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Abstract
We describe the construction of a random walk in a Banach space B with a quasi-
orthogonal Schauder basis and show that it is a martingale. Next we prove that
under certain additional assumptions the described random walk converges a.s. and
in L p (B) , 1 ≤ p < ∞, to a random element ξ, which generates a probability
measure with support contained in the unit ball B ⊂ B. Moreover, we define the
Banach integral with respect to the distribution of ξ for a class of bounded, Borel
measurable real-valued functions on B. Next some examples of nonstandard Banach
spaces with quasi-orthogonal Schauder bases are presented; furthermore, examples
which demonstrate the possibility of applications of all the obtained results in spaces
�p, 1 ≤ p < ∞ and L p[0, 1], 1 < p < ∞ are given.
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1 Introduction

Let {ei , i ≥ 1} be a complete orthonormal system (CONS) in a separable Hilbert space
(H, |·|) and let πn (x) =∑n

i=1 xi ei for x =∑∞
i=1 xi ei ∈ H. Denote by Kn and B the

unit balls in R
n and H, respectively.

In a paper published as addendum to the Saks monograph Theory of the Integral,
Banach [1] described the most general form of a nonnegative linear functional F
(satisfying additional conditions analogous to some properties of the Lebesgue inte-
gral, thus called by Banach L-integral), defined on the linear set L of bounded, Borel
measurable functions Φ: B → R, namely

F (Φ) = lim
n→∞ Fn (Φ) ,

where

Fn (Φ) =
∫

Kn

Φ (πn (x)) gn (x1, . . . , xn) dx1 . . . dxn,

gn (x1, . . . , xn)

= 1Kn (x1, . . . , xn)
g (x1) g

(

x2/
√
1 − x21

)

. . . g
(
xn/
√
1 − (x21+· · ·+x2n−1

))

√(
1 − x21

) · [1 − (x21+x22
)] · . . . · [1 − (x21+· · ·+x2n−1

)] ,

g: [−1, 1] → [0,∞) is Borel measurable and integrable with
∫ 1
−1 g (t) dt = 1, and

1A denotes the indicator of the set A.
In fact, Banach [1] considered only the casewhen g is the density of the uniform dis-

tribution on [− 1, 1], and a more general case was treated by Banek [2]. Furthermore,
Banek [2] observed that

Fn (Φ) = EΦ (Zn) ,

where {Zn} is the so-called Banach random walk (BRW) in B ⊂ H given by the
random linear combination Zn = ∑n

i=1 Xiei , n ≥ 1, of elements of CONS {ei }
in H, with coefficients Xi that are dependent r.v.’s defined recursively as follows:
X1 is a r.v. having density g concentrated on the interval [− 1, 1], and if the r.v.’s
X1, . . . , Xn−1 are already defined, then Xn is defined as a r.v. with probability density

g
(
xn/
√
1 − (X2

1 + · · · + X2
n−1)

)
in the random interval

[

−
√
1 − (X2

1 + · · · + X2
n−1

)
,

√
1 − (X2

1 + · · · + X2
n−1

)
]

.

The last observation forms a probabilistic background to the purely deterministic
Banach construction of the L-integral for a class of bounded, Borel measurable func-
tions defined in B ⊂ H.
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It is worth mentioning that Banach [1] considered two various special cases: (1)
the mapping Φ is defined on a compact metric space and (2) Φ is defined in the unit
ball of a separable Hilbert space.

In this paper, we describe a generalized BRW {Zn, n ≥ 1} with values in the unit
ball of a Banach space. Moreover, we give a criterion for the existence of the Banach–
Lebesgue integral

F (Φ) = lim
n→∞ Fn (Φ) (1)

in terms of the constructedBRW {Zn, n ≥ 1}, whereΦ is a bounded, Borelmeasurable
real-valued function defined in the unit ball of a Banach space.

2 Banach RandomWalk in a Banach space

Let (B, ‖·‖) be an infinite-dimensional Banach space with a Schauder basis
{bn, n ≥ 1}. Then each vector x ∈ B possesses a unique series expansion x =∑∞

k=1 xkbk, and thus, for all n ≥ 1, the projections πn : B → B, given by πn (x) =∑n
k=1 xkbk , are well defined. Denote

Bn = {πn (x) ∈ B: ‖πn (x)‖ ≤ 1} , B = {x ∈ B: ‖x‖ ≤ 1} ,

and put

α1 = inf {t ∈ R: ‖tb1‖ ≤ 1} , β1 = sup {t ∈ R: ‖tb1‖ ≤ 1} (= −α1) .

Furthermore, given any point πn−1 (x) ∈ Bn−1, n ≥ 2, define inductively

αn = αn(πn−1 (x)) = inf {t ∈ R: ‖πn−1 (x) + tbn‖ ≤ 1} ,

βn = βn(πn−1 (x)) = sup {t ∈ R: ‖πn−1 (x) + tbn‖ ≤ 1} .

It is clear that αn ≤ 0 ≤ βn , and [αn, βn] , n ≥ 1, are bounded intervals in R, for

‖πn−1 (x) + tbn‖ ≤ 1 ⇒ |t | · ‖bn‖ ≤ ‖πn−1 (x)‖ + 1, n ≥ 1,

where πn−1 (x) = π0 (x) = 0 for n = 1. Obviously, αn and βn depend on πn−1 (x) ∈
Bn−1 and bn , and in general the intervals [αn, βn] , n ≥ 2, need not be symmetric
about 0. In addition, it may happen that for some n ≥ 2 the interval [αn, βn] reduces
to the single point [0, 0] = {0}. To fix a standard length of the first interval, without
loss of generality we may and do assume that ‖b1‖ = 1 (but we do not require that
‖bn‖ = 1 for all n ≥ 2). In such a situation, α1 = −1 and β1 = 1.

Let Gn, n ≥ 1, be arbitrary probability distributions concentrated on [− 1, 1] ⊂
R, i.e., Gn ([− 1, 1]) = 1 for all n ≥ 1. Define inductively on a probability space
(Ω,F , P) a sequence of (dependent) real r.v.’s {Xn, n ≥ 1} and, associated with it,
a sequence of B-valued random elements (r.e.) {Zn, n ≥ 1}. Namely, let X1 be a r.v.
with distribution G1 and let Z1 = X1b1. Then X1 (ω) ∈ [α1, β1] = [−1, 1] a.s., and
thus, we may define X2 as a r.v. distributed according to G2, scaled linearly in such a
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way that it is concentrated on [α2, β2] = [α2 (Z1 (ω)) , β2 (Z1 (ω))]. In other words,
X2 is a r.v. with distribution function

G2

(
2t − [β2 (Z1 (ω)) + α2 (Z1 (ω))]

β2 (Z1 (ω)) − α2 (Z1 (ω))

)

, t ∈ R,

whenever β2 − α2 > 0, and then we put Z2 = X1b1 + X2b2. Next, given any
value X2 (ω), and a fortiori Z2 (ω) ∈ B2 a.s., we define X3 as a r.v. with dis-
tribution G3 scaled linearly in such a way that it is concentrated on the interval
[α3, β3] = [α3 (Z2 (ω)) , β3 (Z2 (ω))] , and then put Z3 = X1b1 + X2b2 + X3b3,
etc. More generally, if X1, . . . , Xn−1 and Z1, . . . , Zn−1 are already defined in such a
manner that Zn−1 (ω) ∈ Bn−1 a.s., then Xn is a r.v. with distribution function

Gn

(
2t − [βn (Zn−1 (ω)) + αn (Zn−1 (ω))

]

βn (Zn−1 (ω)) − αn (Zn−1 (ω))

)

, t ∈ R,

provided βn − αn > 0 and Zn = X1b1 + X2b2 + · · · + Xnbn = Zn−1 + Xnbn .
As was already mentioned, it may happen that for some n ≥ 1 and Zn (ω) ∈ Bn the

interval
[
αn+1, βn+1

] = [αn+1 (Zn (ω)) , βn+1 (Zn (ω))
]
is reduced to the single point

{0}; in this situation, we assume that the distributionGn+1 is transformed in such away
that it assigns the unit mass to the one point set {0}. Although in such a case Zn+1(ω) =
Zn(ω), the next random interval [αn+2, βn+2] = [αn+2 (Zn+1(ω)) , βn+2 (Zn+1(ω))],
defined by means of the successive basic vector bn+2, need not be equal to {0}; thus,
the process is still continued.

