to zero almost surely.Wewrite againRk = Rτk

and we first show that τk
τk−1

→ ∞ almost surely, by finding a lower bound which
converges to ∞ almost surely. From (6), we have

τk

τk−1
> 2

|Rk |
τk−1

, almost surely. (8)

If ∂0Rk−1 is the set of leaves of Rk−1, then in the time interval τk − τk−1, the i.i.d
critical Galton–Watson trees rooted at the leaves ∂0Rk−1 will be added to the current
range Rk−1.

Recall that from the proof of Theorem 3.2 that Lk = |∂0Rk |. For each k = 1, 2, . . .,
we partition the time interval (τk, τk+1] into finer intervals, onwhich the behavior of the
range can be easily controlled. The vertices in ∂oRτk = {x1, x2, . . . , xLk } are ordered
from right to left. We introduce the following two (finite) sequences of stopping times
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(ηik) and (θ ik) of random length Lk + 1, as follows: let θ0k = τk and η
Lk+1
k = τk+1 and

for i = 1, 2, . . . , Lk

ηik =min{ j > θ i−1
k : X j = xi }

θ ik =min{ j > ηik : X j = xi and ρ(x j ) = x (d)
i }.

(9)

That is, for each leaf xi , the time ηik represents the first time the rotor walk reaches xi ,
and θ ik represents the last time the rotor walk returns to xi after making a full excursion
in the critical Galton–Watson tree rooted at xi . Then

(τk, τk+1] =
{

∪Lk+1
i=1

(

θ i−1
k , ηik

]}

∪
{

∪Lk
i=1

(

ηik, θ
i
k

]}

,

almost surely. It is easy to see that the increments (θ ik − ηik)i are i.i.d and distributed
according to the distribution of τ1, which is the time a rotor walk needs to return to
the sink for the first time. Once the rotor walk reaches the leaf xi for the first time at
time ηik , the subtree rooted at xi was never visited before by a rotor walk. Even more,
the tree of good children with root xi is a critical Galton–Watson tree, which becomes
extinct almost surely. Thus, the rotor walk on this subtree is (null) recurrent, and it
returns to xi at time θ ik . Then (θ ik − ηik) represents the length of this excursion which
has expectation E[τ1] = ∞. In the time interval (θ i−1

k , ηik], the rotor walk leaves the
leaf xi−1 and returns to the confluent between xi−1 and xi , from where it continues its
journey until it reaches xi . Then ηik −θ i−1

k is the time the rotor walk needs to reach the
new leaf xi after leaving xi−1. In this time interval, the range does not change, since
(Xn) makes steps only in Rτk . We have, as a consequence of (6)

|Rk | = |Rk−1| + 1

2

Lk−1
∑

i=1

(

θ ik−1 − ηik−1

)

, almost surely. (10)

By the strong law of large numbers, we have on the one side

∑Lk−1
i=1

(

θ ik−1 − ηik−1

)

Lk−1
→ E[τ1] = ∞, almost surely. (11)

From (2) we obtain Lk−1 = 1+(d−1)|Rk−1|which together with (8) and (10) yields

τk

τk−1
>

∑Lk−1
i=1

(

θ ik−1 − ηik−1

)

Lk−1
· 1 + (d − 1)|Rk−1|

τk−1
(12)

≥
∑Lk−1

i=1

(

θ ik−1 − ηik−1

)

Lk−1
· |Rk−1|

τk−1
(13)

=
∑Lk−1

i=1

(

θ ik−1 − ηik−1

)

Lk−1
· 1
2

(

1 − τk−2

τk−1

)

, (14)
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almost surely, where the last inequality follows from (6). By letting l = lim inf τk
τk−1

and taking limits, the previous equation yields

l ≥ 1

2
E[τ1]

(

1 − 1

l

)

.

Unless l = 1, the right-hand side above goes to infinity almost surely, which implies
l = ∞ = lim inf τk

τk−1
≤ lim sup τk

τk−1
, therefore limk

τk
τk−1

= ∞ and limk
τk−1
τk

= 0,
almost surely. Suppose now l = 1, almost surely. Once at the root at time τk−1, until the
next return at time τk , the rotor walk visits everything that was visited before plus new
trees where the configuration is in the initial status. As a consequence of Lemma 3.1,
for visiting the previously visited set, it needs time τk−1, therefore τk − τk−1 > τk−1,
which gives that lim infk

τk
τk−1

> 2, which contradicts the fact that l = 1. Therefore

limk
τk

τk−1
= ∞, almost surely. Finally, we show that indeed limk→∞ |Rk |

τk
exists. On

the one hand, from (6), it is easy to see that |Rk |
τk

≤ 1
2 . We have

1

2
≥ |Rk |

τk
≥ lim inf

|Rk |
τk

= 1

2
lim inf

(

1 − τk−1

τk

)

= 1

2
,

almost surely, and the claim follows. ��
Proof of Theorem 1.1(ii) Set againRk := Rτk and recall from the proof of Theorem3.3,
the definition of the stopping times ηik and θ ik , for i = 1, . . . , Lk = |∂0Rk |. Let n be
an arbitrary positive number in (τk, τk+1]. Then there exists i ∈ {1, . . . , Lk} such that
n ∈ (θ i−1

k , θ ik]. Then we have

|Rk | +
i−1
∑

j=1

|R j
1| ≤ |Rn| ≤ |Rk | +

i
∑

j=1

|R j
1| (15)

τk +
i−1
∑

j=1

τ
j
1 ≤ n ≤ τk +

i
∑

j=1

τ
j
1 , (16)

where (R j
1) j and (τ

j
1 ) j are i.i.d. random variables distributed like R1 = Rτ1 and τ1,

respectively. From (6) we have τ
j
1 = 2|R j

1|, and from the previous two equations we
obtain the following upper bound on |Rn |

n :

|Rn|
n

≤ 1

2

[

τk − τk−1 +∑i
j=1 τ

j
1

τk +∑i−1
j=1 τ

j
1

]

= 1

2

[

1 + τ i1

τk +∑i−1
j=1 τ

j
1

− τk−1

τk +∑i−1
j=1 τ

j
1

]

.

