
Journal of Theoretical Probability (2020) 33:319–339
https://doi.org/10.1007/s10959-018-0872-7

Time-Varying Isotropic Vector Random Fields on Compact
Two-Point Homogeneous Spaces

Chunsheng Ma1 · Anatoliy Malyarenko2

Received: 23 April 2018 / Revised: 21 September 2018 / Published online: 15 December 2018
© The Author(s) 2018

Abstract
A general form of the covariance matrix function is derived in this paper for a vector
randomfield that is isotropic andmean square continuous on a compact connected two-
point homogeneous space and stationary on a temporal domain.A series representation
is presented for such a vector random field which involves Jacobi polynomials and the
distance defined on the compact two-point homogeneous space.
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1 Introduction

Consider the sphere Sd embedded intoRd+1 as follows: Sd = { x ∈ R
d+1 : ‖x‖ = 1 },

and define the distance between the points x1 and x2 by ρ(x1, x2) = cos−1(x�
1 x2).

With this distance, any isometry between two pairs of points can be extended to an
isometry of Sd . A metric space with such a property is called two-point homogeneous.
A complete classification of connected and compact two-point homogeneous spaces
is performed in [40]. Besides spheres, the list includes projective spaces over different
algebras; see Sect. 2 for details. It turns out that any such space is a manifold. We
denote it by M

d , where d is the topological dimension of the manifold. Following
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[24], denote by T either the set R of real numbers or the set Z of integers, and call it
the temporal domain.

Let (Ω,F, P) be a probability space.

Definition 1 AnRm-valued spatio-temporal random fieldZ(ω, x, t) : Ω ×M
d ×T →

R
m is called (wide-sense) isotropic over Md and (wide-sense) stationary over the

temporal domain T, if its mean function E[Z(x; t)] equals a constant vector, and its
covariance matrix function

cov(Z(x1; t1),Z(x2; t2)) = E
[
(Z(x1; t1) − E[Z(x1; t1)])(Z(x2; t2) − E[Z(x2; t2)])�

]
,

x1, x2 ∈ M
d , t1, t2 ∈ T,

depends only on the time lag t2 − t1 between t2 and t1 and the distance ρ(x1, x2)
between x1 and x2.

As usual, we omit the argument ω ∈ Ω in the notation for the random field
under consideration. In such a case, the covariance matrix function is denoted by
C(ρ(x1, x2); t),

C(ρ(x1, x2); t1 − t2) = E
[
(Z(x1; t1) − E[Z(x1; t1)])(Z(x2; t2) − E[Z(x2; t2)])�

]
,

x1, x2 ∈ M
d , t1, t2 ∈ T.

It is anm×m matrix function,C(ρ(x1, x2);−t) = (C(ρ(x1, x2); t))�, and the inequal-
ity

n∑
i=1

n∑
j=1

a�
i C(ρ(xi , x j ); ti − t j )a j ≥ 0

holds for every n ∈ N, any xi ∈ M
d , ti ∈ T, and ai ∈ R

m (i = 1, 2, . . . , n), where N
stands for the set of positive integers, whileN0 denotes the set of nonnegative integers
below. On the other hand, given an m × m matrix function with these properties, there
exists an m-variate Gaussian or elliptically contoured random field {Z(x; t) : x ∈
M

d , t ∈ T } with C(ρ(x1, x2); t) as its covariance matrix function [21].
For a scalar and purely spatial random field { Z(x) : x ∈ M

d } that is isotropic and
mean square continuous, its covariance function is continuous and possesses a series
representation of the form [8,14,37]

cov(Z(x1), Z(x2)) =
∞∑

n=0

bn P(α,β)
n (cos(ρ(x1, x2))) , x1, x2 ∈ M

d , (1)

where { bn : n ∈ N0 } is a sequence of nonnegative numbers with
∑∞

n=0 bn P(α,β)
n (1)

convergent, P(α,β)
n (x) is a Jacobi polynomial of degree n with a pair of parameters

(α, β) [1,38], shown in Table 2. A general form of the covariance matrix function and
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a series representation are derived in [24] for a vector random field that is isotropic
and mean square continuous on a sphere and stationary on a temporal domain. They
are extended toMd × T in this paper.