Definition 1 The sequence of B-valued r.e.’s {Zn, n ≥ 1} obtained in the way
described above is called Banach random walk (BRW) in a Banach space B.

It seems that the main idea of Banach’s [1] construction of L-integral was the
symmetry of mappings corresponding to the symmetry of Lebesgue measures in
R
n, n ≥ 1, which led to convergence of the integral functional in (1). Therefore,

we introduce in addition the following notion:

Definition 2 The Schauder basis {bn, n ≥ 1} is called quasi-orthogonal, if

βn+1(πn (x)) = −αn+1 (πn (x)) (2)

for all n ≥ 1 and x ∈ B such that πn (x) ∈ Bn .

Recall that the basis {bn, n ≥ 1} in a Banach space (B, ‖ · ‖) is said to be uncondi-
tional, if for all n ≥ 1, xk ∈ R and εk = ±1, 1 ≤ k ≤ n, we have

∥
∥
∥
∥
∥

n∑

k=1

εk xkbk

∥
∥
∥
∥
∥

=
∥
∥
∥
∥
∥

n∑

k=1

xkbk

∥
∥
∥
∥
∥

. (3)

The definition of a quasi-orthogonal Schauder basis in a Banach space seems to be
similar to the condition defining an unconditional basis, but in spite of this, these two
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notions are not equivalent. If the basis {bn, n ≥ 1} is unconditional, i.e., (3) holds,
then it is obviously quasi-orthogonal, but the converse need not be true. To explain the
notion of quasi-orthogonality, below we present the construction of relevant examples
of Banach spaces with quasi-orthogonal Schauder bases which are not unconditional.
It should be pointed out that many familiar Banach spaces possess unconditional
Schauder bases (thus in fact quasi-orthogonal) consisting of unit vectors, but the class
of Banach spaces with quasi-orthogonal bases is substantially larger than the class of
spaces with unconditional bases.

3 Banach Spaces with Quasi-Orthogonal Bases

The quasi-orthogonal basis is constructed sequentially, step by step: given any basic
vectors b1, b2, . . . , bn, the element bn+1 of the basis is chosen in such a way that for
arbitrary x1, x2, . . . , xn ∈ R satisfying condition x1b1 + · · · + xnbn = πn(x) ∈ Bn,

Eq. (2) is satisfied. As will be seen condition (3) for this property is not necessary.

1. Spaces of bounded sums and conditionally convergent series
Let S = R

N = {x = (x1, x2, . . .) : xk ∈ R for all k ≥ 1} be the set of all infinite
sequences of real numbers. Define a function ‖·‖ : S → [0,∞] by

‖x‖ = sup {|x1 + x2| , |x1 − x2| , |x1 + x2 + x3| , |x1 + x2 − x3| ,
. . . , |x1 + · · · + xn−1 + xn| , |x1 + · · · + xn−1 − xn| , . . .}

= sup {|x1| + |x2| , |x1 + x2| + |x3| , . . . , |x1 + · · · + xn| + |xn+1| , . . .} ,

and next put

Sb = {x = (x1, x2, . . .) ∈ S: ‖x‖ < ∞} .

Then ‖·‖ is a norm in Sb, and (Sb, ‖·‖) is a Banach space. The space Sb consists of
all bounded sequences (x1, x2, . . .) ∈ S of real numbers with bounded partial sums
sn = x1 + · · · + xn; namely, if x ∈ Sb and ‖x‖ = M < ∞, then |xn| ≤ M and
|sn| ≤ M for all n ≥ 1. Conversely, if there exists a constant 0 ≤ M < ∞ such that
|xn| ≤ M and |sn| ≤ M for all n ≥ 1, then |sn ± xn+1| ≤ |sn| + |xn+1| ≤ 2M, and
thus, ‖x‖ ≤ 2M, i.e., x = (x1, x2, . . .) ∈ Sb. Therefore, (Sb, ‖·‖) may be called the
space of bounded sums.

However, the space Sb of sequences of real numbers is not separable. To show
this, consider the family 2N of all the subsets of the set N = {1, 2, . . .} , and for ∅ �=
A = {k1, k2, . . .} ⊆ N, where k1 < k2 < · · · , define xA as the sequence with terms
xk2 j−1 = 1, xk2 j = −1, j ≥ 1, and xi = 0 otherwise, along with x∅ = (0, 0, . . .).
Then ‖xA‖ ≤ 2, while ‖xA − xB‖ ≥ 1 whenever A, B ⊆ N, A �= B. Since the set 2N

is uncountable, the space Sb is nonseparable. Hence in the context of our requirements,
the space Sb is inadequate.
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Consider the set

Sc =
{

x = (x1, x2, . . .) ∈ Sb: the series
∑

k

xk converges

}

.

In other words, Sc is the set of all sequences x = (x1, x2, . . .) ∈ Sb for which a finite
limit limn sn = s ∈ R exists. It can be easily verified that (Sc, ‖·‖) is also a Banach
space. Moreover, the space Sc is separable. Indeed, the set of elements

{en = (δkn, k ≥ 1) , n = 1, 2, . . .} ,

where δkn = 0 for k �= n and δnn = 1, is a basis of the space Sc, and finite linear
combinations of vectors en with rational coefficients from a countable dense subset in
Sc. Moreover, from the definition of the norm ‖·‖ it follows that the basis {en, n ≥ 1}
is quasi-orthogonal, but it is not unconditional, because sums of the form ε1x1+ε2x2+
· · · + εnxn, x = (x1, x2, . . .) ∈ Sc, need not be convergent for all combinations of
signs εk = ±1. Taking into account the above properties, (Sc, ‖·‖) may be called the
Banach space of conditionally convergent series.

Since the existence of limn sn = s ∈ R implies that limn xn = 0, we conclude that
x ∈ Sc ⇒ x ∈ c0. The Banach space c0 of sequences of real numbers convergent to 0
is usually considered with the supremum norm |x |∞ = sup {|x1| , |x2| , . . .} , but the
two norms ‖·‖ and |·|∞ restricted to Sc are not equivalent. To see this, consider the
sequence of points

{
x (n), n ≥ 1

}
,

x (1) = (1,−1/2, 1/3,−1/4, 1/5,−1/6, 1/7,−1/8, . . .) ,

x (2) = (1, 1/2, 1/3,−1/4, 1/5,−1/6, 1/7,−1/8, . . .) ,

x (3) = (1, 1/2, 1/3, 1/4, 1/5,−1/6, 1/7,−1/8, . . .) ,

...

and put x (∞) = (1, 1/2, 1/3, 1/4, 1/5, 1/6, . . . , 1/n, 1/ (n + 1) , . . .) .

