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Abstract
We define an inhomogeneous percolation model on “ladder graphs” obtained as direct
products of an arbitrary graph G = (V , E) and the set of integers Z. (Vertices are
thought of as having a “vertical” component indexed by an integer.) We make two
natural choices for the set of edges, producing an unoriented graph G and an oriented
graph �G. These graphs are endowed with percolation configurations in which inde-
pendently, edges inside a fixed infinite “column” are open with probability q and all
other edges are open with probability p. For all fixed q one can define the critical
percolation threshold pc(q). We show that this function is continuous in (0, 1).

Keywords Inhomogeneous percolation · Oriented percolation · Ladder graphs ·
Critical parameter
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1 Introduction

In this paper we examine how the critical parameter of percolation is affected by
inhomogeneities. More specifically, we address the following problem. Suppose G is
a graph with (oriented or unoriented) set of edges E and thatE is split into two disjoint
sets, E = E

′ ∪E
′′. Consider the percolation model in which edges of E

′ are open with
probability p and edges of E

′′ are open with probability q. For q ∈ [0, 1], we can then
define pc(q) as the supremum of values of p for which percolation does not occur
at p, q. What can be said about the function q �→ pc(q)?

This is the framework for the problem of interest of the recent reference [5]. In
that paper, the authors consider an oriented tree whose vertex set is that of the d-
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Fig. 1 The construction of G from G and a possible choice for the edge set E
′′ (on which edges are open

with probability q)

regular, rooted tree, and containing “short edges” (with which each vertex points to
its d children) and “long edges” (with which each vertex points to its dk descendants
at distance k, for fixed k ∈ N). Percolation is defined on this graph by letting short
edges be open with probability p and long edges with probability q. It is proved that
the curve q �→ pc(q) is continuous and strictly decreasing in the region where it is
positive.

In the present paper, we consider another natural setting for the problem described
in the first paragraph, namely that of a “ladder graph” in the spirit of [6]. We start with
an arbitrary (unoriented, connected) graph G = (V , E) and construct G = (V, E)

by placing layers of G one on top of the other and adding extra edges to connect the
consecutive layers. More precisely, V = V ×Z and E consists of the edges that make
each individual layer a copy of G, as well as edges linking each vertex to its copies in
the layers above it and below it (see Fig. 1 for an example). With this choice (and other
ones wewill also consider), one would expect the aforementioned function pc(q) to be
constant in (0, 1). Our main result is that it is a continuous function. We also consider
a similarly defined oriented model �G and obtain the same result. See Sect. 1.1 for a
more formal description of the models we study and the results we obtain.

Our ladder graph percolation model is a generalization of the model of [12]. In
that paper, Zhang considers an independent bond percolation model on Z

2 in which
edges belonging to the vertical line through the origin are open with probability q,
while other edges are open with probability p. It then follows from standard results in
percolation theory that (0, 1) � q �→ pc(q) is constant, equal to 1

2 , the critical value of
(homogeneous) bond percolation onZ

2. Themain result of [12] is that, when p is set to
this critical value and for any q ∈ (0, 1), there is almost surely no infinite percolation
cluster. Since we are far from understanding the critical behaviour of homogeneous
percolation on the more general graphs G and �G we consider here, analogous results
to that of Zhang are beyond the scope of our work.

Let us briefly mention some other related works. Important references for perco-
lation phase transition beyond Z

d are [3,9]; see also [4] for a recent development.
Concerning sensitivity of the percolation threshold to an extra parameter or inhomo-
geneity of the underlying model, see the theory of essential enhancements developed
in [1,2].
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Fig. 2 G and �G for G = Z. Note that in this case, �G consists of two disjoint subgraphs; for clarity, we will
only display one of these subgraphs further on

1.1 Formal Description of theModel and Results

LetG = (V , E) be a connected graphwith vertex setV and edge set E . LetV = V×Z.
We define the unoriented graphG = (V, E) and the oriented graph �G = (V, �E), where

E ={{(u, n), (v, n)} : {u, v} ∈ E, n ∈ Z} ∪ {{(u, n), (u, n + 1)} : u ∈ V , n ∈ Z},
�E ={〈(u, n), (v, n + 1)〉 : {u, v} ∈ E, n ∈ Z};

above, we denote unoriented edges by {·, ·} and oriented edges by 〈·, ·〉. See Fig. 2 for
an example. Note that �G is not necessarily connected.

We consider percolation configurations in which each edge in E and �E can be open

or closed. Let Ω = {0, 1}E and �Ω = {0, 1}�E be the sets of all possible configurations
on G and �G, respectively. Then for any e ∈ E or �E, ω(e) = 1 corresponds to the edge
being open and ω(e) = 0 closed.

An open path on G is a set of distinct vertices (v0, n0), (v1, n1), . . . , (vm, nm) such
that for every i = 0, . . . ,m − 1, {(vi , ni ), (vi+1, ni+1)} ∈ E and is open. We say
that (v, n) can be reached from (v0, n0) either if they are equal or if there is an open
path from (v0, n0) to (v, n). Denote this event by (v0, n0)↔ (v, n). The set of vertices
that can be reached from (v, n) is called the cluster of (v, n).