Since for every i , τ i1 is almost surely finite and τk → ∞ as k → ∞, the term
τ i1

τk +∑i−1
j=1 τ

j
1

converges almost surely to 0 as k → ∞. Moreover, since in the null

123



1670 Journal of Theoretical Probability (2020) 33:1657–1690

recurrent case, from the proof of Theorem 3.3, τk−1
τk

→ 0 almost surely, as k → ∞,

we also get the almost sure convergence to 0 of
τk−1

τk +∑i−1
j=1 τ

j
1

. Taking limits on both

sides in the equation above, we obtain that

lim sup
n→∞

|Rn|
n

≤ 1

2
, almost surely.

For the lower bound, Eqs. (15) and (16) yield

|Rn|
n

≥ 1

2

[

τk − τk−1 +∑i−1
j=1 τ

j
1

τk +∑i
j=1 τ

j
1

]

= 1

2

[

1 − τ i1

τk +∑i
j=1 τ

j
1

− τk−1

τk +∑i
j=1 τ

j
1

]

,

and by the same reasoning as above, we obtain

lim inf
n→∞

|Rn|
n

≥ 1

2
, almost surely,

which together with the upper bound on limsup proves that limn→∞ |Rn |
n = 1

2 almost
surely. ��

3.2 Transient RotorWalks

We consider here the transient case on regular trees, when E[ρ(v)] < d − 1. Then
each vertex is visited only finitely many times, and the walk escapes to infinity along
a live path. The tree T good

d of good children for (Xn) is a supercritical Galton–Watson

tree, with mean offspring number m = d − E[ρ(v)] > 1. Thus, T good
d survives with

positive probability (1 − q), where q ∈ (0,∞) is the extinction probability, and is
the smallest nonnegative root of the equation f (s) = s, where f is the generating
function of T good

d .

Notation 3.4 For the rest of this section, we will always condition on the event of non-

extinction, so that T good
d is an infinite random tree.Wedenote byPnon and byEnon the

associated probability and expectation conditioned on non-extinction, respectively.

That is, if P is the probability for the rotor walk in the original tree T good
d , then for

some event A, we have

Pnon[A] = P[A ∩ T good
d is infinite]
1 − q

.

In order to understand how the rotor walk (Xn) escapes to infinity, we will decompose
the tree T good

d with generating function f conditioned on non-extinction. Consider
the generating functions
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g(s) = f ((1 − q)s + q) − q

1 − q
and h(s) = f (qs)

q
. (17)

Then the f -Galton–Watson tree T good
d can be generated by:

(i) growing a Galton–Watson tree Tg with generating function g, which has the
survival probability 1.

(ii) attaching to each vertex v of Tg a random number nv of h-Galton–Watson trees,

acting as traps in the environment T good
d .

The tree Tg is equivalent (in the sense of finite dimensional distributions) with a tree in

which all vertices have an infinite line of descent. Tg is called the backbone of T good
d .

The random variable nv has a distribution depending only on d(v) in T good
d and given

Tg and nv the traps are i.i.d. The supercriticalGalton–Watson treeT good
d conditioned to

die out is equivalent to the h-Galton–Watson tree with generating function h, which is
subcritical. Formore details on this decomposition and the equivalence of the processes
involved above, see [9] and [2, Chapter I, Part D].

The exposition in this paragraph is a non-trivial consequence of the key
Lemma 3.1(b). Denote by t0 < ∞ the number of times the origin was visited. After
the t0-th visit to the origin, there are no returns to the origin, almost surely, and there
has to be a leaf γ0 belonging to the range of the rotor walk up to the t0-th return,
along which the rotor walker escapes to infinity, that is, there is a live path starting
at γ0, almost surely. Denote by n0 the first time the rotor walk arrives at γ0. The tree
rooted at γ0 was not visited previously by the walker, and the rotors are in their ran-
dom initial configuration. The tree of good children T good

d rooted at γ0 in the initial
rotor configuration has the same distribution as the supercritical Galton–Watson tree
conditioned on non-extinction. At time n0, we have already a finite visited subtree
and its cardinality |Rn0 |, which is negligible for the limit behavior of the range. When
computing the limit for the size of the range, we have to consider also this irrelevant
finite part.

On the event of non-extinction, let γ = (γ0, γ1, . . .) be the rightmost infinite ray
in T good

d rooted at γ0, that is, the rightmost infinite live path in Td , which starts at
γ0. This is the rightmost ray in the tree Tg . Since all vertices in Tg have an infinite
line of descent, such a ray exists. The ray γ is then a live path, along which the rotor
walk (Xn) escapes to infinity, without visiting the vertices to the left of γ ; see again
Lemma 3.1(b). In order to understand the behavior of the range of (Xn) and to prove
a law of large numbers, we introduce the sequence of regeneration times (τk) for the
ray γ . Let τ0 = n0 and for k ≥ 1:

τk = inf{n ≥ n0 : Xn = γk}. (18)

Note that, for each k the random times τk and τk+1 − 1 are the first and the last hitting
time of γk , respectively. Indeed, once we are at vertex γk , since γk+1 is the rightmost
child of γk with infinite line of descent, the rotor walk visits all good children to the
right of γk , and makes finite excursions in the trees rooted at those good children, and
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then returns to γk at time τk+1 − 1. Then, at time τk+1, the walk moves to γk+1 and
never returns to γk . We first prove the following.

Theorem 3.5 Let (Xn) be a transient rotor walk on Td . If the tree T good
d of good

children for the rotor walk (Xn) has extinction probability q, then conditioned on
non-extinction, there exists a constant α > 0, which depends only on q and d, such
that

lim
k→∞

|Rτk |
τk

= α, almost surely,

and α is given by

α = q − f ′(q)(q2 − q + 1)

q2 + q − f ′(q)(2q2 − q + 1)
.