Then
∥
∥x (n)

∥
∥ < ∞ for all n ≥ 1, so that

{
x (n), n ≥ 1

} ⊂ Sc. Moreover,∣
∣x (n) − x (∞)

∣
∣∞ = 1/n → 0, while

∥
∥x (n) − x (∞)

∥
∥ = ∞, n = 1, 2, . . . which is

a consequence of the fact that
∑

n 1/n = ∞. Therefore, the inclusion Sc ⊂ c0 is valid
only for sets, but it is not true for Banach spaces, (Sc, ‖·‖) � (c0, |·|∞) .

A similar effect as in the case of the space Sc can be obtained for every fixed system
of signs ε = (ε1, ε2, . . .) ∈ {−1, 1}N and the norm given by

‖x‖ε = ‖(ε1x1, ε2x2, ε3x3, . . .)‖ for x = (x1, x2, . . .).

In this way, we obtain a Banach space
(
Sc,ε, ‖·‖ε

)
, where

Sc,ε =
{

x = (x1, x2, . . .) ∈ S: ‖x‖ε < ∞ and the series
∑

k

εk xk converges

}

.
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The basis {en, n ≥ 1} in Sc,ε is quasi-orthogonal, but it is not unconditional. Note
now that �1 ⊆ Sc,ε for each ε ∈ {−1, 1}N, therefore �1 ⊆ ⋂

ε∈{−1,1}N Sc,ε . On the

other hand, assuming that x = (x1, x2, . . .) ∈
⋂

ε∈{−1,1}N Sc,ε and taking ε(x) =
(sign x1, sign x2, . . . , sign xn, . . .) we have

ε
(x)
1 x1 + ε

(x)
2 x2 + · · · + ε(x)

n xn = |x1| + |x2| + · · · + |xn| , n ≥ 1.

Hence, we infer that

∞∑

n=1

|xn| = sup
n

{∣
∣
∣ε

(x)
1 x1 + ε

(x)
2 x2 + · · · + ε(x)

n xn
∣
∣
∣
}

≤ ‖x‖ε(x) ,

where ε(x) ∈ {−1, 1}N, thus x ∈ �1. Consequently, �1 =⋂ε∈{−1,1}N Sc,ε .
Define next a function ‖·‖∩ : ⋂ε∈{−1,1}N Sc,ε → [0,∞] by the formula: ‖x‖∩ =

sup
{‖x‖ε , ε ∈ {−1, 1}N}. Since

|ε1x1 + ε2x2 + · · · + εn−1xn−1 ± εnxn| ≤ |x1| + |x2| + · · · + |xn|

for each ε ∈ {−1, 1}N , where the inequality ≤ may be replaced by the equality
whenever εk = sign xk, 1 ≤ k ≤ n − 1 and ± εn = sign xn , the function ‖·‖∩
assumes only finite values and in fact ‖x‖∩ = ∑

n |xn| , i.e., ‖·‖∩ is the norm equal
precisely to the norm |x |1 =∑n |xn| of the space �1. Therefore, one can write

(
�1, |·|1

)
=

⋂

ε∈{−1,1}N

(
Sc,ε, ‖·‖ε

)
.

In this sense, the Banach space
(
�1, |·|1

)
in comparison with the space (Sc, ‖·‖) is

“relatively small”. It is also worth mentioning that the basis {en, n ≥ 1} in Sc (as well
as in Sc,ε) is monotone, i.e., for every choice of scalars {xn, n ≥ 1} ⊆ R, the sequence
of numbers

{‖∑n
k=1 xnen‖, n ≥ 1

}
is nondecreasing.

Recall now that a basis {bn, n ≥ 1} of a Banach space (B, ‖ · ‖) is called
boundedly complete if, for every sequence of scalars {xn, n ≥ 1} ⊆ R such that
supn≥1 ‖∑n

k=1 xkbk‖ < ∞, the series
∑∞

n=1 xnbn converges in norm of B. Unfortu-
nately, the basis {en, n ≥ 1} in Sc or Sc,ε is not boundedly complete.

2. Spaces of conditionally convergent series with rates of convergence
The space Sc described here may be the prototype for a wide class of various spaces

with quasi-orthogonal Schauder bases that are not unconditional. For instance, con-
sider the spaces S p

c of (conditionally) summable sequences of real numbers spanned
on vectors of the basis {en, n ≥ 1} , with norms likewise in �p, 1 ≤ p < ∞, (that
describe rates of convergence)

‖x‖p =
( ∞∑

n=1

‖Rn (x)‖p

)1/p

,
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where Rn (x) = ∑∞
k=n xkek for x = (x1, x2, . . .) ∈ S; spaces Sc,w with norms

determined by some positive weights w = (w1, w2, . . .) , wi > 0,

‖x‖1,w =
∞∑

n=1

wn ‖Rn (x)‖ ,

say geometrical weights w = (w1, w2, . . .) = (
q1, q2, . . .

)
, q > 0, or more gener-

ally, spaces S p
c,w equipped with norms

‖x‖p,w =
( ∞∑

n=1

wn ‖Rn (x)‖p

)1/p

, 1 ≤ p < ∞, etc.

Since convergence of the series on the right-hand side of the definition of ‖x‖p implies
that partial sums of the series

∑
n xn satisfy Cauchy’s criterion, the basis {en, n ≥ 1} in(

S p
c , ‖·‖p

)
is evidently monotone and boundedly complete. Thus in view of Dunford’s

theorem [4,Ch. III, §1,Th. 6, p. 64], these spaces possess theRadon–Nikodymproperty
(RNP)—see [4, Ch. III, §1, p. 61] for the definition of this notion. Moreover, the
equality

∥
∥
∥
∥
∥
∥

n∑

j=k

x j e j

∥
∥
∥
∥
∥
∥

=
∥
∥
∥
∥
∥
∥

n−1∑

j=k

x j e j − xnen

∥
∥
∥
∥
∥
∥

valid for all (x1, x2, . . .) ∈ S and 1 ≤ k < n < ∞ implies that the basis {en, n ≥ 1} in(
S p
c , ‖·‖p

)
is again quasi-orthogonal, but it is not unconditional. A similar conclusion

can be also derived for spaces equipped with norms ‖·‖p,w , provided that w is a
suitable sequence of weights.

3. Spaces of bounded sums of functions and conditionally convergent function series
Let {q1 = 0, q2 = 1, q3, q4, . . .} ⊂ [0, 1] ⊂ R be a countable set of numbers dense

in [0, 1] (arranged in any order), and let {en (t) , n ≥ 1} be the system of Schauder
hat functions in [0, 1] defined as follows: e1 (t) = 1 − t and e2 (t) = t, 0 ≤ t ≤ 1;
for n > 2 the points q1, . . . , qn−1 divide the interval [0, 1] into n − 2 subintervals,
and if

[
qi , q j

]
is the subinterval which contains the point qn , then en (t) = 0 for

t ∈ [0, qi ] ∪ [q j , 1], en (qn) = 1, and en is a linear function in the interval [qi , qn]
as well as in

[
qn, q j

]
. It is known that the described system of Schauder hat functions

forms a basis for the space C [0, 1] of real-valued continuous functions in [0, 1] with
the supremum norm

‖ f ‖∞ = sup
0≤t≤1

| f (t)| ,

see, e.g., [10, Prop. 2.3.5, p. 29].
Now with every sequence x = (x1, x2, . . . ) ⊂ R

N, we associate an element g
having coefficients (x1, x2, . . . ) in the basis {en (t) , n ≥ 1} , formally written as g :=
(x1e1 + x2e2 + · · · ), and define
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‖g‖ = ‖sup {|x1e1 + x2e2| , |x1e1 − x2e2| , . . . , |x1e1 + · · · + xn−1en−1 + xnen| ,
|x1e1 + · · · + xn−1en−1 − xnen| , . . .}‖∞

=
∥
∥
∥
∥
∥
sup
n≥1

{|x1e1 + · · · + xnen| + |xn+1en+1|}
∥
∥
∥
∥
∥∞

,

along with

Sb [0, 1] = {g = (x1e1 + x2e2 + · · · ) : ‖g‖ < ∞} .