Isotropic random fields over Sd with values in R
1 and C

1 were introduced in
[35]. Theoretical investigations and practical applications of isotropic scalar-valued
random fields on spheres may be found in [7,11,12,19,43], and vector- and tensor-
valued random fields on spheres have been considered in [18,23,24,30], among others.
Cosmological applications, in particular, studies of tiny fluctuations of the Cosmic
Microwave Background, require development of the theory of random sections of
vector and tensor bundles over S2 [4,15,25,27]. See also surveys of the topic in the
monographs [26,31,42,44]. Isotropic random fields on connected compact two-point
homogeneous spaces are studied in [2,14,28,29,33], among others.

Some important properties ofMd , ρ(x1, x2), and P(α,β)
n (x) are reviewed in Sect. 2,

and two lemmas are derived: one as a special case of the Funk–Hecke formula onMd

and the other as a kind of probability interpretation. A series representation is given in
Sect. 3 for an isotropic and mean square continuous vector random field on M

d , and
a series expression of its covariance matrix function, in terms of Jacobi polynomials.
Section 4 deals with a spatio-temporal vector random field on M

d × T, which is
isotropic and mean square continuous vector random field on M

d and stationary on
T, and obtains a series representation for the random field and a general form for its
covariance matrix function. The lemmas and theorems are proved in Appendix A.

2 Compact Two-Point Homogeneous Spaces and Jacobi Polynomials

This section starts by recalling some important properties of the compact connected
two-point homogeneous space Md and those of Jacobi polynomials and then estab-
lishes two useful lemmas on a special case of the Funk–Hecke formula onMd and its
probability interpretation, which are conjectured in [24]. In what follows, we consider
only connected compact two-point homogeneous spaces.

The compact connected two-point homogeneous spaces are shown in the first col-
umn of Table 1. Besides spheres, there are projective spaces over the fields R and
C, over the skew field H of quaternions, and over the algebra O of octonions. The
possible values of d are chosen in such a way that all the spaces in Table 1 are different
and exhaust the list. In the lowest dimensions, we have P

1(R) = S
1, P2(C) = S

2,
P
4(H) = S

4, and P
8(O) = S

8.
All compact two-point homogeneous spaces share the same property [6] that all of

their geodesic lines are closed. Moreover, all of them are circles and have the same
length. In particular, when the sphere Sd is embedded into the spaceRd+1 as described
in Sect. 1, the length of any geodesic line is equal to that of the unit circle, that is, 2π .
It is natural to norm the distance in such a way that the length of any geodesic line is
equal to 2π , exactly as in the case of the unit sphere.

There are at least two different approaches to the subject of compact two-point
homogeneous spaces in the literature. They are reviewed in the next two subsections.
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Table 1 An approach based on Lie algebras

M
d G K p q Zonal function

S
d , d = 1, 2, . . . SO(d + 1) SO(d) 0 d − 1 R(α,β)

n (cos(ρ(x, o)))

P
d (R), d = 2, 3, … SO(d + 1) O(d) 0 d − 1 R(α,β)

2n (cos(ρ(x, o)/2))

P
d (C), d = 4, 6, … SU( d

2 + 1) S(U( d
2 ) × U(1)) d − 2 1 R(α,β)

n (cos(ρ(x, o)))

P
d (H), d = 8, 12, … Sp( d

4 + 1) Sp( d
4 ) × Sp(1) d − 4 3 R(α,β)

n (cos(ρ(x, o)))

P
16(O) F4(−52) Spin(9) 8 7 R(α,β)

n (cos(ρ(x, o)))

2.1 An Approach Based on Lie Algebras

This approach goes back to Cartan [10]. It has been used in both the probabilistic
literature [14] and the approximation theory literature [3].