Proof Wewrite againRk := Rτk , andR0 for the range of the rotor walk up to time n0,
which is finite almost surely. Since γ is the rightmost infinite live path on which (Xn)

escapes to infinity, to the right of each vertex γk in T good
d we have a random number

of vertices, and in the tree rooted at those vertices (which are h-Galton–Watson trees),
the rotor walk makes only finite excursions. Then, at time τk+1, the walk reaches γk+1
and never returns to γk .

For each k, γk+1 is a good child of γk and the rotor at γk points to the right of γk+1.

For k = 0, 1, . . . let
{

γ
(1)
k , . . . , γ

(Nk )
k

}

be the set of vertices which are good children

of γk , and are situated to the right of γk+1; denote by Nk the cardinality of this
set. Additionally, denote by ˜Tk( j) the tree rooted at γ

( j)
k , j = 1, . . . , Nk and by

Tk( j) = ˜Tk( j) ∪ (γk, γ
( j)
k ). That is, the trees Tk( j), for j = 1, . . . , Nk have all

common root γk , and |Tk( j)| = |˜Tk( j)| + 1.

Claim 1. Conditionally on the event of non-extinction, (Nk)k≥0 are i.i.d.

Proof of Claim 1. For each k, the distribution of Nk depends only on the offspring
distribution (which is the number of good children for the rotor walk) of T good

d , and the
last one depends only on the initial rotor configuration ρ. Since the random variables
(ρ(v))v are i.i.d, the claim follows.

Claim 2. Conditionally on the event of non-extinction, (|Tk( j)|)1≤ j≤Nk are i.i.d.

Proof of Claim 2. This follows immediately from the definition of the Galton–Watson
tree, since each vertex in T good

d has k children with probability rd−k , independently of
all other vertices, and all these children have independent Galton–Watson descendant
subtrees. All the subtrees ˜Tk( j) rooted at γ

( j)
k are then independent h-Galton–Watson

subtrees (subcritical), therefore (|˜Tk( j)|)1≤ j≤Nk are i.i.d. Since |Tk( j)| = |˜Tk( j)|+1,
the claim follows.

Claim 3. Given non-extinction, the increments (τk+1 − τk)k≥0 are i.i.d.
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Proof of Claim 3. Given non-extinction, the time (τk+1 − τk)k≥0 depends only on Nk

(the number of good children to the right of γk) and on |Tk( j)|, which by Claims 1
and 2 above, are all i.i.d. Thus, the independence of (τk+1 − τk)k≥0 follows as well.

Clearly, each γk is visited exactly Nk + 1 times, and all vertices to the left of γ are
never visited. We write R(k−1,k] for the range of the rotor walk in the time interval
(τk−1, τk]. For r �= s, the path of the rotor walk in the time interval (τr−1, τr ] has
empty intersection with the path in the time interval (τs−1, τs], and we have

|Rk | = |R0| +
k
∑

i=1

|R(i−1,i]|, almost surely.

Moreover, for i = 1, . . . k,

|R(i−1,i]| = 1 +
Ni−1
∑

j=1

|˜Ti−1( j)|, almost surely

and if we denote by αk = ∑k−1
i=0 Ni and if (t̃ j ) is an i.i.d. sequence of random variables

with the same distribution as |˜Ti−1( j)|, then, using Claim 1 and Claim 2 we obtain

|Rk | = |R0| + k +
αk
∑

j=1

t̃ j , almost surely. (19)

Similarly, if we write τk = n0 +∑k
i=2(τi − τi−1) and use the fact that, for i ≥ 2 as a

consequence of (6)

τi − τi−1 = 1 + 2
Ni−1
∑

j=1

|˜Ti−1( j)|, almost surely,

then again by Claims 1 and 2 we get

τk = |R0| + k + 2
αk
∑

j=1

t̃ j . (20)

Putting Eqs. (19) and (20) together, we finally get

|Rk |
τk

= |R0| + k +∑αk
j=1 t̃ j

|R0| + k + 2
∑αk

j=1 t̃ j
, almost surely.

By the strong law of large numbers, we have

|R0| + k

αk
→ 1

Enon[N0] ,
∑αk

j=1 t̃ j

αk
→ Enon[|˜T0(1)|] almost surely
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which implies

|Rk |
τk

→ 1 + Enon[N0]Enon[|˜T0(1)|]
1 + 2Enon[N0]Enon[|˜T0(1)|]

, almost surely.

We have to compute now the two expectations Enon[N0] and Enon[|˜T0(1)|] involved
in the equation above, in order to get the formula from the statement of the theorem.

Conditioned on non-extinction, for all k = 0, 1, . . . and j = 1, . . . Nk the trees
˜Tk( j) are i.i.d. subcritical Galton–Watson trees with generating function h(s) = f (qs)

q
and mean offspring number h′(1). That is, they all die out with probability one, and
the expected number of vertices isEnon[|˜Tk( j)|] = 1

1−h′(1) . On the other hand, h(s) =
1
q

∑d
j=0 rd− j (qs) j , which implies that h′(1) = 1

q2
∑d

j=0 jrd− j q j , and

Enon[˜T0(1)] = q2

q2 −∑d
j=0 jrd− j q j

,

which in terms of the generating function f (s) can be written as

Enon[˜T0(1)] = q

q − f ′(q)
. (21)

In computing Enon[N0]:

Enon[N0] =
d−1
∑

i=0

iPnon[N0 = i] = 1

1 − q

d−1
∑

i=0

iP[N0 = i, T good
d is infinite]

= 1

1 − q

d
∑

j=0

j−1
∑

i=0

iP[N0 = i, T good
d is infinite|γ0 has j good children]

P[γ0 has j good children]

= 1

1 − q

d
∑

j=0

rd− j

j−1
∑

i=0

iqi (1 − q) =
d
∑

j=0

rd− j

j−1
∑

i=0

iqi )

=
d
∑

j=0

rd− j
( j − 1)q j+1 − jq j + q

(1 − q)2

= q

(1 − q)2

⎛

⎝1 −
d
∑

j=0

rd− j q
j − 1 − q

q

d
∑

j=0

jrd− j q
j

⎞

⎠

= q

1 − q

⎛

⎝1 −
d
∑

j=1

jrd− j q
j−1

⎞

⎠
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In terms of the generating function f (s), using f (q) = q, Enon[N0] can be written
as

Enon[N0] = q

1 − q

(

1 − f ′(q)
)

. (22)

Putting the two expectations together, we obtain the constant α in terms of the gener-
ating function f (s) given by

α = q − f ′(q)(q2 − q + 1)

q2 + q − f ′(q)(2q2 − q + 1)
= q − (q2 − q + 1)

∑d
j=1 jrd− j q j−1

q2 + q − (2q2 − q + 1)
∑d

j=1 jrd− j q j−1
.

