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Abstract
We introduce a new type of random walk where the definition of edge repel-
lence/reinforcement is very different from the one in the “traditional” reinforced
random walk models and investigate its basic properties, such as null versus posi-
tive recurrence, transience, as well as the speed. The two basic cases will be dubbed
“impatient” and “ageing” random walks.
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1 Introduction

1.1 Model

Consider an infinite connected graph G. The set of edges will be denoted by E(G).
With some slight abuse of notation, v ∈ G will mean that v is a vertex ofG. Consider a
random walk X = {Xn}n≥0 on the vertex set of G, with the jumps restricted to E(G).

Assumption 1 (Non-degeneracy) The jumps have strictly positive probabilities for
each edge in both directions. In particular, X is an irreducible Markov chain on G.

Fix a vertex v0 ∈ G which we call “origin”, and assume that the walk starts at this
point, X0 = v0; for G = Z

d , the default will be v0 := 0.

Definition 1 (Passage times) A sequence s0, s1, s2, . . . of non-negative real numbers
will be called a sequence of passage times if s0 = 1.

Definition 2 (Walk modified by passage times) We will modify the walk in such a way
that if it has crossed an edge e exactly k times before, then it takes sk units of time (as
opposed to 1) to cross this edge again, in either direction; in particular, it takes one
unit of time to cross the edge for the first time.

The two basic cases are as follows:

Definition 3 (Impatient and ageing walks) Let s0, s1, s2, . . . be a given sequence of
passage times. We will call the corresponding (modified) walk

(i) impatient1 when sk ↓ 0;
(ii) ageing when sk ↑ ∞.

Remark 1 If sk ↓ s∞ > 0 or sk ↑ s∞ < ∞, then the questions (about recurrence,
speed, etc.) we investigate in this paper will be equivalent to the corresponding ones
related to the original random walk; hence, these cases are not interesting and are not
considered in our paper.

To have a more formal definition, note the main feature of the process we are
studying: the system’s “actual” time depends on the local time of the walk.

Definition 4 (Actual time) Let

Z(e,m) :=
m∑

i=1

1(Xi−1,Xi )=e, e ∈ E(G), m ≥ 1,

be the number of occasions edge e ∈ E(G) has been crossed by time m. Then, the
actual time after m ≥ 1 steps is

T (m) :=
m∑

k=1

sZ((Xk−1,Xk ), k−1).

1 The intuitive meaning is clear: the more the walker crosses the same edge, the faster it happens.
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In fact, it is more convenient to work in continuous time by extending the random
function T (time) as the nondecreasing function

T (t) :=
�t	∑

k=1

sZ((Xk−1,Xk ), k−1) + (t − �t	)sZ((X�t	,X�t	+1),�t	),

with the convention that for t < 1, the value of the first sum is zero and then T (t) =
tsZ((X0,X1),0) = ts0 = t .

Let the random function U : [0,∞) → [0,∞) denote the right continuous gen-
eralized inverse of T , that is, U (t) := sup{s : T (s) ≤ t}. With the exception of one
case, we will work with sk > 0 for all k ≥ 0, and then T is strictly increasing in t and
U = T−1.

Definition 5 (Definition of X imp and X age via time change) The impatient random
walk X imp (ageing random walk X age) is defined via

X imp(T (t)) = X�t	, t ≥ 0 (X age(T (t)) = X�t	, t ≥ 0),

or, equivalently, by

X imp(t) := X�U (t)	, t ≥ 0 (X age(t) := X�U (t)	, t ≥ 0),

where U is as above. Thus, X imp and X age move discontinuously2 according to the
actual time.

1.2 Motivation

Imagine that at every edge, one has to perform a certain task. For example, the edge
represents a piece of road, where driving through is not trivial for some reason. Or
that piece of connection between the vertices is itself a small maze, one has to learn to
solve. Then, the more one solved it in the past, the quicker it goes, and so the impatient
walk models a learning process.3

Similarly, one can think of a model where the roads, or paths which are often used
deteriorate with time, and therefore passing them becomes harder and harder and thus
takesmore andmore time. It seems that ageing randomwalk can provide a goodmodel
for this situation.

While the model we introduce is somewhat reminiscent of the famous edge-
reinforced randomwalk (see [7] for a survey) as well as the “cookie” walk (introduced
in [8]), the behaviour in our model differs significantly from these latter ones, since in
our case the transition probabilities remain intact, while “reinforcement” affects only
passage times.

2 But one can also imagine that thewalker is actually crossing the edge continuouslywith a speed depending
on the passage time sequence.
3 Our original model was more mundane: a person window shopping who gets bored quickly by the stores
of any street she has already visited.
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1.3 Notation

As usual, Z+ will denote the set of non-negative integers and Z
d will denote the d-

dimensional integer lattice. We will write an � bn if limn→∞ an/bn = 1 and an ∼ bn
if an/bn = O(1) and bn/an = O(1). The letters P and E will denote the probability
and expectation corresponding to the impatient/ageing random walk, respectively;
when the starting point is emphasized, we will write Pv0 and E

v0 .

1.4 QuestionsWe Investigate

One object we would like to study is τ̃ , the return time to the origin for the impatient
walk, which is defined precisely as follows.

Definition 6 (Actual return time τ̃ ) Define τn and τ̃n , n = 0, 1, 2, . . ., by

τn(v0) := min{k > τn−1(v0) : Xk = v0},
τ̃n(v0) := T (τn(v0)),

(with the implicit assumption τ−1(v0) = 0) the latter being the total actual time spent
by X imp during the excursion from the origin to the origin starting at X imp(T (n)) = v0.

An interesting phenomenon which arises in our model is that, depending on the
passage times, X imp can be positive recurrent even if the original walk was null recur-
rent.

Remark 2 The distribution of τ̃n will in general depend on the history of the process
Fn := σ {X0, X1, . . . , Xτn−1}.

Another aspect of interest is the spatial speed (spread) of the process. We now need
a definition.