Then (Sb [0, 1] , ‖·‖) is a (nonseparable) Banach space. The space Sb [0, 1] consists
of elements g = (x1e1 + x2e2 + · · · ) with finite sums of functions x1e1 + x2e2 +
· · ·+ xnen bounded uniformly in 0 ≤ t ≤ 1 and n ≥ 1, but not necessarily convergent
function series x1e1 + x2e2 + · · ·

Furthermore, denote

Sc [0, 1] =
{

g = (x1e1 + x2e2 + · · · ) ∈ Sb [0, 1] : the series
∑

n

xnen

converges in norm ‖·‖
}

.

It can be shown that Sc[0, 1] as a set of functions is identically equal toC[0, 1], and on
account of the well-known openmapping theorem, the norm ‖·‖ is equivalent to ‖·‖∞;
therefore, (Sc [0, 1] , ‖·‖) treated as a function Banach space with its norm topology
is the same as (C[0, 1], ‖ · ‖∞). Since finite linear combinations

∑n
k=1 wkek with

rational coefficients form a countable dense set in C[0, 1], the space Sc [0, 1] is sepa-
rable. The Schauder basis {en(t), n ≥ 1} in (Sc [0, 1] , ‖·‖) is monotone, because finite
linear combinations of hat functions en(t), n ≥ 1, are piecewise linearwith an increas-
ing number of nodes. However, the basis {en(t), n ≥ 1} is not boundedly complete,
for bounded finite linear combinations of basic functions need not define a condi-
tionally uniformly convergent series of functions. Moreover, the basis {en(t), n ≥ 1}
in Sc [0, 1] is quasi-orthogonal with respect to ‖·‖, but it is not quasi-orthogonal in
(C[0, 1], ‖ · ‖∞), and it is not unconditional. More precisely, properties of a given
Schauder basis in C[0, 1] depend on the shape of the unit sphere, and from our con-
siderations it follows that for each Schauder basis {en(t), n ≥ 1} there can be defined
a norm ‖·‖ equivalent to the original supremum norm ‖ · ‖∞ in C[0, 1], such that the
basis {en (t) , n ≥ 1} becomes quasi-orthogonal with respect to ‖·‖, although the same
basis need not be quasi-orthogonal with respect to ‖ · ‖∞.

By analogy to Sc,ε one can now define the spaces Sc,ε [0, 1] consisting of function
series

∑
n εnxnen convergent (conditionally) uniformly in 0 ≤ t ≤ 1 with norms

‖(x1e1 + x2e2 + · · · )‖ε = ‖(ε1x1e1 + ε2x2e2 + · · · )‖ ,

123



Journal of Theoretical Probability (2019) 32:586–607 595

for all sequences of signs ε = (ε1, ε2, . . .) ∈ {−1, 1}N . The intersection

⋂

ε∈{−1,1}N
Sc,ε [0, 1] := �1 [0, 1]

is then the Banach space of function series convergent absolutely uniformly in 0 ≤
t ≤ 1, with the norm

sup
{
‖(x1e1 + x2e2 + · · · )‖ε : ε ∈ {−1, 1}N

}
= sup

0≤t≤1

∞∑

n=1

|xnen (t)| .

The last formula follows from the fact that Schauder hat functions en(t), n ≥ 1,
are nonnegative, and in a more general case this is a consequence of a theorem by
Sierpiński, cf. [10, Prop. 1.5.7, p. 19]. Clearly, the basis {en(t), n ≥ 1} in �1 [0, 1] is
quasi-orthogonal, monotone, unconditional and boundedly complete; thus, �1 [0, 1]
possesses the RNP, cf. [4, Ch. III, §1, Th. 6, p. 64 and Ch. III, §3, Corollary 8, p. 83].

To estimate the rate of (uniform) convergence of function series of the form g (t) =∑∞
n=1 xnen (t) , t ∈ [0, 1] , we may introduce various norms similar as in �p, 1 ≤

p < ∞; namely, let (Rng) (t) =∑k≥n xkek(t), and let

S p
c [0, 1] =

⎧
⎨

⎩
g =

∞∑

n=1

xnen (t) ∈ Sc[0, 1]: ‖g‖p =
( ∞∑

n=1

‖(Rng)‖p

)1/p

< ∞
⎫
⎬

⎭
.

Arguing as in example 2, we conclude that the basis {en(t), n ≥ 1} in the space(
S p
c [0, 1] , ‖·‖p

)
is quasi-orthogonal, but it is not unconditional. Moreover, the basis

{en(t), n ≥ 1} in
(
S p
c [0, 1] , ‖·‖p

)
is monotone and boundedly complete; thus, by

Dunford’s theorem the spaces
(
S p
c [0, 1] , ‖·‖p

)
possess the RNP, see [4, Ch. III, §1,

Th. 6, p. 64].

Remark 1 The same idea as above leads to other examples of Banach spaces of a
similar kind. For example, let I = {in, n ≥ 1} be a sequence of positive integers such
that 1 ≤ in ≤ n, in ↗ ∞ and n − in ↗ ∞ as n → ∞, and for x = {xn} ∈ R

∞, let

‖x‖I ,p =
{ ∞∑

n=1

(∣
∣xin + · · · + xn

∣
∣+ |xn+1|

)p
}1/p

,

where 1 ≤ p < ∞, and

‖x‖I ,∞ = sup
n≥1

{∣
∣xin + · · · + xn

∣
∣+ |xn+1|

}
.

Define

BI ,p =
{

x = {xn} ∈ R
∞: the series

∑

n

xnen converges in norm ‖·‖I ,p
}

,
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1 ≤ p ≤ ∞. Then BI ,p, 1 ≤ p ≤ ∞, are Banach spaces such that {en, n ≥ 1}
is a quasi-orthogonal basis with respect to ‖·‖I ,p , but in general not unconditional.
Moreover, for 1 ≤ p < ∞ the basis {en, n ≥ 1} in BI ,p is boundedly complete, and
thus, these spaces possess the RNP, cf. [4, Ch. III, §1, Th. 6, p. 64]. Next, if I (1) ={
i (1)n , n ≥ 1

}
, I (2) =

{
i (2)n , n ≥ 1

}
, . . . , I (k) =

{
i (k)n , n ≥ 1

}
are some sequences

of positive integers satisfying conditions: 1 ≤ i (1)n < · · · < i (k)n ≤ n, i ( j)n ↗ ∞, 1 ≤
j ≤ k, i ( j+1)

n − i ( j)n ↗ ∞, 1 ≤ j < k, and n − i (k)n ↗ ∞ as n → ∞, then for
n−in ≥ k ≥ 2 (replacing in by i

(1)
n ), the sums

∣
∣xin + · · · + xn

∣
∣+|xn+1| can be divided

into blocks of the form

∣
∣
∣xi (1)n

+ · · · + x
i (2)n −1

∣
∣
∣+
∣
∣
∣xi (2)n

+ · · · + x
i (3)n −1

∣
∣
∣+ · · · +

∣
∣
∣xi (k)n

+ · · · + xn
∣
∣
∣+ |xn+1| ;

in addition, for i ≥ 1, instead of xi ei , the terms εi xi ei can be used, where {εi , i ≥ 1}
are various sequences of signs ± 1. By means of these expressions, in an analogous
way as above, new norms and new Banach spaces with quasi-orthogonal bases can be
defined.