Let G be the connected component of the group of isometries of Md , and let K
be the stationary subgroup of a fixed point in M

d , call it o. Cartan [10] defined and
calculated the numbers p and q, which are dimensions of some root spaces connected
with the Lie algebras of the groups G and K . The groups G and K are listed in the
second and the third columns of Table 1, while the numbers p and q are listed in the
fourth and fifth columns of the table.

By [17, Theorem 11], if Md is a two-point homogeneous space, then the only
differential operators on M

d that are invariant under all isometries of Md are the
polynomials in a special differential operatorΔ called the Laplace–Beltrami operator.
Let dν(x) be the measure which is induced on the homogeneous space Md = G/K
by the probabilistic invariant measure on G. It is possible to define Δ as a self-adjoint
operator in the space H = L2(Md , dν(x)). The spectrum of Δ is discrete, and the
eigenvalues are

λn = −εn(εn + α + β + 1), n ∈ N0,

where
α = (p + q − 1)/2, β = (q − 1)/2, (2)

and where ε = 2 ifMd = P
d(R) and ε = 1 otherwise.

Let Hn be the eigenspace of Δ corresponding to λn . The space H is the Hilbert
direct sum of its subspaces Hn , n ∈ N0. The space Hn is finite-dimensional with

dim Hn = (2n + α + β + 1)Γ (β + 1)Γ (n + α + β + 1)Γ (n + α + 1)

Γ (α + 1)Γ (α + β + 2)Γ (n + 1)Γ (n + β + 1)
.

Each of the spaces Hn contains a unique one-dimensional subspace whose elements
are K -spherical functions; that is, functions invariant under the action of K on M

d .
Such a function, say fn(x), depends only on the distance r = ρ(x, o), fn(x) = f ∗

n (r).
A spherical function is called zonal if f ∗

n (0) = 1.
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The zonal spherical functions of all compact connected two-point homogeneous
spaces are listed in the last column of Table 1. To explain notation, we recall that the
Jacobi polynomials

P(α,β)
n (x) = Γ (α + n + 1)

n!Γ (α + β + n + 1)

n∑
k=0

(
n

k

)
Γ (α + β + n + k + 1)

Γ (α + k + 1)

(
x − 1

2

)k

,

x ∈ [−1, 1], n ∈ N0,

are the eigenfunctions of the Jacobi operator [38, Theorem 4.2.1]

Δx = 1

(1 − x)α(1 + x)β

d

dx

(
(1 − x)α+1(1 + x)β+1 d

dx

)
.

In the last column of Table 1, the normalised Jacobi polynomials are introduced,

R(α,β)
n (x) = P(α,β)

n (x)

P(α,β)
n (1)

, n ∈ N0,

where

P(α,β)
n (1) = Γ (n + α + 1)

Γ (n + 1)Γ (α + 1)
. (3)

The reason for the exceptional behaviour of the real projective spaces is as follows;
see [14,16]. The space Pd(R) may be constructed by identification of antipodal points
on the sphere Sd . An O(d)-invariant function f on P

d(R) can be lifted to an SO(d)-
invariant function g on S

d by g(x) = f (π(x)), where π maps a point x ∈ S
d to the

pair of antipodal points π(x) ∈ P
d(R). This simply means that a function on [0, 1]

can be extended to an even function on [− 1, 1]. Only the even polynomials can be
functions on the so constructed manifold. By [38, Equation (4.1.3)], we have

P(α,β)
n (x) = (−1)n P(β,α)

n (−x).

For the real projective spaces α = β, and the corresponding normalised Jacobi poly-
nomials are even if and only if n is even.

Remark 1 If two Lie groups have the same connected component of identity, then they
have the same Lie algebra. For example, the groups SO(d) and O(d) have the same
Lie algebra so(d). That is, the approach based on Lie algebras gives the same values
of p and q for spheres and real projective spaces of equal dimensions. Only zonal
spherical functions can distinguish between the two cases.