An open path on �G can be defined similarly, but since edges are oriented
upwards, (v, n) can only be reached from (v0, n0) if n ≥ n0. Denote this event
by (v0, n0) → (v, n). Hence, we will call the set of vertices that can be reached by an
open path from (v, n) the forward cluster of (v, n). Denote by C∞ and �C∞ the events
that there is an infinite cluster on G and an infinite forward cluster on �G, respectively.

We examine the following inhomogeneous percolation setting. First, consider the
unoriented graph G. Fix finitely many edges and vertices

e1 = {u1, v1}, . . . , eK = {uK , vK } ∈ E, w1, . . . wL ∈ V , (1)

and let

123



Journal of Theoretical Probability (2020) 33:992–1010 995

G

E1 E2

00

G

E1 E2

Fig. 3 The edge sets E
1 and E

2 on G with e1 = {−1, 0} and w1 = 1, and on �G with e1 = {−1, 0}
and e2 = {1, 2} (for G = Z)

E
i := {{(ui , n), (vi , n)} : n ∈ Z} i = 1, . . . , K ; (2)

E
K+ j := {{(w j , n), (w j , n + 1)} : n ∈ Z} j = 1, . . . , L; (3)

that is, the set of “horizontal” edges on G between ui and vi , and the set of “vertical”
edges above and below vertex w j , respectively (see Fig. 3 for an example). Further,
let q = (q1, . . . , qK+L) with qi ∈ (0, 1) for all i and let p ∈ [0, 1]. Now let each
edge of E

i be open with probability qi , and each edge in E \ ∪K+L
i=1 E

i be open with
probability p. Denote the law of the open edges by Pq,p. Whether or not the event C∞
happens with positive probability depends on the parameters p and q, so we can define
the critical parameter as a function of q:

pc(q) := sup{p : Pq,p(C∞) = 0}.

We will show that this function is continuous:

Theorem 1 For fixed K , L ∈ N, the function q �→ pc(q) is continuous in (0, 1)K+L .

We now turn to the oriented graph �G. Fix finitely many edges

e1 = {u1, v1}, . . . , eK = {uK , vK } ∈ E, (4)

and let

�Ei := {〈(ui , n), (vi , n + 1)〉, 〈(vi , n), (ui , n + 1)〉 : n ∈ Z}; (5)

that is, the set of oriented edges on �G between ui and vi (see Fig. 3 for an example).
Further, let q = (q1, . . . , qK )with qi ∈ (0, 1) for all i and let p ∈ [0, 1]. Now let each
oriented edge of �Ei be open with probability qi , and each oriented edge in �E \∪K

i=1 �Ei

be open with probability p. Denote the law of the open edges by �Pq,p. Similarly as in
the unoriented case we can define the critical parameter as a function of q:

�pc(q) := sup{p : �Pq,p( �C∞) = 0}.
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We will show that this function is continuous:

Theorem 2 For fixed K ∈ N, the function q �→ �pc(q) is continuous in (0, 1)K .

The proofs of both Theorems 1 and 2 rely on two coupling results which allow us
to compare percolation configurations with different parameters q, p. These coupling
results are presented in Sect. 2. We prove Theorem 1 in Sect. 3 and Theorem 2 in
Sect. 4.

1.2 Discussion on the Contact Process

Bond percolation on the oriented graph �G defined from G = (V , E) is closely related
to the contact process on G. The contact process is usually taken as a model of
epidemics on a graph: vertices are individuals, which can be healthy or infected.
In the continuous-time Markov dynamics infected individuals recover with rate 1 and
transmit the infection to each neighbour with rate λ > 0 (“infection rate”). The “all
healthy” configuration is a trap state for the dynamics; the probability that the contact
process ever reaches this state is either equal to 1 or strictly less than 1 for any finite set
of initially infected vertices. The process is said to die out in the first case and to survive
in the latter.Whether it survives or dies out will depend on both the underlying graphG
and λ, so one defines the critical rate λc as the supremum of the infection parameter
values for which the contact process dies out on G. For a detailed introduction see [8].

The contact process admits a well-known graphical construction that is a “space-
time picture” G × [0,∞) of the process. We assign to each vertex v ∈ V and ordered
pair of vertices (u, v) satisfying {u, v} ∈ E a Poisson point process Dv with rate 1
and D(u,v) with rate λ, respectively. (All processes are independent.) For each event
time t of Dv we place a “recovery mark” at (v, t) and for each event time of D(u,v)

an “infection arrow” from (u, t) to (v, t). An “infection path” is a connected path that
moves along the timeline in the increasing time direction, without passing through a
recovery mark and along infection arrows in the direction of the arrow. Starting from
a set of initially infected vertices A ⊂ V , the set of infected vertices at time t is the
set of vertices v such that (v, t) can be reached by an infection path from some (u, 0)
with u ∈ A.