4 Convergence of the Banach RandomWalk

According to the standard terminology, the measure G on the Borel σ -field B (R) is
called here symmetric, if G (−A) = G (A) for all A ∈ B (R).

Lemma 1 Let {bn, n ≥ 1} be a quasi-orthogonal Schauder basis in a real
Banach space (B, ‖·‖), and let {Gn, n ≥ 1} be a sequence of symmetric probability
distributions concentrated on the interval [− 1, 1] ⊂ R. Then theBRW {Zn, n ≥ 1} is a
B-valuedmartingalewith respect to the natural filtrationFn = σ (X1, X2, . . . , Xn) =
σ (Z1, Z2, . . . , Zn) , n ≥ 1.

Proof From the construction of BRW in a Banach space, it follows that Zn ∈ B for
all n ≥ 1, i.e., the r.e.’s Zn are bounded and therefore Bochner integrable. Moreover,
each Zn is Fn-measurable; thus,

E
[
Zn+1|Fn

] = E
[
Zn + Xn+1bn+1|Fn

] = Zn + E
[
Xn+1|Fn

]
bn+1 a.s.

Hence it suffices to show the equality E
[
Xn+1|Fn

] = 0 a.s. But the last statement is
obvious, since it is known that Xn+1 possesses a symmetric distribution in the a.s. sym-
metric interval

[
αn+1 (Zn (ω)) , βn+1 (Zn (ω))

] = [−βn+1 (Zn (ω)) , βn+1 (Zn (ω))
]
.

��

Lemma 2 Let {Zn, n ≥ 1} be the BRW in a Banach space B with a quasi-orthogonal
Schauder basis {bn, n ≥ 1} and let {Fn, n ≥ 1} be the defined above filtration asso-
ciated with {Zn, n ≥ 1} . Denote by F∞ the σ -field generated by the field

⋃∞
n=1 Fn,

i.e., F∞ = σ
(⋃∞

n=1 Fn
)
. Then the following statements are true:
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(a) There exists a vector measure υ:F∞ → B with bounded variation, absolutely
continuous with respect to P, such that

〈
Zn, x

∗〉→ d 〈υ, x∗〉
dP

a.s. for all x∗ ∈ B
∗,

(b) If there is a r.e. ξ ∈ L1 (F∞; B) such that

〈
Zn, x

∗〉→ 〈
ξ, x∗〉 a.s.

for each x∗ ∈ B
∗, then

‖Zn − ξ‖ → 0 a.s.

Proof Since the BRW {Zn, n ≥ 1} satisfies the condition Zn ∈ B, n ≥ 1, we have
supn≥1 E ‖Zn‖ ≤ 1 < ∞. Therefore, our result is a direct consequence of a theorem
given by Stegall, which can be found in [11, Ch. II, §4.3, Prop. 4.3, p. 132]. ��
Lemma 3 For each set A ∈ F∞ there exists

lim
n→∞

∫

A
ZndP = V (A)

in the strong topology of B, and the mapping V :F∞ → B is a countably additive
vector measure.

Proof Observe first that in view of Jensen’s inequality for conditional expectations in
a Banach space, the sequence {‖Zn‖ ,Fn, n ≥ 1} is a real-valued submartingale, cf.
[11, Ch. II, §4.1, (g), p. 127], or [12]. Furthermore,

sup
n≥1

E ‖Zn‖p ≤ 1 < ∞ for each 1 ≤ p < ∞,

so that r.v.’s {‖Zn‖ , n ≥ 1} are uniformly integrable, which implies a.s. convergence
‖Zn‖ → Z∞ (and in L1), where Z∞ ∈ L p = L p(R) for every fixed 1 ≤ p < ∞,
see, e.g., [8, Ch. IV, Th. IV-1-2, p. 62, and Prop. IV-5-24, p. 91]. In particular,

∫

A
‖Zn‖ dP →

∫

A
Z∞dP

for each measurable set A ∈ F . Next, if B ∈⋃n Fn , then by the martingale property
of {Zn, n ≥ 1} ,

∫

B
ZndP → V (B)
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strongly in B. Let ε > 0 be arbitrary and let δ > 0 be chosen in such a way that∫
C Z∞dP < ε/3 whenever C ∈ F∞ and P [C] < δ. Given any set A ∈ F∞, select
B ∈⋃n Fn satisfying condition P [A ÷ B] < δ. Obviously,

∥
∥
∥
∥

∫

A
ZndP −

∫

A
ZmdP

∥
∥
∥
∥ ≤

∥
∥
∥
∥

∫

A
ZndP −

∫

B
ZndP

∥
∥
∥
∥

+
∥
∥
∥
∥

∫

B
ZndP −

∫

B
ZmdP

∥
∥
∥
∥+

∥
∥
∥
∥

∫

B
ZmdP −

∫

A
ZmdP

∥
∥
∥
∥ .

Moreover,
∥
∥
∥
∥

∫

A
ZndP −

∫

B
ZndP

∥
∥
∥
∥ ≤

∫

A\B
‖Zn‖ dP +

∫

B\A
‖Zn‖ dP =

∫

A÷B
‖Zn‖ dP.

Passing to the limit as n → ∞, we obtain

lim
n→∞

∫

A÷B
‖Zn‖ dP =

∫

A÷B
Z∞dP < ε/3,

thus
∥
∥
∥
∥

∫

A
ZndP −

∫

B
ZndP

∥
∥
∥
∥ < ε/3

for sufficiently large n ≥ n0. Since the sequence
{∫

B ZndP, n ≥ 1
}
is Cauchy in B,

we also conclude that
∥
∥
∥
∥

∫

B
ZndP −

∫

B
ZmdP

∥
∥
∥
∥ < ε/3

for all large enough m > n ≥ n1. Consequently,

∥
∥
∥
∥

∫

A
ZndP −

∫

A
ZmdP

∥
∥
∥
∥ < ε,

whenever m > n ≥ max {n0, n1}. In other words, the sequence of integrals{∫
A ZndP, n ≥ 1

}
is Cauchy in (B, ‖·‖), and therefore, there exists

lim
n→∞

∫

A
ZndP = V (A)

in the strong topology ofB for each set A ∈ F∞. It can be easily seen that V :F∞ → B

is finitely additive. Let A1, A2, . . . ∈ F∞ be an arbitrary sequence of pairwise disjoint
sets. Notice that
∥
∥
∥
∥
∥
lim
n→∞

∫

⋃∞
k=1 Ak

ZndP − lim
n→∞

∫

⋃m
k=1 Ak

ZndP

∥
∥
∥
∥
∥

= lim
n→∞

∥
∥
∥
∥
∥

∫

⋃∞
k=m+1 Ak

ZndP

∥
∥
∥
∥
∥

,
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and thus, to prove countable additivity of V it is enough to show that

lim
n→∞

∥
∥
∥
∥
∥

∫

⋃∞
k=m+1 Ak

ZndP

∥
∥
∥
∥
∥

→ 0

as m → ∞. Taking m0 so large that P
[⋃∞

k=m+1 Ak
]

< δ for m ≥ m0, we obtain

lim
n→∞

∥
∥
∥
∥
∥

∫

⋃∞
k=m+1 Ak

ZndP

∥
∥
∥
∥
∥

≤ lim
n→∞

∫

⋃∞
k=m+1 Ak

‖Zn‖ dP =
∫

⋃∞
k=m+1 Ak

Z∞dP < ε/3

provided m ≥ m0, which terminates the proof. ��
The above Lemma 3 enables us to apply the Lebesgue decomposition theorem for

the vector measure V , see [4, Ch. I, §5, Th. 9, p. 31].