In the only case of Md = S
1, we have p = q = 0. The reason is that only in this

case the Lie algebra so(2) is commutative rather than semisimple, and does not have
nonzero root spaces at all.
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Table 2 A geometric approach

M
d p q α β A i(Md )

S
d , d = 1, 2, … 0 d − 1 d−2

2
d−2
2 S

0 1

P
d (R), d = 2, 3, … d − 1 0 d−2

2 − 1
2 P

d−1(R) 2d−1

P
d (C), d = 4, 6, … d − 2 1 d−2

2 0 P
d−2(C)

( d−1
d/2−1

)

P
d (H), d = 8, 12, … d − 4 3 d−2

2 1 P
d−4(H) 1

d/2+1

( d−1
d/2−1

)

P
16(O) 8 7 7 3 P

8(O) 39

2.2 A Geometric Approach

There is a trick that allows us towrite down all zonal spherical functions of all compact
two-point homogeneous spaces in the same form, which is used in probabilistic litera-
ture [2,26,28,29,33] and in approximation theory [9,13]. Denote y = cos(ρ(x, o)/2).
Then we have cos(ρ(x, o)) = 2y2 − 1. For the case of Md = P

d(R), α = β =
(d − 2)/2. By [38, Theorem 4.1],

P(α,α)
2n (y) = Γ (2n + α + 1)Γ (n + 1)

Γ (n + α + 1)Γ (2n + 1)
P(α,−1/2)

n (2y2 − 1).

In terms of the normalised Jacobi polynomials, we obtain

R(α,α)
2n (cos(ρ(x, o)/2)) = R(α,−1/2)

n (cos(ρ(x, o))).

For the case ofMd = P
d(R), if we redefine α = (d − 2)/2, β = −1/2, then all zonal

spherical functions of all compact two-point homogeneous spaces are given by the
same expression R(α,β)

n (cos(ρ(x, o))).
It easily follows from (2) that the new values for p and q in the case ofMd = Pd(R)

are p = d − 1 and q = 0. It is interesting to note that the new values of p and q for
the real projective spaces together with their old values for the rest of spaces still have
a meaning; see [13] and Table 2. This time, the values of p and q are connected with
the geometry of the space Md rather than with Lie algebras.

Specifically, let A = { x ∈ M
d : ρ(x, o) = π }. This set is called the antipodal

manifold of the point o. The antipodal manifolds are listed in the sixth column of
Table 2. Geometrically, ifMd = S

d and o is the North pole, then A = S
0 is the South

pole. Otherwise, A is the space at infinity of the point o in the terms of projective
geometry. The new number p turns out to be the dimension of the antipodal manifold,
while the number p + q + 1 is, as before, the dimension of the space Md itself.

In what follows, we use the geometric approach. It turns out that all the spacesMd

are Riemannian manifolds, as is defined in [5]. Each Riemannian manifold carries the
canonical measure μ; see [5, pp. 10–11]. Themeasureμ is proportional to themeasure
ν constructed inSect. 2.1. The coefficient of proportionality or the totalmeasureμ(Md )

of the compact manifold M
d is called the volume of Md .
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Lemma 1 The volume of the space M
d is

ωd = μ(Md) = (4π)α+1Γ (β + 1)

Γ (α + β + 2)
. (4)

In what follows, we write just dx instead of dμ(x).

2.3 Orthogonal Properties of Jacobi Polynomials

The set of Jacobi polynomials { P(α,β)
n (x) : n ∈ N0, x ∈ R } possesses two types

of orthogonal properties. First, for each pair of α > −1 and β > −1, this set is a
complete orthogonal system on the interval [− 1, 1]with respect to theweight function
(1 − x)α(1 + x)β , in the sense that

∫ 1

−1
P(α,β)

i (x)P(α,β)
j (x)(1−x)α(1+x)βdx =

{
2α+β+1

2 j+α+β+1
Γ ( j+α+1)Γ ( j+β+1)

j !Γ ( j+α+β+1) , i = j,
0, i 	= j .