This representation can be thought of as a version of our oriented percolation
model �G in which the “vertical”, one-dimensional component is taken as R rather
than Z. (Some other modifications have to be made to account for the “recovery
marks” of the contact process, but this is unimportant for the present discussion.) In
fact, one of the questions that originally motivated us was the following. Assume we
take the contact process on an arbitrary graph G, and declare that the infection rate is
equal to λ > 0 in every edge except for a distinguished edge e∗, in which the infection
rate is σ > 0. Let λc(σ ) be the supremum of values of λ for which the process with
parameters λ, σ dies out (starting from finitely many infections). Is it true that λc(σ )

is constant, or at least continuous, in (0,∞)?
In caseG is a vertex-transitive connected graph, one can show that λc(σ ) is constant

in (0,∞) by an argument similar to the one given in [7]. For generalG, even continuity
of λc(σ ) is unproved, and the techniques we use here do not seem to be sufficient to
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handle that case (see Remark 2 below for an explanation of what goes wrong). This
is surprising, since results for oriented percolation typically transfer automatically to
the contact process (and vice versa). A recent result shows that the situation can be
quite delicate: in [10], we exhibited a tree in which the contact process (with same
rate λ > 0 everywhere) survives for any value of λ, but in which the removal of a
single edge produces two subtrees in which the process dies out for small λ.

2 Coupling Lemmas

The proofs of both of our theorems are based on couplings which allow us to carefully
compare percolation configurations sampled from measures with different parameter
values. In the proof of Theorem 1 we use the following coupling lemma (Lemma 3.1
from [5]). The proof is omitted since it is quite simple and can be found in [5]; the
idea of the coupling is reminiscent of Doeblin’s maximal coupling lemma (see [11]
Chapter 1.4).

Lemma 1 Let Pθ denote probability measures on a finite set S, parametrized by θ ∈
(0, 1)N , such that θ �→ Pθ (x) is continuous for every x ∈ S. Assume that for some θ1
and x̄ ∈ S we have Pθ1(x̄) > 0. Then, for any θ2 close enough to θ1, there exists a
coupling of two random elements X and Y of S such that X ∼ Pθ1 , Y ∼ Pθ2 and

P ({X = Y } ∪ {X = x̄} ∪ {Y = x̄}) = 1. (6)

The following is a modified version of Lemma 1, to be used in the proof of Theorem 2.

Lemma 2 Let Pθ denote probability measures on a finite set S, parametrized by θ ∈
(0, 1)N , such that θ �→ Pθ (x) is continuous for every x ∈ S. Let {Ŝ, ˆ̂S} be a non-trivial
partition of S, and assume that for some θ1, x̂ ∈ Ŝ and ˆ̂x ∈ ˆ̂S we have Pθ1(x̂) > 0
and Pθ1( ˆ̂x) > 0. Then, for any θ2 close enough to θ1, there exists a coupling of two
random elements X and Y of S such that X ∼ Pθ1 , Y ∼ Pθ2 and

P

(
{X = Y } ∪ {X = x̂} ∪ {X ∈ Ŝ ∪ { ˆ̂x},Y = x̂} ∪ {Y = ˆ̂x}

)
= 1, (7)

specifically

P(Y = x̂ or ˆ̂x |X = ˆ̂x)1. (8)

Proof Wewrite Ŝ = {w1, w2, . . . , wn, x̂} and ˆ̂S = {z1, z2, . . . , zm, ˆ̂x}, and for all y ∈
S and k = 1, 2 let

p(y) = Pθ1(y) ∧ Pθ2(y),
pθ1(y) = [Pθ1(y)− Pθ2(y)]+, pθk (Ŝ) = ∑

y∈Ŝ\{x̂} pθk (y),

pθ2(y) = [Pθ2(y)− Pθ1(y)]+, pθk (
ˆ̂S) = ∑

y∈ ˆ̂S\{ ˆ̂x} pθk (y).
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0 1

p(w1) . . . p(wn) p(z2) . . . p(zm) Pθ1 (x̂) Pθ1 (ˆ̂x)

p(w2) p(z1) pθ1(Ŝ) pθ1(
ˆ̂S)

pθ2(Ŝ) Pθ2 (x̂) Pθ2 (ˆ̂x)

pθ2(
ˆ̂S)

pθ1(w1)pθ1(w2) . . .pθ1(wn)

w1 w2 . . . wn z1 z2 . . . zn x̂ wi ˆ̂x zj

w1 w2 . . . wn z1 z2 . . . zn wizj x̂ ˆ̂x

X =

Y =

w1 w2 . . . wn

Fig. 4 The partitioning of the line segment [0, 1], and the sampling of (X , Y )

LetU be a uniform random variable on [0, 1]. The values of X and Y will be given
as functions of U . Clearly,

n∑
i=1

p(wi )+
m∑
j=1

p(z j )+ Pθk (x̂)+ pθk (Ŝ)+ Pθk ( ˆ̂x)+ pθk (
ˆ̂S) = 1,

so we can cover the line segment [0, 1] with disjoint intervals with lengths equal to
the summands of the left-hand side of the above equality with either k = 1 or 2 (see
Fig. 4). For any value of u we choose X and Y to be the element of S that corresponds
to the interval u falls into in the first and second covers, respectively.