Lemma 4 Let

V (A) = lim
n→∞

∫

A
ZndP, A ∈ F∞,

and let V = H + J , |H | � P, |J | ⊥ P, be the Lebesgue decomposition of V with
respect to P, where |H | , |J | are variations of H and J , respectively. Then limn→∞ Zn

exists a.s. if and only if H has a Radon–Nikodym derivative h ∈ L1 (F; B) .Moreover,
in this case limn→∞ Zn = E (h|F∞) a.s.

Proof Arguing as above, we easily note that {Zn,Fn, n ≥ 1} is an L1 (B)-bounded
martingale (here, and in the sequel L p (B) = L p (Ω,F , P; B) , 1 ≤ p < ∞); thus,
the conclusion follows from the martingale pointwise convergence theorem given in
[4, Ch. V, §2, Th. 9, p. 130]. ��
Lemma 5 Let B be a Banach space with the RNP and a quasi-orthogonal Schauder
basis {bn, n ≥ 1}. Moreover, let {Gn, n ≥ 1} be a sequence of symmetric probability
distributions concentrated on [− 1, 1] ⊂ R. Then the BRW martingale {Zn, n ≥ 1}
converges strongly a.s. and in L p (B) for each fixed 1 ≤ p < ∞.

Proof The limit limn→∞ Zn of the martingale {Zn, n ≥ 1} exists in L p (B)-norm, if
and only if supn≥1 ‖Zn‖p

p = supn≥1 E ‖Zn‖p < ∞,where 1 < p < ∞,which is evi-
dent as Zn ∈ B for n ≥ 1.The last observation implies uniform integrability of random
elements {Zn, n ≥ 1} , and we have obviously supn≥1 ‖Zn‖1 = supn≥1 E ‖Zn‖ ≤
1 < ∞. Thus limn→∞ Zn exists as well in L1 (B)-norm in view of the martingale
mean convergence theorem, cf. [4, Ch. V, §2, Corollary 4, p. 126]. It is also well known
that an L1 (B) convergent martingale converges a.s. to its L1 (B)-limit, see [4, Ch. V,
§2, Th. 8, p. 129], or [11, Ch. II, §4.3, Th. 4.2, p. 131 and Th. 4.3, p. 136]. ��
Corollary 1 If B is a Banach space with a quasi-orthogonal boundedly complete
Schauder basis {bn, n ≥ 1} , then the BRW {Zn, n ≥ 1} in B converges strongly a.s.
and in L p (B) for each fixed 1 ≤ p < ∞.
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Proof By a theorem of Dunford, if a Banach space B possesses a boundedly complete
Schauder basis, then B has the RNP, cf. [4, Ch. III, §1, Th. 6, p. 64]. Hence and from
Lemma 5, the assertion of Corollary 1 follows. ��
Corollary 2 Let B be a reflexive Banach space which has a quasi-orthogonal
Schauder basis {bn, n ≥ 1}. Then the B-valued BRW {Zn, n ≥ 1} converges strongly
a.s. and in L p (B) for each fixed 1 ≤ p < ∞. In particular, ifB = H is a Hilbert space
with a basis {bn, n ≥ 1} which forms a CONS in H, then the last statement remains
valid.

Proof It is fairly well known from a theorem of Phillips that reflexive Banach spaces
have the RNP, see [4, Ch. III, §3, Corollary 4, p. 82]. Since each Hilbert space is
reflexive, we conclude that B = H has the RNP. Thus, an application of Lemma 5
concludes the proof. ��
Theorem 1 Let φ: B → R be a bounded and continuous mapping in a Banach spaceB

which has the RNP and a quasi-orthogonal Schauder basis {bn, n ≥ 1}. If {Zn, n ≥ 1}
is the BRW in B, then

φ (Zn) → φ (ξ) a.s. and in L p = L p (R) , 1 ≤ p < ∞,

where ξ = limn→∞ Zn a.s. and in L p (B)-norm for all 1 ≤ p < ∞. In particular,
there exists

lim
n→∞ Eφ (Zn) = Eφ (ξ) .

Proof Sinceφ is continuous and the assumptions ofLemma5 are fulfilled,we conclude
that φ (Zn) → φ (ξ) a.s. But in addition φ is assumed to be bounded, thus using
the Lebesgue-dominated convergence theorem we obtain also convergence φ (Zn) →
φ (ξ) in L p, 1 ≤ p < ∞. The last statement of the theorem follows from the estimate

|Eφ (Zn) − Eφ (ξ)| ≤ E |φ (Zn) − φ (ξ)| → 0.

��
Corollary 3 The assertion of Theorem 1 remains valid for a Banach space B with a
boundedly complete quasi-orthogonal Schauder basis {bn, n ≥ 1} , as well as for a
Hilbert space B = H with the Schauder basis {bn, n ≥ 1} that forms a CONS in H.

5 The Banach Functional Integral in a Class of Banach Spaces

Let Cb = {φ: B → R;φ-bounded and continuous}. Observe that Cb has the following
properties:
(i1) the set Cb is a real linear space,
(i2) if φ ∈ Cb, then |φ| ∈ Cb.
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Define a functional f : Cb → R by the formula:

f (φ) = lim
n→∞ Eφ (Zn) = Eφ (ξ) , (4)

where {Zn, n ≥ 1} is a BRW in the Banach space B, and ξ = limn→∞ Zn a.s. and in
L p (B) , 1 ≤ p < ∞.

It can be easily seen that the mapping f satisfies the following conditions:
(ii1) f : Cb → R is a linear functional,
(ii2) the functional f is nonnegative, i.e., f (φ) ≥ 0 whenever φ ∈ Cb and φ ≥ 0,
(ii3) if 10 {φn} ⊂ Cb, ψ ∈ Cb, 20 |φn| ≤ ψ for n ≥ 1, and 30 limn→∞ φn (x) = 0 for
all x ∈ B, then limn→∞ f (φn) = 0.

Notice that 30 implies P-a.s. convergence φn (ξ) → 0; thus, the last condition fol-
lows from the classical Lebesgue-dominated convergence theorem applied to integrals
Eφn (ξ) , n = 1, 2, . . . (Actually, in our approach we can even replace condition 30

by a weaker assumption φn → 0 in P ◦ ξ−1-measure.) Consequently, the functional
f satisfies all the conditions given in §2 of the Banach paper [1]. Therefore, for our
functional f the Banach Th. 1, §3, p. 322, [1] is valid. In this way, we obtain the
following result.

Theorem 2 Let {Zn, n ≥ 1} be a BRW in a Banach spaceBwith the RNP and a quasi-
orthogonal Schauder basis {bn, n ≥ 1} , in particular in a Banach space B with a
boundedly complete quasi-orthogonal Schauder basis. Then, the functional f given
by (4) has an extension to the additive functional F on the linear set L ⊃ Cb of all
bounded, Borel measurable functions Φ: B → R. Moreover, the extended functional
F on L possesses all the properties (A)–(E) and (R) specified in §1 of the Banach
paper [1], analogous to the Lebesgue integral.

Remark 2 The approach presented above is a generalization of the method proposed
by Banach [1] for the construction of the so-called L-integral—an analogue of the
Lebesgue integral in abstract spaces.

