Journal of Theoretical Probability (2019) 32:586-607
https://doi.org/10.1007/s10959-019-00890-4

®

Check for
updates

Random Walk in Balls and an Extension of the Banach
Integral in Abstract Spaces

Tadeusz Banek' - August M. Zapata?

Received: 1 November 2015 / Revised: 9 July 2018 / Published online: 8 March 2019
© The Author(s) 2019

Abstract

We describe the construction of a random walk in a Banach space B with a quasi-
orthogonal Schauder basis and show that it is a martingale. Next we prove that
under certain additional assumptions the described random walk converges a.s. and
in LP(B), 1 < p < oo, to a random element &, which generates a probability
measure with support contained in the unit ball B C B. Moreover, we define the
Banach integral with respect to the distribution of £ for a class of bounded, Borel
measurable real-valued functions on B. Next some examples of nonstandard Banach
spaces with quasi-orthogonal Schauder bases are presented; furthermore, examples
which demonstrate the possibility of applications of all the obtained results in spaces
P, 1 < p<ooand LP[0, 1], 1 < p < oo are given.
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1 Introduction

Let {e;, i > 1} be acomplete orthonormal system (CONS) in a separable Hilbert space
(H, |-]) and let r,, (x) = Y '_, xje; forx = Y 2 x;e; € H. Denote by K, and B the
unit balls in R” and H, respectively.

In a paper published as addendum to the Saks monograph Theory of the Integral,
Banach [1] described the most general form of a nonnegative linear functional F
(satisfying additional conditions analogous to some properties of the Lebesgue inte-
gral, thus called by Banach £-integral), defined on the linear set £ of bounded, Borel
measurable functions @: B — R, namely

F(®)= lim F, (D),
n—oo
where

F, (D) =/K D (my () gn (X1, ..., X)) dxy .. dxy,

8n (X1,..., %)

g(x)g <X2/ ! —x%) g (xaly1 = (422 ))

JO=33) (=3 +)] - [ = (402 )]

= ]lKn (xlv"-wxn)

3

g: [—1,1] — [0, co) is Borel measurable and integrable with fil g@)dt =1, and
1 4 denotes the indicator of the set A.

In fact, Banach [1] considered only the case when g is the density of the uniform dis-
tribution on [— 1, 1], and a more general case was treated by Banek [2]. Furthermore,
Banek [2] observed that

Fo(®) =E® (Zy),

where {Z,} is the so-called Banach random walk (BRW) in B C H given by the
random linear combination Z, = Zl'-':] Xie;, n > 1, of elements of CONS {e;}
in H, with coefficients X; that are dependent r.v.’s defined recursively as follows:
X1 is a r.v. having density g concentrated on the interval [— 1, 1], and if the r.v.’s
X1, ..., X, are already defined, then X, is defined as a r.v. with probability density

g (x,,/\/l — (X% + -4 Xﬁ_1)> in the random interval

=) - ()|

The last observation forms a probabilistic background to the purely deterministic
Banach construction of the £-integral for a class of bounded, Borel measurable func-
tions defined in B C H.
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It is worth mentioning that Banach [1] considered two various special cases: (1)
the mapping @ is defined on a compact metric space and (2) @ is defined in the unit
ball of a separable Hilbert space.

In this paper, we describe a generalized BRW {Z,,, n > 1} with values in the unit
ball of a Banach space. Moreover, we give a criterion for the existence of the Banach—
Lebesgue integral

F ()= lim F, (P) ey

in terms of the constructed BRW {Z,,, n > 1}, where @ is abounded, Borel measurable
real-valued function defined in the unit ball of a Banach space.

2 Banach Random Walk in a Banach space

Let (B, ||-]l) be an infinite-dimensional Banach space with a Schauder basis
{bn,n > 1}. Then each vector x € B possesses a unique series expansion x =
Y e Xkbk, and thus, for all n > 1, the projections 7,: B — B, given by 7, (x) =
> i—1 Xkby, are well defined. Denote

By ={my (x) €B: [[my () =1}, B={xeB: x| =1},
and put
o =inf{t € R: ||ltb1]| < 1}, Bi =sup{r € R: |lthi|| < 1} (= —a1).
Furthermore, given any point 7,1 (x) € B,—1, n > 2, define inductively

ay = op(my—1 (x)) = inf {t € R: ||,y (x) +tby|l < 1},
Bn = Bu(mwy—1 (x)) = sup {t eR: [|mp_1 (x) + byl < 1}.

Itis clear that o;; < 0 < B, and [«,, B,], n > 1, are bounded intervals in R, for
lTn—1 () +tbpll <1 = |t] - |bnll < lTp—1 O+ 1, n> 1,

where 7,1 (x) = 7o (x) = 0 for n = 1. Obviously, o, and B,, depend on 7, (x) €
B,_1 and b,, and in general the intervals [«y,, B,], n > 2, need not be symmetric
about 0. In addition, it may happen that for some n > 2 the interval [«,, 8,] reduces
to the single point [0, 0] = {0}. To fix a standard length of the first interval, without
loss of generality we may and do assume that ||b1]| = 1 (but we do not require that
by ]l = 1 for all n > 2). In such a situation, «; = —1 and ; = 1.

Let G,, n > 1, be arbitrary probability distributions concentrated on [— 1, 1] C
R, ie., G, ([—1,1]) = 1 for all n > 1. Define inductively on a probability space
(82, F, P) a sequence of (dependent) real r.v.’s {X,,, n > 1} and, associated with it,
a sequence of B-valued random elements (r.e.) {Z,, n > 1}. Namely, let X| be ar.v.
with distribution G and let Z; = X1b;. Then X (w) € [o1, B1] = [—1, 1] a.s., and
thus, we may define X» as a r.v. distributed according to G, scaled linearly in such a
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way that it is concentrated on [z, B2] = [2 (Z1 (w)), B2 (Z1 (w))]. In other words,
X is a r.v. with distribution function

Gy (2t — B2 (Z1 () + a2 (2 (w))]) feR
B2 (Z1 (w)) — a2 (Z1 (w))

whenever 8> — «p > 0, and then we put Z, = Xb; + X»2by. Next, given any
value X, (w), and a fortiori Zp (w) € Bj a.s., we define X3 as a r.v. with dis-
tribution G3 scaled linearly in such a way that it is concentrated on the interval
[az, B3] = [a3 (Z2 (), B3 (Z2 (w))], and then put Z3 = X by + Xoby + X3b3,
etc. More generally, if X1, ..., X,—1 and Zy, ..., Z,_1 are already defined in such a
manner that Z,_| (w) € B,,_; a.s., then X,, is a r.v. with distribution function

<2r — [Bn (Zu—1 (@) + ety (Zu- (w))]>
G, , teRR,

Bun (Zn—1 (@) — oy (Zy—1 ()
provided B, —a, > 0and Z,, = X1by + Xoby + -+ + Xuby = Zy—1 + Xuby.