To guarantee that (7) is satisfied we arrange these intervals in a way that

– the interval corresponding to Pθ1( ˆ̂x) in the first cover is entirely contained in the
intervals corresponding to Pθ2(x̂) and Pθ2( ˆ̂x) in the second cover;

– the interval corresponding to pθ1(
ˆ̂S) in the first cover is contained in the interval

corresponding to Pθ2( ˆ̂x) in the second cover;
– the interval corresponding to pθ1(Ŝ) in the first cover is contained in the intervals
corresponding to Pθ2(x̂) and Pθ2( ˆ̂x) in the second cover.

The above is possible since by continuity, as θ2 → θ1 : Pθ2(x̂) → Pθ1(x̂) > 0,

Pθ2( ˆ̂x) → Pθ1( ˆ̂x) > 0 as well as pθ1(Ŝ), pθ1(
ˆ̂S) → 0. Therefore, if θ2 is sufficiently

close to θ1, we have

pθ1(
ˆ̂S) < Pθ2( ˆ̂x),

pθ1(
ˆ̂S)+ Pθ1( ˆ̂x)+ pθ1(Ŝ) < Pθ2( ˆ̂x)+ Pθ2(x̂).

��
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3 Proof of Theorem 1

We start showing that if the statement of Theorem 1 is proved for a given set of edges
and vertices as in (1), then the same continuity statement automatically follows for
smaller sets of edges and vertices. To prove this, let e1, . . . , eK , w1, . . . , wL be edges
and vertices as in (1), and let wL+1 be an additional vertex. (We could alternatively
take an additional edge with no change to the argument that follows.)We now compare
two percolation models onG: the first one with parameter values q = (q1, . . . , qK+L)

for E
1, . . . , E

K+L and p for all other edges, and the second one with parameter
values (q, qK+L+1) for E

1, . . . , E
K+L+1 and p for all other edges.

Claim 1 If the function (q, qK+L+1) �→ pc(q, qK+L+1) is continuous in (0, 1)K+L+1,
then q �→ pc(q) is continuous in (0, 1)K+L .

Proof Since (0, 1) � qK+L+1 �→ pc(q, qK+L+1) is non-increasing and by assumption
continuous, there exists a unique t∗ ∈ (0, 1) such that t∗ = pc(q, t∗). We claim
that t∗ = pc(q). Indeed, by the definition of pc(q, t∗),

∀t > t∗, 0 < P(q,t∗),t (C∞) ≤ P(q,t),t (C∞) = Pq,t (C∞), and

∀t < t∗, 0 = P(q,t∗),t (C∞) ≥ P(q,t),t (C∞) = Pq,t (C∞),

which implies pc(q) = t∗.
Assume that pc(q, t) = t for some q and t . By continuity, for all ε > 0, if δ ∈

(0, 1)K+L is close enough to zero we have

pc(q+ δ, t) ∈ (t − ε, t + ε).

As pc is non-increasing in t , this yields

pc(q+ δ, t − ε) > t − ε and pc(q+ δ, t + ε) < t + ε.

Hence, there exists t ′ ∈ (t − ε, t + ε) such that pc(q + δ, t ′) = t ′. This implies
that q �→ pc(q) is continuous. ��

For our base graph G = (V , E), u, v ∈ V and V ′ ⊂ V , let distG(u, v) be the
graph distance between u and v, and let distG(u, V ′) be the smallest graph distance
between u and a point of V ′. Fix r ∈ N, u0 ∈ V , and let

U := Br (u0), (9)

that is the ball of radius r around u0 with respect to the graph distance.
From now on, we will assume that the edges e1, . . . , eK of (1) are all the edges

with both endpoints belonging to U , and that the vertices w1, . . . , wL of (1) are all
the vertices of U . We are allowed to restrict ourselves to this case by Claim 1.

The proof of Theorem 1 will be a consequence of the following claim.
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Claim 2 For all p ∈ (0, 1), q0 ∈ (0, 1)K+L and ε ∈ (0, 1 − p) there exists a δ > 0
such that for any q,q′ ∈ (0, 1)K+L satisfying ‖q0 − q‖∞ < δ and ‖q0 − q′‖∞ < δ

we have

Pq, p(C∞) ≤ Pq′,p+ε(C∞).

Note that Claim 2 is trivial if q′ − q has non-negative coordinates.

Proof of Theorem 1 Fix q0 ∈ (0, 1)K+L and ε > 0. By Claim 2, if ‖q0−q′‖∞ is close
enough to zero, then

Pq, pc(q0)+ε(C∞) ≥ Pq0, pc(q0)+ ε
2
(C∞), (10)

Pq, pc(q0)−ε(C∞) ≤ Pq0, pc(q0)− ε
2
(C∞). (11)

By the definition of pc(q0), the right-hand side of (10) is positive and the right-hand
side of (11) is zero; hence, the two inequalities, respectively, yield

pc(q) ≤ pc(q0)+ ε and pc(q) ≥ pc(q0)− ε.