(5)
Second, for selected values of α and β given by (2) with p and q given in Table 2,

they are orthogonal overMd , as the following lemma describes, which is derived from
the Funk–Hecke formula recently established in [3]. In the particular case Md = S

d ,
the Funk–Hecke formula may be found in classical references such as [1,34].

Lemma 2 For i, j ∈ N0, and x1, x2 ∈ M
d ,

∫

Md
P(α,β)

i (cos(ρ(x1, x)))P(α,β)
j (cos(ρ(x2, x))) dx = δi jωd

a2
i

P(α,β)
i (cos(ρ(x1, x2))),

where

an =
(

Γ (β + 1)(2n + α + β + 1)Γ (n + α + β + 1)

Γ (α + β + 2)Γ (n + β + 1)

) 1
2

, n ∈ N0. (6)

The probabilistic interpretation of zonal spherical functions on M
d is provided in

Lemma 3. The spherical case is given in [23].

Definition 2 A random vectorU is said to be uniformly distributed onMd if, for every
Borel set A ⊆ M

d and every isometry g we have P(U ∈ A) = P(U ∈ g A).

To construct U, we start with a measure σ proportional to the invariant measure
ν of Sect. 2.1. Let To be the tangent space to M

d at the point o. Choose a Cartesian
coordinate system in To and identify this space with the space Rd . Construct a chart
ϕ : Md \ A → R

d as follows. Put ϕ(o) = 0 ∈ R
d . For any other point x ∈ M

d \ A,
draw the unique geodesic line connecting o and x. Let r ∈ R

d be the unit tangent
vector to the above geodesic line. Define

ϕ(x) = r tan(ρ(x, o)/2),
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and, for each Borel set B ⊆ M
d ,

σ(B) =
∫

ϕ−1(B\A)

dx
(1 + ‖x‖2)α+β+2 .

This measure is indeed invariant [39, p. 113]. Finally, define a probability space (Ω ′,
F′, P′) as follows: Ω ′ = M

d , F′ is the σ -field of Borel subsets of Ω ′, and

P′(B) = σ(B)

σ (Md)
, B ∈ B′.

The random variable U(ω) = ω is then uniformly distributed on M
d .

Lemma 3 Let U be a random vector uniformly distributed on M
d . For n ∈ N,

Zn(x) = an P(α,β)
n (cos(ρ(x,U))), x ∈ M

d ,

is a centred isotropic random field with covariance function

cov(Zn(x1), Zn(x2)) = P(α,β)
n (cos(ρ(x1, x2))), x1, x2 ∈ M

d ,

where an is given by (6). Moreover, for k 	= n, the random fields { Zk(x) : x ∈ M
d }

and { Zn(x) : x ∈ M
d } are uncorrelated:

cov(Zk(x1), Zn(x2)) = 0, x1, x2 ∈ M
d . (7)

3 Isotropic Vector Random Fields onM
d

In the purely spatial case, this section presents a series representation for an m-variate
isotropic and mean square continuous random field {Z(x) : x ∈ M

d } and a series
expression for its covariance matrix function, in terms of Jacobi polynomials. By
mean square continuous, we mean that, for k = 1, . . . , m,

E
[
|Zk(x1) − Zk(x2)|2

]
→ 0, as ρ(x1, x2) → 0, x1, x2 ∈ M

d .

It implies the continuity of each entry of the associated covariance matrix function in
terms of ρ(x1, x2).

In what follows, d is assumed to be greater than 1, while Md reduces to the unit
circle S

1 when d = 1, over which the treatment of isotropic vector random fields
may be found in [23,24]. For an m × m symmetric and nonnegative definite matrix
B with nonnegative eigenvalues λ1, . . . , λm , there is an orthogonal matrix S such that
S−1BS = D, where D is a diagonal matrix with diagonal entries λ1, . . . , λm . Define
the square root of B by

B
1
2 = SD

1
2 S−1,
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where D
1
2 is a diagonal matrix with diagonal entries

√
λ1, . . . ,

√
λm . Clearly, B

1
2 is

symmetric, nonnegative definite, and (B
1
2 )2 = B. Denote by Im an m × m identity

matrix. For a sequence of m × m matrices { Bn : n ∈ N0 }, the series∑∞
n=0 Bn is said

to be convergent, if each of its entries is convergent.

