Random Walk in Balls and an Extension of the Banach Integral in Abstract Spaces

Tadeusz Banek ${ }^{1}$. August M. Zapała ${ }^{2}$

Received: 1 November 2015 / Revised: 9 July 2018 / Published online: 8 March 2019
© The Author(s) 2019

Abstract

We describe the construction of a random walk in a Banach space \mathbb{B} with a quasiorthogonal Schauder basis and show that it is a martingale. Next we prove that under certain additional assumptions the described random walk converges a.s. and in $L^{p}(\mathbb{B}), 1 \leq p<\infty$, to a random element ξ, which generates a probability measure with support contained in the unit ball $B \subset \mathbb{B}$. Moreover, we define the Banach integral with respect to the distribution of ξ for a class of bounded, Borel measurable real-valued functions on B. Next some examples of nonstandard Banach spaces with quasi-orthogonal Schauder bases are presented; furthermore, examples which demonstrate the possibility of applications of all the obtained results in spaces $\ell^{p}, 1 \leq p<\infty$ and $L^{p}[0,1], 1<p<\infty$ are given.

Keywords Banach random walk • Martingale \cdot Radon-Nikodym property \cdot Quasi-orthogonal Schauder basis

Mathematics Subject Classification (2010) Primary 60J15 • 60B12 • 60G42;
Secondary 60G46

[^0]
1 Introduction

Let $\left\{e_{i}, i \geq 1\right\}$ be a complete orthonormal system (CONS) in a separable Hilbert space $(\mathbb{H},|\cdot|)$ and let $\pi_{n}(x)=\sum_{i=1}^{n} x_{i} e_{i}$ for $x=\sum_{i=1}^{\infty} x_{i} e_{i} \in \mathbb{H}$. Denote by K_{n} and B the unit balls in \mathbb{R}^{n} and \mathbb{H}, respectively.

In a paper published as addendum to the Saks monograph Theory of the Integral, Banach [1] described the most general form of a nonnegative linear functional F (satisfying additional conditions analogous to some properties of the Lebesgue integral, thus called by Banach \mathfrak{L}-integral), defined on the linear set \mathcal{L} of bounded, Borel measurable functions $\Phi: B \rightarrow \mathbb{R}$, namely

$$
F(\Phi)=\lim _{n \rightarrow \infty} F_{n}(\Phi)
$$

where

$$
\begin{aligned}
& F_{n}(\Phi)=\int_{K_{n}} \Phi\left(\pi_{n}(x)\right) g_{n}\left(x_{1}, \ldots, x_{n}\right) \mathrm{d} x_{1} \ldots \mathrm{~d} x_{n}, \\
& g_{n}\left(x_{1}, \ldots, x_{n}\right) \\
& \quad=\mathbb{1}_{K_{n}}\left(x_{1}, \ldots, x_{n}\right) \frac{g\left(x_{1}\right) g\left(x_{2} / \sqrt{1-x_{1}^{2}}\right) \ldots g\left(x_{n} / \sqrt{1-\left(x_{1}^{2}+\cdots+x_{n-1}^{2}\right)}\right)}{\sqrt{\left(1-x_{1}^{2}\right) \cdot\left[1-\left(x_{1}^{2}+x_{2}^{2}\right)\right] \cdot \ldots \cdot\left[1-\left(x_{1}^{2}+\cdots+x_{n-1}^{2}\right)\right]}},
\end{aligned}
$$

$g:[-1,1] \rightarrow[0, \infty)$ is Borel measurable and integrable with $\int_{-1}^{1} g(t) \mathrm{d} t=1$, and $\mathbb{1}_{A}$ denotes the indicator of the set A.

In fact, Banach [1] considered only the case when g is the density of the uniform distribution on $[-1,1]$, and a more general case was treated by Banek [2]. Furthermore, Banek [2] observed that

$$
F_{n}(\Phi)=E \Phi\left(Z_{n}\right),
$$

where $\left\{Z_{n}\right\}$ is the so-called Banach random walk (BRW) in $B \subset \mathbb{H}$ given by the random linear combination $Z_{n}=\sum_{i=1}^{n} X_{i} e_{i}, n \geq 1$, of elements of CONS $\left\{e_{i}\right\}$ in \mathbb{H}, with coefficients X_{i} that are dependent r.v.'s defined recursively as follows: X_{1} is a r.v. having density g concentrated on the interval [$-1,1$], and if the r.v.'s X_{1}, \ldots, X_{n-1} are already defined, then X_{n} is defined as a r.v. with probability density $g\left(x_{n} / \sqrt{1-\left(X_{1}^{2}+\cdots+X_{n-1}^{2}\right)}\right)$ in the random interval

$$
\left[-\sqrt{1-\left(X_{1}^{2}+\cdots+X_{n-1}^{2}\right)}, \sqrt{1-\left(X_{1}^{2}+\cdots+X_{n-1}^{2}\right)}\right] .
$$

The last observation forms a probabilistic background to the purely deterministic Banach construction of the \mathfrak{L}-integral for a class of bounded, Borel measurable functions defined in $B \subset \mathbb{H}$.

It is worth mentioning that Banach [1] considered two various special cases: (1) the mapping Φ is defined on a compact metric space and (2) Φ is defined in the unit ball of a separable Hilbert space.

In this paper, we describe a generalized $\operatorname{BRW}\left\{Z_{n}, n \geq 1\right\}$ with values in the unit ball of a Banach space. Moreover, we give a criterion for the existence of the BanachLebesgue integral

$$
\begin{equation*}
F(\Phi)=\lim _{n \rightarrow \infty} F_{n}(\Phi) \tag{1}
\end{equation*}
$$

in terms of the constructed BRW $\left\{Z_{n}, n \geq 1\right\}$, where Φ is a bounded, Borel measurable real-valued function defined in the unit ball of a Banach space.

2 Banach Random Walk in a Banach space

Let $(\mathbb{B},\|\cdot\|)$ be an infinite-dimensional Banach space with a Schauder basis $\left\{b_{n}, n \geq 1\right\}$. Then each vector $x \in \mathbb{B}$ possesses a unique series expansion $x=$ $\sum_{k=1}^{\infty} x_{k} b_{k}$, and thus, for all $n \geq 1$, the projections $\pi_{n}: \mathbb{B} \rightarrow \mathbb{B}$, given by $\pi_{n}(x)=$ $\sum_{k=1}^{n} x_{k} b_{k}$, are well defined. Denote

$$
B_{n}=\left\{\pi_{n}(x) \in \mathbb{B}:\left\|\pi_{n}(x)\right\| \leq 1\right\}, \quad B=\{x \in \mathbb{B}:\|x\| \leq 1\}
$$

and put

$$
\alpha_{1}=\inf \left\{t \in \mathbb{R}:\left\|t b_{1}\right\| \leq 1\right\}, \quad \beta_{1}=\sup \left\{t \in \mathbb{R}:\left\|t b_{1}\right\| \leq 1\right\}\left(=-\alpha_{1}\right)
$$

Furthermore, given any point $\pi_{n-1}(x) \in B_{n-1}, n \geq 2$, define inductively

$$
\begin{aligned}
& \alpha_{n}=\alpha_{n}\left(\pi_{n-1}(x)\right) \\
& \beta_{n}=\beta_{n}\left(\pi_{n-1}(x)\right)=\sup \left\{t \in \mathbb{R}:\left\|\pi_{n-1}(x)+t b_{n}\right\| \leq 1\right\} \\
&
\end{aligned}
$$

It is clear that $\alpha_{n} \leq 0 \leq \beta_{n}$, and $\left[\alpha_{n}, \beta_{n}\right], n \geq 1$, are bounded intervals in \mathbb{R}, for

$$
\left\|\pi_{n-1}(x)+t b_{n}\right\| \leq 1 \Rightarrow|t| \cdot\left\|b_{n}\right\| \leq\left\|\pi_{n-1}(x)\right\|+1, n \geq 1,
$$

where $\pi_{n-1}(x)=\pi_{0}(x)=0$ for $n=1$. Obviously, α_{n} and β_{n} depend on $\pi_{n-1}(x) \in$ B_{n-1} and b_{n}, and in general the intervals $\left[\alpha_{n}, \beta_{n}\right], n \geq 2$, need not be symmetric about 0 . In addition, it may happen that for some $n \geq 2$ the interval $\left[\alpha_{n}, \beta_{n}\right.$] reduces to the single point $[0,0]=\{0\}$. To fix a standard length of the first interval, without loss of generality we may and do assume that $\left\|b_{1}\right\|=1$ (but we do not require that $\left\|b_{n}\right\|=1$ for all $n \geq 2$). In such a situation, $\alpha_{1}=-1$ and $\beta_{1}=1$.

Let $G_{n}, n \geq 1$, be arbitrary probability distributions concentrated on $[-1,1] \subset$ \mathbb{R}, i.e., $G_{n}([-1,1])=1$ for all $n \geq 1$. Define inductively on a probability space (Ω, \mathcal{F}, P) a sequence of (dependent) real r.v.'s $\left\{X_{n}, n \geq 1\right\}$ and, associated with it, a sequence of \mathbb{B}-valued random elements (r.e.) $\left\{Z_{n}, n \geq 1\right\}$. Namely, let X_{1} be a r.v. with distribution G_{1} and let $Z_{1}=X_{1} b_{1}$. Then $X_{1}(\omega) \in\left[\alpha_{1}, \beta_{1}\right]=[-1,1]$ a.s., and thus, we may define X_{2} as a r.v. distributed according to G_{2}, scaled linearly in such a
way that it is concentrated on $\left[\alpha_{2}, \beta_{2}\right]=\left[\alpha_{2}\left(Z_{1}(\omega)\right), \beta_{2}\left(Z_{1}(\omega)\right)\right]$. In other words, X_{2} is a r.v. with distribution function

$$
G_{2}\left(\frac{2 t-\left[\beta_{2}\left(Z_{1}(\omega)\right)+\alpha_{2}\left(Z_{1}(\omega)\right)\right]}{\beta_{2}\left(Z_{1}(\omega)\right)-\alpha_{2}\left(Z_{1}(\omega)\right)}\right), t \in \mathbb{R}
$$

whenever $\beta_{2}-\alpha_{2}>0$, and then we put $Z_{2}=X_{1} b_{1}+X_{2} b_{2}$. Next, given any value $X_{2}(\omega)$, and a fortiori $Z_{2}(\omega) \in B_{2}$ a.s., we define X_{3} as a r.v. with distribution G_{3} scaled linearly in such a way that it is concentrated on the interval $\left[\alpha_{3}, \beta_{3}\right]=\left[\alpha_{3}\left(Z_{2}(\omega)\right), \beta_{3}\left(Z_{2}(\omega)\right)\right]$, and then put $Z_{3}=X_{1} b_{1}+X_{2} b_{2}+X_{3} b_{3}$, etc. More generally, if X_{1}, \ldots, X_{n-1} and Z_{1}, \ldots, Z_{n-1} are already defined in such a manner that $Z_{n-1}(\omega) \in B_{n-1}$ a.s., then X_{n} is a r.v. with distribution function

$$
G_{n}\left(\frac{2 t-\left[\beta_{n}\left(Z_{n-1}(\omega)\right)+\alpha_{n}\left(Z_{n-1}(\omega)\right)\right]}{\beta_{n}\left(Z_{n-1}(\omega)\right)-\alpha_{n}\left(Z_{n-1}(\omega)\right)}\right), t \in \mathbb{R}
$$

provided $\beta_{n}-\alpha_{n}>0$ and $Z_{n}=X_{1} b_{1}+X_{2} b_{2}+\cdots+X_{n} b_{n}=Z_{n-1}+X_{n} b_{n}$.
As was already mentioned, it may happen that for some $n \geq 1$ and $Z_{n}(\omega) \in B_{n}$ the interval $\left[\alpha_{n+1}, \beta_{n+1}\right]=\left[\alpha_{n+1}\left(Z_{n}(\omega)\right), \beta_{n+1}\left(Z_{n}(\omega)\right)\right]$ is reduced to the single point $\{0\}$; in this situation, we assume that the distribution G_{n+1} is transformed in such a way that it assigns the unit mass to the one point set $\{0\}$. Although in such a case $Z_{n+1}(\omega)=$ $Z_{n}(\omega)$, the next random interval $\left[\alpha_{n+2}, \beta_{n+2}\right]=\left[\alpha_{n+2}\left(Z_{n+1}(\omega)\right), \beta_{n+2}\left(Z_{n+1}(\omega)\right)\right]$, defined by means of the successive basic vector b_{n+2}, need not be equal to $\{0\}$; thus, the process is still continued.