As was already mentioned, it may happen that for some n > 1 and Z, (w) € B, the
interval [@y11, But1] = [@n+1 (Zn (@) . Bug1 (Zy (®))] is reduced to the single point
{0}; in this situation, we assume that the distribution G,, 1 is transformed in such a way
that it assigns the unit mass to the one point set {0}. Although in suchacase Z, 1 (w) =
Zy(w), the next random interval [, 42, But2] = [ony2 (Zn11(@)) , Btz (Zut1(w))],
defined by means of the successive basic vector b, 7, need not be equal to {0}; thus,
the process is still continued.

Definition 1 The sequence of B-valued re.’s {Z,,n > 1} obtained in the way
described above is called Banach random walk (BRW) in a Banach space B.

It seems that the main idea of Banach’s [1] construction of £-integral was the
symmetry of mappings corresponding to the symmetry of Lebesgue measures in
R", n > 1, which led to convergence of the integral functional in (1). Therefore,
we introduce in addition the following notion:

Definition 2 The Schauder basis {b,,, n > 1} is called quasi-orthogonal, if

Br+1(Tn (X)) = —apy1 (T4 (X)) @)

for all n > 1 and x € B such that 7, (x) € B,.

Recall that the basis {b,, n > 1} in a Banach space (B, || - ||) is said to be uncondi-
tional, if foralln > 1, x; € Rand ¢, = £1, 1 < k < n, we have

n n
Z €xXi by Z Xibr
k=1 k=1

. 3

The definition of a quasi-orthogonal Schauder basis in a Banach space seems to be
similar to the condition defining an unconditional basis, but in spite of this, these two

@ Springer



590 Journal of Theoretical Probability (2019) 32:586-607

notions are not equivalent. If the basis {b,, n > 1} is unconditional, i.e., (3) holds,
then it is obviously quasi-orthogonal, but the converse need not be true. To explain the
notion of quasi-orthogonality, below we present the construction of relevant examples
of Banach spaces with quasi-orthogonal Schauder bases which are not unconditional.
It should be pointed out that many familiar Banach spaces possess unconditional
Schauder bases (thus in fact quasi-orthogonal) consisting of unit vectors, but the class
of Banach spaces with quasi-orthogonal bases is substantially larger than the class of
spaces with unconditional bases.

3 Banach Spaces with Quasi-Orthogonal Bases

The quasi-orthogonal basis is constructed sequentially, step by step: given any basic
vectors by, by, ..., by, the element b, 1 of the basis is chosen in such a way that for
arbitrary xp, x2, ..., x, € R satisfying condition x{b| + --- 4+ x,b, = 7,(x) € By,
Eq. (2) is satisfied. As will be seen condition (3) for this property is not necessary.

1. Spaces of bounded sums and conditionally convergent series
Let S = RN = {x = (x1,x2,...):x; € R for all k > 1} be the set of all infinite
sequences of real numbers. Define a function |-|| : § — [0, oo] by

x|l = sup {|lx1 + x2|, [x1 — x2|, [x1 + x2 4+ x3], |x1 +x2 — X3/,
N B Rt a7 ST S ot I B ST S S S B ool (U |
=sup {lx1] + |x2l, [x1 +x20 + Ix3], ..o, Ix1 + -+ X0 + X041, .- ),

and next put
Sp={x = (x1,x2,...) € S: |lx]| < o0}.

Then ||-|| is a norm in Sp, and (Sp, ||-]|) is a Banach space. The space S, consists of
all bounded sequences (xg, x2,...) € S of real numbers with bounded partial sums
Sp = x1 + -+ + x,; namely, if x € Sp and ||x|| = M < oo, then |x,| < M and
Isn| < M for all n > 1. Conversely, if there exists a constant 0 < M < oo such that
|xn| < M and |s,| < M foralln > 1, then |s;, & x,41] < |$n] + [xn41] < 2M, and
thus, ||x|| < 2M, i.e., x = (x1, x2,...) € Sp. Therefore, (Sp, ||-||) may be called the
space of bounded sums.

However, the space S; of sequences of real numbers is not separable. To show
this, consider the family 2N of all the subsets of the set N = {1, 2, ...}, and for ¢ #=
A = {k1, ko, ...} €N, where k; < k» < ---, define x4 as the sequence with terms
Xkyj 1 = 1, Xy, = —1, j > 1, and x; = 0 otherwise, along with x4 = (0,0, ...).
Then ||x4]| < 2, while x4 — xg|| > 1 whenever A, B C N, A # B. Since the set 21
is uncountable, the space S, is nonseparable. Hence in the context of our requirements,
the space S}, is inadequate.
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Consider the set

Se = 3x = (x1,x2,...) € Sp: the series Zxk converges } .
k

In other words, S, is the set of all sequences x = (x1, x2, ...) € S, for which a finite
limit lim, s, = s € R exists. It can be easily verified that (S, |-||) is also a Banach
space. Moreover, the space S, is separable. Indeed, the set of elements

{en = (bkn, k=>1),n=1,2,...},

where 8y, = 0 for k # n and §,, = 1, is a basis of the space S., and finite linear
combinations of vectors e,, with rational coefficients from a countable dense subset in
Sc. Moreover, from the definition of the norm ||-|| it follows that the basis {e,, n > 1}
is quasi-orthogonal, but it is not unconditional, because sums of the form €1 x| +€3x3 +
<o+ €yxp, X = (x1,x2,...) € S¢, need not be convergent for all combinations of
signs €, = %1. Taking into account the above properties, (S, ||-||) may be called the
Banach space of conditionally convergent series.