Theorem 3 Let B be a Banach space with the RNP and a quasi-orthogonal
Schauder basis, in particular—a Banach space with a boundedly complete quasi-
orthogonal Schauder basis. Then each sequence of symmetric probability distributions
{Gn, n ≥ 1} concentrated on the interval [− 1, 1] ⊂ R generates a probability mea-
sure Γ on the Borel σ -field B in B, given by

Γ (A) = E1A (ξ) , A ∈ B.

The measure Γ is equal to the limit distribution of the described above BRW
{Zn, n ≥ 1} in B, thus suppΓ ⊆ B.

Proof Obviously, Γ is nonnegative and normalized so that Γ (B) = Γ (B) = 1.
It suffices to verify countable additivity of Γ , but it follows immediately from the
properties of the integral E (·). The last conclusion can also be easily shown in a direct
way. To this end, let A1, A2, . . . ∈ B be arbitrary disjoint sets. Since suppΓ ⊆ B, we
have Γ (A) = Γ (A ∩ B) = E1A∩B (ξ) , A ∈ B. Observe next that
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E1⋃n
j=1(A j∩B) (ξ) = E

⎛

⎝
n∑

j=1

1A j∩B (ξ)

⎞

⎠ =
n∑

j=1

E1A j∩B (ξ) =
n∑

j=1

Γ
(
A j
)
,

and

0 ≤
n∑

j=1

1A j∩B (x) = 1⋃n
j=1(A j∩B) (x) ↗ 1⋃∞

n=1(An∩B) (x) ≤ 1B (x) , x ∈ B.

Hence, on account of the Lebesgue monotone convergence theorem,

∞∑

n=1

Γ (An) = lim
n→∞

n∑

j=1

Γ
(
A j
) = lim

n→∞ E1⋃n
j=1(A j∩B) (ξ)

= E
(
lim
n→∞1⋃n

j=1(A j∩B) (ξ)
)

= E1(
⋃∞

n=1 An)∩B (ξ) = Γ

( ∞⋃

n=1

An

)

.

��
From the construction of the BRW in a Banach space, it follows immediately that

the limit distribution Γ = P ◦ ξ−1 of the BRW is sign-invariant with respect to the
Schauder basis {bn, n ≥ 1}, in the sense that for each set A ∈ B and every sequence
ε = {ε1, ε2, . . .} of signs εk ∈ {−1, 1}, k ≥ 1, we have

Γ (A) = Γ (εA),

where εA = {∑∞
k=1 εk xkbk ∈ B: ∑∞

k=1 xkbk ∈ A
}
. It is also clear that each sign-

invariant measure is symmetric, thus

Γ (A) = Γ (−A) for all A ∈ B.

By analogy to the notion of the Wiener measure, we propose to call Γ the Banach
measure in a Banach space. One may expect that the Banach measure will play a simi-
larly important role in Banach spaces as is played by theGaussianmeasure constructed
by Gross [5], cf. Bogachev [3], or Kuo [6].

6 Examples

1. Let B = �p, 1 ≤ p < ∞, and let bn = en = (0, . . . , 0, 1, 0, . . .), n ≥ 1, where 1
is the nth term of the sequence (0, . . . , 0, 1, 0, . . .). Then πn(x) = ∑n

k=1 xkbk =
(x1, . . . , xn, 0, . . .) for x =∑∞

n=1 xnbn = (x1, x2, . . .) ∈ �p, and thus

|πn(x) + tbn+1|pp =
n∑

k=1

|xk |p + |t |p ≤ 1 ⇔ |t | ≤
(

1 −
n∑

k=1

|xk |p
)1/p

.
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Hence it follows that {bn, n ≥ 1} is a quasi-orthogonal Schauder basis in �p. (In fact,
the considered basis is unconditional.) Moreover, if

sup
n≥1

|πn(x)|p = sup
n≥1

∣
∣
∣
∣
∣

n∑

k=1

xkbk

∣
∣
∣
∣
∣
p

=
( ∞∑

k=1

|xk |p
)1/p

≤ M < ∞,

then the series
∑∞

n=1 xnbn converges in �p. Thus, the basis {bn, n ≥ 1} is boundedly
complete and in consequence each space �p, 1 ≤ p < ∞, has the RNP. It is also well
known that for p > 1 the spaces �p are reflexive, which implies as well that they have
the RNP. Therefore, all the above results are valid for Banach spaces B = �p, 1 ≤
p < ∞.

2. Let B = L p [0, 1] , where 1 ≤ p < ∞. Consider the system of Haar functions:
h01 (s) = 1, s ∈ [0, 1], and

hnk (s) = 2n · 1[(2k−2)/2n+1, (2k−1)/2n+1) (s) − 2n · 1[(2k−1)/2n+1, (2k)/2n+1) (s)

for k = 1, 2, . . . , 2n, n = 1, 2, . . . , s ∈ [0, 1]. It is known that the system of Haar
functions forms a Schauder basis in L p [0, 1], see, e.g., [9, Th. 24.17, pp. 290–295],
or [7, Part II, Prop. 2.c.1, p. 150]. For convenience of the reader, we sketch here the
proof that the Haar basis in L p [0, 1] is quasi-orthogonal.

Proposition 1 The system of Haar functions is a quasi-orthogonal basis in L p [0, 1] ,
1 ≤ p < ∞.

Proof Let the Haar functions be arranged in a sequence that is divided into blocks,
each of 2n members, numbered by upper indices n = 0, 1, 2, . . . ,

Λ =
{(

h01

)
,
(
h11, h

1
2

)
,
(
h21, h

2
2, h

2
3, h

2
4

)
,
(
h31, h

3
2, h

3
3, h

3
4, h

3
5, h

3
6, h

3
7, h

3
8

)
, . . .

}
.

We make now two crucial observations: 10 for a fixed n ≥ 0 within the same nth
block the Haar functions hnk , 1 ≤ k ≤ 2n , have nonoverlapping supports, 20 the
function of the form c01h

0
1 + c11h

1
1 + c12h

1
2 + · · · + cn−1

1 hn−1
1 + · · · + cn−1

2n−1h
n−1
2n−1 ,

where cij ∈ R are arbitrarily fixed coefficients, is constant in each interval of the form
[
(k − 1) /2n, k/2n) , k = 1, 2, . . . , 2n .
Suppose now that πn

k−1 (x) = x01h
0
1 + x11h

1
1 + x12h

1
2 + · · · + xnk−1h

n
k−1 and the next

element of Λ is hnk . Then for any parameter t ∈ R,

∥
∥πn

k−1 (x) + thnk
∥
∥p
p =

∫ 1

0

∣
∣πn

k−1 (x) (s)+thnk (s)
∣
∣p ds=

∫ (k−1)/2n

0

∣
∣πn

k−1 (x) (s)
∣
∣p ds

+
∫ k/2n

(k−1)/2n

∣
∣
∣πn−1

2n−1 (x) (s) + thnk (s)
∣
∣
∣
p
ds

+
∫ 1

k/2n

∣
∣
∣πn−1

2n−1 (x) (s)
∣
∣
∣
p
ds = I1 + I2 + I3,
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where πn−1
2n−1 (x) (s) = πn−1

2n−1 (x)
(
(2k − 1)/2n+1

) = c, s ∈ [(k − 1)/2n, k/2n
)
. The

first and third integrals on the right-hand side do not depend on the parameter t, and
the middle term is equal to

I2 =
∫ (2k−1)/2n+1

(k−1)/2n

∣
∣c + t2n

∣
∣p ds +

∫ k/2n

(2k−1)/2n+1

∣
∣c − t2n

∣
∣p ds

= ∣
∣c + t2n

∣
∣p · 1

2n+1 + ∣∣c − t2n
∣
∣p · 1

2n+1 := r (t) .