Definition 1 The sequence of \mathbb{B}-valued r.e.'s $\left\{Z_{n}, n \geq 1\right\}$ obtained in the way described above is called Banach random walk (BRW) in a Banach space \mathbb{B}.

It seems that the main idea of Banach's [1] construction of \mathfrak{L}-integral was the symmetry of mappings corresponding to the symmetry of Lebesgue measures in $\mathbb{R}^{n}, n \geq 1$, which led to convergence of the integral functional in (1). Therefore, we introduce in addition the following notion:

Definition 2 The Schauder basis $\left\{b_{n}, n \geq 1\right\}$ is called quasi-orthogonal, if

$$
\begin{equation*}
\beta_{n+1}\left(\pi_{n}(x)\right)=-\alpha_{n+1}\left(\pi_{n}(x)\right) \tag{2}
\end{equation*}
$$

for all $n \geq 1$ and $x \in \mathbb{B}$ such that $\pi_{n}(x) \in B_{n}$.
Recall that the basis $\left\{b_{n}, n \geq 1\right\}$ in a Banach space $(\mathbb{B},\|\cdot\|)$ is said to be unconditional, if for all $n \geq 1, x_{k} \in \mathbb{R}$ and $\epsilon_{k}= \pm 1,1 \leq k \leq n$, we have

$$
\begin{equation*}
\left\|\sum_{k=1}^{n} \epsilon_{k} x_{k} b_{k}\right\|=\left\|\sum_{k=1}^{n} x_{k} b_{k}\right\| . \tag{3}
\end{equation*}
$$

The definition of a quasi-orthogonal Schauder basis in a Banach space seems to be similar to the condition defining an unconditional basis, but in spite of this, these two
notions are not equivalent. If the basis $\left\{b_{n}, n \geq 1\right\}$ is unconditional, i.e., (3) holds, then it is obviously quasi-orthogonal, but the converse need not be true. To explain the notion of quasi-orthogonality, below we present the construction of relevant examples of Banach spaces with quasi-orthogonal Schauder bases which are not unconditional. It should be pointed out that many familiar Banach spaces possess unconditional Schauder bases (thus in fact quasi-orthogonal) consisting of unit vectors, but the class of Banach spaces with quasi-orthogonal bases is substantially larger than the class of spaces with unconditional bases.

3 Banach Spaces with Quasi-Orthogonal Bases

The quasi-orthogonal basis is constructed sequentially, step by step: given any basic vectors $b_{1}, b_{2}, \ldots, b_{n}$, the element b_{n+1} of the basis is chosen in such a way that for arbitrary $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}$ satisfying condition $x_{1} b_{1}+\cdots+x_{n} b_{n}=\pi_{n}(x) \in B_{n}$, Eq. (2) is satisfied. As will be seen condition (3) for this property is not necessary.

1. Spaces of bounded sums and conditionally convergent series

Let $S=\mathbb{R}^{\mathbb{N}}=\left\{x=\left(x_{1}, x_{2}, \ldots\right): x_{k} \in \mathbb{R}\right.$ for all $\left.k \geq 1\right\}$ be the set of all infinite sequences of real numbers. Define a function $\|\cdot\|: S \rightarrow[0, \infty]$ by

$$
\begin{aligned}
\|x\|= & \sup \left\{\left|x_{1}+x_{2}\right|,\left|x_{1}-x_{2}\right|,\left|x_{1}+x_{2}+x_{3}\right|,\left|x_{1}+x_{2}-x_{3}\right|,\right. \\
& \left.\ldots,\left|x_{1}+\cdots+x_{n-1}+x_{n}\right|,\left|x_{1}+\cdots+x_{n-1}-x_{n}\right|, \ldots\right\} \\
= & \sup \left\{\left|x_{1}\right|+\left|x_{2}\right|,\left|x_{1}+x_{2}\right|+\left|x_{3}\right|, \ldots,\left|x_{1}+\cdots+x_{n}\right|+\left|x_{n+1}\right|, \ldots\right\},
\end{aligned}
$$

and next put

$$
S_{b}=\left\{x=\left(x_{1}, x_{2}, \ldots\right) \in S:\|x\|<\infty\right\} .
$$

Then $\|\cdot\|$ is a norm in S_{b}, and $\left(S_{b},\|\cdot\|\right)$ is a Banach space. The space S_{b} consists of all bounded sequences $\left(x_{1}, x_{2}, \ldots\right) \in S$ of real numbers with bounded partial sums $s_{n}=x_{1}+\cdots+x_{n}$; namely, if $x \in S_{b}$ and $\|x\|=M<\infty$, then $\left|x_{n}\right| \leq M$ and $\left|s_{n}\right| \leq M$ for all $n \geq 1$. Conversely, if there exists a constant $0 \leq M<\infty$ such that $\left|x_{n}\right| \leq M$ and $\left|s_{n}\right| \leq M$ for all $n \geq 1$, then $\left|s_{n} \pm x_{n+1}\right| \leq\left|s_{n}\right|+\left|x_{n+1}\right| \leq 2 M$, and thus, $\|x\| \leq 2 M$, i.e., $x=\left(x_{1}, x_{2}, \ldots\right) \in S_{b}$. Therefore, $\left(S_{b},\|\cdot\|\right)$ may be called the space of bounded sums.

However, the space S_{b} of sequences of real numbers is not separable. To show this, consider the family $2^{\mathbb{N}}$ of all the subsets of the set $\mathbb{N}=\{1,2, \ldots\}$, and for $\emptyset \neq$ $A=\left\{k_{1}, k_{2}, \ldots\right\} \subseteq \mathbb{N}$, where $k_{1}<k_{2}<\cdots$, define x_{A} as the sequence with terms $x_{k_{2 j-1}}=1, x_{k_{2 j}}=-1, j \geq 1$, and $x_{i}=0$ otherwise, along with $x_{\emptyset}=(0,0, \ldots)$. Then $\left\|x_{A}\right\| \leq 2$, while $\left\|x_{A}-x_{B}\right\| \geq 1$ whenever $A, B \subseteq \mathbb{N}, A \neq B$. Since the set $2^{\mathbb{N}}$ is uncountable, the space S_{b} is nonseparable. Hence in the context of our requirements, the space S_{b} is inadequate.

Consider the set

$$
S_{c}=\left\{x=\left(x_{1}, x_{2}, \ldots\right) \in S_{b}: \text { the series } \sum_{k} x_{k} \text { converges }\right\} .
$$

In other words, S_{c} is the set of all sequences $x=\left(x_{1}, x_{2}, \ldots\right) \in S_{b}$ for which a finite limit $\lim _{n} s_{n}=s \in \mathbb{R}$ exists. It can be easily verified that ($S_{c},\|\cdot\|$) is also a Banach space. Moreover, the space S_{c} is separable. Indeed, the set of elements

$$
\left\{e_{n}=\left(\delta_{k n}, k \geq 1\right), n=1,2, \ldots\right\},
$$

where $\delta_{k n}=0$ for $k \neq n$ and $\delta_{n n}=1$, is a basis of the space S_{c}, and finite linear combinations of vectors e_{n} with rational coefficients from a countable dense subset in S_{c}. Moreover, from the definition of the norm $\|\cdot\|$ it follows that the basis $\left\{e_{n}, n \geq 1\right\}$ is quasi-orthogonal, but it is not unconditional, because sums of the form $\epsilon_{1} x_{1}+\epsilon_{2} x_{2}+$ $\cdots+\epsilon_{n} x_{n}, x=\left(x_{1}, x_{2}, \ldots\right) \in S_{c}$, need not be convergent for all combinations of signs $\epsilon_{k}= \pm 1$. Taking into account the above properties, $\left(S_{c},\|\cdot\|\right)$ may be called the Banach space of conditionally convergent series.

Since the existence of $\lim _{n} s_{n}=s \in \mathbb{R}$ implies that $\lim _{n} x_{n}=0$, we conclude that $x \in S_{c} \Rightarrow x \in c_{0}$. The Banach space c_{0} of sequences of real numbers convergent to 0 is usually considered with the supremum norm $|x|_{\infty}=\sup \left\{\left|x_{1}\right|,\left|x_{2}\right|, \ldots\right\}$, but the two norms $\|\cdot\|$ and $|\cdot|_{\infty}$ restricted to S_{c} are not equivalent. To see this, consider the sequence of points $\left\{x^{(n)}, n \geq 1\right\}$,

$$
\begin{aligned}
& x^{(1)}=(1,-1 / 2,1 / 3,-1 / 4,1 / 5,-1 / 6,1 / 7,-1 / 8, \ldots), \\
& x^{(2)}=(1,1 / 2,1 / 3,-1 / 4,1 / 5,-1 / 6,1 / 7,-1 / 8, \ldots), \\
& x^{(3)}=(1,1 / 2,1 / 3,1 / 4,1 / 5,-1 / 6,1 / 7,-1 / 8, \ldots),
\end{aligned}
$$

and put $x^{(\infty)}=(1,1 / 2,1 / 3,1 / 4,1 / 5,1 / 6, \ldots, 1 / n, 1 /(n+1), \ldots)$.
Then $\left\|x^{(n)}\right\|<\infty$ for all $n \geq 1$, so that $\left\{x^{(n)}, n \geq 1\right\} \subset S_{c}$. Moreover, $\left|x^{(n)}-x^{(\infty)}\right|_{\infty}=1 / n \rightarrow 0$, while $\left\|x^{(n)}-x^{(\infty)}\right\|=\infty, n=1,2, \ldots$ which is a consequence of the fact that $\sum_{n} 1 / n=\infty$. Therefore, the inclusion $S_{c} \subset c_{0}$ is valid only for sets, but it is not true for Banach spaces, $\left(S_{c},\|\cdot\|\right) \nsubseteq\left(c_{0},|\cdot|_{\infty}\right)$.