��
In Theorem 3.5, we have proved a law of large numbers for the range of the rotor

walk along a subsequence (τk).With very little effort, we can show that we have indeed
a law of large numbers at all times.

Proof of Theorem 1.1(iii) For n ∈ N, the infinite ray γ and the regeneration times (τk)

as defined in (18) let

k = max{ j : τ j < n}.

Then τk < n ≤ τk+1 a.s. and |Rτk | ≤ |Rn| ≤ |Rτk+1 | a.s. which in turn gives

τk+1

τk
· |Rτk |

τk
≤ |Rn|

n
≤ |Rτk+1 |

τk+1
· τk

τk+1
, almost surely. (23)

By Claim 3 from the proof of Theorem 3.5, the increments (τk+1 − τk) are i.i.d, and
finite almost surely, therefore τk+1−τk

τk
→ 0 almost surely as k → ∞. Then, since

τk+1

τk
= τk+1 − τk

τk
+ 1,

we have that τk+1
τk

→ 1 almost surely, as k → ∞. This, together with Theorem 3.5
implies that the left-hand side of Eq. (23) converges to α almost surely. By the same
argument,we obtain that also the right-hand side of (23) converges to the same constant
α almost surely, and this completes the proof. ��

3.3 Uniform RotorWalks

We discuss here the behavior of rotor walks on regular trees Td , with uniform initial
rotor configuration ρ, that is, for all v ∈ Td , the random variables (ρ(v)) are i.i.d
with uniform distribution on the set {0, 1, . . . , d}, i.e., P[ρ(v) = j] = 1

d+1 , for
j ∈ {0, 1, . . . , d}. Such walks are null recurrent on T2 and transient on all Td , d ≥ 3.
As a special case of Theorem 1.1(iii), we have the following.
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Corollary 3.6 If (Xn) is a uniform rotor walk on Td , d ≥ 3, then the constant α is
given by

α = q(1 − d)(1 − qd+1)

(d + 1)(q − 1)3
+ q2(1 − qd−1)

(q − 1)3
.

Proof Using that P[ρ(v) = j] = 1
d+1 = rd− j and putting f ′(q) = qd

q−1 − qd+1−1
(d+1)(q−1)2

in Theorem 3.5, we get the result. ��

The following table shows values for the constants α in comparison with the limit
(d − 1)/d for the simple random walk on trees.

d α (d − 1)/d

2 0.500 0.500
3 0.707 0.666
4 0.784 0.750
5 0.825 0.800
6 0.853 0.833
7 0.872 0.857
8 0.888 0.875
9 0.899 0.888
10 0.909 0.900

Note that only in the case of the binary tree T2, the limit values for the range of the
uniform rotor walk and of the simple random walk are equal, even though the uniform
rotor walk is null recurrent and the simple random walk is transient. In the transient
case, that is, for all d ≥ 3 we always have α > (d − 1)/d.

4 Speed on Regular Trees

In this section, we prove the existence of the almost sure limit |Xn |
n , as n → ∞, where

|Xn| represents the distance from the root to the position Xn at time n of the walker.

4.1 Recurrent RotorWalks

Proof of Theorem 1.2(i) We show that in this case, l = limn→∞ |Xn |
n = 0, almost

surely. For arbitrary n, let

k = max{i : τi < n},

which implies that τk < n ≤ τk+1, and up to time n we have k returns to the root. Let
Dk be the maximum distance from the root reached after k returns to the root.
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Positive recurrent rotor walks. We have

0 ≤ |Xn|
n

≤ Dk+1

τk
= Dk+1

k + 1
· k + 1

τk
.

In view of [1, Theorem 7(ii)], the maximal depth grows linearly with the number of
returns to the root, that is, Dk+1

k+1 is almost surely bounded. On the other hand, τk grows

exponentially in k, therefore k+1
τk

converges almost surely to 0 as k → ∞, that is

l = limn→∞ |Xn |
n = 0 almost surely.

Null recurrent rotor walks. In the null recurrent case, the situation is a bit different,
since even though all particles return to the root, they reach very great depths; see
again [1, Theorem 7(i)]. Write again Rk := Rτk . For the position of the rotor walk
Xn , we distinguish the following three cases:

(i) If Xn ∈ Rk−1, then

0 ≤ |Xn|
n

≤ |Rk−1|
τk

= |Rk−1|
τk−1

· τk−1

τk
,

and the right-hand side above converges to 0 almost surely in viewof Theorem3.3
together with the fact τk−1

τk
→ 0 almost surely, proven again in Theorem 3.3.

Therefore limn→∞ |Xn |
n = 0 almost surely.

(ii) If Xn ∈ Rk\Rk−1, then there exists i ∈ {1, 2, . . . , Lk−1}, where Lk−1 =
|∂0Rk−1|, such that Xn is in the tree rooted at xi , and

0 ≤ |Xn|
n

≤ |Rk−1|
τk

+ τ i1

τk
,

where τ i1 is a randomvariable, independent and identically distributed to τ1 which

is finite almost surely. The quantity |Rk−1|
τk

converges to 0 by the same argument

as in case (i), whereas
τ i1
τk

converges also to 0 almost surely, as k = k(n) → ∞.