Since the existence of lim,, s, = s € R implies that lim,, x, = 0, we conclude that
x € S¢ = x € cp. The Banach space c( of sequences of real numbers convergent to 0
is usually considered with the supremum norm |x|,, = sup {|x], |x2|, ...}, but the
two norms ||-]| and |-|4, restricted to S. are not equivalent. To see this, consider the
sequence of points {x™, n > 1},

xW =1, -1/2,1/3,-1/4,1/5,-1/6,1/7,—1/8,...),
xP = (1,1/2,1/3,-1/4,1/5,-1/6,1/7,-1/8,...) ,
x® = 1,1/2,1/3,1/4,1/5,—1/6,1/7, —1/8, ...),

and put x° = (1,1/2,1/3,1/4,1/5,1/6,...,1/n,1/(n +1),..).

Then ||x™| < oo for all n > 1, so that {x™,n>1} C S.. Moreover,
|x(") —x("o)|Oo = 1/n — 0, while ||x(") — x(©) || = oo, n = 1,2,... which is
a consequence of the fact that ), 1/n = oo. Therefore, the inclusion S. C ¢ is valid
only for sets, but it is not true for Banach spaces, (S¢, [|-|I) & (co, |*loo) -

A similar effect as in the case of the space S, can be obtained for every fixed system
of signs € = (e, €2,...) € {—1, 1} and the norm given by

Ixlle = ll(e1x1, €2x2, €3x3,...) || forx = (x1, x2,...).

In this way, we obtain a Banach space (Sc,e, II- ||€) , Where

See = 3x = (x1,x2,...) € St [lx|le < oo and the series Zekxk converges ¢ .
k
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The basis {e,, n > 1} in S. ¢ is quasi-orthogonal, but it is not unconditional. Note
now that ¢! C Sc,e foreach € € {—1, l}N, therefore ¢! C ﬂée{_l’l}N Sc,e. On the

other hand, assuming that x = (x1,x3,...) € ﬂ LN S¢.e and taking €™ =
ee{—1,

(sign x1, signxz, ..., sign x,, ...) we have

exi+ e+ €Wy = xl+ lxal + o+l n > L

Hence, we infer that

0]

Z [xn] = sup{‘gf")xl + eéx)xz FooteWx,
n

n=1

b=l

where € e {—1, 1}, thus x € ¢'. Consequently, ¢! = Neer1.1)v Se.e-

Define next a function ||| : ﬂée{_l,l}m S¢,e = [0, 0o] by the formula: ||x|| =

SUP{||X||€,€ e {-1, I}N}. Since
lerx) + €x2 + - + €p_1Xp—1 £ €xxn| < |x1| + |x2] + -+ + |x]

for each € € {—1, 1}, where the inequality < may be replaced by the equality
whenever ¢, = signxg, | < k < n — 1 and ¢, = signx,, the function ||-||
assumes only finite values and in fact [|x]|n = ), x4, i.e., |5 is the norm equal
precisely to the norm |x|; = >, |x,| of the space ¢!, Therefore, one can write

(&)= ) (See ).

ee{—1,1}N

In this sense, the Banach space (61, |~|1) in comparison with the space (S, ||-]) is
“relatively small”. It is also worth mentioning that the basis {e,, n > 1} in S, (as well
as in S¢ ¢) is monotone, i.e., for every choice of scalars {x,, n > 1} C R, the sequence
of numbers {|| Y7 _ x4ex |, n > 1} is nondecreasing.

Recall now that a basis {b,,n > 1} of a Banach space (B, | - ||) is called
boundedly complete if, for every sequence of scalars {x,,n > 1} C R such that
sup,~1 I D_p_; xxbi |l < oo, the series Zzoz | Xnby converges in norm of B. Unfortu-
natelgl, the basis {e,, n > 1} in S, or S. ¢ is not boundedly complete.

2. Spaces of conditionally convergent series with rates of convergence

The space S, described here may be the prototype for a wide class of various spaces
with quasi-orthogonal Schauder bases that are not unconditional. For instance, con-
sider the spaces S/ of (conditionally) summable sequences of real numbers spanned
on vectors of the basis {e,,n > 1}, with norms likewise in £7, 1 < p < oo, (that
describe rates of convergence)

o0 1/p
lxll, = (Z IR, <x>||P) :

n=1
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where R, (x) = Z,fin xrer for x = (x1,x2,...) € S; spaces S;, with norms
determined by some positive weights w = (wy, wa, ...), w; > 0,

o
Xl =Y wa | Ry Il
n=l1

say geometrical weights w = (wy, wa,...) = (ql, q2, .. ) , ¢ > 0, or more gener-
ally, spaces SZ,, equipped with norms

o0 1/p
lxllyw = <Z Wn IIRn(x)II”> » 1 =p<oo, et
n=1

Since convergence of the series on the right-hand side of the definition of ||x | , implies
that partial sums of the series Zn xp, satisfy Cauchy’s criterion, the basis {e,, n > 1}in
(82,111 ,) is evidently monotone and boundedly complete. Thus in view of Dunford’s
theorem [4, Ch. 111, § 1, Th. 6, p. 64], these spaces possess the Radon—Nikodym property
(RNP)—see [4, Ch. III, §1, p. 61] for the definition of this notion. Moreover, the
equality

n n—1
E Xjej| = E Xj€j — Xpén
J=k Jj=k

valid for all (x1, x2,...) € Sand 1 < k < n < oo implies that the basis {e,,, n > 1} in
(Sf - p) is again quasi-orthogonal, but it is not unconditional. A similar conclusion
can be also derived for spaces equipped with norms |||, ,, , provided that w is a
suitable sequence of weights.