A similar effect as in the case of the space S_{c} can be obtained for every fixed system of signs $\epsilon=\left(\epsilon_{1}, \epsilon_{2}, \ldots\right) \in\{-1,1\}^{\mathbb{N}}$ and the norm given by

$$
\|x\|_{\epsilon}=\left\|\left(\epsilon_{1} x_{1}, \epsilon_{2} x_{2}, \epsilon_{3} x_{3}, \ldots\right)\right\| \text { for } x=\left(x_{1}, x_{2}, \ldots\right)
$$

In this way, we obtain a Banach space $\left(S_{c, \epsilon},\|\cdot\|_{\epsilon}\right)$, where

$$
S_{c, \epsilon}=\left\{x=\left(x_{1}, x_{2}, \ldots\right) \in S:\|x\|_{\epsilon}<\infty \text { and the series } \sum_{k} \epsilon_{k} x_{k} \text { converges }\right\} .
$$

The basis $\left\{e_{n}, n \geq 1\right\}$ in $S_{c, \epsilon}$ is quasi-orthogonal, but it is not unconditional. Note now that $\ell^{1} \subseteq S_{c, \epsilon}$ for each $\epsilon \in\{-1,1\}^{\mathbb{N}}$, therefore $\ell^{1} \subseteq \bigcap_{\epsilon \in\{-1,1\}^{\mathbb{N}}} S_{c, \epsilon}$. On the other hand, assuming that $x=\left(x_{1}, x_{2}, \ldots\right) \in \bigcap_{\epsilon \in\{-1,1\}^{\mathbb{N}}} S_{c, \epsilon}$ and taking $\epsilon^{(x)}=$ $\left(\operatorname{sign} x_{1}, \operatorname{sign} x_{2}, \ldots, \operatorname{sign} x_{n}, \ldots\right)$ we have

$$
\epsilon_{1}^{(x)} x_{1}+\epsilon_{2}^{(x)} x_{2}+\cdots+\epsilon_{n}^{(x)} x_{n}=\left|x_{1}\right|+\left|x_{2}\right|+\cdots+\left|x_{n}\right|, n \geq 1
$$

Hence, we infer that

$$
\sum_{n=1}^{\infty}\left|x_{n}\right|=\sup _{n}\left\{\left|\epsilon_{1}^{(x)} x_{1}+\epsilon_{2}^{(x)} x_{2}+\cdots+\epsilon_{n}^{(x)} x_{n}\right|\right\} \leq\|x\|_{\epsilon^{(x)}}
$$

where $\epsilon^{(x)} \in\{-1,1\}^{\mathbb{N}}$, thus $x \in \ell^{1}$. Consequently, $\ell^{1}=\bigcap_{\epsilon \in\{-1,1\}^{\mathbb{N}}} S_{c, \epsilon}$.
Define next a function $\|\cdot\|_{\cap}: \bigcap_{\epsilon \in\{-1,1\}^{\mathbb{N}}} S_{c, \epsilon} \rightarrow[0, \infty]$ by the formula: $\|x\|_{\cap}=$ $\sup \left\{\|x\|_{\epsilon}, \epsilon \in\{-1,1\}^{\mathbb{N}}\right\}$. Since

$$
\left|\epsilon_{1} x_{1}+\epsilon_{2} x_{2}+\cdots+\epsilon_{n-1} x_{n-1} \pm \epsilon_{n} x_{n}\right| \leq\left|x_{1}\right|+\left|x_{2}\right|+\cdots+\left|x_{n}\right|
$$

for each $\epsilon \in\{-1,1\}^{\mathbb{N}}$, where the inequality \leq may be replaced by the equality whenever $\epsilon_{k}=\operatorname{sign} x_{k}, 1 \leq k \leq n-1$ and $\pm \epsilon_{n}=\operatorname{sign} x_{n}$, the function $\|\cdot\|_{\cap}$ assumes only finite values and in fact $\|x\|_{\cap}=\sum_{n}\left|x_{n}\right|$, i.e., $\|\cdot\|_{\cap}$ is the norm equal precisely to the norm $|x|_{1}=\sum_{n}\left|x_{n}\right|$ of the space ℓ^{1}. Therefore, one can write

$$
\left(\ell^{1},|\cdot|_{1}\right)=\bigcap_{\epsilon \in\{-1,1\}^{\mathbb{N}}}\left(S_{c, \epsilon},\|\cdot\|_{\epsilon}\right) .
$$

In this sense, the Banach space $\left(\ell^{1},|\cdot|_{1}\right)$ in comparison with the space $\left(S_{c},\|\cdot\|\right)$ is "relatively small". It is also worth mentioning that the basis $\left\{e_{n}, n \geq 1\right\}$ in S_{c} (as well as in $\left.S_{c, \epsilon}\right)$ is monotone, i.e., for every choice of scalars $\left\{x_{n}, n \geq 1\right\} \subseteq \mathbb{R}$, the sequence of numbers $\left\{\left\|\sum_{k=1}^{n} x_{n} e_{n}\right\|, n \geq 1\right\}$ is nondecreasing.

Recall now that a basis $\left\{b_{n}, n \geq 1\right\}$ of a Banach space $(\mathbb{B},\|\cdot\|)$ is called boundedly complete if, for every sequence of scalars $\left\{x_{n}, n \geq 1\right\} \subseteq \mathbb{R}$ such that $\sup _{n \geq 1}\left\|\sum_{k=1}^{n} x_{k} b_{k}\right\|<\infty$, the series $\sum_{n=1}^{\infty} x_{n} b_{n}$ converges in norm of \mathbb{B}. Unfortunately, the basis $\left\{e_{n}, n \geq 1\right\}$ in S_{c} or $S_{c, \epsilon}$ is not boundedly complete.

2. Spaces of conditionally convergent series with rates of convergence

The space S_{c} described here may be the prototype for a wide class of various spaces with quasi-orthogonal Schauder bases that are not unconditional. For instance, consider the spaces S_{c}^{p} of (conditionally) summable sequences of real numbers spanned on vectors of the basis $\left\{e_{n}, n \geq 1\right\}$, with norms likewise in $\ell^{p}, 1 \leq p<\infty$, (that describe rates of convergence)

$$
\|x\|_{p}=\left(\sum_{n=1}^{\infty}\left\|R_{n}(x)\right\|^{p}\right)^{1 / p}
$$

where $R_{n}(x)=\sum_{k=n}^{\infty} x_{k} e_{k}$ for $x=\left(x_{1}, x_{2}, \ldots\right) \in S$; spaces $S_{c, w}$ with norms determined by some positive weights $w=\left(w_{1}, w_{2}, \ldots\right), w_{i}>0$,

$$
\|x\|_{1, w}=\sum_{n=1}^{\infty} w_{n}\left\|R_{n}(x)\right\|,
$$

say geometrical weights $w=\left(w_{1}, w_{2}, \ldots\right)=\left(q^{1}, q^{2}, \ldots\right), q>0$, or more generally, spaces $S_{c, w}^{p}$ equipped with norms

$$
\|x\|_{p, w}=\left(\sum_{n=1}^{\infty} w_{n}\left\|R_{n}(x)\right\|^{p}\right)^{1 / p}, 1 \leq p<\infty, \text { etc. }
$$

Since convergence of the series on the right-hand side of the definition of $\|x\|_{p}$ implies that partial sums of the series $\sum_{n} x_{n}$ satisfy Cauchy's criterion, the basis $\left\{e_{n}, n \geq 1\right\}$ in $\left(S_{c}^{p},\|\cdot\|_{p}\right)$ is evidently monotone and boundedly complete. Thus in view of Dunford's theorem [4, Ch. III, §1, Th. 6, p. 64], these spaces possess the Radon-Nikodym property (RNP)-see [4, Ch. III, §1, p. 61] for the definition of this notion. Moreover, the equality

$$
\left\|\sum_{j=k}^{n} x_{j} e_{j}\right\|=\left\|\sum_{j=k}^{n-1} x_{j} e_{j}-x_{n} e_{n}\right\|
$$

valid for all $\left(x_{1}, x_{2}, \ldots\right) \in S$ and $1 \leq k<n<\infty$ implies that the basis $\left\{e_{n}, n \geq 1\right\}$ in $\left(S_{c}^{p},\|\cdot\|_{p}\right)$ is again quasi-orthogonal, but it is not unconditional. A similar conclusion can be also derived for spaces equipped with norms $\|\cdot\|_{p, w}$, provided that w is a suitable sequence of weights.
3. Spaces of bounded sums of functions and conditionally convergent function series Let $\left\{q_{1}=0, q_{2}=1, q_{3}, q_{4}, \ldots\right\} \subset[0,1] \subset \mathbb{R}$ be a countable set of numbers dense in $[0,1]$ (arranged in any order), and let $\left\{e_{n}(t), n \geq 1\right\}$ be the system of Schauder hat functions in $[0,1]$ defined as follows: $e_{1}(t)=1-t$ and $e_{2}(t)=t, 0 \leq t \leq 1$; for $n>2$ the points q_{1}, \ldots, q_{n-1} divide the interval $[0,1]$ into $n-2$ subintervals, and if $\left[q_{i}, q_{j}\right]$ is the subinterval which contains the point q_{n}, then $e_{n}(t)=0$ for $t \in\left[0, q_{i}\right] \cup\left[q_{j}, 1\right], e_{n}\left(q_{n}\right)=1$, and e_{n} is a linear function in the interval $\left[q_{i}, q_{n}\right]$ as well as in $\left[q_{n}, q_{j}\right]$. It is known that the described system of Schauder hat functions forms a basis for the space $C[0,1]$ of real-valued continuous functions in $[0,1]$ with the supremum norm

$$
\|f\|_{\infty}=\sup _{0 \leq t \leq 1}|f(t)|
$$

see, e.g., [10, Prop. 2.3.5, p. 29].
Now with every sequence $x=\left(x_{1}, x_{2}, \ldots\right) \subset \mathbb{R}^{\mathbb{N}}$, we associate an element g having coefficients (x_{1}, x_{2}, \ldots) in the basis $\left\{e_{n}(t), n \geq 1\right\}$, formally written as $g:=$ $\left(x_{1} e_{1}+x_{2} e_{2}+\cdots\right)$, and define

$$
\begin{aligned}
\|g\| & =\| \sup \left\{\left|x_{1} e_{1}+x_{2} e_{2}\right|,\left|x_{1} e_{1}-x_{2} e_{2}\right|, \ldots,\left|x_{1} e_{1}+\cdots+x_{n-1} e_{n-1}+x_{n} e_{n}\right|,\right. \\
& \left.\left|x_{1} e_{1}+\cdots+x_{n-1} e_{n-1}-x_{n} e_{n}\right|, \ldots\right\} \|_{\infty} \\
& =\left\|\sup _{n \geq 1}\left\{\left|x_{1} e_{1}+\cdots+x_{n} e_{n}\right|+\left|x_{n+1} e_{n+1}\right|\right\}\right\|_{\infty},
\end{aligned}
$$

along with

$$
S_{b}[0,1]=\left\{g=\left(x_{1} e_{1}+x_{2} e_{2}+\cdots\right):\|g\|<\infty\right\}
$$