Definition 7 (Infinitely impatientwalk)Consider thewalk onG := Z+, and an extreme
case, when sk = 0 for all k ≥ 1. That is, old edges are passed instantaneously. We call
this walk the “infinitely impatient walk” and denote it by X inf.imp.

Clearly, X inf.imp just steps to the right every time unit, because excursions to the left
happen in “infinitesimally small” times. Hence, it spreads with constant speed. On the
other hand, when sk = 1, for k = 1, 2, . . . ,we get the classical randomwalk for which
the range up to n scales with

√
n. So, this indicates that the scaling is always between√

n and n, and it depends on the passage times in some way. See also Remark 3 and
Theorem 8. This latter theorem will also shed some light on how the classical ArcSine
Law is modified in our setting.

1.5 Basic Notions and a Useful Lemma

When the passage times are summable, X imp can only spend a finite amount of time
(uniformly bounded by S) on any given edge. Accordingly, we make the following
definition.
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Definition 8 (Strongly and weakly impatient random walks) The random walk will be
called strongly impatient if

(A1) 1 ≤ S := ∑∞
k=0 sk < ∞, and weakly impatient if

(A2) S := ∑∞
k=0 sk = ∞.

Remark 3 (Strong/weak impatience and speed) Clearly, when the walk is strongly
impatient, it spends at most S time on each edge, and so by time t (we are talking
about “actual time” here), it has visited at least �t/S	 different edges. This means that
the spread (measured by the number of distinct edges crossed by the process up to
time t > 0) is linear, with the constant being between 1/S and 1 (because it has spent
at least one unit of time on each edge visited). It would be desirable to figure out how
the constant depends on the passage times. A reasonable conjecture is that it is 1/S.
See Sect. 5.

In order to actually change linearity and get closer to order
√
t , one needs the walk

to be weakly impatient. And so the question, in this case, is how the passage times
will determine the order between linear and square root.

Next, regarding recurrence, we make the following definitions.

Definition 9 (Recurrence and positive recurrence) We will call the impatient random
walk

(B1) recurrent if τ̃n(v0) < ∞, Pv0 -a.s. for all n ≥ 0 and all v0 ∈ G;
(B2) transient if it is not recurrent;
(C1) positive recurrent if Ev0 τ̃n(v0) < ∞ for all n ≥ 0 and all v0 ∈ G;
(C2) null recurrent if it is recurrent and Ev0 τ̃n(v0) = ∞ for all n ≥ 0 and all v0 ∈ G.

Clearly, if τ̃n(v0) < ∞ a.s. for some n ≥ 0, v0 ∈ G, then X must be recurrent, in
which case τ̃n(v0) < ∞ a.s. for all n ≥ 0 and v0 ∈ G.

A similar statement holds for positive recurrence.

Theorem 1 (Process property) Recall Assumption 1 and assume also that X on G is
recurrent. Then, X imp is either positive recurrent or null recurrent. In other words,
the properties in (C1–C2) do not depend on the choice of n or v0.

Proof We prove this statement by verifying that:

(i) for given v0 ∈ G, the property does not depend on n ≥ 0;
(ii) for n = 0, the property does not depend on choice of v0 ∈ G.

(i) Assume first that Ev0 τ̃0(v0) < ∞. Then, because of the monotonicity of s,
E

v0 τ̃n(v0) < ∞ for n > 0, as well.
Now assume that Ev0 τ̃0(v0) = ∞. Let e = (v0, v1) be an outgoing edge from v0.
If n ≥ 1, then (because of the non-degeneracy of X on G) the event

An := {X0 = v0, X1 = v1, X2 = v0, X3 = v1, . . . , X2n−1 = v1, X2n = v0}

(i.e. the first n excursions consist only of traversing e back and forth, so that this
edge has been crossed 2n times) has a positive probability.
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On An , the next passage time on e has been set to s2n , while no other edge has
been crossed. It is enough to show that

E(̃τn(v0) | An) = ∞. (1)

Now, (1) would certainly be true without the impatience mechanism of the model,
as we assumed that Ev0 τ̃0 = ∞, so our task is to prove that this mechanism does
not change the validity of (1).
To this end, letη denote the number of crossings of e in the n+1st excursion starting
at v0. Then, either η = 0 (when both the initial and the last edges are different
from e), or η = 1 (when the final edge is e and the initial edge is not, or vice
versa), or η = 2 (when both the initial and the last edges are e). Recall the notion
of “actual time” from Definition 4. If p j := P(η = j) for j = 0, 1, 2, then the
expected actual time spent on e in the excursion with s0 = 1 initial passage time is
p1+ p2(1+s1), whereas with s2n initial passage time it is p1s2n+ p2(s2n+s2n+1).

These are finite quantities, and therefore resetting the initial time to s2n from s0
does not change the finiteness of the expected actual return time.

(ii) Assume now that a := E
v0 τ̃0(v0) < ∞. We will show that for any v1 �= v0 we

also have Ev1 τ̃0(v1) < ∞. Since G is connected, without the loss of generality,
we may (and will) assume that they v1 and v0 are neighbours on G.
Let p0→1 := P

v0(X1 = v1) > 0. Note that E(κ‖X0 = v0, X1 = v1) < ∞,where

κ := T (min{k ≥ 1 : Xk = v0}), since

a ≥ p0→1 · E(κ‖X0 = v0, X1 = v1).

Once we have this, using an argument very similar to the one in part (i), one can see
that Ev1(κ) < ∞ also holds.

Let X0 = v1. The argument below shows even that the expected time it takes to
return to v1 after visiting v0 en route is finite. Note that, because of the monotonicity
of s, the expectation of the actual time for X imp to return to v0 is not more than a; the
same is true for the consecutive excursions from v0 to v0. However, during each of
these excursions the walk X will visit v1 with probability at least p0→1. Therefore,
if ξ is an auxiliary geometric random variable with range {0, 1, 2, . . .} and parameter
p0→1 under the law P, then, using that Ev1κ < ∞, we have

E
v1 τ̃0(v1) ≤ E

v1κ + 1 + aEξ = E
v1κ + 1 + a(1 − p0→1)

p0→1
< ∞,

completing the proof. ��
Given that the original walk is recurrent, so are the impatient and ageing random

walks, since T (n) < ∞, whenever n < ∞. The question of positive versus null
recurrence is not so trivial though. The statement below follows from the obvious
inequality τ̃ ≤ τ for X imp.