This implies that q �→ pc(q) is continuous at q0. ��
Proof of Claim 2 We start with several definitions. Recall the definition of U in (9),
and for n ∈ Z let

Vn = {(v,m) ∈ V : v ∈ Br+1(u0), (2L + 2)n ≤ m ≤ (2L + 2)(n + 1)}

and

En ={e ∈ E : e has both endpoints in Vn}
\{e ∈ E : e = {(u, (2L + 2)(n + 1)), (v, (2L + 2)(n + 1))} for some {u, v} ∈ E}.

We think ofVn as a “box” of vertices and ofEn as all the edges in the subgraph induced
by this box, except for the “ceiling”. Note that the En are disjoint (though the Vn are
not). Next, recall the definition of E

i for 1 ≤ i ≤ K + L from (2) and (3). Observe
that ∪iEi

� ∪nEn , and define, for n ∈ Z and 1 ≤ i ≤ K + L ,

E
i
n = En ∩ E

i , E
∂
n = En\

(
∪K+L
i=1 E

i
n

)
, EO = E\ (∪n∈ZEn) .

The “edge boundary” E
∂
n consists of edges of the form {(u,m), (u,m + 1)}, with u

such that dist(u, u0) = r + 1, and edges of the form {(u,m), (v,m)}, with v ∈ U
and dist(u, u0) = r + 1. Next, let

Ω i
n = {0, 1}E

i
n , Ω∂

n = {0, 1}E
∂
n , Ωn = {0, 1}En , ΩO = {0, 1}EO ;
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note that

Ω = ΩO ×
∏
n∈Z

Ωn = ΩO ×
∏
n∈Z

(
Ω∂

n ×
K+L∏
i=1

Ω i
n

)
.

For each n, define the inner vertex boundary, consisting of the “floor”, “walls” and
“ceiling” of the vertex box Vn ,

∂Vn ={(v, n) ∈ Vn : dist(v, u0) = r + 1}
∪ (U × {(2L + 2)n}) ∪ (U × {(2L + 2)(n + 1)}).

Given any ∅ �= A ⊆ ∂Vn and ωn ∈ Ωn , define

Cn(A, ωn) = {(v, n) ∈ ∂Vn : (v0, n0) ωn←→ (v, n) for some (v0, n0) ∈ A},

where the notation (v0, n0)
ωn←→ (v, n) means that (v0, n0) and (v, n) are connected

by an ωn-open path of edges of En . Note that A ⊆ Cn(A, ωn).
Now fix p, q0 and ε, and for δ close enough to zero let q = (q1, . . . , qK+L)

andq′ = (q ′1, . . . , q ′K+L)be as in the statement of the claim.Note that‖q−q′‖∞ < 2δ.
We will define coupling measures μO on (ΩO)2 and μn on (Ωn)

2 satisfying the
following properties. First,

(ωO, ω′O) ∼ μO �⇒ ωO
(d)= Pq,p|EO , ω′O

(d)= Pq′,p+ε |EO
and ωO ≤ ω′O a.s.

(12)

(We denote by Pq,p|E′ the projection of Pq,p to E
′ ⊂ E.) Second,

(ωn, ω
′
n) ∼ μn �⇒ ωn

(d)= Pq,p|En , ω′n
(d)= Pq′,p+ε |En

and Cn(A, ωn) ⊆ Cn(A, ω′n) for all A ⊂ ∂Vn a.s.
(13)

We then define the coupling measure μ on Ω2 by

μ = μO ⊗ (⊗n∈Zμn) .

It is clear from (12) and (13) that, if (ω, ω′) ∼ μ, then ω ∼ Pq,p, ω′ ∼ Pq′,p+ε , and
almost surely if C∞ holds for ω, then it holds for ω′. Consequently,

Pq,p(C∞) ≤ Pq′,p+ε(C∞).

The definition ofμO is standard.We take in some probability space a pair of random
elements Z = (Z1, Z2) ∈ Ω2

O such that Z1 and Z2 are independent on all edges ofEO
and they assign each edge to be open with probability p and ε

1−p , respectively. We
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000

x̄U x̄∂,1 x̄∂,2

Fig. 5 The deterministic configuration forG = Z,U = {−3,−2,−1, 0, 1, 2, 3}. In this case L = 7, K = 6
and w1 = −3, w2 = 3, w3 = −2, w4 = 2, w5 = −1, w6 = 1, w7 = 0

then let ωO = Z1 and ω′O = Z1 ∨ Z2, and μO be the distribution of (ωO, ω′O), so
that (12) is clearly satisfied.

The measuresμn will be defined as translations of each other, so we only defineμ0.
The construction relies on Lemma 1, with the finite set S of that lemma being here the
set

Ω1
0 × · · · ×ΩK+L

0 ×Ω∂
0 ×Ω∂

0 .

The two factors of Ω∂
0 ensure the extra randomness needed for the coupling. We now

define the deterministic element x̄ of the above set that appears in the statement of
Lemma 1. The definition is simple, but the notation is clumsy; a quick glimpse at
Fig. 5 should clarify what is involved. We start assuming, without loss of generality,
that the elements w1, . . . , wL of U are enumerated so that

distG(w j , V \U ) ≤ distG(w j+1, V \U ) ∀ j = 1, . . . , L − 1.