3. Spaces of bounded sums of functions and conditionally convergent function series

Let{g1 =0,92 = 1,493,494, ...} C[0, 1] C R be a countable set of numbers dense
in [0, 1] (arranged in any order), and let {e, (f),n > 1} be the system of Schauder
hat functions in [0, 1] defined as follows: e; () = 1 —tand ey (t) = ¢, 0 <t < 1;
for n > 2 the points qi, ..., g,—1 divide the interval [0, 1] into n — 2 subintervals,
and if [q,-, q j] is the subinterval which contains the point g,, then e, (f) = 0 for
t €[0,qi1Ulgj, 1], e, (gn) = 1, and e, is a linear function in the interval [g;, g,]
as well as in [qn, q j]. It is known that the described system of Schauder hat functions
forms a basis for the space C [0, 1] of real-valued continuous functions in [0, 1] with
the supremum norm

[ flloo = sup |f (DI,
0<t<l
see, e.g., [10, Prop. 2.3.5, p. 29].
Now with every sequence x = (x1,x2,...) C RN, we associate an element g
having coefficients (x1, x2, ...) in the basis {e,, (t) , n > 1}, formally written as g :=
(x1e1 + xpe3 + - - +), and define
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llgll = llsup {Ix1e1 + x2eal, |x1€1 — X221, ..., |x1€1 + -+ - + Xp_1€8-1 + Xyl ,

|x1er + -+ -+ xp_1€4—1 — Xpenl, .. }”oo

SUP{|)C1€1 + o xpen| + Ixpr1entl}
n>1

3

o]

along with
Spl0, 1] = {g = (x1e1 + x2e2 +---) : llgll < oo} .

Then (Sp [0, 1], ||-]]) is a (nonseparable) Banach space. The space Sj, [0, 1] consists
of elements g = (x1e; 4+ x2e2 + - - ) with finite sums of functions xje; + x2e2 +
-+ -+ xpe, bounded uniformly in 0 < ¢ < 1 andn > 1, but not necessarily convergent
function series xje; + xpex + - - -

Furthermore, denote

Sc10,1]1= {g = (xie1 +x2e2+ ) € S, [0, 1]: the series Y _ x,e,
n
converges in norm ||-|| ¢ .

It can be shown that S, [0, 1] as a set of functions is identically equal to C[0, 1], and on
account of the well-known open mapping theorem, the norm ||-|| is equivalent to || - || 0}
therefore, (S, [0, 1], ||-||) treated as a function Banach space with its norm topology
is the same as (C[0, 1], || - lloo). Since finite linear combinations Y ;_, wiex with
rational coefficients form a countable dense set in C[0, 1], the space S, [0, 1] is sepa-
rable. The Schauder basis {e,, (t), n > 1} in (S. [0, 1], ||-|]) is monotone, because finite
linear combinations of hat functions e, (#), n > 1, are piecewise linear with an increas-
ing number of nodes. However, the basis {e, (t), n > 1} is not boundedly complete,
for bounded finite linear combinations of basic functions need not define a condi-
tionally uniformly convergent series of functions. Moreover, the basis {e, (t),n > 1}
in S, [0, 1] is quasi-orthogonal with respect to ||-||, but it is not quasi-orthogonal in
(C[0, 11, || - lloo), and it is not unconditional. More precisely, properties of a given
Schauder basis in C[0, 1] depend on the shape of the unit sphere, and from our con-
siderations it follows that for each Schauder basis {e, (), n > 1} there can be defined

anorm [|-|| equivalent to the original supremum norm || - || in C[0, 1], such that the
basis {e;, (), n > 1} becomes quasi-orthogonal with respect to ||-||, although the same
basis need not be quasi-orthogonal with respect to || - || so-

By analogy to S, ¢ one can now define the spaces S, ¢ [0, 1] consisting of function
series ), €,X,e, convergent (conditionally) uniformly in 0 < ¢ < 1 with norms

[(x1e1 + x2e2 +-- )l = l[(e1x161 + €2x282 + -+ )|,
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for all sequences of signs € = (€1, €2,...) € {—1, 13N . The intersection

[ Secl0 11:=¢'[0.1]

ee{—1,1)N

is then the Banach space of function series convergent absolutely uniformly in 0 <
t < 1, with the norm

o0

sup {I(xier +xae2 -l e € (—L 1N = sup Y be, (1.

0=r=1,7

The last formula follows from the fact that Schauder hat functions e, (¢), n > 1,
are nonnegative, and in a more general case this is a consequence of a theorem by
Sierpinski, cf. [10, Prop. 1.5.7, p. 19]. Clearly, the basis {e, (t),n > 1} in o1 [0, 1] s
quasi-orthogonal, monotone, unconditional and boundedly complete; thus, 2o, 1]
possesses the RNP, cf. [4, Ch. III, §1, Th. 6, p. 64 and Ch. III, §3, Corollary 8, p. 83].

To estimate the rate of (uniform) convergence of function series of the form g (¢) =
Z;’;l Xxpen (), t € [0, 1], we may introduce various norms similar as in £7, 1 <
p < oo; namely, let (R,g) (1) = ) ;- xkex(t), and let

00 [e¢] 1/p
SP10,11= g =) xueq (1) € Scl0, 11: llgll, = (Z ||<Rng>||") < o0
n=1

n=1

Arguing as in example 2, we conclude that the basis {e,(f),n > 1} in the space
(820,11, [Ill,) is quasi-orthogonal, but it is not unconditional. Moreover, the basis
{e (t),n > 1} in (Sf7 [0, 1], ||-||p) is monotone and boundedly complete; thus, by
Dunford’s theorem the spaces (S£ [0, 11, [I-||,) possess the RNP, see [4, Ch. III, §1,
Th. 6, p. 64].