Remark 4 If the original walk X is positive recurrent, then X imp is also positive recur-
rent.
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Finally, defineM := card{(Xi−1, Xi ), i = 1, . . . , τ1(v0)}, that is,M is the number
of distinct edges crossed by X between consecutive visits to the origin. The following
statement involving M will be useful later.

Lemma 1 (Size of excursion area) The impatient walk is

(i) positive recurrent, provided that the walk is strongly impatient and EM < ∞;
(ii) null recurrent, provided that EM = ∞.

Proof Let v0 ∈ G. In the strongly impatient case,

M ≤ τ1(v0) ≤ SM,

and so Ev0M ≤ τ1(v0) ≤ SEv0M . The lower estimate M ≤ τ1(v0) is, however,
always true, whether the impatience is strong or not. Hence, the result follows from
these observations and Theorem 1. ��
Corollary 1 (Switching from null to positive, recurrence) If the original walk X is
null recurrent but EM < ∞ holds, then strong impatience turns null recurrence into
positive recurrence (for X imp).

This is the case, for example, for the random walk mentioned in the second part of
Theorem 4 later.

2 Impatient Simple RandomWalk on Z
d , d = 1, 2, and Generalization

It turns out that for d = 1, 2, impatience cannot change the null-recurrent character
of the simple random walk.

Theorem 2 The impatient simple random walks on Z
1 and on Z

2 are null recurrent
for any sequence of passage times.

Proof Let M be as before.

d = 1 : We may assume that v0 = 0 and that the first step of the walk is to the
right, X1 = 1. The probability to reach vertexm ≥ 1 before returning to the origin
is 1/m, hence P(M ≥ m) = 1/m, m = 1, 2, . . .. (Note that the number of distinct
edges visited by the one-dimensional walk coincides with its maximum during the
excursion). Consequently, EM = ∞ and by Lemma 1 the impatient random walk
is null recurrent.
d = 2 : one can easily show (e.g. by coupling) that the quantity M for d = 2 is
stochastically larger than for d = 1, so EM = ∞ here and we again can use
Lemma 1. ��

Remark 5 As the following example shows, one can easily construct a null recurrent
random walk on Z

2 (and similarly on Z
d , d ≥ 3) such that the strongly impatient

randomwalk with the same transition probabilities hasEM < ∞ and hence is positive
recurrent.
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Indeed, consider the following random walk on Z
2. Let |(x, y)| := max(|x |, |y|)

be the “norm” of a vertex, let orbit Ok = {(x, y) : |(x, y)| = k}, k = 1, 2, 3, . . . that
is, the squares with sides of length 2k parallel to the axes and the centre in the origin
(please see the picture, each orbit has a distinctive colour).

Assume that the transition probabilities are the following: once the walker is on
Ok , it goes to the previous orbit Ok−1 with probability 2

3 · 2−k , or to the next orbit
Ok+1 with probability 1

3 · 2−k , and with the remaining probability 1 − 2−k , it goes
clockwise staying on Ok . (This needs to be adjusted somewhat at the four corners of
Ok .)

If we consider the embedded process, defined as the norm of the point whenever it
changes, then it is a positive recurrent randomwalkwith probability 2/3 going towards
the origin, and 1/3 going away from the origin. Also, when the walker reaches orbit
Ok , it stays there a geometric number of steps, on average 2k steps.

The probability to reach orbit Ok before returning to the origin is of order 2−k .
Therefore, the average number of steps thewalkmakes is of order

∑∞
k=1 2

−k ·2k = ∞.

At the same time, the average number of distinct vertices the walker visits before
returning to the origin is bounded by

∑∞
k=1 2

−k · 8k < ∞ since each orbit has 8k
distinct vertices. Consequently, the expected number of distinct vertices (and edges)
visited by the walk is finite.

0

O3

A generalization of the one-dimensional case is as follows. Let X be a nearest-
neighbour walk with the outward drift b(x) ∈ (−1, 1) at vertex x ∈ Z

1, that is,

b(0) = 0;
b(x) := P(Xn+1 = x + 1‖Xn = x) − P(Xn+1 = x − 1‖Xn = x), for x > 0;
b(x) := P(Xn+1 = x − 1‖Xn = x) − P(Xn+1 = x + 1‖Xn = x), for x < 0;

and for m ≥ 1, define

Br (m) :=
m∑

x=1

x∏

k=1

1 − b(k)

1 + b(k)
, Bl(m) :=

m∑

x=1

x∏

k=1

1 − b(−k)

1 + b(−k)
,

I r (b) :=
∞∑

x=1

1

1 + Br (x)
, I l(b) :=

∞∑

x=1

1

1 + Bl(x)
,
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so that I r (b), I l(b) ∈ [0,∞].
Theorem 3 (Size of drift) Assume that X on Z1 is null recurrent.

(a) If either I r (b) = ∞ or I l(b) = ∞, then X imp on Z
1 is null recurrent as well, for

any sequence of passage times.
(b) If I r (b), I l(b) < ∞, then X imp on Z

1 is positive recurrent whenever the walk is
strongly impatient.

Proof Clearly, positive recurrence holds exactly when the expected return time is finite
whether we condition it on X1 = 1 or on X1 = − 1. Assuming, for example, that
X1 = 1, we now link the finiteness of I r (b) with the finiteness of the expected return
time; an analogous argument holds for the case when X1 = − 1, concerning the
finiteness of I l(b), so we omit it. Thus, suppose X1 = 1 from now on. By Lemma 1,
it is enough to show that

EM = 1 + I r (b), (2)

in the sense that both sides are either finite and equal, or they are both infinite.
To compute EM for the nearest-neighbour one-dimensional random walk on Z,

note that now M is the rightmost lattice point reached in an excursion, and use the
electrical network representation (see e.g. [3]) with resistors Rx located between x
and x + 1 satisfying

Rx

Rx−1
= P(Xn+1 = x − 1‖Xn = x)

P(Xn+1 = x + 1‖Xn = x)
=

1
2 − b(x)

2
1
2 + b(x)

2

= 1 − b(x)

1 + b(x)
.