Let Γ j be the set of edges along a shortest path from w j to U \ Br−1(u0). Further,
for m < m′ let

[(wi ,m), (wi ,m
′)] := ∪m′−1j=m {(wi , j), (wi , j + 1)}.
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Now, x̄ is defined in the following way:

– x̄ = (x̄U , x̄∂,1, x̄∂,2) with x̄U ∈ Ω1
0 × · · · ×ΩK+L

0 and x̄∂,1, x̄∂,2 ∈ Ω∂
0 ;

– x̄U (e) = 1 if and only if for some j = 1, . . . L ,

e ∈ [(w j , 0), (w j , j)] ∪ [(w j , (2L + 2)− j), (w j , (2L + 2))]⋃
{u,v}∈Γ j

({(u, j), (v, j)} ∪ {(u, (2L + 2)− j), (v, (2L + 2)− j)}) ,

or

e ∈
⋃

u,v∈U
{(u, L + 1), (v, L + 1)};

– x̄∂,1 ≡ 0 and x̄∂,2 ≡ 1.

ByLemma 1, if δ is close enough to zero, then there exists a coupling of (K+L+2)-
tuples of configurations

X = (X1, . . . , XK+L , X∂,1, X∂,2), Y = (Y 1, . . . ,Y K+L ,Y ∂,1,Y ∂,2)

∈ Ω1
0 × · · · ×ΩK+L

0 ×Ω∂
0 ×Ω∂

0

such that

– the values of X1, . . . , XK+L , X∂,1, X∂,2 are independent on all edges;
– the values of Y 1, . . . ,Y K+L ,Y ∂,1,Y ∂,2 are independent on all edges;
– Xi assigns each edge to be open with probability qi ;
– Y i assigns each edge to be open with probability q ′i ;
– X∂,1 and Y ∂,1 assign each edge to be open with probability p;
– X∂,2 and Y ∂,2 assign each edge to be open with probability ε

1−p ;
– (X ,Y ) satisfies

P ({X = Y } ∪ {X = x̄} ∪ {Y = x̄}) = 1. (14)

Now let ω0 = (X1, . . . , XK+L , X∂,1) and ω′0 = (Y 1, . . . ,Y K+L ,Y ∂,1 ∨ Y ∂,2).
Thus, ω′0 assigns each edge in E

∂
0 to be open with probability p + ε. See Fig. 6

for ω0 and ω′0 if X or Y equals x̄ .
To check that the last property stated in (13) is satisfied, let us inspect C0(A, ω0)

and C0(A, ω′0) in all possible cases listed inside the probability in (14):

– if X = Y , then ω0(e) ≤ ω′0(e) for every e ∈ E0; thus, C0(A, ω0) ⊆ C0(A, ω′0)
for all A;

– if X = x̄ , then C0(A, ω0) = A ⊆ C0(A, ω′0) for all A;
– if Y = x̄ , then C0(A, ω′0) = ∂V0 ⊇ C0(A, ω0) for all A.

Hence, in all cases C0(A, ω0) ⊆ C0(A, ω′0) for every A ⊆ ∂V0. We then let μ0 be the
distribution of (ω0, ω

′
0), completing the proof. ��
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ω0 if X = x̄ ω0 if Y = x̄

Fig. 6 ω0 and ω′0 on the fixed configurations for G = Z, U = {−3,−2,−1, 0, 1, 2, 3}

4 Proof of Theorem 2

We start with a similar reduction to a particular case as the one in the beginning of
the previous section. As the proof of Claim 1 did not rely on any special properties
of G (that �G does not have), we can repeat the same argument in the oriented case.
We fix r ∈ N, u0 ∈ V , and let U := Br (u0) as in the unoriented case. From now
on, we assume that the edges e1, . . . , eK of (4) are all the edges with both endpoints
belonging to U .

We again obtain the desired statement of Theorem 2 as a consequence of the fol-
lowing claim.

Claim 3 For all p ∈ (0, 1), q0 ∈ (0, 1)K and ε ∈ (0, 1− p) there exists a δ > 0 such
that for any q,q′ ∈ (0, 1)K satisfying ‖q0 − q‖∞ < δ and ‖q0 − q′‖∞ < δ we have

�Pq,p( �C∞) ≤ �Pq′,p+ε( �C∞).

Theorem 2 follows from this claim by the same argument as in the unoriented case,
so we omit the details.

Remark 1 The proof of Claim 3 is similar to that of Claim 2 but slightly more involved.
In the proof of the unoriented case we used Lemma 1 with a single deterministic
configuration x̄ = (x̄U , x̄∂,1, x̄∂,2). This was possible because our choice of x̄ was
such that, for every ω0 ∈ Ω0 and A ⊆ ∂V0 we have
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C0(A, (x̄U , x̄∂,1)) = A ⊆ C0(A, ω0),

C0(A, (x̄U , x̄∂,1 ∨ x̄∂,2)) = ∂V0 ⊇ C0(A, ω0).

However, we cannot find a configuration with similar properties in the oriented case
(see Remark 3 at the end of the proof).