Remark 1 The same idea as above leads to other examples of Banach spaces of a
similar kind. For example, let I = {i,, n > 1} be a sequence of positive integers such
that 1 <i, <n, i, /S ocoandn —i, / coasn — oo, and for x = {x,} € R*®, let

00 1/p
”-x”l,p:{Z(|xin+"‘+xn|+|xn+l|)p} ,
n=1

where 1 < p < o0, and

117,00 = sup {|xi, + -+ + xa| + [xup11} -
n>1
Define

B, = {x = {x,} € R*: the series ane,, converges in norm |||/ , } ,

n
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1 < p < oo. Then By ,, 1 < p < oo, are Banach spaces such that {e,,n > 1}
is a quasi-orthogonal basis with respect to [|-|[; , , but in general not unconditional.
Moreover, for 1 < p < oo the basis {e,,n > 1} in B; , is boundedly complete, and
thus, these spaces possess the RNP, cf. [4, Ch. III, §1, Th. 6, p. 64]. Next, if /(D =
{ir(,l),n > 1}, 1@ = ii,(lz),n > 1} , Y (- {i,ﬁk),n > 1} are some sequences
of positive integers satisfying conditions: 1 < i,(,l) < e < i,(lk) <n, i,(lj ) S0, 1<
o<k iV —i A0, 1< j <k andn —iP A ooasn — oo, then for
n—i, >k > 2 (replacing i, by i,(,])), the sums |xin 4+t xy | +|x,+1] can be divided
into blocks of the form

X+ Fx0o 1‘+‘x.(2)+-~-+x.(3> }+---+‘x.(k)~|—-~+xn
In n — In in —1 tn

+ X1l

in addition, for i > 1, instead of x;e;, the terms €;x;e; can be used, where {¢;, i > 1}
are various sequences of signs & 1. By means of these expressions, in an analogous
way as above, new norms and new Banach spaces with quasi-orthogonal bases can be
defined.

4 Convergence of the Banach Random Walk

According to the standard terminology, the measure G on the Borel o-field B (R) is
called here symmetric, if G (—A) = G (A) forall A € B(R).

Lemmal Let {b,,n > 1} be a quasi-orthogonal Schauder basis in a real
Banach space (B, ||-|), and let {G,,n > 1} be a sequence of symmetric probability
distributions concentrated on the interval [— 1, 1] C R. Thenthe BRW{Z,,,n > 1}isa
B-valued martingale with respect to the natural filtration F, = o (X1, X2, ..., X,) =
o(Z1,Z2,...,Zy),n>1.

Proof From the construction of BRW in a Banach space, it follows that Z, € B for
alln > 1,1.e., there.’s Z, are bounded and therefore Bochner integrable. Moreover,
each Z, is F,-measurable; thus,

E[Zn1|Fa) = E[Zn + Xug1bpt1lFu] = Zn + E [ X1 Fn] buy1 as.

Hence it suffices to show the equality £ [X n+1 |.7-'n] = 0 a.s. But the last statement is
obvious, since it is known that X,, | possesses a symmetric distribution in the a.s. sym-

metric interval [at 1 (Zn (), But1 (Zn (@))] = [—But1 (Zn (@), Bus1 (Zn (@)].
O

Lemma2 Let{Z,,n > 1} be the BRW in a Banach space B with a quasi-orthogonal
Schauder basis {b,,n > 1} and let {F,,n > 1} be the defined above filtration asso-
ciated with {Z,,n > 1} . Denote by Fo the o-field generated by the field | J,~ | Fn,
ie., Foo = 0 (Uney Fn)- Then the following statements are true:
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(a) There exists a vector measure v: Foo — B with bounded variation, absolutely
continuous with respect to P, such that

d (v, x*)

(Zn, x*) — 1P

a.s. for all x* € B*,

(b) Ifthereis are. & € L' (Fao; B) such that

(Z,,, x*) — (é, x*) a.s.
for each x* € B*, then
WZ, — & — 0 as.

Proof Since the BRW {Z,, n > 1} satisfies the condition Z,, € B, n > 1, we have
sup,>1 E | Z,|| <1 < oco. Therefore, our result is a direct consequence of a theorem
given by Stegall, which can be found in [11, Ch. II, §4.3, Prop. 4.3, p. 132]. O

Lemma 3 For each set A € F there exists

n— oo

lim Z,dP =V (A)
A
in the strong topology of B, and the mapping V:Fs — B is a countably additive
vector measure.

Proof Observe first that in view of Jensen’s inequality for conditional expectations in
a Banach space, the sequence {||Z, ||, F,, n > 1} is a real-valued submartingale, cf.
[11, Ch.1I, §4.1, (g), p- 1271, or [12]. Furthermore,

sup E || Z,||” < 1 < oo foreach I < p < oo,
n>1

so that r.v.’s {|| Z, || , n > 1} are uniformly integrable, which implies a.s. convergence

|Z.ll = Zoo (and in L), where Zo, € L? = LP(R) for every fixed 1 < p < oo,
see, e.g., [8, Ch. IV, Th. IV-1-2, p. 62, and Prop. IV-5-24, p. 91]. In particular,

/‘||Zn||dP—>/‘ZoodP
A A

for each measurable set A € F. Next, if B € | J,, F,, then by the martingale property
of {Z,,n > 1},

/ Z,dP — V (B)
B
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strongly in B. Let ¢ > 0 be arbitrary and let 6 > 0 be chosen in such a way that
fc ZsodP < ¢/3 whenever C € Fo, and P [C] < §. Given any set A € F, select
B € |J,, Fn satisfying condition P [A = B] < §. Obviously,

/anP—/ ZydP /anP—/ Z,,dPH
A A A B

ondP—/ ZmdPH+ ‘f ZmdP—/ ZmdPH.
B B B A
Moreover,

Uzndp—/ ZudP s/ ||Zn||dP+/ ||Zn||dP=/ 1Z,ldP.
A B A\B B\A A=B

Passing to the limit as n — 0o, we obtain

lim / |Z,|ldP :/ ZoodP < g/3,
n=>0 JA+B A=B

‘/ anP—/ Z,dP
A B

for sufficiently large n > ny. Since the sequence { [, Z,dP,n > 1} is Cauchy in B,
we also conclude that

=

|

thus

<¢e/3

’/ anP—/ ZndP| <¢/3
B B
for all large enough m > n > nj. Consequently,
‘/anP—/ZmdP <e,
A A

whenever m > n > max {ng,n1}. In other words, the sequence of integrals
{/4 ZndP,n = 1} is Cauchy in (B, ||-||), and therefore, there exists

lim | Z,dP =V (A)

n—o0 A

in the strong topology of B for each set A € F. It can be easily seenthat V: Foo — B
is finitely additive. Let A1, A2, ... € Foo be an arbitrary sequence of pairwise disjoint
sets. Notice that

= lim
n—oo

’

lim / Z,dP — lim Z,dP
Ulccxil Ak

n—o00 n—oo UZI 1Ak

f Z,dP
Ulccx;mﬂ A
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and thus, to prove countable additivity of V it is enough to show that

/ Z,dP
Ulsierl Ak

as m — oo. Taking m so large that P [U,‘:imH Ak] < § form > mg, we obtain

lim — 0
n—o00

lim / Zu,dP| < lim |Z,||dP :/ ZsdP < ¢/3
n—o0 Uliim+l Ak n=00 Ulto:erl Ak UI?O:m+l Ak
provided m > mg, which terminates the proof. O

The above Lemma 3 enables us to apply the Lebesgue decomposition theorem for
the vector measure V, see [4, Ch. I, §5, Th. 9, p. 31].