Without the loss of generality, we may set R0 := 1. Therefore,

Rx =
x∏

k=1

1 − b(k)

1 + b(k)
; Br (x) =

x∑

y=1

Ry .

Consequently,

P(M > x) = P(x + 1 reached) = 1

1 + R1 + · · · + Rx
= 1

1 + Br (x)
, x ≥ 1,

yielding (2). ��

3 Lamperti and Lamperti-TypeWalks

In Sect. 2, we have seen that for the symmetric random walk in dimensions one and
two, impatience cannot turn null recurrence into positive recurrence.We are, therefore,
going to consider certain random walks which are “just barely null recurrent”, and
show that in those cases impatience can actually make them positive recurrent. Our
models will be related to the “Lamperti walk” (see [6]).

We first need a general result, presented in the next subsection.
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3.1 A General Formula for Nearest-NeighbourWalk onZ+

Let G := Z+ and consider a nearest-neighbour ageing or impatient random walk X∗
(i.e. X∗ = X imp or X∗ = X age), with the passage times {si }, where the underlying
random walk X is positive recurrent. For m ≥ 2, let (with using P for X too)

pm := P
1 (X reaches m before reaching 0),

qm := P
m (X reaches m + 1 before reaching 0).

Lemma 2 For X∗, the expected actual length (in time) of the first excursion from 0,
denoted by τ̃ = τ̃1(0) is

E0τ̃ = 1 + s1 +
∞∑

m=2

pm

∞∑

j=0

q j+1
m

(
s2 j + s2 j+1

)
. (3)

Proof Since every time the walk traverses the edge (m,m + 1) rightwards, it must
traverse it again before reaching m again, it follows that

E0τ̃ = 1 + s1 +
∞∑

m=2

pmE(time spent traversing (m,m + 1)‖X0 = m)

= 1 + s1 +
∞∑

m=2

pm

∞∑

j=0

q j+1
m

· time spent traversing back and forth for ( j + 1)st time

= 1 + s1 +
∞∑

m=2

pm

∞∑

j=0

q j+1
m

(
s2 j + s2 j+1

)
,

as claimed. ��

In fact, using the method of electric networks just like in the proof of Theorem 3 (see
again [3]), we are in possession of the useful formulae:

pm = 1

1 + R1 + · · · + Rm−1
, (4)

qm = 1 + R1 + · · · + Rm−1

1 + R1 + · · · + Rm−1 + Rm
, (5)

where Ri , i ≥ 1 are the resistors of the electrical network corresponding to our random
walk.
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3.2 LampertiWalk: b(x) � c/x onZ+

As an application to Lemma 2, we obtain a theorem concerning a case when short
enough passage times can turn null recurrence into positive recurrence. But first we
need the following statement (see e.g. Proposition 7.1 (i)–(iii) in [2]).

Proposition 1 Let X be a random walk on Z+, with drift b(x) � c/x. Then, X is
positive recurrent if c < −1/2, null recurrent for c ∈ [−1/2, 1/2], and transient for
c > 1/2.

Theorem 4 Let X be a recurrent random walk on Z+, with drift b(x) � c/x (recur-
rence means c ≤ 1/2). Furthermore, let the passage times satisfy s j � j−α , α > 0.
Then, X imp is positive recurrent if and only if c < min

{
0, α−1

2

}
.

In particular, when c ∈ [−1/2, 0), X is null recurrent but X imp is positive recurrent
whenever α > 1 + 2c (for example, when α > 1, i.e. the impatience is strong).

Remark 6 In fact, X imp is positive recurrent for any strongly impatient walk when
c < 0 (the proof is similar).

The diagram below summarizes the results in Theorem 4.

(0, 0) 1

1
2

−1
2

α

c

c = α−1
2

X is positive recurrent

X is null recurrent

X is transient

weakly impatient strongly impatient

X imp positive recurrent

Proof of Theorem 4 As before, the resistors satisfy

Rm =
m∏

k=1

1 − b(k)

1 + b(k)
, m ≥ 1.

Using the Taylor approximation of log(1 + z) for small |z| along with the integral
approximation ofmonotone series, it is an easy exercise to show that, defining R0 := 1,
as m → ∞,

Rm ∼ m−2c and
m∑

i=0

Ri ∼ m1−2c,
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provided c �= 1
2 (when, c = 1

2 , one has
∑m

i=0 Ri ∼ logm; this case will be treated at
the end of the proof). Now, (4) implies that, as m → ∞,

pm = 1
∑m−1

i=0 Ri
∼ 1

m1−2c .

Similarly, using (5),

am := 1 − qm = Rm∑m
i=0 Ri

∼ 1

m
.

By (3) and the monotonicity of s j , in order to establish whether X imp is positive
recurrent or not, we thus have to analyse the finiteness of

∞∑

m=0

SUM(m)

m1−2c , where SUM(m) :=
∞∑

j=1

(1 − am) j+1 1

jα
.

Clearly, if const denotes a constant in (0,m), then

∞∑

j=1

(
1 − const

m

) j+1 1

jα
≥

m∑

j=1

(
1 − const

m

) j+1 1

jα
≥

m∑

j=1

(
1 − const

m

)m+1 1

jα
,

and since (1 − const/m)m+1 ↑ e−const as m → ∞, one has

m∑

j=1

(
1 − const

m

)m+1 1

jα
∼

m∑

j=1

1

jα
∼ hα(m) :=

⎧
⎪⎨

⎪⎩

m1−α, if α < 1;
logm, if α = 1;
1, if α > 1.