Then $\left(S_{b}[0,1],\|\cdot\|\right)$ is a (nonseparable) Banach space. The space $S_{b}[0,1]$ consists of elements $g=\left(x_{1} e_{1}+x_{2} e_{2}+\cdots\right)$ with finite sums of functions $x_{1} e_{1}+x_{2} e_{2}+$ $\cdots+x_{n} e_{n}$ bounded uniformly in $0 \leq t \leq 1$ and $n \geq 1$, but not necessarily convergent function series $x_{1} e_{1}+x_{2} e_{2}+\cdots$

Furthermore, denote

$$
S_{c}[0,1]=\left\{g=\left(x_{1} e_{1}+x_{2} e_{2}+\cdots\right) \in S_{b}[0,1]: \text { the series } \sum_{n} x_{n} e_{n}\right.
$$

converges in norm $\|\cdot\|\}$.
It can be shown that $S_{c}[0,1]$ as a set of functions is identically equal to $C[0,1]$, and on account of the well-known open mapping theorem, the norm $\|\cdot\|$ is equivalent to $\|\cdot\|_{\infty}$; therefore, $\left(S_{c}[0,1],\|\cdot\|\right)$ treated as a function Banach space with its norm topology is the same as $\left(C[0,1],\|\cdot\|_{\infty}\right)$. Since finite linear combinations $\sum_{k=1}^{n} w_{k} e_{k}$ with rational coefficients form a countable dense set in $C[0,1]$, the space $S_{c}[0,1]$ is separable. The Schauder basis $\left\{e_{n}(t), n \geq 1\right\}$ in $\left(S_{c}[0,1],\|\cdot\|\right)$ is monotone, because finite linear combinations of hat functions $e_{n}(t), n \geq 1$, are piecewise linear with an increasing number of nodes. However, the basis $\left\{e_{n}(t), n \geq 1\right\}$ is not boundedly complete, for bounded finite linear combinations of basic functions need not define a conditionally uniformly convergent series of functions. Moreover, the basis $\left\{e_{n}(t), n \geq 1\right\}$ in $S_{c}[0,1]$ is quasi-orthogonal with respect to $\|\cdot\|$, but it is not quasi-orthogonal in $\left(C[0,1],\|\cdot\|_{\infty}\right)$, and it is not unconditional. More precisely, properties of a given Schauder basis in $C[0,1]$ depend on the shape of the unit sphere, and from our considerations it follows that for each Schauder basis $\left\{e_{n}(t), n \geq 1\right\}$ there can be defined a norm $\|\cdot\|$ equivalent to the original supremum norm $\|\cdot\|_{\infty}$ in $C[0,1]$, such that the basis $\left\{e_{n}(t), n \geq 1\right\}$ becomes quasi-orthogonal with respect to $\|\cdot\|$, although the same basis need not be quasi-orthogonal with respect to $\|\cdot\|_{\infty}$.

By analogy to $S_{c, \epsilon}$ one can now define the spaces $S_{c, \epsilon}[0,1]$ consisting of function series $\sum_{n} \epsilon_{n} x_{n} e_{n}$ convergent (conditionally) uniformly in $0 \leq t \leq 1$ with norms

$$
\left\|\left(x_{1} e_{1}+x_{2} e_{2}+\cdots\right)\right\|_{\epsilon}=\left\|\left(\epsilon_{1} x_{1} e_{1}+\epsilon_{2} x_{2} e_{2}+\cdots\right)\right\|,
$$

for all sequences of signs $\epsilon=\left(\epsilon_{1}, \epsilon_{2}, \ldots\right) \in\{-1,1\}^{\mathbb{N}}$. The intersection

$$
\bigcap_{E\{-1,1\}^{\mathbb{N}}} S_{c, \epsilon}[0,1]:=\ell^{1}[0,1]
$$

is then the Banach space of function series convergent absolutely uniformly in $0 \leq$ $t \leq 1$, with the norm

$$
\sup \left\{\left\|\left(x_{1} e_{1}+x_{2} e_{2}+\cdots\right)\right\|_{\epsilon}: \epsilon \in\{-1,1\}^{\mathbb{N}}\right\}=\sup _{0 \leq t \leq 1} \sum_{n=1}^{\infty}\left|x_{n} e_{n}(t)\right|
$$

The last formula follows from the fact that Schauder hat functions $e_{n}(t), n \geq 1$, are nonnegative, and in a more general case this is a consequence of a theorem by Sierpiński, cf. [10, Prop. 1.5.7, p. 19]. Clearly, the basis $\left\{e_{n}(t), n \geq 1\right\}$ in $\ell^{1}[0,1]$ is quasi-orthogonal, monotone, unconditional and boundedly complete; thus, $\ell^{1}[0,1]$ possesses the RNP, cf. [4, Ch. III, §1, Th. 6, p. 64 and Ch. III, §3, Corollary 8, p. 83].

To estimate the rate of (uniform) convergence of function series of the form $g(t)=$ $\sum_{n=1}^{\infty} x_{n} e_{n}(t), t \in[0,1]$, we may introduce various norms similar as in $\ell^{p}, 1 \leq$ $p<\infty$; namely, let $\left(R_{n} g\right)(t)=\sum_{k \geq n} x_{k} e_{k}(t)$, and let

$$
S_{c}^{p}[0,1]=\left\{g=\sum_{n=1}^{\infty} x_{n} e_{n}(t) \in S_{c}[0,1]:\|g\|_{p}=\left(\sum_{n=1}^{\infty}\left\|\left(R_{n} g\right)\right\|^{p}\right)^{1 / p}<\infty\right\}
$$

Arguing as in example 2, we conclude that the basis $\left\{e_{n}(t), n \geq 1\right\}$ in the space $\left(S_{c}^{p}[0,1],\|\cdot\|_{p}\right)$ is quasi-orthogonal, but it is not unconditional. Moreover, the basis $\left\{e_{n}(t), n \geq 1\right\}$ in $\left(S_{c}^{p}[0,1],\|\cdot\|_{p}\right)$ is monotone and boundedly complete; thus, by Dunford's theorem the spaces $\left(S_{c}^{p}[0,1],\|\cdot\|_{p}\right)$ possess the RNP, see [4, Ch. III, §1, Th. 6, p. 64].

Remark 1 The same idea as above leads to other examples of Banach spaces of a similar kind. For example, let $I=\left\{i_{n}, n \geq 1\right\}$ be a sequence of positive integers such that $1 \leq i_{n} \leq n, i_{n} \nearrow \infty$ and $n-i_{n} \nearrow \infty$ as $n \rightarrow \infty$, and for $x=\left\{x_{n}\right\} \in \mathbb{R}^{\infty}$, let

$$
\|x\|_{I, p}=\left\{\sum_{n=1}^{\infty}\left(\left|x_{i_{n}}+\cdots+x_{n}\right|+\left|x_{n+1}\right|\right)^{p}\right\}^{1 / p}
$$

where $1 \leq p<\infty$, and

$$
\|x\|_{I, \infty}=\sup _{n \geq 1}\left\{\left|x_{i_{n}}+\cdots+x_{n}\right|+\left|x_{n+1}\right|\right\} .
$$

Define

$$
\mathbb{B}_{I, p}=\left\{x=\left\{x_{n}\right\} \in \mathbb{R}^{\infty}: \text { the series } \sum_{n} x_{n} e_{n} \text { converges in norm }\|\cdot\|_{I, p}\right\},
$$

$1 \leq p \leq \infty$. Then $\mathbb{B}_{I, p}, 1 \leq p \leq \infty$, are Banach spaces such that $\left\{e_{n}, n \geq 1\right\}$ is a quasi-orthogonal basis with respect to $\|\cdot\|_{I, p}$, but in general not unconditional. Moreover, for $1 \leq p<\infty$ the basis $\left\{e_{n}, n \geq 1\right\}$ in $\mathbb{B}_{I, p}$ is boundedly complete, and thus, these spaces possess the RNP, cf. [4, Ch. III, §1, Th. 6, p. 64]. Next, if $I^{(1)}=$ $\left\{i_{n}^{(1)}, n \geq 1\right\}, I^{(2)}=\left\{i_{n}^{(2)}, n \geq 1\right\}, \ldots, I^{(k)}=\left\{i_{n}^{(k)}, n \geq 1\right\}$ are some sequences of positive integers satisfying conditions: $1 \leq i_{n}^{(1)}<\cdots<i_{n}^{(k)} \leq n, i_{n}^{(j)} \nearrow \infty, 1 \leq$ $j \leq k, i_{n}^{(j+1)}-i_{n}^{(j)} \nearrow \infty, 1 \leq j<k$, and $n-i_{n}^{(k)} \nearrow \infty$ as $n \rightarrow \infty$, then for $n-i_{n} \geq k \geq 2$ (replacing i_{n} by $i_{n}^{(1)}$), the sums $\left|x_{i_{n}}+\cdots+x_{n}\right|+\left|x_{n+1}\right|$ can be divided into blocks of the form

$$
\left|x_{i_{n}^{(1)}}+\cdots+x_{i_{n}^{(2)}-1}\right|+\left|x_{i_{n}^{(2)}}+\cdots+x_{i_{n}^{(3)}-1}\right|+\cdots+\left|x_{i_{n}^{(k)}}+\cdots+x_{n}\right|+\left|x_{n+1}\right| ;
$$

in addition, for $i \geq 1$, instead of $x_{i} e_{i}$, the terms $\epsilon_{i} x_{i} e_{i}$ can be used, where $\left\{\epsilon_{i}, i \geq 1\right\}$ are various sequences of signs ± 1. By means of these expressions, in an analogous way as above, new norms and new Banach spaces with quasi-orthogonal bases can be defined.

4 Convergence of the Banach Random Walk

According to the standard terminology, the measure G on the Borel σ-field $\mathcal{B}(\mathbb{R})$ is called here symmetric, if $G(-A)=G(A)$ for all $A \in \mathcal{B}(\mathbb{R})$.

Lemma 1 Let $\left\{b_{n}, n \geq 1\right\}$ be a quasi-orthogonal Schauder basis in a real Banach space $(\mathbb{B},\|\cdot\|)$, and let $\left\{G_{n}, n \geq 1\right\}$ be a sequence of symmetric probability distributions concentrated on the interval $[-1,1] \subset \mathbb{R}$. Then the $B R W\left\{Z_{n}, n \geq 1\right\}$ is a \mathbb{B}-valued martingale with respect to the natural filtration $\mathcal{F}_{n}=\sigma\left(X_{1}, X_{2}, \ldots, X_{n}\right)=$ $\sigma\left(Z_{1}, Z_{2}, \ldots, Z_{n}\right), n \geq 1$.