Theorem 1 Suppose that {Vn : n ∈ N0 } is a sequence of independent m-variate
random vectors with E(Vn) = 0 and cov(Vn,Vn) = a2

n Im, U is a random vector
uniformly distributed on M

d and is independent of {Vn : n ∈ N0 }, and that { Bn : n ∈
N0 } is a sequence of m × m symmetric nonnegative definite matrices. If the series∑∞

n=0 Bn P(α,β)
n (1) converges, then

Z(x) =
∞∑

n=0

B
1
2
n Vn P(α,β)

n (cos ρ(x,U)), x ∈ M
d , (8)

is a centred m-variate isotropic random field on M
d , with covariance matrix function

cov(Z(x1),Z(x2)) =
∞∑

n=0

Bn P(α,β)
n (cos ρ(x1, x2)) , x1, x2 ∈ M

d . (9)

The terms of (8) are uncorrelated; more precisely,

cov

(
B

1
2
i Vi P(α,β)

i (ρ(x1,U)), B
1
2
j V j P(α,β)

j (ρ(x2,U))

)
= 0, x1, x2 ∈ M

d , i 	= j .

Since
∣∣∣P(α,β)

n (cosϑ)

∣∣∣ ≤ P(α,β)
n (1), n ∈ N0, the convergent assumption of the

series
∑∞

n=0 Bn P(α,β)
n (1) ensures not only the mean square convergence of the series

at the right-hand side of (8), but also the uniform and absolute convergence of the
series at the right-hand side of (9).

When M
d = S

2 and m = 1, we have dim Hn = 2n + 1, and (9) takes the form

cov(Z(x1), Z(x2)) =
∞∑

n=0

bn Pn (cos ρ(x1, x2)) ,

where Pn(x) are Legendre polynomials. In the theory of Cosmic Microwave Back-
ground, this equation is traditionally written in the form

cov(Z(x1), Z(x2)) =
∞∑

�=0

(2� + 1)C� P� (x1 · x2) ,

and the sequence { C� : � ≥ 0 } is called the angular power spectrum. In the general
case, define the angular power spectrum by

Cn = 1

dim Hn
Bn .
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A lot of examples of the angular power spectrum for general compact two-point
homogeneous spaces may be found in [2].

As the next theorem indicates, (9) is a general form that the covariance matrix
function of an m-variate isotropic and mean square continuous random field on M

d

must take.

Theorem 2 For an m-variate isotropic and mean square continuous random field
{ Z(x) : x ∈ M

d }, its covariance matrix function cov(Z(x1), Z(x2)) is of the form

C(x1, x2) =
∞∑

n=0

Bn P(α,β)
n (cos ρ(x1, x2)) , x1, x2 ∈ M

d , (10)

where { Bn : n ∈ N0 } is a sequence of m × m nonnegative definite matrices and the
series

∑∞
n=0 Bn P(α,β)

n (1) converges.
Conversely, if an m × m matrix function C(x1, x2) is of the form (10), then it

is the covariance matrix function of an m-variate isotropic Gaussian or elliptically
contoured random field on M

d .

Examples of covariance matrix functions on Sd may be found in, for instance, [23,
24]. We would call for parametric and semi-parametric covariance matrix structures
onMd .

4 Time-Varying Isotropic Vector Random Fields onM
d

For an m-variate random field {Z(x; t) : x ∈ M
d , t ∈ T } that is isotropic and mean

square continuous overMd and stationary on T, this section presents the general form
of its covariance matrix function C(ρ(x1, x2); t), which is a continuous function of
ρ(x1, x2) and is also a continuous function of t ∈ R if T = R. A series representation
is given in the following theorem for such a random field, as an extension of that on
S

d × T.