Since c1/m ≤ am ≤ c2/m for some 0 < c1 < c2, it follows that

SUM(m) ≥ c3hα(m),

with some c3 > 0.
We now show that on the other hand

SUM(m) ≤ c4hα(m), (6)

holds with some other constant c4 > 0 (possibly depending on α). It will then follow
that

Eτ̃ ∼
∑

m

hα(m)

m1−2c =

⎧
⎪⎨

⎪⎩

∑
m m2c−α if α < 1;∑
m

logm
m1−2c if α = 1;

∑
m m2c−1 if α > 1,
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proving the statement of the theorem. To verify (6), denote γ := e−c1 ∈ (0, 1); one
has then

• if α > 1 then SUM(m) ≤ ∑∞
j=1 j−α < ∞;

• if α = 1 then using Riemann-sum approximation for the function f (x) = 1/x ,

SUM(m) ≤
m∑

j=1

1

j
+

∞∑

j=m+1

(
1 − c1

m

) j+1 1

j
≤

m∑

j=1

1

j
+

∞∑

k=1

γ k
(k+1)m∑

j=km+1

1

j

≤ logm +
∞∑

k=1

γ k
∫ (k+1)m

km

1

j
= logm

+
∞∑

k=1

log(1 + 1/k)γ k ∼ logm = h1(m);

• if α < 1 then

SUM(m) ≤
∞∑

j=1

(
1 − c1

m

) j+1 1

jα
≤

∞∑

k=0

γ k
(k+1)m∑

j=km+1

1

jα
≤

∞∑

k=0

γ k m

(km + 1)α

≤ m1−α
∞∑

k=0

γ k

kα
∼ m1−α = hα(m),

and thus (6) has been established.
It remains to consider the case c = 1

2 . Now, we have pm ∼ 1
logm and SUM(m) ≥

O(1), so Eτ̃ ∼ ∑
m pmSUM(m) ≥ ∑

m
1

logm = ∞ for any value of α ≥ 0, ruling out

positive recurrence for X imp. Since X is recurrent, so is X imp, and thus X imp is in fact
null recurrent in this case. ��

3.3 Lamperti-TypeWalk onZ+ with Very Small Inward Drift

Consider a random walk on the non-negative integers and assume now that the drift
is much weaker than for the original Lamperti case, that is, that for large x ,

b(x) � D

x log x
,

where D < 0. While the corresponding walk X is obviously null recurrent for any
D ∈ R (compare it with the classical Lamperti case), the following result shows that
there is a phase transition for the behaviour of the impatient walk X imp.

Theorem 5 X imp is

(i) null recurrent for any D ≥ −1/2 and any sequence of passage times;
(ii) positive recurrent for any D < −1/2, provided it is strongly impatient.
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Proof We use Theorem 3. We have

m∏

k=1

1 − b(k)

1 + b(k)
∼ (logm)−2D �⇒ Br (x) ∼ x (log x)−2D ,

hence I r (b) < ∞ if and only if D < −1/2. ��

4 Expectation Calculations for Hitting Times and Positive Recurrence
in One-Dimension: The Passage Generating Function

In this section, we perform some calculations concerning one-dimensional hitting
times and analyse one-sided positive/null recurrence for the walk.

We start with notation.We assume d = 1, and σn, n ∈ Zwill denote the hitting time
by X imp of n. Then, Tn = σ−n∧σn is the exit time from (− n, n) (i.e. the hitting time of
{−n, n}), when starting at −n ≤ x ≤ n. Introduce the shorthand s∗

j := s2 j−2 + s2 j−1

for j ≥ 1, and note that
∑

s∗
j = ∑

s j ∈ [1,∞]. Let u ∈ Z
1 and v = u + h, h ≥ 1.

With n, u and h (and thus v too) fixed, define the following quantities:

1. For two-sided hitting times, define

ρ(x)
m := Px (X reaches m before ± n) = Px (Tn > τm),

for −n ≤ x,m ≤ n.
2. For one-sided hitting times define

r (x)
m := Pu+x (X reaches u + m before v) = Pu+x (τv > τu+m),

for all x,m ∈ Z
1 and note that r (x)

m = 0 for m ≥ h and rmm = 1.

Remark 7 In a concrete situation, the quantities ρ
(x)
m , r (x)

m are of course, computable
as ratios involving resistors.

4.1 Passage Generating Function and Passage Radius

The following notion will be useful for impatient as well as ageing walks.

Definition 10 (Passage generating function and passage radius) The power series

φ(z) :=
∞∑

j=1

s∗
j z

j

will be called the passage generating function. In particular, φ(1) = ∑
s∗
j = ∑

s j ∈
[1,∞]. The corresponding radius of convergence will be called the passage radius
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for φ:

Rpass := 1

lim supk(s
∗
k )

1/k .

Of course, for the original motion X (s j ≡ 1), one has

φorig(z) = 2z

1 − z
, Rpass = 1.

Remark 8 (Strong impatience, super-ageing and Rpass) Note the following.

(i) It is clear that strong impatience implies that Rpass ≥ 1, while weak impatience
implies that Rpass = 1.

(ii) In the strongly impatient case, we can normalize the passage times so that
∑

s∗
j =∑

s j = 1 (at the expense of speeding up time by a constant factor), and then φ

is actually a probability generating function. This has the practical advantage that
we can use well-known formulae for φ in the strongly impatient case.

(iii) In the ageing case, it is possible that Rpass = 0 (“super-ageing”).

4.2 “Positive Recurrence to the Right” (PRR) for ImpatientWalk

Let X be a recurrent walk on Z1.

Definition 11 (One-sided positive recurrence) We say that X imp is positive recurrent
to the right if Euσv < ∞ for u < v and null recurrent to the right if Euσv = ∞
for u < v. We will show below (see Remark 9) that this definition does not actually
depend on choice of u or v.

The definition for the positive/null recurrence to the left (when u > v) is analogous.

Our fundamental result about one-sided positive recurrence is as follows.

Theorem 6 (Criterion for PRR) X imp is positive recurrent to the right if and only if

0∑

m=−∞
r (0)
m φ

(
r (m)
m−1

)
< ∞. (7)

Proof Let u < v ∈ Z
1 and define

(I ) := Eu(actual time spent between u and v until hitting v);
(II) := Eu(actual time spent between −∞ and u before hitting v).