Proof From the construction of BRW in a Banach space, it follows that $Z_{n} \in B$ for all $n \geq 1$, i.e., the r.e.'s Z_{n} are bounded and therefore Bochner integrable. Moreover, each Z_{n} is \mathcal{F}_{n}-measurable; thus,

$$
E\left[Z_{n+1} \mid \mathcal{F}_{n}\right]=E\left[Z_{n}+X_{n+1} b_{n+1} \mid \mathcal{F}_{n}\right]=Z_{n}+E\left[X_{n+1} \mid \mathcal{F}_{n}\right] b_{n+1} \text { a.s. }
$$

Hence it suffices to show the equality $E\left[X_{n+1} \mid \mathcal{F}_{n}\right]=0$ a.s. But the last statement is obvious, since it is known that X_{n+1} possesses a symmetric distribution in the a.s. symmetric interval $\left[\alpha_{n+1}\left(Z_{n}(\omega)\right), \beta_{n+1}\left(Z_{n}(\omega)\right)\right]=\left[-\beta_{n+1}\left(Z_{n}(\omega)\right), \beta_{n+1}\left(Z_{n}(\omega)\right)\right]$.

Lemma 2 Let $\left\{Z_{n}, n \geq 1\right\}$ be the $B R W$ in a Banach space \mathbb{B} with a quasi-orthogonal Schauder basis $\left\{b_{n}, n \geq 1\right\}$ and let $\left\{\mathcal{F}_{n}, n \geq 1\right\}$ be the defined above filtration associated with $\left\{Z_{n}, n \geq 1\right\}$. Denote by \mathcal{F}_{∞} the σ-field generated by the field $\bigcup_{n=1}^{\infty} \mathcal{F}_{n}$, i.e., $\mathcal{F}_{\infty}=\sigma\left(\bigcup_{n=1}^{\infty} \mathcal{F}_{n}\right)$. Then the following statements are true:
(a) There exists a vector measure $v: \mathcal{F}_{\infty} \rightarrow \mathbb{B}$ with bounded variation, absolutely continuous with respect to P, such that

$$
\left\langle Z_{n}, x^{*}\right\rangle \rightarrow \frac{\mathrm{d}\left\langle v, x^{*}\right\rangle}{\mathrm{d} P} \text { a.s. for all } x^{*} \in \mathbb{B}^{*}
$$

(b) If there is a r.e. $\xi \in L^{1}\left(\mathcal{F}_{\infty} ; \mathbb{B}\right)$ such that

$$
\left\langle Z_{n}, x^{*}\right\rangle \rightarrow\left\langle\xi, x^{*}\right\rangle \text { a.s. }
$$

for each $x^{*} \in \mathbb{B}^{*}$, then

$$
\left\|Z_{n}-\xi\right\| \rightarrow 0 \text { a.s. }
$$

Proof Since the BRW $\left\{Z_{n}, n \geq 1\right\}$ satisfies the condition $Z_{n} \in B, n \geq 1$, we have $\sup _{n \geq 1} E\left\|Z_{n}\right\| \leq 1<\infty$. Therefore, our result is a direct consequence of a theorem given by Stegall, which can be found in [11, Ch. II, §4.3, Prop. 4.3, p. 132].

Lemma 3 For each set $A \in \mathcal{F}_{\infty}$ there exists

$$
\lim _{n \rightarrow \infty} \int_{A} Z_{n} \mathrm{~d} P=V(A)
$$

in the strong topology of \mathbb{B}, and the mapping $V: \mathcal{F}_{\infty} \rightarrow \mathbb{B}$ is a countably additive vector measure.

Proof Observe first that in view of Jensen's inequality for conditional expectations in a Banach space, the sequence $\left\{\left\|Z_{n}\right\|, \mathcal{F}_{n}, n \geq 1\right\}$ is a real-valued submartingale, cf. [11, Ch. II, §4.1, (g), p. 127], or [12]. Furthermore,

$$
\sup _{n \geq 1} E\left\|Z_{n}\right\|^{p} \leq 1<\infty \text { for each } 1 \leq p<\infty
$$

so that r.v.'s $\left\{\left\|Z_{n}\right\|, n \geq 1\right\}$ are uniformly integrable, which implies a.s. convergence $\left\|Z_{n}\right\| \rightarrow Z_{\infty}$ (and in L^{1}), where $Z_{\infty} \in L^{p}=L^{p}(\mathbb{R})$ for every fixed $1 \leq p<\infty$, see, e.g., [8, Ch. IV, Th. IV-1-2, p. 62, and Prop. IV-5-24, p. 91]. In particular,

$$
\int_{A}\left\|Z_{n}\right\| \mathrm{d} P \rightarrow \int_{A} Z_{\infty} \mathrm{d} P
$$

for each measurable set $A \in \mathcal{F}$. Next, if $B \in \bigcup_{n} \mathcal{F}_{n}$, then by the martingale property of $\left\{Z_{n}, n \geq 1\right\}$,

$$
\int_{B} Z_{n} \mathrm{~d} P \rightarrow V(B)
$$

strongly in \mathbb{B}. Let $\varepsilon>0$ be arbitrary and let $\delta>0$ be chosen in such a way that $\int_{C} Z_{\infty} \mathrm{d} P<\varepsilon / 3$ whenever $C \in \mathcal{F}_{\infty}$ and $P[C]<\delta$. Given any set $A \in \mathcal{F}_{\infty}$, select $B \in \bigcup_{n} \mathcal{F}_{n}$ satisfying condition $P[A \div B]<\delta$. Obviously,

$$
\begin{aligned}
& \left\|\int_{A} Z_{n} \mathrm{~d} P-\int_{A} Z_{m} \mathrm{~d} P\right\| \leq\left\|\int_{A} Z_{n} \mathrm{~d} P-\int_{B} Z_{n} \mathrm{~d} P\right\| \\
& \quad+\left\|\int_{B} Z_{n} \mathrm{~d} P-\int_{B} Z_{m} \mathrm{~d} P\right\|+\left\|\int_{B} Z_{m} \mathrm{~d} P-\int_{A} Z_{m} \mathrm{~d} P\right\| .
\end{aligned}
$$

Moreover,

$$
\left\|\int_{A} Z_{n} \mathrm{~d} P-\int_{B} Z_{n} \mathrm{~d} P\right\| \leq \int_{A \backslash B}\left\|Z_{n}\right\| \mathrm{d} P+\int_{B \backslash A}\left\|Z_{n}\right\| \mathrm{d} P=\int_{A \div B}\left\|Z_{n}\right\| \mathrm{d} P .
$$

Passing to the limit as $n \rightarrow \infty$, we obtain

$$
\lim _{n \rightarrow \infty} \int_{A \div B}\left\|Z_{n}\right\| \mathrm{d} P=\int_{A \div B} Z_{\infty} \mathrm{d} P<\varepsilon / 3
$$

thus

$$
\left\|\int_{A} Z_{n} \mathrm{~d} P-\int_{B} Z_{n} \mathrm{~d} P\right\|<\varepsilon / 3
$$

for sufficiently large $n \geq n_{0}$. Since the sequence $\left\{\int_{B} Z_{n} \mathrm{~d} P, n \geq 1\right\}$ is Cauchy in \mathbb{B}, we also conclude that

$$
\left\|\int_{B} Z_{n} \mathrm{~d} P-\int_{B} Z_{m} \mathrm{~d} P\right\|<\varepsilon / 3
$$

for all large enough $m>n \geq n_{1}$. Consequently,

$$
\left\|\int_{A} Z_{n} \mathrm{~d} P-\int_{A} Z_{m} \mathrm{~d} P\right\|<\varepsilon,
$$

whenever $m>n \geq \max \left\{n_{0}, n_{1}\right\}$. In other words, the sequence of integrals $\left\{\int_{A} Z_{n} \mathrm{~d} P, n \geq 1\right\}$ is Cauchy in $(\mathbb{B},\|\cdot\|)$, and therefore, there exists

$$
\lim _{n \rightarrow \infty} \int_{A} Z_{n} \mathrm{~d} P=V(A)
$$

in the strong topology of \mathbb{B} for each set $A \in \mathcal{F}_{\infty}$. It can be easily seen that $V: \mathcal{F}_{\infty} \rightarrow \mathbb{B}$ is finitely additive. Let $A_{1}, A_{2}, \ldots \in \mathcal{F}_{\infty}$ be an arbitrary sequence of pairwise disjoint sets. Notice that

$$
\left\|\lim _{n \rightarrow \infty} \int_{\bigcup_{k=1}^{\infty} A_{k}} Z_{n} \mathrm{~d} P-\lim _{n \rightarrow \infty} \int_{\bigcup_{k=1}^{m} A_{k}} Z_{n} \mathrm{~d} P\right\|=\lim _{n \rightarrow \infty}\left\|\int_{\bigcup_{k=m+1}^{\infty} A_{k}} Z_{n} \mathrm{~d} P\right\|,
$$

and thus, to prove countable additivity of V it is enough to show that

$$
\lim _{n \rightarrow \infty}\left\|\int_{\bigcup_{k=m+1}^{\infty} A_{k}} Z_{n} \mathrm{~d} P\right\| \rightarrow 0
$$

as $m \rightarrow \infty$. Taking m_{0} so large that $P\left[\bigcup_{k=m+1}^{\infty} A_{k}\right]<\delta$ for $m \geq m_{0}$, we obtain
$\lim _{n \rightarrow \infty}\left\|\int_{\bigcup_{k=m+1}^{\infty} A_{k}} Z_{n} \mathrm{~d} P\right\| \leq \lim _{n \rightarrow \infty} \int_{\bigcup_{k=m+1}^{\infty} A_{k}}\left\|Z_{n}\right\| \mathrm{d} P=\int_{\bigcup_{k=m+1}^{\infty} A_{k}} Z_{\infty} \mathrm{d} P<\varepsilon / 3$
provided $m \geq m_{0}$, which terminates the proof.
The above Lemma 3 enables us to apply the Lebesgue decomposition theorem for the vector measure V, see [4, Ch. I, §5, Th. 9, p. 31].

Lemma 4 Let

$$
V(A)=\lim _{n \rightarrow \infty} \int_{A} Z_{n} \mathrm{~d} P, \quad A \in \mathcal{F}_{\infty}
$$

and let $V=H+J,|H| \ll P,|J| \perp P$, be the Lebesgue decomposition of V with respect to P, where $|H|,|J|$ are variations of H and J, respectively. Then $\lim _{n \rightarrow \infty} Z_{n}$ exists a.s. if and only if H has a Radon-Nikodym derivative $h \in L^{1}(\mathcal{F} ; \mathbb{B})$. Moreover, in this case $\lim _{n \rightarrow \infty} Z_{n}=E\left(h \mid \mathcal{F}_{\infty}\right)$ a.s.

Proof Arguing as above, we easily note that $\left\{Z_{n}, \mathcal{F}_{n}, n \geq 1\right\}$ is an $L^{1}(\mathbb{B})$-bounded martingale (here, and in the sequel $\left.L^{p}(\mathbb{B})=L^{p}(\Omega, \mathcal{F}, P ; \mathbb{B}), 1 \leq p<\infty\right)$; thus, the conclusion follows from the martingale pointwise convergence theorem given in [4, Ch. V, §2, Th. 9, p. 130].