(iii) Finally, if Xn ∈ Rk+1\Rk , then there exist i ∈ {1, 2, . . . , Lk−1} and j ∈
{1, 2, . . . , Lk} such that

0 ≤ |Xn|
n

≤ |Rk−1|
τk

+ τ i1

τk
+ τ

j
1

τk
,

where both τ i1, τ
j
1 are i.i.d random variables, identically distributed as τ1 which

is finite almost surely, and the right-hand side converges again to 0 almost surely,
as k = k(n) → ∞, and this proves the claim. ��

4.2 Transient RotorWalks

Since in the transient case there is a positive probability of extinction of T good
d , we

condition on the event of non-extinction. The notation remains the same as in Sect. 3.2.
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Proof of Theorem 1.2(ii) Recall the definition of the infinite ray γ along which the rotor
walk (Xn) escapes to infinity, and the regeneration times τk as defined in (18). We first
prove the existence of the speed l along the sequence (τk). This is rather easy, since
d(r , γk) = |Xn0 | + k, a.s. where n0 < ∞ is the first time the walk reaches γ0, from
where it escapes without returning to the root; see again Lemma 3.1(b).

Recall now from the proof of Theorem 3.5, that τk = n0 + k + 2
∑αk

j=1 t̃ j a.s. and

αk = ∑k−1
i=0 Ni a.s., with the involved quantities again as computed in Theorem 3.5.

Then

|Xτk |
τk

= |Xn0 | + k

τk
= 1 + |Xn0 |

k

1 + n0
k + 2

∑αk
j=1 t̃ j
αk

· αk
k

.

By the strong law of large numbers for sums of i.i.d random variables, we have
2
∑αk

j=1 t̃ j
αk

→ Enon[|˜T0(1)|] and αk
k → Enon[N0] almost surely, as k → ∞, Also,

since |Xn0 | and n0 are both finite, the almost sure limits
|Xn0 |
k and n0

k are 0, as k → ∞.
This implies

|Xτk |
τk

→ 1

1 + 2Enon[|˜T0(1)|]Enon[N0]
, almost surely, as k → ∞.

By Eqs. (21) and (22), which give Enon[|˜T0(1)|] and Enon[N0] in terms of the gener-
ating function f of the tree T good

d , we obtain

|Xτk |
τk

→ (q − f ′(q))(1 − q)

q + q2 − f ′(q)(2q2 − q + 1)
= l, almost surely as k → ∞. (24)

In order to prove the almost sure convergence of |Xn |
n , for all n, we take

k = max{i : τi < n}.

We know that τk < n ≤ τk+1 a.s. |Xτk | = |Xn0 | + k, |Xτk+1 | = |Xn0 | + k + 1 a.s. and
|Xn| ≥ |Xn0 | + k a.s. Moreover, between times τk and τk+1, the distance can increase
with no more than τk+1 − τk , and we have

|Xn0 | + k

τk+1
≤ |Xn|

n
≤ |Xn0 | + k + (τk+1 − τk)

τk
, almost surely.

Since
|Xτk |
τk

· τk
τk+1

= k
τk+1

, together with Eq. (24) and the facts that τk
τk+1

→ 1 and
|Xn0 |
τk+1

→ 0 almost surely, we obtain that the left-hand side of the equation above
converges to l almost surely, as k → ∞. For the right-hand side, we use again Eq. (24),
together with the fact that τk+1−τk

τk
→ 0 almost surely, since the increments (τk+1−τk)
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are i.i.d and almost surely finite. This yields the almost sure convergence of the right-
hand side of the equation above to the constant l, which implies that |Xn |

n → l almost
surely as n → ∞. ��

5 Rotor Walks on Galton–Watson Trees

The methods we have used in proving the law of large numbers and the existence of
the rate of escape for rotor walks (Xn) with random initial configuration on regular
trees can be, with minor modifications, adapted to the case when the rotor walk (Xn)

moves initially on a Galton–Watson tree T . We get very similar results to the ones on
regular trees, which we will state below. We will not write down the proofs again, but
only mention the differences which appear on Galton–Watson trees.

Let T be a Galton–Watson tree with offspring distribution ξ given by pk = P[ξ =
k], for k ≥ 0, and we assume that p0 = 0, that is T is supercritical and survives with
probability 1. Moreover, the mean offspring number μ = E[ξ ] is also greater than
1. We recall the notation and the main result from [6]. For each k ≥ 0 we choose a
probability distributionQk supported on {0, . . . , k}. That is, we have the sequence of
distributions (Qk)k∈N0 , where

Qk = (

qk, j
)

0≤ j≤k

with qk, j ≥ 0 and
∑k

j=0 qk, j = 1. LetQ be the infinite lower triangular matrix having
Qk as row vectors, i.e.,

Q =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

q00 0 0 0 . . .

q10 q11 0 0 . . .

q20 q21 q22 0 . . .

q30 q31 q32 q33 . . .
...

...
...

...
. . .

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

Below, we write dx for the (random) degree of vertex x in T .

Definition 5.1 Arandomrotor configurationρ onT isQ-distributed, if for each x ∈ T ,
the rotor ρ(x) is a random variable with the following properties:

1. ρ(x) isQdx distributed, i.e., P[ρ(x) = dx − l | dx = k] = qk,l , with l = 0, . . . dx ,
2. ρ(x) and ρ(y) are independent if x �= y, with x, y ∈ T .

We write RT for the corresponding probability measure.

Then RGW = RT ×GW represents the probability measure given by choosing a tree T
according to the GW measure, and then independently choosing a rotor configuration
ρ on T according to RT . Recall that to the root r ∈ T , we have added an additional
sink vertex s. If we start with n rotor particles, one after another, at the root r of T , with
random initial configuration ρ, and we denote by En(T , ρ) the number of particles
out of n that escape to infinity, then the main result of [6] is the following.
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Theorem 5.2 [6, Theorem 3.2] Let ρ be a random Q-distributed rotor configuration
on a Galton–Watson tree T with offspring distribution ξ , and let ν = ξ · Q. Then we
have for RGW-almost all T and ρ:

(a) En(T , ρ) = 0 for all n ≥ 1, if E[ν] ≤ 1,

(b) lim
n→∞

En(T , ρ)

n
= γ (T ), if E[ν] > 1,

where γ (T ) represents the probability that simple random walk started at the root of
T never returns to s.