Lemma4 Let

V(A) = lim | Z,dP, A€ Fu,
A

n—o0

andletV=H+ J, |Hl < P, |J| L P, be the Lebesgue decomposition of V with
respectto P, where |H|, |J| arevariations of H and J, respectively. Thenlim, .~ Z,
exists a.s. ifand only if H has a Radon—Nikodym derivative h € L' (F; B) . Moreover,
in this case lim,_, oo Z, = E (h|Fso) a.s.

Proof Arguing as above, we easily note that {Z,, F,,,n > 1} is an L' (B)-bounded
martingale (here, and in the sequel L? (B) = L? (2, F, P; B), 1 < p < 00); thus,
the conclusion follows from the martingale pointwise convergence theorem given in
[4,Ch. V, §2, Th. 9, p. 130]. O

Lemma5 Let B be a Banach space with the RNP and a quasi-orthogonal Schauder
basis {b,,n > 1}. Moreover, let {G,,n > 1} be a sequence of symmetric probability
distributions concentrated on [— 1, 1] C R. Then the BRW martingale {Z,,,n > 1}
converges strongly a.s. and in L? (B) for each fixed 1 < p < oc.

Proof The limit lim,,—, » Z,, of the martingale {Z,,, n > 1} exists in L? (B)-norm, if
and only if sup,..; [1Z, ||§ = sup,>; E |1Z,]|P < oo, where 1 < p < oo, whichis evi-
dentas Z, € Bforn > 1. Thelast observation implies uniform integrability of random
elements {Z,,n > 1}, and we have obviously sup,~; | Z,ll; = sup,~; E | Z,| <
1 < oo. Thus lim,_ « Z, exists as well in L! (B)-norm in view of the martingale
mean convergence theorem, cf. [4, Ch. V, §2, Corollary 4, p. 126]. Itis also well known
that an L' (B) convergent martingale converges a.s. to its L' (B)-limit, see [4, Ch. V,
§2, Th. 8, p. 129], or [11, Ch. II, §4.3, Th. 4.2, p. 131 and Th. 4.3, p. 136]. O

Corollary 1 If B is a Banach space with a quasi-orthogonal boundedly complete
Schauder basis {b,,n > 1}, then the BRW {Z,;,n > 1} in B converges strongly a.s.
and in LP (B) for each fixed 1 < p < oo.
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Proof By a theorem of Dunford, if a Banach space B possesses a boundedly complete
Schauder basis, then B has the RNP, cf. [4, Ch. III, §1, Th. 6, p. 64]. Hence and from
Lemma 5, the assertion of Corollary 1 follows. O

Corollary2 Let B be a reflexive Banach space which has a quasi-orthogonal
Schauder basis {b,,, n > 1}. Then the B-valued BRW {Z,,,n > 1} converges strongly
a.s. andin L? (B) for each fixed 1 < p < oo. In particular, if B = H is a Hilbert space
with a basis {b,, n > 1} which forms a CONS in H, then the last statement remains
valid.

Proof 1t is fairly well known from a theorem of Phillips that reflexive Banach spaces
have the RNP, see [4, Ch. III, §3, Corollary 4, p. 82]. Since each Hilbert space is
reflexive, we conclude that B = H has the RNP. Thus, an application of Lemma 5
concludes the proof. O

Theorem 1 Let ¢p: B — R be a bounded and continuous mapping in a Banach space B
which has the RNP and a quasi-orthogonal Schauder basis {b,,,n > 1}. If {Z,,,n > 1}
is the BRW in B, then

¢ (Zy) —> ¢ (€) as.andin L = LP (R), 1< p < o0,

where &€ = lim,_ Z, a.s. and in LP (B)-norm for all 1 < p < oo. In particular,
there exists

Jim E¢(Zy) = E (§).

Proof Since ¢ is continuous and the assumptions of Lemma 5 are fulfilled, we conclude
that ¢ (Z,) — ¢ (&) a.s. But in addition ¢ is assumed to be bounded, thus using
the Lebesgue-dominated convergence theorem we obtain also convergence ¢ (Z,) —
¢ (E)inLP, 1 < p < oo. The last statement of the theorem follows from the estimate

|E¢p (Zp) — E¢ (E)| = El¢p(Zn) — ¢ (5)] — 0.
O

Corollary 3 The assertion of Theorem 1 remains valid for a Banach space B with a
boundedly complete quasi-orthogonal Schauder basis {b,,n > 1}, as well as for a
Hilbert space B = H with the Schauder basis {b,, n > 1} that forms a CONS in H.

5 The Banach Functional Integral in a Class of Banach Spaces

LetCp = {¢: B — R; ¢p-bounded and continuous}. Observe that C;, has the following
properties:

(i1) the set Cp, is a real linear space,

(ip) if ¢ € Cp, then |@p| € Cp.
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Define a functional f:Cp — R by the formula:
(@)= lim E¢(Zy) = E¢ (&), “

where {Z,,n > 1} is a BRW in the Banach space B, and & = lim,,_, », Z,, a.s. and in
LP(B), 1 <p<oo.

It can be easily seen that the mapping f satisfies the following conditions:
(iiy) f:Cp — Ris a linear functional,
(iip) the functional f is nonnegative, i.e., f (¢) > 0 whenever ¢ € Cp and ¢ > 0,
(ii3) if 19 {pn} C Cp, ¥ € Cp,2° |pu| < ¥ forn > 1, and 3° lim,,_, o0 ¢, (x) = O for
all x € B, then lim,—. o f (¢,) = 0.