Proof of Claim 3 Let

Vn = {(v,m) ∈ V : v ∈ Br+1(u0), (2K + 2)n ≤ m ≤ (2K + 2)(n + 1)}

and

�En = {e ∈ �E : e has both endpoints in Vn}.

Note that �En are disjoint. Next, recall the definition of �Ei from (5) and define, for n ∈ Z

and 1 ≤ i ≤ K ,

�Ei
n = �En ∩ �Ei , �E∂

n = �En\
(
∪K
i=1 �Ei

n

)
, �EO = �E\

(
∪n∈Z �En

)
.

The “edge boundary” �E∂
n consists of edges of the form 〈(u,m), (v,m+1)〉, with u, v ∈

Vn and at least one of u and v at distance r + 1 from u0. Define corresponding sets of
configurations �Ω i

n , �Ω∂
n and �ΩO.

For each n, define the boundary sets

∂Vn = {(v, n) ∈ Vn : dist(v, u0) = r + 1} ∪ (Vn ∩ (V× {(2K + 2)n})),
∂Vn = {(v, n) ∈ Vn : dist(v, u0) = r + 1} ∪ (Vn ∩ (V× {(2K + 2)(n + 1)})),

so that ∂Vn consists of “walls and floor” and ∂Vn consists of “walls and ceiling” of
the box Vn . Given any ∅ �= A ⊆ ∂Vn and ωn ∈ �Ωn , define

�Cn(A, ωn) = {(v, n) ∈ ∂Vn : (v0, n0) ωn−→ (v, n) for some (v0, n0) ∈ A},

where the notation (v0, n0)
ωn−→ (v, n) means that (v0, n0) and (v, n) are connected

by an ωn-open path of edges of �En .
Fix p, q0 and ε, and for δ close enough to zero let q = (q1, . . . , qK ) and q′ =

(q ′1, . . . , q ′K ) be as in the statement of the claim.Wewill define couplingmeasures �μO
on ( �ΩO)2 and �μn on ( �Ωn)

2 that satisfy similar properties as in the unoriented case.
First,

(ωO, ω′O) ∼ �μO �⇒ωO
(d)= �Pq,p|�EO , ω′O

(d)= �Pq′,p+ε |�EO
and ωO ≤ ω′O a.s.

(15)
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Second,

(ωn, ω
′
n) ∼ �μn �⇒ωn

(d)= �Pq,p|�En
, ω′n

(d)= �Pq′,p+ε |�En

and �Cn(A, ωn) ⊆ �Cn(A, ω′n) for all A ⊂ ∂Vn a.s.
(16)

We then define the coupling measure �μ on �Ω2 by

�μ = �μO ⊗ (⊗n∈Z �μn) .

It is clear from (15) and (16) that, if (ω, ω′) ∼ �μ, then ω ∼ �Pq,p, ω′ ∼ �Pq′,p+ε , and
almost surely if �C∞ holds for ω, then it holds for ω′. Consequently,

�Pq,p( �C∞) ≤ �Pq′,p+ε( �C∞).

The measure �μO is defined using the same standard coupling as the corresponding
measure in the proof of Claim 2. The measures �μn will again be taken as translations
of each other, so we only define �μ0. The construction relies on Lemma 2. The finite

set S and the decomposition S = Ŝ ∪ ˆ̂S of the statement of that lemma are given by

S = �Ω1
0 × · · · × �ΩK

0 × �Ω∂
0 × �Ω∂

0 , Ŝ = �Λ1
0 × · · · × �ΛK

0 × �Ω∂
0 × �Ω∂

0 , ˆ̂S = S\Ŝ,

where �Λi
0 is the set of configurations in �Ω i

0 inwhich edges fromheight K to height K+
1 are closed. The definition of x̂ and ˆ̂x is as follows (see Fig. 7 for a specific example):

– x̂ = (x̂1, . . . , x̂ K , x̂∂,1
, x̂∂,2

) with x̂ i ∈ �Λi
0 and x̂∂,1

, x̂∂,2 ∈ �Ω∂
0 ;

– ˆ̂x = ( ˆ̂x1, . . . , ˆ̂xK , ˆ̂x∂,1, ˆ̂x∂,2) with ˆ̂xi ∈ �Ω i
0 \ �Λi

0 and ˆ̂x∂,1, ˆ̂x∂,2 ∈ �Ω∂
0 ;

– x̂∂,1 ≡ 0, x̂∂,2 ≡ 1 and for each i , x̂ i (e) = 0 if and only if e goes from height K
to K + 1,;

– ˆ̂x∂,1 ≡ 0, ˆ̂x∂,2 ≡ 1 and for each i , ˆ̂xi ≡ 1.