If v − u = h, then we can calculate (I ) by considering the expected local actual
times on the edges between u and v as follows.
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(I ) =
h∑

m=1

Eu(actual time spent traversing the edge (u + m − 1, u + m)) = s0h

+
h∑

m=1

∞∑

j=1

(act. time spent trav. for j th occasion after 1stupcrossing)

· P(∃ j th occasion)

= s0h +
h∑

m=1

⎛

⎝
∞∑

j=1

(
r (m)
m−1

) j (
s2 j−1 + s2 j

)
⎞

⎠ .

In the impatient regime, s j ≤ C for j ≥ 1 with some C > 0, and as r (m)
m−1 < 1 for all

m, the last term is bounded by

2C
h∑

m=1

∞∑

j=1

(
r (m)
m−1

) j = 2C
h∑

m=1

r (m)
m−1

1 − r (m)
m−1

.

Consequently, (I ) < ∞.
Similarly, we can calculate (II) by considering the expected local actual times on

the edges which are “below” u.

Z+

time
u + m − 1

u + m

v

u

s0 s1 s2 s3 . ..

Hence,

(II) =
0∑

m=−∞
Eu(actual time spent traversing the edge (u + m − 1, u + m))

=
0∑

m=−∞
r (0)
m

∞∑

j=1

(actual time spent traversing left and right for j th occasion)

· P(∃ j th ocassion)

=
0∑

m=−∞
r (0)
m

∞∑

j=1

[
r (m)
m−1

] j
s∗
j =

0∑

m=−∞
r (0)
m φ

(
r (m)
m−1

)
.

Clearly, Euσv = (I ) + (II), and, since (I ) < ∞, we are done. ��
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Remark 9 (Consistency of the definition) It is easy to see that the condition (7) does
not depend on the choice of u or v (for non-degenerate X ). For example, for a fixed
u, if we increase h, as this is shown in the above proof: only (II) will change; (I ) is
always finite.

A similar calculation shows that the condition is invariant under fixing v and chang-
ing u.

We can refine Theorem 6 as follows.

Corollary 2 Consider the following, simpler condition, involving the original walk
only:

0∑

m=−∞
r (0)
m < ∞. (8)

(a) Then (8) is a necessary condition for the PRR property for X imp, no matter what
the passage times are, as long as we rule out that limm→−∞ r (m)

m−1 = 0.

(b) If either the impatience is strong, or r := supm∈Z r
(m)
m−1 < 1 then (8) is a sufficient

condition for PRR for X imp.

Proof (a) This follows from Theorem 6 and the fact that φ(t) is bounded away from
zero if t > ε > 0.

(b) For strong impatience, φ
(
r (m)
m−1

)
≤ φ(1) < ∞ for all m, giving the assertion. If

r < 1, then φ
(
r (m)
m−1

)
≤ φ(r) < ∞ for all m, and we are done again.

��
Remark 10 (Original process) Taking sk = 1, k ≥ 1, we obtain

0∑

m=−∞

2r (0)
m r (m)

m−1

1 − r (m)
m−1

< ∞

as the criterion for the positive recurrence of X , in which case the positive recurrence
of X imp follows immediately. So, to avoid this trivial situation, we can always assume
that

0∑

m=−∞

2r (0)
m r (m)

m−1

1 − r (m)
m−1

= ∞

Example 1 (SRW) For simple random walk, no passage time sequence can lead to
positive recurrence to the right.4 Indeed, for m < 0 we have r (0)

m = h
h−m and r (m)

m−1 =
h−m

h−m+1 . Thus, for every j ≥ 1,

0∑

m=−∞
r (0)
m

[
r (m)
m−1

] j =
0∑

m=−∞
h

(h − m) j−1

(h − m + 1) j
= ∞,

4 We have already verified this with another method—see Theorem 2.
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and so the quantity in (7) after change in the order of summation equals

∑

j

s∗
j

0∑

m=−∞
r (0)
m

[
r (m)
m−1

] j = ∞.

More generally, we have

Corollary 3 If there exists a j ≥ 1 for which

0∑

m=−∞
r (0)
m

[
r (m)
m−1

] j = ∞,

then X imp is null recurrent to the right.

4.3 Expected Exit Times: Two-Sided

In this section, we consider ageing randomwalks.5 The first piece of information about
the speed we are aiming to obtain is the expected actual time to reach± n starting from
the origin, that is, E0Tn . Let n ≥ 2 and 0 ≤ m ≤ n − 2. Each edge (m,m + 1) can be
crossed 0, 1, 2, . . . times before the walk reaches ± n, unlike the cases for recurrence
to the right, where the parity of those times is fixed. Note also that the actual time
spent on the edge (n − 1, n) is always either 0 or s0 and hence finite, as the walk can
traverse it at most once before exiting (− n, n). Similar statement holds for the edge
(− n,−n + 1).

Once the walk started at 0 reaches m, which happens with probability ρ
(0)
m , it can

either exit (− n, n) without ever crossing (m,m + 1) (in fact, it must be then −n), or
cross this edge at least once—the latter happens with probability ρ

(m)
m+1. If the walk

reached m + 1, a similar argument shows that to cross (m,m + 1) once again, going
leftwards, before exiting (− n, n) has probability ρ

(m+1)
m . Consequently, the expected

actual time spent on the edge (m,m + 1) before exiting the interval equals

ρ(0)
m

[
ρ

(m)
m+1

(
s0 + ρ(m+1)

m

(
s1 + ρ

(m)
m+1

(
s2 + ρ(m+1)

m (s3 + · · · )
)

· · ·
))]

= ρ
(0)
m+1

[
s0 + γms2 + γ 2

ms4 + γ 3
ms6 + · · ·

]
+ ρ(0)

m

[
γms1 + γ 2

ms3 + γ 3
ms5 + · · ·

]
,

where we defined

γm := ρ
(m)
m+1ρ

(m+1)
m , (9)

and used that, by the Markov property, ρ(0)
m ρ

(m)
m+1 = ρ

(0)
m+1. Hence, if T̃

+
n denotes the

total actual time spent on the edges (0, 1), (1, 2) . . . (n − 2, n − 1) before exiting the
interval, then

5 It is easy to see that in the impatient case, the expectation we study is always finite for any irreducible
walk.
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E0T̃
+
n =

n−2∑

m=0

[
ρ

(0)
m+1

∞∑

k=0

γ k
ms2k + ρ(0)

m

∞∑

k=1

γ k
ms2k−1

]
.