Since r (t) = r (−t), and

inf {t ∈ R: r (t) ≤ 1 − I1 − I3} = − sup {−t ∈ R: r (−t) ≤ 1 − I1 − I3}
= − sup

{
t ′ ∈ R: r (t ′) ≤ 1 − I1 − I3

}
,

we conclude that αn
k = −βn

k . The same argument remains valid when πn
k−1 is replaced

by πn−1
2n−1 , and πn

k is replaced by πn
1 , and thus, the system of Haar functions forms a

quasi-orthogonal basis in L p [0, 1] . ��
Remark 3 It is clear that the Haar functions for n ≥ 1 can be modified as follows:

hnk (s) = 2n/p · 1[(2k−2)/2n+1, (2k−1)/2n+1) (s) − 2n/p · 1[(2k−1)/2n+1, (2k)/2n+1) (s) ,

k = 1, 2, . . . , 2n, s ∈ [0, 1]. Then the aboveProposition 1 formodifiedHaar functions
remains true, and in addition, we have ‖hnk‖p = 1 for all k, n.

Evidently, all the spaces L p [0, 1] , 1 < p < ∞, are reflexive Banach spaces,
and thus, they possess the RNP, which is a straightforward consequence of Phillips’
theorem, cf. [4, Ch. III, §3, Corollary 6, p. 82]. Unfortunately, the space L1 [0, 1] does
not have the RNP, see [4, Ch. VII, p. 219].

Hence, it follows that all the results presented in previous sections are valid for
Banach spaces L p[0, 1], 1 < p < ∞.

Remark 4 Proposition 1 togetherwith observation that the space L1[0, 1] does not pos-
sess the RNP implies the following conclusion: the existence of a quasi-orthogonal
Schauder basis in a Banach space is not a sufficient condition for the RNP. The same
conclusion follows from the fact that the space (Sc [0, 1] , ‖·‖) (isometrically isomor-
phic to (C[0, 1], ‖ · ‖∞)) does not have the RNP.

3. To illustrate the technique of computations of Banach L-integrals based on
the method described here, we calculate, for instance, two “rarefied” absolute
pth moments of ξ = ∑∞

n=1 Xnbn in �p, 1 ≤ p < ∞, determined by lacu-
nary series

∑∞
n=1 X2n−1b2n−1 and

∑∞
n=1 X2nb2n , namely E

(∑∞
n=1 |X2n−1|p

)
and

E
(∑∞

n=1 |X2n|p
)
, where ξ is the limit random element of the BRW generated by

the sequence of identical uniform distributions on [− 1, 1] ⊂ R. Since the basis
{bn, n ≥ 1} in �p is unconditional, the lacunary series considered here are strongly
convergent, see, e.g., [7, Prop. 1.c.1, p. 15, and p. 19].
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Observe first that if πodd (x) = ∑∞
n=1 x2n−1b2n−1 for x = ∑∞

n=1 xnbn ∈ �p, then

|πodd (x)|p = (∑∞
n=1 |x2n−1|p

)1/p
, thus

∣
∣
∣
∣
∣
∣

( ∞∑

n=1

|x2n−1|p
)1/p

−
( ∞∑

n=1

∣
∣x ′

2n−1

∣
∣p
)1/p

∣
∣
∣
∣
∣
∣
=
∣
∣
∣|πodd (x)|p − ∣∣πodd

(
x ′)∣∣

p

∣
∣
∣

≤ ∣∣πodd
(
x − x ′)∣∣

p =
( ∞∑

n=1

∣
∣x2n−1 − x ′

2n−1

∣
∣p
)1/p

≤ ∣∣x − x ′∣∣
p → 0

as x → x ′ in �p-norm |·|p. It follows that �p � x �→ (∑∞
n=1 |x2n−1|p

)1/p is a
continuous function. Therefore, �p � x �→ ∑∞

n=1 |x2n−1|p , as well as �p � x �→∑∞
n=1 |x2n|p are continuous, and both these maps are bounded in the unit ball B ⊂ �p.
According to the construction of the BRW in �p, the density of X1 is equal to

f1(x1) = 1[−1,1](x1)/2, and the density of (X1, X2, . . . , Xn) for n > 1 is given by

fn (x1, x2, . . . , xn)

= 1Kn (x1, x2, . . . , xn)

2n · ([1−|x1|p
] · [1−(|x1|p+|x2|p

)] · . . . · [1−(|x1|p+· · ·+|xn−1|p
)])1/p ,

where Kn = Kn (0, 1) is the unit ball with center zero and radius 1 in R
n , equipped

with the �p-norm |(x1, . . . , xn)|n,p = (∑n
k=1 |xk |p

)1/p. Hence,

E |X1|p =
∫ 1

−1

|x1|p
2

dx1 = 2
∫ 1

0

x p
1

2
dx1 = x p+1

1

p + 1

∣
∣
∣
∣
∣

1

0

= 1

p + 1
.

Moreover, for n > 1,

E |Xn|p =
∫

Kn

|xn|p · fn (x1, x2, . . . , xn) dx1dx2 . . . dxn

=
∫

Kn−1

(

2
∫ [1−(|x1|p+···+|xn−1|p)]1/p

0
x p
n · fn (x1, x2, . . . , xn) dxn

)

×dx1dx2 . . . dxn−1

=
∫

Kn−1

x p+1
n

p + 1

∣
∣
∣
∣
∣

[1−(|x1|p+···+|xn−1|p)]1/p

0

× fn−1 (x1, x2, . . . , xn−1)
[
1 − (|x1|p + · · · + |xn−1|p

)]1/p dx1dx2 . . . dxn−1

=
∫

Kn−1

[
1 − (|x1|p + · · · + |xn−1|p

)]

p + 1
· fn−1 (x1, x2, . . . , xn−1)
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×dx1dx2 . . . dxn−1

= 1

p + 1

{
1 − (E |X1|p + E |X2|p + · · · + |Xn−1|p

)}
.

Thus,

E |X2|p = 1

p + 1

{
1 − E |X1|p

} = 1

p + 1

(

1 − 1

p + 1

)

= 1

p + 1

p

p + 1
,

and, by induction,

E |Xn|p = 1

p + 1

{

1 −
(

1

p + 1
+ p

(p + 1)2
+ · · · + pn−2

(p + 1)n−1

)}

= 1

(p + 1)

{

1 − 1

p + 1
· 1 − pn−1/ (p + 1)n−1

1 − p/ (p + 1)

}

= pn−1

(p + 1)n
.

Therefore,

E

( ∞∑

n=1

|X2n−1|p
)

=
∞∑

n=1

p2n−1−1

(p + 1)2n−1 = 1

p + 1
· 1

1 − p2/ (p + 1)2
= p + 1

2p + 1
,

and

E

( ∞∑

n=1

|X2n|p
)

=
∞∑

n=1

p2n−1

(p + 1)2n
= p

(p + 1)2
· 1

1 − p2/ (p + 1)2
= p

2p + 1
.

In consequence,

E |πodd (ξ)|pp = p + 1

2p + 1
, E |ξ − πodd (ξ)|pp = p

2p + 1
,

so that

E |ξ |pp = E

( ∞∑

n=1

|Xn|p
)

= p + 1

2p + 1
+ p

2p + 1
= 1.
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