Notice that 3° implies P-a.s. convergence ¢, (£) — 0; thus, the last condition fol-
lows from the classical Lebesgue-dominated convergence theorem applied to integrals
E¢, (), n =1,2,... (Actually, in our approach we can even replace condition 3°
by a weaker assumption ¢, — 0 in P o £~ !-measure.) Consequently, the functional
f satisfies all the conditions given in §2 of the Banach paper [1]. Therefore, for our
functional f the Banach Th. 1, §3, p. 322, [1] is valid. In this way, we obtain the
following result.

Theorem 2 Let {Z,,n > 1} be a BRW in a Banach space B with the RNP and a quasi-
orthogonal Schauder basis {b,,n > 1}, in particular in a Banach space B with a
boundedly complete quasi-orthogonal Schauder basis. Then, the functional f given
by (4) has an extension to the additive functional F on the linear set L O Cp of all
bounded, Borel measurable functions ®@: B — R. Moreover, the extended functional
F on L possesses all the properties (A)—(E) and (R) specified in §1 of the Banach
paper [1], analogous to the Lebesgue integral.

Remark 2 The approach presented above is a generalization of the method proposed
by Banach [1] for the construction of the so-called £-integral—an analogue of the
Lebesgue integral in abstract spaces.

Theorem3 Let B be a Banach space with the RNP and a quasi-orthogonal
Schauder basis, in particular—a Banach space with a boundedly complete quasi-
orthogonal Schauder basis. Then each sequence of symmetric probability distributions
{Gn,n > 1} concentrated on the interval [— 1, 1] C R generates a probability mea-
sure I" on the Borel o-field B in B, given by

I'(A)=ElLs(§), AeB.

The measure I' is equal to the limit distribution of the described above BRW
{Z,,n>1}inB, thus supp I’ C B.

Proof Obviously, I' is nonnegative and normalized so that I" (B) = I' (B) = 1.
It suffices to verify countable additivity of I", but it follows immediately from the
properties of the integral E (-). The last conclusion can also be easily shown in a direct
way. To this end, let A{, Ay, ... € B be arbitrary disjoint sets. Since supp I" C B, we
have I' (A) = TI' (AN B) = Elanp (§), A € B. Observe next that
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ELy_ (a0 &) =E | Y Lanp € | =D Elans &) =) I'(4;),
j=1 Jj=1

j=1
and
n
0<> 1a,ns () =1y (a;n8) @) / L2, ans) @) < 1g (), x € B.
j=1
Hence, on account of the Lebesgue monotone convergence theorem,

DT A = lim I (A)) = lim Elp_ (a;n8) @)
n=1 j=1

n—o0

= £ (Jim 11,00 @) = ELUz, 4o €)= T (U A,,) :

n=1
O

From the construction of the BRW in a Banach space, it follows immediately that
the limit distribution I" = P o £~! of the BRW is sign-invariant with respect to the
Schauder basis {b,, n > 1}, in the sense that for each set A € 5 and every sequence
€ = {€1,€, ...} ofsigns ¢, € {—1, 1}, k > 1, we have

['(A) = I'(€A),

where €A = {D 02 exxxb € B: Y02 xxbr € A}. It is also clear that each sign-
invariant measure is symmetric, thus

I'(A) = I'(—A) forall A € B.

By analogy to the notion of the Wiener measure, we propose to call I" the Banach
measure in a Banach space. One may expect that the Banach measure will play a simi-
larly important role in Banach spaces as is played by the Gaussian measure constructed
by Gross [5], cf. Bogachev [3], or Kuo [6].

6 Examples
1. LetB=¢7, 1< p<oo,andleth, =¢, =(0,...,0,1,0,...), n > 1, where 1

is the nth term of the sequence (0,...,0,1,0,...). Then 7, (x) = ZZ:] Xrbr =
(X1y+e ey X, 0,..0) forx = Y02 xpby = (x1, X2, ...) € €7, and thus

n n 1/p
70 () + thppi b =Y P + 1117 <1 & 1] < (1—Z|xk|p> :

k=1 k=1
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Hence it follows that {b,,, n > 1} is a quasi-orthogonal Schauder basis in £7. (In fact,
the considered basis is unconditional.) Moreover, if

00 1/p
Zxkbk = (Z ka|”> <M < oo,
k=1

sup | () = sup
n>1

p

then the series Zi":l xpb,, converges in £”. Thus, the basis {b,, n > 1} is boundedly
complete and in consequence each space £”, 1 < p < 0o, has the RNP. It is also well
known that for p > 1 the spaces £7 are reflexive, which implies as well that they have
the RNP. Therefore, all the above results are valid for Banach spaces B = ¢7, 1 <
p < oo.

2. LetB = L?[0,1], where 1 < p < oo. Consider the system of Haar functions:
hY(s) =1, s € [0, 1], and

;(8) =2"Lyap_oyjom+t, @k—1yy2m+1y () = 2" - Lpop—1yjan+1, any a1y (8)

fork =1,2,...,2", n =1,2,..., s € [0, 1]. It is known that the system of Haar
functions forms a Schauder basis in L? [0, 1], see, e.g., [9, Th. 24.17, pp. 290-295],
or [7, Part II, Prop. 2.c.1, p. 150]. For convenience of the reader, we sketch here the
proof that the Haar basis in L” [0, 1] is quasi-orthogonal.

Proposition 1 The system of Haar functions is a quasi-orthogonal basis in L [0, 1],
1<p<oo

Proof Let the Haar functions be arranged in a sequence that is divided into blocks,
each of 2" members, numbered by upper indicesn =0, 1,2, ...,

- {(h?) , (hl,hi) : (hz, hz,hz,hﬁ) , (h3, 3,03, h3h3, n3, 3, h§> . } .

We make now two crucial observations: 1° for a fixed n > 0 within the same nth
block the Haar functions /4, 1 < k < 2", have nonoverlapping supports, 20 the
function of the form ¢h) + clnl + cln) + -+ R 4 4 - llh;,, =9
where c’j € R are arbitrarily fixed coefficients, is constant in each interval of the form
[(k -1 /2" k/2%, k=1,2,...,2".