By the irreducibility of the walk, 0 < ρ
(0)
m < 1 and 0 < γm < 1 for all relevant m,

and so we conclude that E0T̃+
n is finite if and only if

φ(γm) < ∞ for all m = 0, 1, . . . , n − 2.

Similarly, let T̃−
n denote the total actual time spent on the edges (− n + 1,−n +

2), . . . , (−1, 0) before exiting the interval. Conducting an analogous argument, one
can compute E0T̃−

n , which, taking into account that

0 ≤ Tn − (
T̃−
n + T̃+

n

) ≤ 2s0,

leads to the following criterion.
Recall Assumption 1.

Theorem 7 Consider a one-dimensional walk and let n ≥ 2. Then E0T̃n < ∞ if and
only if

max
m=−(n−1),...,n−2

φ(γm) < ∞

where γm is defined by (9).

As a consequence, we can see that if ageing is either very slow or very fast, then
the behaviour of the original walk becomes irrelevant.

Corollary 4 (Slow ageing and super-ageing) Consider a one-dimensional walk, and
let n ≥ 2.

1. If Rpass = 1 (“slow ageing”), then E0T̃n < ∞ holds whatever the original walk
is.

2. If Rpass = 0 (“super-ageing”), then E0T̃n = ∞ holds whatever the original walk
is.

5 The Spatial Spread of the Process

Let Rt denote the number of distinct edges crossed by X imp up to actual time t > 0.
If G = Z, then Rt = max0≤s≤t X

imp
s − min0≤s≤t X

imp
s .

Assuming that the walk is strongly impatient with
∑

k sk = S, clearly

lim inf
t→∞

Rt

t
≥ 1

S
.
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Problem 1 (Strongly impatient recurrent walk)Assume that X imp is strongly impatient
and the classical random walk X on G is recurrent. Is it true for X imp that

lim
t→∞

Rt

t
= 1

S
?

Problem 2 (Strongly impatient transient walk) Assume that X imp is strongly impatient
and the classical random walk X on G is transient. Is it true for X imp that

lim
t→∞

Rt

t
= (0,∞)?

If so, what is the limit?

Problem 3 (Weakly impatient walk) Assume that X imp is weakly impatient. What is
the asymptotic behaviour of Rt as t → ∞?

6 Comparison with Classical ArcSine Law

Can one prove a generalized ArcSine Law? Recall that one way of formulating the
classical ArcSine Law is that the proportion of time spent on the right (left) by the
walker has a limiting distribution. More precisely, for 0 < x < 1,

P(the fraction of time units spent on the positive axis up to n < x) → 2

π
arcsin

√
x

as n → ∞ (another formulation is that if k(n) denotes the last return time to the origin
up to 2n, then k(n)/n has a limiting distribution).

Now, in our case, the left-hand side depends on the passage times. Intuitively, if the
random walk with the given passage times is impatient, then the limiting distribution
of the proportions is more balanced than in the classical case.

In fact, if the excursion time (between returns to the origin) has finite expectation
(e.g. when M has finite expectation and passage times are strongly impatient, or the
cases computed in Sect. 3.1), then by the Renewal Theorem, the limit is completely
balanced (= 1/2)!

Problem 4 (Modified ArcSine Law) What happens when X is simple random walk
and the excursion time has infinite expectation? How will the passage times modify
the ArcSine Law, making the limit more balanced?

The following theoremmay be considered as an initial step in this direction; it indicates
that for strong enough impatience, a behaviour much more balanced than for the
classical ArcSine Law is exhibited.
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Theorem 8 (Infinitely impatient RW) On Z, consider the “infinitely impatient” ran-
dom walk, X inf.imp, that is, let s j = 0, j ≥ 1. Let Rn denote the time spent on the
right axis up to time n ≥ 0, and Ln the time spent on the left axis up to time n. Then

lim
n→∞ Law

(
Rn

Ln + Rn

)
= Uniform([0, 1]).

Proof Let Rn
l,r denote the event that the range of the walk up to actual time n ≥ 2 is

[l, r ] with l ≤ 0, r ≥ 0. Just like in Sect. 3.1, it is easy to see that

P

(
X inf.imp reaches l − 1 before r + 1 | X inf.imp

n = r , Rn
l,r

)
= 1

r − l + 2

= 1

size of range − 2
.

Of course, for X inf.imp, the size of the range increases by one at each unit (actual) time.
Therefore, identifying right and left with “heads” and “tails”, Rn can be identified

with the number of heads in the following experiment: We first toss a fair coin. Then
we turn it over with probability 1/3, and with probability 2/3 we do nothing. Next
we turn it over with probability 1/4, etc. Finally, in the n-th step we turn it over with
probability 1/(n − 1).

Using this equivalent formulation, the claim follows from Theorem 1 in [4], where
a more general “coin turning” model is investigated. ��

Remark 11 Breiman [1] proved a generalization of the ArcSine Law in the 1960s, and
this was picked up by Mason et al. [5] recently. The point is that one can have a nice
limit even if the law of the excursion is different from the classical one for simple
random walk (in [5], take Xi to be a random sign and Yi the excursion time for the i th
excursion).

7 Space-Dependent Impatience

Here, we modify the definition of impatience given in Sect. 1. Suppose now that the
passage times for an edge e do not depend on the number of times the edge has been
crossed, but rather on the location of this edge in the graph G; thus s0(e) = s1(e) =
· · · = s(e), following our definition of the passage times. As before, fix some specific
vertex v0 of the graph and call it the origin. For a vertex v in G, let the distance from
v0 to v, denoted by ‖v‖ ∈ {0, 1, 2, . . .}, be the number of edges on the shortest path
connecting v0 and v, and for an edge e = (v1, v2) let ‖e‖ = min{‖v1‖, ‖v2‖}.