Lemma 5 Let \mathbb{B} be a Banach space with the RNP and a quasi-orthogonal Schauder basis $\left\{b_{n}, n \geq 1\right\}$. Moreover, let $\left\{G_{n}, n \geq 1\right\}$ be a sequence of symmetric probability distributions concentrated on $[-1,1] \subset \mathbb{R}$. Then the BRW martingale $\left\{Z_{n}, n \geq 1\right\}$ converges strongly a.s. and in $L^{p}(\mathbb{B})$ for each fixed $1 \leq p<\infty$.

Proof The limit $\lim _{n \rightarrow \infty} Z_{n}$ of the martingale $\left\{Z_{n}, n \geq 1\right\}$ exists in L^{p} (\mathbb{B})-norm, if and only if $\sup _{n \geq 1}\left\|Z_{n}\right\|_{p}^{p}=\sup _{n \geq 1} E\left\|Z_{n}\right\|^{p}<\infty$, where $1<p<\infty$, which is evident as $Z_{n} \in B$ for $n \geq 1$. The last observation implies uniform integrability of random elements $\left\{Z_{n}, n \geq 1\right\}$, and we have obviously $\sup _{n \geq 1}\left\|Z_{n}\right\|_{1}=\sup _{n \geq 1} E\left\|Z_{n}\right\| \leq$ $1<\infty$. Thus $\lim _{n \rightarrow \infty} Z_{n}$ exists as well in $L^{1}(\mathbb{B})$-norm in view of the martingale mean convergence theorem, cf. [4, Ch. V, §2, Corollary 4, p. 126]. It is also well known that an $L^{1}(\mathbb{B})$ convergent martingale converges a.s. to its $L^{1}(\mathbb{B})$-limit, see $[4, \mathrm{Ch} . \mathrm{V}$, §2, Th. 8, p. 129], or [11, Ch. II, §4.3, Th. 4.2, p. 131 and Th. 4.3, p. 136].

Corollary 1 If \mathbb{B} is a Banach space with a quasi-orthogonal boundedly complete Schauder basis $\left\{b_{n}, n \geq 1\right\}$, then the $B R W\left\{Z_{n}, n \geq 1\right\}$ in \mathbb{B} converges strongly a.s. and in $L^{p}(\mathbb{B})$ for each fixed $1 \leq p<\infty$.

Proof By a theorem of Dunford, if a Banach space \mathbb{B} possesses a boundedly complete Schauder basis, then \mathbb{B} has the RNP, cf. [4, Ch. III, §1, Th. 6, p. 64]. Hence and from Lemma 5, the assertion of Corollary 1 follows.

Corollary 2 Let \mathbb{B} be a reflexive Banach space which has a quasi-orthogonal Schauder basis $\left\{b_{n}, n \geq 1\right\}$. Then the \mathbb{B}-valued $B R W\left\{Z_{n}, n \geq 1\right\}$ converges strongly a.s. and in $L^{p}(\mathbb{B})$ for each fixed $1 \leq p<\infty$. In particular, if $\mathbb{B}=\mathbb{H}$ is a Hilbert space with a basis $\left\{b_{n}, n \geq 1\right\}$ which forms a CONS in \mathbb{H}, then the last statement remains valid.

Proof It is fairly well known from a theorem of Phillips that reflexive Banach spaces have the RNP, see [4, Ch. III, §3, Corollary 4, p. 82]. Since each Hilbert space is reflexive, we conclude that $\mathbb{B}=\mathbb{H}$ has the RNP. Thus, an application of Lemma 5 concludes the proof.

Theorem 1 Let $\phi: \mathbb{B} \rightarrow \mathbb{R}$ be a bounded and continuous mapping in a Banach space \mathbb{B} which has the RNP and a quasi-orthogonal Schauder basis $\left\{b_{n}, n \geq 1\right\}$. If $\left\{Z_{n}, n \geq 1\right\}$ is the $B R W$ in \mathbb{B}, then

$$
\phi\left(Z_{n}\right) \rightarrow \phi(\xi) \text { a.s. and in } L^{p}=L^{p}(\mathbb{R}), \quad 1 \leq p<\infty,
$$

where $\xi=\lim _{n \rightarrow \infty} Z_{n}$ a.s. and in $L^{p}(\mathbb{B})$-norm for all $1 \leq p<\infty$. In particular, there exists

$$
\lim _{n \rightarrow \infty} E \phi\left(Z_{n}\right)=E \phi(\xi)
$$

Proof Since ϕ is continuous and the assumptions of Lemma 5 are fulfilled, we conclude that $\phi\left(Z_{n}\right) \rightarrow \phi(\xi)$ a.s. But in addition ϕ is assumed to be bounded, thus using the Lebesgue-dominated convergence theorem we obtain also convergence $\phi\left(Z_{n}\right) \rightarrow$ $\phi(\xi)$ in $L^{p}, 1 \leq p<\infty$. The last statement of the theorem follows from the estimate

$$
\left|E \phi\left(Z_{n}\right)-E \phi(\xi)\right| \leq E\left|\phi\left(Z_{n}\right)-\phi(\xi)\right| \rightarrow 0 .
$$

Corollary 3 The assertion of Theorem 1 remains valid for a Banach space \mathbb{B} with a boundedly complete quasi-orthogonal Schauder basis $\left\{b_{n}, n \geq 1\right\}$, as well as for a Hilbert space $\mathbb{B}=\mathbb{H}$ with the Schauder basis $\left\{b_{n}, n \geq 1\right\}$ that forms a CONS in \mathbb{H}.

5 The Banach Functional Integral in a Class of Banach Spaces

Let $\mathcal{C}_{b}=\{\phi: B \rightarrow \mathbb{R} ; \phi$-bounded and continuous $\}$. Observe that \mathcal{C}_{b} has the following properties:
(i1) the set \mathcal{C}_{b} is a real linear space,
(i2) if $\phi \in \mathcal{C}_{b}$, then $|\phi| \in \mathcal{C}_{b}$.

Define a functional $f: \mathcal{C}_{b} \rightarrow \mathbb{R}$ by the formula:

$$
\begin{equation*}
f(\phi)=\lim _{n \rightarrow \infty} E \phi\left(Z_{n}\right)=E \phi(\xi), \tag{4}
\end{equation*}
$$

where $\left\{Z_{n}, n \geq 1\right\}$ is a BRW in the Banach space \mathbb{B}, and $\xi=\lim _{n \rightarrow \infty} Z_{n}$ a.s. and in $L^{p}(\mathbb{B}), 1 \leq p<\infty$.

It can be easily seen that the mapping f satisfies the following conditions: (ii 1) $f: \mathcal{C}_{b} \rightarrow \mathbb{R}$ is a linear functional,
(ii2) the functional f is nonnegative, i.e., $f(\phi) \geq 0$ whenever $\phi \in \mathcal{C}_{b}$ and $\phi \geq 0$, (ii3) if $1^{0}\left\{\phi_{n}\right\} \subset \mathcal{C}_{b}, \psi \in \mathcal{C}_{b}, 2^{0}\left|\phi_{n}\right| \leq \psi$ for $n \geq 1$, and $3^{0} \lim _{n \rightarrow \infty} \phi_{n}(x)=0$ for all $x \in B$, then $\lim _{n \rightarrow \infty} f\left(\phi_{n}\right)=0$.

Notice that 3^{0} implies P-a.s. convergence $\phi_{n}(\xi) \rightarrow 0$; thus, the last condition follows from the classical Lebesgue-dominated convergence theorem applied to integrals $E \phi_{n}(\xi), n=1,2, \ldots$ (Actually, in our approach we can even replace condition 3^{0} by a weaker assumption $\phi_{n} \rightarrow 0$ in $P \circ \xi^{-1}$-measure.) Consequently, the functional f satisfies all the conditions given in $\S 2$ of the Banach paper [1]. Therefore, for our functional f the Banach Th. 1, $\S 3$, p. 322, [1] is valid. In this way, we obtain the following result.

Theorem 2 Let $\left\{Z_{n}, n \geq 1\right\}$ be a BRW in a Banach space \mathbb{B} with the $R N P$ and a quasiorthogonal Schauder basis $\left\{b_{n}, n \geq 1\right\}$, in particular in a Banach space \mathbb{B} with a boundedly complete quasi-orthogonal Schauder basis. Then, the functional f given by (4) has an extension to the additive functional F on the linear set $\mathcal{L} \supset \mathcal{C}_{b}$ of all bounded, Borel measurable functions $\Phi: B \rightarrow \mathbb{R}$. Moreover, the extended functional F on \mathcal{L} possesses all the properties $(A)-(E)$ and (R) specified in §1 of the Banach paper [1], analogous to the Lebesgue integral.

Remark 2 The approach presented above is a generalization of the method proposed by Banach [1] for the construction of the so-called \mathfrak{L}-integral—an analogue of the Lebesgue integral in abstract spaces.

Theorem 3 Let \mathbb{B} be a Banach space with the RNP and a quasi-orthogonal Schauder basis, in particular-a Banach space with a boundedly complete quasiorthogonal Schauder basis. Then each sequence of symmetric probability distributions $\left\{G_{n}, n \geq 1\right\}$ concentrated on the interval $[-1,1] \subset \mathbb{R}$ generates a probability measure Γ on the Borel σ-field \mathcal{B} in \mathbb{B}, given by

$$
\Gamma(A)=E \mathbb{1}_{A}(\xi), A \in \mathcal{B} .
$$

The measure Γ is equal to the limit distribution of the described above BRW $\left\{Z_{n}, n \geq 1\right\}$ in \mathbb{B}, thus supp $\Gamma \subseteq B$.