Suppose now that 77;/_; (x) = x?h(l) + xllh} + leh; +---+x;_hy_, and the next
element of A is i}}. Then for any parameter t € R,

1 (k—1)/2"
||n;g_1(x)+thz||§ :/0 |7y () () +th} (s)|” ds:/O | (o) (s)|7 ds

k/2n
+
(k=172

1
+/ L 1(X)(S)‘ ds =1+ I+ I3,
k/2n

T ) ) + o ()] ds
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where ng;_% x) (s) = ngn—_} ) (@k —1/2") = ¢, s € [(k — 1)/2", k/2"). The

first and third integrals on the right-hand side do not depend on the parameter ¢, and
the middle term is equal to

(2k—1)/27+1 k/2"
12:/ |c+t2”|pds+/ le —12"|" ds
(k=1)/2" (2k—1)/27+1
=|c+12"|"- pTES + |e — 2|7 pTE =r ().

Since r (t) = r (—t), and

inf{reRir@)<1—-11 —R}=—-sup{—teRir(—-t)<1-—-11— 13}
—sup{t' eRir () <1 -1 — I3},

we conclude that o = —p;. The same argument remains valid when 7}, is replaced
by ngnj, and 7}/ is replaced by 7', and thus, the system of Haar functions forms a

quasi-orthogonal basis in L? [0, 1]. O

Remark 3 1t is clear that the Haar functions for n > 1 can be modified as follows:

hlrcl (S) = Zn/p . ]1[(2/(72)/2'”'1, (2k71)/2”+1) (S) - 2n/p . ]1[(21(71)/2"'“, (2]()/2"'“) (S) B

k=1,2,...,2", s € [0, 1]. Then the above Proposition 1 for modified Haar functions
remains true, and in addition, we have ||h |, = 1 for all k, n.

Evidently, all the spaces L”[0,1], 1 < p < oo, are reflexive Banach spaces,
and thus, they possess the RNP, which is a straightforward consequence of Phillips’
theorem, cf. [4, Ch. III, §3, Corollary 6, p. 82]. Unfortunately, the space L'10, 1] does
not have the RNP, see [4, Ch. VII, p. 219].

Hence, it follows that all the results presented in previous sections are valid for
Banach spaces L?[0, 1], 1 < p < oo.

Remark 4 Proposition 1 together with observation that the space L' [0, 1] does not pos-
sess the RNP implies the following conclusion: the existence of a quasi-orthogonal
Schauder basis in a Banach space is not a sufficient condition for the RNP. The same
conclusion follows from the fact that the space (S, [0, 1], ||-||) (isometrically isomor-
phic to (C[0, 1], || - |leo)) does not have the RNP.

3. To illustrate the technique of computations of Banach £-integrals based on
the method described here, we calculate, for instance, two ‘“rarefied” absolute
pth moments of & = Y o2, X,b, in €/, 1 < p < o0, determined by lacu-
nary series Y p | Xon—1bon—1 and Y ;| X2,b2,, namely E (307 |X2,—1/7) and
E (220:1 | X2, 1P ), where £ is the limit random element of the BRW generated by
the sequence of identical uniform distributions on [— 1, 1] C R. Since the basis
{bp,n > 1} in £7 is unconditional, the lacunary series considered here are strongly
convergent, see, e.g., [7, Prop. 1.c.1, p. 15, and p. 19].
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Observe first that if 7odq (X) = Y e | X2n—1b2p—1 for x =Y 02 | x,b, € €7, then
1
odd (), = (250 bxan—11?) 77, thus

00 1/p 00 1/p
(Z |x2n—1|p> - (Z |XQn1|p> = ‘|7Todd O, — |Toad (x/)‘p‘
n=1 n=1

e¢]

1/p
< s, = (3 b =) e =0

n=1

as x — x’ in £P-norm |- p- It follows that £7 > x > (fo:l |x2,,_1|p)1/p is a
continuous function. Therefore, £ > x +— Zi’,il [x2,—1|7, as well as £P > x +—>
Z;’f:l |x2,,|? are continuous, and both these maps are bounded in the unit ball B C 7.
According to the construction of the BRW in ¢7, the density of X is equal to
J1(x1) = 1j—1,17(x1)/2, and the density of (X, X2, ..., X,,) forn > 1is given by

fn (-xla-x25"'7-xn)
_ ]lKn (x]’x27--wxn)
= e
2 (1=l 1P] - [1= (P4 1al?)] - = (P4 1?)])
where K,, = K, (0, 1) is the unit ball with center zero and radius 1 in R", equipped
with the £7-norm |(x1, ..., Xx)|, p = (i |xk|1’)l/p. Hence,
1 P 1P xp+1 1
E|X1|f’=/ il dx1:2/ gy = A -
1 2 0o 2 p+1 0o P +1

Moreover, forn > 1,

E X, =/ al? - fo (61, X2, - ) i1 . oy

[1=(lx1 [P+l 117)]Y?
=/ 2/ X8 fa (X1, X2, ey Xp) doxy
Kn—1 0

deldxz . dxn,1
pit (1= (1Pt 17) 7
_ / Xn
Kn—1 p +1 0

So—1 (x1,x2, ..., Xp—1)
[1 = (bal? + -+ lx,1?)]?

:/ [1=(lx1l? + -+ [x4=117)]

p+1

X dxidxy...dx,—q

“fam1 (1, x2, 00, X0—1)
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xdxpdxy .. .dx,—1

1
= 1= (EIX\IP + E|X2” + -+ X, 117)}

Thus,

1 1 1 1
E|X2|P:—{1—E|X1|I’}=—<1— >= P
p+1 p+1 p+1 p+1lp+1

and, by induction,

1 1 n—2
E|Xn|p:—{1—( + P 2+"'+p—n_1)}
p+1 p+1  (p+1D (p+1

R S DU S b (A V. VAl IO
S+ p+1l  1=p/(p+1D VR

Therefore,

0 0 2n—1—1
1 1 p+1
E( |X2n—1|p) = 2 1 = : - 5
2 2
anl Z_( 0P o+l - p2 (p+1)? 2p+1

and

Zlenll’ LA R R
—(p+ D" (p+D* 1-p/(p+1* 2p+l1

In consequence,

p+1 p

E b= E|& — b=
[Toda ()1 il | — moda )Ip ol

’

so that

p+1 p
E|E|b = E § X, P =
&1 ( | ') 2p+1+2p+1
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