Let us denote m := E[ν]. That is, if m ≤ 1, then (Xn) is recurrent and if m > 1, then
(Xn) is transient.

5.1 Range and Speed on Galton–Watson Trees

Tree of good children. If ρ is Q-distributed,

P[x has l good children | dx = k] = qk,l ,

then the distribution of the number of good children of a vertex x in T is given by

P[x has l good children] =
∞
∑

k=l

pkqk,l =: rl , (25)

which is the lth component of the vector ν = ξ · Q. The tree of good children T good

is in this case a Galton–Watson tree with offspring distribution ν = ξ · Q whose
mean was denoted by m. Denote by fT the generating function of T good and by q its
extinction probability. For the range RT

n of rotor walks (Xn) on Galton–Watson trees,
we get the following result.

Theorem 5.3 Let T be a Galton–Watson tree with offspring distribution ξ and mean
offspring number E[ξ ] = μ > 1. If (Xn) is a rotor walk with random Q-distributed
initial configuration on T , and ν = ξ · Q, then there is a constant αT > 0 such that

lim
n→∞

|RT
n |
n

= αT , RGW -almost surely.

If we write m = E[ν], then the constant αT is given by:

(i) If (Xn)n∈N is positive recurrent, then

αT = μ − 1

2(μ − m)
.

(ii) If (Xn)n∈N is null recurrent, then

αT = 1

2
.
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(iii) If (Xn)n∈N is transient, then conditioned on the non-extinction of T good,

αT = q − f ′
T (q)(q2 − q + 1)

q2 + q − f ′
T (q)(2q2 − q + 1)

where q > 0 is the extinction probability of T good
d .

The proof follows the lines of the proof of Theorem 1.1, with minor changes which
we state below. The offspring distribution of the tree of good children T good will be
here replaced with (25), and the corresponding mean offspring number ism. If Lk and
Rτk are the same as in the proof of Theorem 3.2, then in case when (Xn) moves on a
Galton–Watson tree T ,

Lk = 1 +
∑

v∈Rk

ξv − |Rk |, almost surely, (26)

where ξv denotes the (random) number of children of the vertex v ∈ T . Since T is the
initial Galton–Watson tree with mean offspring number μ, by Wald’s identity we get

E[L1] = 1 + 1

1 − m
μ − 1

1 − m
= μ − m

1 − m
:= λ > 1.

Then ν in Theorem 3.2 will be replaced with λ and the rest works through. In the proof
of Theorem 1.1(i), α will be replaced with μ−1

2(μ−m)
. Theorem 3.3 works as well here,

with a minor change in Eq. (12), where the last term will be

1 +∑

v∈Rk−1
ξv − |Rk |

τk−1
,

while the following relations stay the same. In the transient case, in the proof of
Theorem 3.5, when computing the expectation Enon[N0], the degree d − 1 has to be
replaced by the offspring distribution ξ , which in terms of the generating function fT
of T good, and its extinction probability q produces the same result.

If (Xn) is an uniform rotorwalk on theGalton–Watson treeT , we have a particularly
simple limit. In [6], it was shown that (Xn) is recurrent if and only ifμ ≤ 2. Moreover,
the tree of good children T good is a subcritical Galton–Watson tree with offspring

distribution givenby ν =
(

∑

k≥l
1

k+1 pk
)

l≥0
, andmeanoffspring numberm = E[ν] =

μ
2 ≤ 1.

Corollary 5.4 For the range of uniform rotor walks on Galton–Watson trees T , we
have

lim
n→∞

|RT
n |
n

= μ − 1

μ
, RGW − almost surely.

Finally, we also have the existence of the rate of escape.
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Theorem 5.5 Let T be a Galton–Watson tree with offspring distribution ξ and mean
offspring number E[ξ ] = μ > 1. If (Xn) is a rotor walk with random Q-distributed
initial configuration on T , and ν = ξ · Q, then there exists a constant lT ≥ 0, such
that

lim
n→∞

|Xn|
n

= lT , RGW − almost surely.

(i) If (Xn)n∈N is recurrent, then lT = 0.
(ii) If (Xn)n∈N is transient, then conditioned on non-extinction of T good,

lT = (q − f ′(q))(1 − q)

q + q2 − f ′(q)(2q2 − q + 1)
,

where q > 0 is the extinction probability of T good
d .

The constant lT is in the following relation with the constant αT from Theorem 5.3
in the null recurrent and in the transient case:

2αT − lT = 1.

5.2 Simulations on Galton–Watson Trees

We present here some simulation data about the growth of the range for a few one
parameter families of Galton–Watson trees, for which the rotor walk is either recurrent
or transient, depending on the parameter. In the table below, the Galton–Watson trees
we use in the simulation are presented.

Ti (p1, . . . , p6) μi

T2 p1 = p, p2 = 1 − p 2 − p
T3 p1 = p, p3 = 1 − p 3 − 2p
T4 p1 = p, p4 = 1 − p 4 − 3p
T5 p1 = p, p5 = 1 − p 5 − 4p
T6 p1 = p, p6 = 1 − p 6 − 5p

For each i = 2, . . . , 6 and p ∈ [0, 1), denote by ˜ψi (p) and ϕ̃i (p) the simulated
values of the limits

lim
n→∞

|Ri
n|
n

= ˜ψi (p) lim
n→∞

|Sin|
n

= ϕ̃i (p), (27)

where Ri
n and Sin represent the range of the rotor walk and of the simple random walk

up to time n on Ti , respectively. To be able to compare the values, we plot the constants
˜ψi (p) and ϕ̃i (p) against themean offspring numberμi (p) of the offspring distribution
on Ti . That is, we look at the functions ψi = ψ̃i ◦ μ−1

i and ϕi = ϕ̃i ◦ μ−1
i ; see Fig. 2.
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Fig. 2 Plots of the linear growth coefficients of the size of the range for rotor walk (solid lines) and simple
random walk (dashed lines) on the Galton–Watson trees T2, . . . ,T6. The x-axis depicts the branching
number of the tree. The dots show the corresponding values for the regular trees
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Appendix A: The Contour of a Subtree

We discuss here some further ways one can look at the range of rotor walks on regular
trees Td , and at their contour functions, which according to simulations seem to have
interesting fractal properties.