Proof Obviously, Γ is nonnegative and normalized so that $\Gamma(\mathbb{B})=\Gamma(B)=1$. It suffices to verify countable additivity of Γ, but it follows immediately from the properties of the integral $E(\cdot)$. The last conclusion can also be easily shown in a direct way. To this end, let $A_{1}, A_{2}, \ldots \in \mathcal{B}$ be arbitrary disjoint sets. Since supp $\Gamma \subseteq B$, we have $\Gamma(A)=\Gamma(A \cap B)=E \mathbb{1}_{A \cap B}(\xi), A \in \mathcal{B}$. Observe next that

$$
E \mathbb{1}_{\bigcup_{j=1}^{n}\left(A_{j} \cap B\right)}(\xi)=E\left(\sum_{j=1}^{n} \mathbb{1}_{A_{j} \cap B}(\xi)\right)=\sum_{j=1}^{n} E \mathbb{1}_{A_{j} \cap B}(\xi)=\sum_{j=1}^{n} \Gamma\left(A_{j}\right)
$$

and

$$
0 \leq \sum_{j=1}^{n} \mathbb{1}_{A_{j} \cap B}(x)=\mathbb{1}_{\bigcup_{j=1}^{n}\left(A_{j} \cap B\right)}(x) \nearrow \mathbb{1}_{\bigcup_{n=1}^{\infty}\left(A_{n} \cap B\right)}(x) \leq \mathbb{1}_{B}(x), x \in B
$$

Hence, on account of the Lebesgue monotone convergence theorem,

$$
\begin{aligned}
\sum_{n=1}^{\infty} \Gamma\left(A_{n}\right) & =\lim _{n \rightarrow \infty} \sum_{j=1}^{n} \Gamma\left(A_{j}\right)=\lim _{n \rightarrow \infty} E \mathbb{1}_{\bigcup_{j=1}^{n}\left(A_{j} \cap B\right)}(\xi) \\
& =E\left(\lim _{n \rightarrow \infty} \mathbb{1}_{\bigcup_{j=1}^{n}\left(A_{j} \cap B\right)}(\xi)\right)=E \mathbb{1}_{\left(\cup_{n=1}^{\infty} A_{n}\right) \cap B}(\xi)=\Gamma\left(\bigcup_{n=1}^{\infty} A_{n}\right)
\end{aligned}
$$

From the construction of the BRW in a Banach space, it follows immediately that the limit distribution $\Gamma=P \circ \xi^{-1}$ of the BRW is sign-invariant with respect to the Schauder basis $\left\{b_{n}, n \geq 1\right\}$, in the sense that for each set $A \in \mathcal{B}$ and every sequence $\epsilon=\left\{\epsilon_{1}, \epsilon_{2}, \ldots\right\}$ of signs $\epsilon_{k} \in\{-1,1\}, k \geq 1$, we have

$$
\Gamma(A)=\Gamma(\epsilon A),
$$

where $\epsilon A=\left\{\sum_{k=1}^{\infty} \epsilon_{k} x_{k} b_{k} \in \mathbb{B}: \sum_{k=1}^{\infty} x_{k} b_{k} \in A\right\}$. It is also clear that each signinvariant measure is symmetric, thus

$$
\Gamma(A)=\Gamma(-A) \text { for all } A \in \mathcal{B} .
$$

By analogy to the notion of the Wiener measure, we propose to call Γ the Banach measure in a Banach space. One may expect that the Banach measure will play a similarly important role in Banach spaces as is played by the Gaussian measure constructed by Gross [5], cf. Bogachev [3], or Kuo [6].

6 Examples

1. Let $\mathbb{B}=\ell^{p}, 1 \leq p<\infty$, and let $b_{n}=e_{n}=(0, \ldots, 0,1,0, \ldots), n \geq 1$, where 1 is the nth term of the sequence $(0, \ldots, 0,1,0, \ldots)$. Then $\pi_{n}(x)=\sum_{k=1}^{n} x_{k} b_{k}=$ $\left(x_{1}, \ldots, x_{n}, 0, \ldots\right)$ for $x=\sum_{n=1}^{\infty} x_{n} b_{n}=\left(x_{1}, x_{2}, \ldots\right) \in \ell^{p}$, and thus

$$
\left|\pi_{n}(x)+t b_{n+1}\right|_{p}^{p}=\sum_{k=1}^{n}\left|x_{k}\right|^{p}+|t|^{p} \leq 1 \Leftrightarrow|t| \leq\left(1-\sum_{k=1}^{n}\left|x_{k}\right|^{p}\right)^{1 / p} .
$$

Hence it follows that $\left\{b_{n}, n \geq 1\right\}$ is a quasi-orthogonal Schauder basis in ℓ^{p}. (In fact, the considered basis is unconditional.) Moreover, if

$$
\sup _{n \geq 1}\left|\pi_{n}(x)\right|_{p}=\sup _{n \geq 1}\left|\sum_{k=1}^{n} x_{k} b_{k}\right|_{p}=\left(\sum_{k=1}^{\infty}\left|x_{k}\right|^{p}\right)^{1 / p} \leq M<\infty,
$$

then the series $\sum_{n=1}^{\infty} x_{n} b_{n}$ converges in ℓ^{p}. Thus, the basis $\left\{b_{n}, n \geq 1\right\}$ is boundedly complete and in consequence each space $\ell^{p}, 1 \leq p<\infty$, has the RNP. It is also well known that for $p>1$ the spaces ℓ^{p} are reflexive, which implies as well that they have the RNP. Therefore, all the above results are valid for Banach spaces $\mathbb{B}=\ell^{p}, 1 \leq$ $p<\infty$.
2. Let $\mathbb{B}=L^{p}[0,1]$, where $1 \leq p<\infty$. Consider the system of Haar functions: $h_{1}^{0}(s)=1, s \in[0,1]$, and

$$
h_{k}^{n}(s)=2^{n} \cdot \mathbb{1}_{\left[(2 k-2) / 2^{n+1},(2 k-1) / 2^{n+1}\right)}(s)-2^{n} \cdot \mathbb{1}_{\left[(2 k-1) / 2^{n+1},(2 k) / 2^{n+1}\right)}(s)
$$

for $k=1,2, \ldots, 2^{n}, n=1,2, \ldots, s \in[0,1]$. It is known that the system of Haar functions forms a Schauder basis in L^{p} [0, 1], see, e.g., [9, Th. 24.17, pp. 290-295], or [7, Part II, Prop. 2.c.1, p. 150]. For convenience of the reader, we sketch here the proof that the Haar basis in $L^{p}[0,1]$ is quasi-orthogonal.

Proposition 1 The system of Haar functions is a quasi-orthogonal basis in $L^{p}[0,1]$, $1 \leq p<\infty$.

Proof Let the Haar functions be arranged in a sequence that is divided into blocks, each of 2^{n} members, numbered by upper indices $n=0,1,2, \ldots$,

$$
\Lambda=\left\{\left(h_{1}^{0}\right),\left(h_{1}^{1}, h_{2}^{1}\right),\left(h_{1}^{2}, h_{2}^{2}, h_{3}^{2}, h_{4}^{2}\right),\left(h_{1}^{3}, h_{2}^{3}, h_{3}^{3}, h_{4}^{3}, h_{5}^{3}, h_{6}^{3}, h_{7}^{3}, h_{8}^{3}\right), \ldots\right\} .
$$

We make now two crucial observations: 1^{0} for a fixed $n \geq 0$ within the same nth block the Haar functions $h_{k}^{n}, 1 \leq k \leq 2^{n}$, have nonoverlapping supports, 2^{0} the function of the form $c_{1}^{0} h_{1}^{0}+c_{1}^{1} h_{1}^{1}+c_{2}^{1} h_{2}^{1}+\cdots+c_{1}^{n-1} h_{1}^{n-1}+\cdots+c_{2^{n-1}}^{n-1} h_{2^{n-1}}^{n-1}$, where $c_{j}^{i} \in \mathbb{R}$ are arbitrarily fixed coefficients, is constant in each interval of the form $\left[(k-1) / 2^{n}, k / 2^{n}\right), k=1,2, \ldots, 2^{n}$.

Suppose now that $\pi_{k-1}^{n}(x)=x_{1}^{0} h_{1}^{0}+x_{1}^{1} h_{1}^{1}+x_{2}^{1} h_{2}^{1}+\cdots+x_{k-1}^{n} h_{k-1}^{n}$ and the next element of Λ is h_{k}^{n}. Then for any parameter $t \in \mathbb{R}$,

$$
\begin{aligned}
\left\|\pi_{k-1}^{n}(x)+t h_{k}^{n}\right\|_{p}^{p}= & \int_{0}^{1}\left|\pi_{k-1}^{n}(x)(s)+t h_{k}^{n}(s)\right|^{p} \mathrm{~d} s=\int_{0}^{(k-1) / 2^{n}}\left|\pi_{k-1}^{n}(x)(s)\right|^{p} \mathrm{~d} s \\
& +\int_{(k-1) / 2^{n}}^{k / 2^{n}}\left|\pi_{2^{n-1}}^{n-1}(x)(s)+t h_{k}^{n}(s)\right|^{p} \mathrm{~d} s \\
& +\int_{k / 2^{n}}^{1}\left|\pi_{2^{n-1}}^{n-1}(x)(s)\right|^{p} \mathrm{~d} s=I_{1}+I_{2}+I_{3},
\end{aligned}
$$

where $\pi_{2^{n-1}}^{n-1}(x)(s)=\pi_{2^{n-1}}^{n-1}(x)\left((2 k-1) / 2^{n+1}\right)=c, s \in\left[(k-1) / 2^{n}, k / 2^{n}\right)$. The first and third integrals on the right-hand side do not depend on the parameter t, and the middle term is equal to

$$
\begin{aligned}
I_{2} & =\int_{(k-1) / 2^{n}}^{(2 k-1) / 2^{n+1}}\left|c+t 2^{n}\right|^{p} \mathrm{~d} s+\int_{(2 k-1) / 2^{n+1}}^{k / 2^{n}}\left|c-t 2^{n}\right|^{p} \mathrm{~d} s \\
& =\left|c+t 2^{n}\right|^{p} \cdot \frac{1}{2^{n+1}}+\left|c-t 2^{n}\right|^{p} \cdot \frac{1}{2^{n+1}}:=r(t) .
\end{aligned}
$$

Since $r(t)=r(-t)$, and

$$
\begin{aligned}
\inf \left\{t \in \mathbb{R}: r(t) \leq 1-I_{1}-I_{3}\right\} & =-\sup \left\{-t \in \mathbb{R}: r(-t) \leq 1-I_{1}-I_{3}\right\} \\
& =-\sup \left\{t^{\prime} \in \mathbb{R}: r\left(t^{\prime}\right) \leq 1-I_{1}-I_{3}\right\}
\end{aligned}
$$

we conclude that $\alpha_{k}^{n}=-\beta_{k}^{n}$. The same argument remains valid when π_{k-1}^{n} is replaced by $\pi_{2^{n-1}}^{n-1}$, and π_{k}^{n} is replaced by π_{1}^{n}, and thus, the system of Haar functions forms a quasi-orthogonal basis in $L^{p}[0,1]$.

Remark 3 It is clear that the Haar functions for $n \geq 1$ can be modified as follows:

$$
h_{k}^{n}(s)=2^{n / p} \cdot \mathbb{1}_{\left[(2 k-2) / 2^{n+1},(2 k-1) / 2^{n+1}\right)}(s)-2^{n / p} \cdot \mathbb{1}_{\left[(2 k-1) / 2^{n+1},(2 k) / 2^{n+1}\right)}(s),
$$

$k=1,2, \ldots, 2^{n}, s \in[0,1]$. Then the above Proposition 1 for modified Haar functions remains true, and in addition, we have $\left\|h_{k}^{n}\right\|_{p}=1$ for all k, n.

Evidently, all the spaces $L^{p}[0,1], 1<p<\infty$, are reflexive Banach spaces, and thus, they possess the RNP, which is a straightforward consequence of Phillips' theorem, cf. [4, Ch. III, §3, Corollary 6, p. 82]. Unfortunately, the space $L^{1}[0,1]$ does not have the RNP, see [4, Ch. VII, p. 219].

Hence, it follows that all the results presented in previous sections are valid for Banach spaces $L^{p}[0,1], 1<p<\infty$.