Let X be a unit time random walk on G, i.e. a Markov chain whose transitions are
restricted to the edges of G. It is then conceivable that while Xn is null recurrent, X imp

may still be positive recurrent, provided s(e) → 0 sufficiently quickly as ‖e‖ → ∞.
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For any two vertices v and u, let us define

p(u, v) = P
u(X hits v before ever returning to u)

= P
u(∃n ≥ 1 : X1 /∈ {u, v}, . . . , Xn−2 /∈ {u, v}, Xn−1 /∈ {u, v}, Xn = v)

= P
u(σv < σu)

where σu := min{k ≥ 1 | Xk = u} for u (σv is defined analogously).

Assumption 2 We assume the following about the random walk X .

• (Uniform ellipticity) There is a universal constant ε > 0 such that for any edge
e = (v1, v2) in the graph P(Xn+1 = v2‖Xn = v1) ≥ ε, P(Xn+1 = v1‖Xn =
v2) ≥ ε.

• (Return symmetry) There is a universal constant ρ ≥ 1 such that for any v in the
graph

ρ−1 p(v, v0) ≤ p(v0, v) ≤ ρ p(v, v0).

Remark 12 Observe that:

(a) uniform ellipticity implies that the graph is of uniformly bounded degree, i.e. there
is D ≥ 1 such that each vertex of the graph has at most D edges coming out of it
and that there are no oriented edges on G;

(b) return symmetry implies that the underlying randomwalk cannot be positive recur-
rent.

Note that part (b) of the above remark follows from the following observation. For
each v �= v0, the walk starting at v0 has the probability p(v0, v) of hitting v before
returning to the origin v0. However, after reaching v, the walk makes a geometric
number of returns to v itself before coming back to v0. The expected number of such
returns, including the very first visit, is 1

p(v,v0)
. Thus, the total expected number of

vertices visited by the walk (with multiplicity) equals
∑

v∈G
p(v0,v)
p(v,v0)

which is infinite

since each term is at least ρ−1. Hence, the expected number of steps the walk makes
before returning to v0 is also infinite.

Later we will show that SRW both on Z and Z
2 satisfy the above assumptions.

Theorem 9 Let X be a null-recurrent random walk on G, satisfying Assumption 2,
with X0 = v0. Then, X imp is positive recurrent if and only if

∑

e∈E(G)

s(e) < ∞.

Proof First of all, it is clear that

Eτ̃ = E

∑

e∈E(G)

ξ(e)s(e) =
∑

e∈E(G)

s(e) · Eξ(e)
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where ξ(e) is the number of times edge e is crossed (in either direction) prior to σv0 ;
formally, for e = (u1, u2),

ξ(e) =
σv0−1∑

n=0

[
1{Xn=u1,Xn+1=u2} + 1{Xn=u2,Xn+1=u1}

]
.

Consequently, to establish the statement of the theorem it suffices to show that Eξ(e)
are bounded above and below by some positive constants not depending on e.

To this end, observe first that p(v0, v) → 0 as ‖v‖ → ∞, since X is recurrent.
Indeed, for n ≥ 1, one has

p(v0, v) ≤ P
0(σv ≤ n) + P

0(σv0 ≥ n),

where P
0(·) := P(· | X0 = v0). Now P

0(σv0 ≥ n) tends to zero as n → ∞ and
P
0(σv ≤ n) = 0 whenever ‖v‖ > n.

Next, note that the number of vertices at distance at most k from v0 is bounded
above by

∑k
i=1 d(d−1)i−1 < ∞, so we can safely assume from now on that p(v0, v)

is small.
Let u ∈ G and with a slight abuse of notations let ξ(u) = ∑σv0

n=1 1Xn=u be the
number of times u is visited before σv0 . Let e = (u1, u2) ∈ E(G). Since, after each
visit of ui , i = 1, 2, the walk crosses e with probability at least ε, and to cross e it has
to visit one of the endpoints, we have

ε · E [ξ(u1) + ξ(u2)] ≤ Eξ(e) ≤ E [ξ(u1) + ξ(u2)] .

(In fact, the right inequality holds even without expectation signs!) Therefore, if we
show that the Eξ(u) are bounded above and below, uniformly over u ∈ G, then we
are done.

However, once vertex u is reached (and this happens with probability p(v0, u)) the
number of returns to it before hitting v0 is geometric with success probability p(u, v0)

and mean 1
p(u,v0)

, and consequently,

Eξ(u) = [1 − p(v0, u)] · 0 + p(v0, u) · 1

p(u, v0)
,

which belongs to the interval [ρ−1, ρ] for all u, because of the second part of Assump-
tion 2 (see also the argument after Remark 12). The theorem is thus proven. ��

Recall that the graph G is called transitive if, viewed from any vertex v in G, it is
isomorphic to G viewed from v0.

Proposition 2 Let X be a recurrent simple6 random walk on the transitive graph G.
Then, Assumption 2 is satisfied.

6 I.e. X jumps to each neighbour with the same probability.
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Proof The uniform ellipticity assumption is trivially satisfied since X is a symmetric
random walk, and each vertex is incident to the same number of edges, because of
transitivity of G. Now, we have p(v0, v) = p(v, v0) by transitivity again, and thus
one can set ρ = 1. ��
Corollary 5 The symmetric random walks on Z

1 and on Z
2 satisfy Assumption 2.

Assuming v0 = 0, if s(e) ∼ ‖e‖−α for some α > 0, then X imp is positive recurrent if
and only if

• α > 1, in case of Z1;
• α > 2, in case of Z2.

Proof Both G = Z
1 and G = Z

2 are transitive, and the symmetric random walks on
them are recurrent. Hence, by Proposition 2, Assumption 2 is fulfilled. Consequently,
the positive recurrence of X imp is equivalent to the finiteness of

∑

e∈E(G)

s(e) ∼
{∑

k=1
2
kα ∼ ∑

k k
−α on Z

1;∑
k=1

4k
kα ∼ ∑

k k
−(α−1) on Z

2,

yielding the required result. ��

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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