By Lemma 2, if δ is close enough to zero, there exists a coupling of (K + 2)-tuples
of configurations

X = (X1, . . . , XK , X∂,1, X∂,2), Y = (Y 1, . . . ,Y K ,Y ∂,1,Y ∂,2)

∈ �Ω1
0 × · · · × �ΩK

0 × �Ω∂
0 × �Ω∂

0

such that

– the values of X1, . . . , XK , X∂,1, X∂,2 are independent on all edges;
– the values of Y 1, . . . ,Y K ,Y ∂,1,Y ∂,2 are independent on all edges;
– Xi assigns each edge to be open with probability qi ;
– Y i assigns each edge to be open with probability q ′i ;
– X∂,1 and Y ∂,1 assign each edge to be open with probability p;
– X∂,2 and Y ∂,2 assign each edge to be open with probability ε

1−p ;

123



Journal of Theoretical Probability (2020) 33:992–1010 1007

0

x̂U

0

x̂∂,1

0

x̂∂,2

0

ˆ̂xU

0

ˆ̂x∂,1

0

ˆ̂x∂,2

Fig. 7 The deterministic configurations for G = Z and U = {−1, 0, 1, 2}. In this case K = 3. Note that
only one of the two disjoint subgraphs of �G is displayed

– (X ,Y ) satisfies

P

(
{X = Y } ∪ {X = x̂} ∪ {X ∈ Ŝ ∪ { ˆ̂x},Y = x̂} ∪ {Y = ˆ̂x}

)
= 1. (17)

Now letω0 = (X1, . . . , XK , X∂,1) andω′0 = (Y 1, . . . ,Y K ,Y ∂,1∨Y ∂,2). Thus,ω′0
assigns each edge in �E∂

0 to be open with probability p + ε. See Fig. 8 for ω0 and ω′0
if X or Y equals x̂ or ˆ̂x .

To check that the last property in (16) is satisfied, we need to show that in any of
the situations listed inside the probability in (17), we have �C0(A, ω0) ⊆ �C0(A, ω′0)
for any ∅ �= A ⊆ ∂Vn . {X = x̂} entails �C0(A, ω0) = A ∩ ∂V0 and {X = Y }, {X ∈
Ŝ, Y = x̂} as well as {Y = ˆ̂x} lead to ω0(e) ≤ ω′0(e) for every e ∈ �E0. The remaining
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0
ω0 if X = x̂

0

ω0 if Y = x̂

0

ω0 if X = ˆ̂x

0

ω0 if Y = ˆ̂x

Fig. 8 ω0 and ω′0 on the fixed configurations for G = Z, U = {−1, 0, 1, 2}

case is when X = ˆ̂x and Y = x̂ . In this case, (v0, n0)
ω0−→ (v1, n1) can only happen

if v0, v1 ∈ U , n0 = 0 and n1 = (2K+2). But then we also have (v0, n0)
ω′0−→ (v1, n1).

Finally, we let �μ0 be the distribution of (ω0, ω
′
0), completing the proof. ��

Remark 2 As mentioned in Sect. 1.2, the approach we used to prove Theorem 2 is not
readily applicable when the oriented model is replaced by a “continuous-time” ver-
sion such as the contact process. The essential difficulty is that our approach involves
finding a configuration that is better than any other in connecting points of any possi-
ble boundary set A to other boundary points. In a continuous-time setting, the set of
configurations inside a finite box is infinite, so such an optimal configuration cannot
exist. (In a standard construction involving Poisson processes, one can always intro-
duce extra arrivals between those of a fixed configuration.) As a potential strategy, one
could attempt to sophisticate our method by partitioning the configuration space not
in two, but in infinitely many parts, proving a corresponding version of Lemma 2, and
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0
ω0

0

(x̂U , x̂∂,1 ∨ x̂∂,2)

•
•••

•

•

• ••

◦◦

◦◦
0

(ˆ̂xU , ˆ̂x∂,1)

0

ω0

Fig. 9 Examples of why we need two configurations in the oriented case. • denotes the vertices
of C0(◦, ·)\{◦} in each configuration (G = Z, U = {−1, 0, 1, 2})

finding a sequence of finer and finer configurations which could produce an effective
coupling.

Remark 3 In the oriented case we cannot find a configuration with similar properties
as the one in Remark 1. If x̂ = (x̂U , x̂∂,1

, x̂∂,2
) is such that x̂U contains at least one

closed edge, depending on the topology of G|U , the induced subgraph of G onU , we
can find a configuration ω0 ∈ �Ω0 and a set A ⊆ ∂V0 such that

�C0(A, (x̂U , x̂∂,1 ∨ x̂∂,2
)) � �C0(A, ω0).

In case ˆ̂x = ( ˆ̂xU , ˆ̂x∂,1, ˆ̂x∂,2) is such that every edge in ˆ̂xU is open, then we can always
find a configuration ω′0 ∈ �Ω0 and a set B ⊆ ∂V0 such that

�C0(B, ( ˆ̂xU , ˆ̂x∂,1)) � �C0(B, ω′0).
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(see Fig. 9 for examples). This is the reason why we needed to apply Lemma 2,
involving two deterministic configurations, to make the coupling work. The trick was
to choose x̂ and ˆ̂x in a way that for every A ⊆ ∂V0,

�C0(A, ( ˆ̂xU , ˆ̂x∂,1)) ⊆ �C0(A, (x̂U , x̂∂,1 ∨ x̂∂,2
)).
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