Remark 4 Proposition 1 together with observation that the space $L^{1}[0,1]$ does not possess the RNP implies the following conclusion: the existence of a quasi-orthogonal Schauder basis in a Banach space is not a sufficient condition for the RNP. The same conclusion follows from the fact that the space ($S_{c}[0,1],\|\cdot\|$) (isometrically isomorphic to $\left.\left(C[0,1],\|\cdot\|_{\infty}\right)\right)$ does not have the RNP.
3. To illustrate the technique of computations of Banach \mathfrak{L}-integrals based on the method described here, we calculate, for instance, two "rarefied" absolute p th moments of $\xi=\sum_{n=1}^{\infty} X_{n} b_{n}$ in $\ell^{p}, 1 \leq p<\infty$, determined by lacunary series $\sum_{n=1}^{\infty} X_{2 n-1} b_{2 n-1}$ and $\sum_{n=1}^{\infty} X_{2 n} b_{2 n}$, namely $E\left(\sum_{n=1}^{\infty}\left|X_{2 n-1}\right|^{p}\right)$ and $E\left(\sum_{n=1}^{\infty}\left|X_{2 n}\right|^{p}\right)$, where ξ is the limit random element of the BRW generated by the sequence of identical uniform distributions on $[-1,1] \subset \mathbb{R}$. Since the basis $\left\{b_{n}, n \geq 1\right\}$ in ℓ^{p} is unconditional, the lacunary series considered here are strongly convergent, see, e.g., [7, Prop. 1.c.1, p. 15, and p. 19].

Observe first that if $\pi_{\text {odd }}(x)=\sum_{n=1}^{\infty} x_{2 n-1} b_{2 n-1}$ for $x=\sum_{n=1}^{\infty} x_{n} b_{n} \in \ell^{p}$, then $\left|\pi_{\text {odd }}(x)\right|_{p}=\left(\sum_{n=1}^{\infty}\left|x_{2 n-1}\right|^{p}\right)^{1 / p}$, thus

$$
\begin{aligned}
& \left|\left(\sum_{n=1}^{\infty}\left|x_{2 n-1}\right|^{p}\right)^{1 / p}-\left(\sum_{n=1}^{\infty}\left|x_{2 n-1}^{\prime}\right|^{p}\right)^{1 / p}\right|=\left|\left|\pi_{\text {odd }}(x)\right|_{p}-\left|\pi_{\text {odd }}\left(x^{\prime}\right)\right|_{p}\right| \\
& \leq\left|\pi_{\text {odd }}\left(x-x^{\prime}\right)\right|_{p}=\left(\sum_{n=1}^{\infty}\left|x_{2 n-1}-x_{2 n-1}^{\prime}\right|^{p}\right)^{1 / p} \leq\left|x-x^{\prime}\right|_{p} \rightarrow 0
\end{aligned}
$$

as $x \rightarrow x^{\prime}$ in ℓ^{p}-norm $|\cdot|_{p}$. It follows that $\ell^{p} \ni x \mapsto\left(\sum_{n=1}^{\infty}\left|x_{2 n-1}\right|^{p}\right)^{1 / p}$ is a continuous function. Therefore, $\ell^{p} \ni x \mapsto \sum_{n=1}^{\infty}\left|x_{2 n-1}\right|^{p}$, as well as $\ell^{p} \ni x \mapsto$ $\sum_{n=1}^{\infty}\left|x_{2 n}\right|^{p}$ are continuous, and both these maps are bounded in the unit ball $B \subset \ell^{p}$.

According to the construction of the BRW in ℓ^{p}, the density of X_{1} is equal to $f_{1}\left(x_{1}\right)=\mathbb{1}_{[-1,1]}\left(x_{1}\right) / 2$, and the density of $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ for $n>1$ is given by

$$
\begin{aligned}
& f_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
& \quad=\frac{\mathbb{1}_{K_{n}}\left(x_{1}, x_{2}, \ldots, x_{n}\right)}{2^{n} \cdot\left(\left[1-\left|x_{1}\right|^{p}\right] \cdot\left[1-\left(\left|x_{1}\right|^{p}+\left|x_{2}\right|^{p}\right)\right] \cdot \ldots \cdot\left[1-\left(\left|x_{1}\right|^{p}+\cdots+\left|x_{n-1}\right|^{p}\right)\right]\right)^{1 / p}},
\end{aligned}
$$

where $K_{n}=K_{n}(0,1)$ is the unit ball with center zero and radius 1 in \mathbb{R}^{n}, equipped with the ℓ^{p}-norm $\left|\left(x_{1}, \ldots, x_{n}\right)\right|_{n, p}=\left(\sum_{k=1}^{n}\left|x_{k}\right|^{p}\right)^{1 / p}$. Hence,

$$
E\left|X_{1}\right|^{p}=\int_{-1}^{1} \frac{\left|x_{1}\right|^{p}}{2} \mathrm{~d} x_{1}=2 \int_{0}^{1} \frac{x_{1}^{p}}{2} \mathrm{~d} x_{1}=\left.\frac{x_{1}^{p+1}}{p+1}\right|_{0} ^{1}=\frac{1}{p+1}
$$

Moreover, for $n>1$,

$$
\begin{aligned}
E\left|X_{n}\right|^{p}= & \int_{K_{n}}\left|x_{n}\right|^{p} \cdot f_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mathrm{d} x_{1} \mathrm{~d} x_{2} \ldots \mathrm{~d} x_{n} \\
= & \int_{K_{n-1}}\left(2 \int_{0}^{\left[1-\left(\left|x_{1}\right|^{p}+\cdots+\left|x_{n-1}\right|^{p}\right)\right]^{1 / p}} x_{n}^{p} \cdot f_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mathrm{d} x_{n}\right) \\
& \times \mathrm{d} x_{1} \mathrm{~d} x_{2} \ldots \mathrm{~d} x_{n-1} \\
= & \left.\int_{K_{n-1}} \frac{x_{n}^{p+1}}{p+1}\right|_{0} ^{\left[1-\left(\left|x_{1}\right|^{p}+\cdots+\left|x_{n-1}\right|^{p}\right)\right]^{1 / p}} \\
& \times \frac{f_{n-1}\left(x_{1}, x_{2}, \ldots, x_{n-1}\right)}{\left[1-\left(\left|x_{1}\right|^{p}+\cdots+\left|x_{n-1}\right|^{p}\right)\right]^{1 / p}} \mathrm{~d} x_{1} \mathrm{~d} x_{2} \ldots \mathrm{~d} x_{n-1} \\
= & \int_{K_{n-1}} \frac{\left[1-\left(\left|x_{1}\right|^{p}+\cdots+\left|x_{n-1}\right|^{p}\right)\right]}{p+1} \cdot f_{n-1}\left(x_{1}, x_{2}, \ldots, x_{n-1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \times \mathrm{d} x_{1} \mathrm{~d} x_{2} \ldots \mathrm{~d} x_{n-1} \\
= & \frac{1}{p+1}\left\{1-\left(E\left|X_{1}\right|^{p}+E\left|X_{2}\right|^{p}+\cdots+\left|X_{n-1}\right|^{p}\right)\right\} .
\end{aligned}
$$

Thus,

$$
E\left|X_{2}\right|^{p}=\frac{1}{p+1}\left\{1-E\left|X_{1}\right|^{p}\right\}=\frac{1}{p+1}\left(1-\frac{1}{p+1}\right)=\frac{1}{p+1} \frac{p}{p+1},
$$

and, by induction,

$$
\begin{aligned}
E\left|X_{n}\right|^{p} & =\frac{1}{p+1}\left\{1-\left(\frac{1}{p+1}+\frac{p}{(p+1)^{2}}+\cdots+\frac{p^{n-2}}{(p+1)^{n-1}}\right)\right\} \\
& =\frac{1}{(p+1)}\left\{1-\frac{1}{p+1} \cdot \frac{1-p^{n-1} /(p+1)^{n-1}}{1-p /(p+1)}\right\}=\frac{p^{n-1}}{(p+1)^{n}}
\end{aligned}
$$

Therefore,

$$
E\left(\sum_{n=1}^{\infty}\left|X_{2 n-1}\right|^{p}\right)=\sum_{n=1}^{\infty} \frac{p^{2 n-1-1}}{(p+1)^{2 n-1}}=\frac{1}{p+1} \cdot \frac{1}{1-p^{2} /(p+1)^{2}}=\frac{p+1}{2 p+1}
$$

and

$$
E\left(\sum_{n=1}^{\infty}\left|X_{2 n}\right|^{p}\right)=\sum_{n=1}^{\infty} \frac{p^{2 n-1}}{(p+1)^{2 n}}=\frac{p}{(p+1)^{2}} \cdot \frac{1}{1-p^{2} /(p+1)^{2}}=\frac{p}{2 p+1}
$$

In consequence,

$$
E\left|\pi_{\mathrm{odd}}(\xi)\right|_{p}^{p}=\frac{p+1}{2 p+1}, \quad E\left|\xi-\pi_{\mathrm{odd}}(\xi)\right|_{p}^{p}=\frac{p}{2 p+1}
$$

so that

$$
E|\xi|_{p}^{p}=E\left(\sum_{n=1}^{\infty}\left|X_{n}\right|^{p}\right)=\frac{p+1}{2 p+1}+\frac{p}{2 p+1}=1
$$

Acknowledgements The authors are grateful to the referee and the associate editor for their helpful remarks which led to a noticeable improvement of the paper.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Banach, S.: The Lebesgue integral in abstract spaces. In: Saks, S. (ed.) Theory of the Integral. Dover Publication, New York (1964)
2. Banek, T.: Banach random walk in the unit ball $S \subset \ell^{2}$ and chaotic decomposition of $\ell^{2}(S, P)$. J. Theor. Probab. 29(4), 1728-1735 (2016)
3. Bogachev, V.I.: Gaussian Measures. American Mathematical Society, Providence (1998)
4. Diestel, J., Uhl, J.J.: Vector Measures. American Mathematical Society, Providence (1977)
5. Gross, L.: Abstract Wiener spaces. In: Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, vol. 2, pp. 31-42 (1965)
6. Kuo, H.H.: Gaussian Measures in Banach Spaces. Lecture Notes in Mathematics, vol. 463. Springer, Berlin (1975)
7. Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces I, II. Springer, Berlin (1977, 1979)
8. Neveu, J.: Discrete Parameter Martingales. North Holland, Amsterdam (1975)
9. Schilling, R.L.: Measures, Integrals and Martingales. Cambridge University Press, Cambridge (2005)
10. Semadeni, Z.: Schauder Bases in Banach Spaces of Continuous Functions. Lecture Notes in Mathematics, vol. 918. Springer, Berlin (1982)
11. Vakhania, N.N., Tarieladze, V.I., Chobanyan, S.A.: Probability Distributions on Banach Spaces. D. Reidel, Kluwer, Dordrecht (1987)
12. Zapała, A.M.: Jensen’s inequality for conditional expectations in Banach spaces. Real Anal. Exch. 26(2), 541-552 (2000/2001)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

[^0]: \boxtimes August M. Zapała
 august.zapala@gmail.com; azapala@kul.pl
 Tadeusz Banek
 kenabt @ gmail.com
 1 Pope John Paul II State School of Higher Education in Biała Podlaska, ul. Sidorska 95/97, 21-500 Biała Podlaska, Poland
 2 Faculty of Mathematics, Informatics and Landscape Architecture, The John Paul II Catholic University of Lublin, ul. Konstantynów 1H, 20-708 Lublin, Poland