For d ≥ 2, let �d = {0, . . . , d − 1} and denote by ��
d the set of finite words over

the alphabet �d . We use ε to denote the empty word. For w ∈ ��
d , we write |w| for

the number of letters in w. If w, v ∈ ��
d , we write wv for the concatenation of the

words w and v. We identify the tree ˜Td with the set ��
d , since every vertex in ˜Td

can be uniquely represented by a word in ��
d . For w = w1 . . . wn−1wn ∈ ��

d\{ε},
the word w1 . . . wn−1 is the predecessor of w in the tree, and for all w ∈ ��

d the
children of w are given by the words wk with k ∈ �d . Using the previous notation,
for w = w1 . . . wn−1wn we have w(0) = w1 . . . wn−1 and for k = 0, . . . , d − 1,
w(d−k) = wk. Let A ⊂ ˜Td be a finite connected subset (a subtree) of ˜Td containing

123

http://creativecommons.org/licenses/by/4.0/


1684 Journal of Theoretical Probability (2020) 33:1657–1690

the root ε. We identify A with a piecewise constant function f A : [0, 1] → N≥0 as
following. For each x ∈ [0, 1], we identify x with the infinite word x1x2 . . . where
the xi are the digits expansion of x in base d, that is x = ∑∞

i=1 xid
−i . We then define

the function f A pointwise as following

f A(x) = min{n ≥ 1 : x1 . . . xn /∈ A}, (28)

and we call f A the contour of the set A.

A.1: Contour of the Range: Recurrent Case

The range Rn of the rotor walk (Xn) onTd is a subtree ofTd . In what follows, wewrite
fn = fRn for the contour of the range of the rotor walk up to time n. Since we start
with a random initial rotor configuration, fn is a random càdlàg-function. See Fig. 3

Fig. 3 The first few steps in the computation of the range of rotor walk on T2. The blue functions are the
contour functions of the current range fRn . The short black lines represent the current rotor configuration
(Color figure online)
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(a) (b)

Fig. 4 a Typical range contour of the uniform rotor walk on the binary tree T2. The rotor walk performed
10,000 steps. b Average over 1000 samples of the contour f10,000 on the binary tree

for the contours of the rotor walk range for the first few steps of the process on the
binary tree T2. Figure 4a shows a typical contour of the rotor range on the binary tree
for n = 10,000 steps. Figure 4b shows a numerical approximation of the expectation
E[ f10000].

As in the proofs of the law of large numbers for |Rn|, we look first at the times when
the rotorwalk returns to the root.Recall the definitionof the return times (τk), as defined
in (5), for recurrent rotor walks. Write again Rk = Rτk for the range up to time τk of
the k-th return of the rotorwalk (Xn) to the sink, and denote by gk(x) = E

[

fRk (x)
]

the
expected contour after the k-th excursion, that is gk(x) = ∑∞

m=1mP
[

fRk (x) = m
]

.
Recall thatwe are in a case of a random initial configurationρ onTd , withE[ρ(v)] ≥ 1.
The distribution of ρ is P

[

ρ(v) = i
] = ri ≥ 0. Some additional notation will be

needed. For i = 0, . . . , d let

pi =
i−1
∑

j=0

r j , qi =
d
∑

j=i

r j .

For each x = (x1, x2, . . .) ∈ [0, 1], we can now compute the probability
P
[

fR1(x) = m + 1
]

that the rotor walk visits the first m vertices of the ray rep-
resented by (x1, x2, . . .) before taking a step back toward the sink vertex. Once the
rotor walk makes a step toward the sink, it cannot further explore the ray x without
first returning to the sink vertex. Furthermore, the depth the walk can explore the ray
before returning depends only on the initial rotor state along the vertices of the ray.
Below, fR1(x) = 1 means that x1 is not in the range of the walk after the first full
excursion, x1 being a vertex at level 1. We get the following

P
[

fR1(x) = 1
] =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

r1 + r2 + · · · + rd if x1 = d − 1,

r2 + · · · + rd if x1 = d − 2,
...

rd if x1 = 0

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

= q(d−x1).
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P
[

fR1(x) = 2
] =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

r0 if x1 = d − 1,

r0 + r1 if x1 = d − 2,
...

r0 + r1 + · · · + rd−1 if x1 = 0

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

·

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

r1 + r2 + · · · + rd if x2 = d − 1,

r2 + · · · + rd if x2 = d − 2,
...

rd if x2 = 0

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

= p(d−x1)q(d−x2)

For the general case m ≥ 1, we get

P
[

fR1(x) = m
] =

(

m−1
∏

i=1

p(d−xi )

)

· q(d−xm ). (29)

After completing the (m − 1)-st excursion, all rotors in the visited set Rm−1 point
toward the sink o. Hence, before completing them-th excursion, the walk will visit all
boundary points ofRm−1. At each boundary point w ∈ ∂Rm−1, the rotor walk makes
a full excursion into the subtree rooted at w before exploring the rest of the boundary
and finally returning to o to complete the excursion. Thus, them-th excursion depends
only on the setRm−1 and on the random initial states of the rotors on Td\Rm−1.

For x = (x1, x2, . . . ) ∈ [0, 1] denote by ←−x l = {dl x} = (xl+1, xl+2, . . . ), where
{•} is the fractional part of a positive real number. For k ≥ 2 we have P

[

fRk (x) =
1
] = 0 since between each return the tree is explored at least for one additional level.
When k ≥ 2 and m ≥ 2:

P
[

fRk (x) = m
] =

m−1
∑

l=1

P
[

fR1(x) = l
] · P[ fRk−1(

←−x l) = m − l
]

. (30)

For k ≥ 2 we have

gk(x) = E
[

fRk (x)
] =

∞
∑

m=1

mP
[

fRk (x) = m
]

=
∞
∑

m=1

m
m−1
∑

l=1

P
[

fR1(
←−x l) = m − l

] · P[ fRk−1(x) = l
]

= gk−1(x) +
∞
∑

l=1

g1(
←−x l)P

[

fRk−1(x) = l
]

.

Figure 5a shows the plots of the functions g1, . . . , g4 for the uniform rotor walk on
T2, which clearly suggests the fractal nature of these functions. Note that for x ∈ {0, 1}
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(a) (b)

(c) (d)

Fig. 5 a Expected contours of the range of uniform rotor walk on T2 up to the completion of the first 4
excursions. b Normalized versions of the functions in a. c Expected contours gk for a positive recurrent
rotor walk on T2 with r0 = 1/4, r1 = 1/4, r2 = 1/2. d Scaled versions of the functions in c

the shifted ray←−x l always equals x . Hence, the number of steps the rotor walk descends
into the left- and rightmost rays in the k-th excursion is i.i.d. In view of the two relations
gk(0) = kg1(0) and gk(1) = kg1(1), it makes sense to look at the normalized versions
g̃k(x) = gk

k (x) (see Fig. 5b). Figure 5c, d shows corresponding plots for a positive
recurrent rotor walk on T2 with initial distribution given by r0 = 1/4, r1 = 1/4 and
r2 = 1/2.

Theorem A.1 Set g0 ≡ 0. Then for all x ∈ [0, 1] and all k ≥ 1, we have the self
similar equations:

gk

(

x + i

d

)

= 1 + (

1 − p(d−i)
)

gk−1(x) + p(d−i)gk(x),

for i ∈ {0, . . . , d − 1}.

Proof For x ∈ [0, 1] we identify x with its d-ary expansion x = (x1, x2, x3, . . .),
where x = ∑∞

i=1 xi · d−i with xi ∈ {0, . . . , d − 1}. For i ∈ {0, . . . , d − 1} and
x = (x1, x2, x3, . . .), we have the correspondence
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x + i

d
= (i, x1, x2, x3, . . .)

and thus
←−−−
( x+i

d

)

l = ←−x l−1 for all l ≥ 1. It follows that P
[

fR1

( x+i
d

) = 1
] = q(d−i) and

for all m ≥ 2, as a consequence of (29)

P

[

fR1

(

x + i

d

)

= m

]

= p(d−i)

(

m−1
∏

i=2

p(d−xi )

)

q(d−xm )

= p(d−i)P
[

fR1(x) = m − 1
]

.

We first look at the case k = 1

g1

(

x + i

d

)

= P

[

fR1

(

x + i

d

)

= 1

]

+
∑

m≥2

mP

[

fR1

(

x + i

d

)

= m

]

= q(d−i) +
∑

m≥2

mp(d−i)P
[

fR1(x) = m − 1
]

which in turn equals

= q(d−i) + p(d−i)

∑

m≥1

(m + 1)P
[

fR1(x) = m
]

= q(d−i) + p(d−i)

∑

m≥1

mP
[

fR1(x) = m
]+ p(d−i)

∑

m≥1

P
[

fR1(x) = m
]

= q(d−i) + p(d−i) + p(d−i)g1(x) = 1 + p(d−i)g1(x).

Since g0(x) = 0, by definition the case k = 1 follows. We now look at the case k ≥ 2.
By the convolution formula (30), we have

P

[

fRk

(

x + i

d

)

= m

]

=
m−1
∑

l=1

P

[

fR1

(

x + i

d

)

= l

]

· P
[

fRk−1

(←−−−−−(

x + i

d

)

l

)

= m − l

]

= P

[

fR1

(

x + i

d

)

= 1

]

· P
[

fRk−1

(←−−−−−(

x + i

d

)

1

)

= m − 1

]

+
m−1
∑

l=2

P

[

fR1

(

x + i

d

)

= l

]

· P
[

fRk−1

(←−x l−1) = m − l
]
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which equals

= q(d−i) · P [ fRk−1(x) = m − 1
]

+ p(d−i)

m−1
∑

l=2

P
[

fR1(x) = l − 1
] · P

[

fRk−1

(←−x l−1) = m − l
]

= q(d−i) · P [ fRk−1(x) = m − 1
]

+ p(d−i)

m−2
∑

l=1

P
[

fR1(x) = l
] · P

[

fRk−1

(←−x l) = m − 1 − l
]

= q(d−i) · P [ fRk−1(x) = m − 1
]+ p(d−i)P

[

fRk (x) = m − 1
]

,

where in the last step we use the convolution formula (30) again in reverse. Thus,

gk

(

x + i

d

)

=
∞
∑

m=2

mP

[

fRk

(

x + i

d

)

= m

]

= q(d−i)

∞
∑

m=2

mP
[

fRk−1(x) = m − 1
]

+ p(d−i)

∞
∑

m=2

mP
[

fRk (x) = m − 1
]

= q(d−i)

∞
∑

m=1

(m + 1)P
[

fRk−1(x) = m
]

+ p(d−i)

∞
∑

m=1

(m + 1)P
[

fRk (x) = m
]

= q(d−i)
(

gk−1(x) + 1
)+ p(d−i)

(

gk(x) + 1
)

= 1 + (1 − p(d−i))gk−1(x) + p(d−i)gk(x),

which proves the theorem in the general case. ��
Some comments. It may be interesting to understand on which graphs, other than
regular and Galton–Watson trees, does the Einstein relation (1) hold. Other classes of
trees such as periodic trees are definitely a good candidate.

One can also look at finer estimates such as law of iterated logarithm, or central
limit theorems for the range and the speed for rotor walks on regular trees.
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