Theorem 3 If an m-variate random field {Z(x; t), x ∈ M
d , t ∈ T} is isotropic and

mean square continuous over Md and stationary on T, then

C(ρ(x1, x2);−t) = (C(ρ(x1, x2); t))�,

and C(ρ(x1,x2);t)+C(ρ(x1,x2);−t)
2 is of the form

C(ρ(x1, x2); t) + C(ρ(x1, x2);−t)

2

=
∞∑

n=0

Bn(t)P(α,β)
n (cos ρ(x1, x2)), x1, x2 ∈ M

d , t ∈ T, (11)

where, for each fixed n ∈ N0, Bn(t) is a stationary covariance matrix function on
T, and, for each fixed t ∈ T, Bn(t) (n ∈ N0) are m × m symmetric matrices and∑∞

n=0 Bn(t)P(α,β)
n (1) converges.
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While a general form of C(ρ(x1,x2);t)+C(ρ(x1,x2);−t)
2 , instead of C(ρ(x1, x2); t) itself,

is given in Theorem 3, that of C(ρ(x1, x2); t) can be obtained in certain special cases,
such as spatio-temporal symmetric, and purely spatial.

Corollary 1 If C(ρ(x1, x2); t) is spatio-temporal symmetric in the sense that

C(ρ(x1, x2);−t) = C(ρ(x1, x2); t), x1, x2 ∈ M
d , t ∈ T,

then it takes the form

C(ρ(x1, x2); t) =
∞∑

n=0

Bn(t)P(α,β)
n (cos ρ(x1, x2)), x1, x2 ∈ M

d , t ∈ T.

In contrast to those in (11), the m × m matrices Bn(t) (n ∈ N0) in the next theorem
are not necessarily symmetric. One simple such example is

B(t) =

⎧⎪⎪⎨
⎪⎪⎩

Σ + ΦΣΦ�, t = 0,
ΦΣ, t = − 1,
ΣΦ�, t = 1,
0, t = ± 2,± 3, . . . ,

which is the covariance matrix function of an m-variate first order moving average
time series Z(t) = ε(t) + Φε(t − 1), t ∈ Z, where { ε(t) : t ∈ Z } is m-variate white
noise with E[ε(t)] = 0 and Var[ε(t)] = Σ, and Φ is an m × m matrix.

Theorem 4 An m × m matrix function

C(ρ(x1, x2); t) =
∞∑

n=0

Bn(t)P(α,β)
n (cos ρ(x1, x2)), x1, x2 ∈ M

d , t ∈ T, (12)

is the covariance matrix function of an m-variate Gaussian or elliptically contoured
random field on M

d × T if and only if { Bn(t) : n ∈ N0 } is a sequence of stationary
covariance matrix functions on T and

∑∞
n=0 Bn(0)P(α,β)

n (1) converges.

As an example of (12), let

Bn(t) =

⎧⎪⎪⎨
⎪⎪⎩

Σn + ΦΣnΦ�, t = 0,
ΦΣn, t = − 1,
ΣnΦ�, t = 1,
0, t = ± 2,± 3, . . . , n ∈ N0,

where {Σn : n ∈ N0} is a sequence of m × m nonnegative definite matrices and∑∞
n=0 Σn P(α,β)

n (1) converges. In this case, (12) is the covariance matrix function of
an m-variate Gaussian or elliptically contoured random field onMd × Z.

Gaussian and second-order elliptically contoured random fields form one of the
largest sets, if not the largest set, which allows any possible correlation structure
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[21]. The covariance matrix functions developed in Theorem 4 can be adopted for
a Gaussian or elliptically contoured vector random field. However, they may not be
available for other non-Gaussian random fields, such as a log-Gaussian [32], χ2 [20],
K-distributed [22], or skew-Gaussian one, for which admissible correlation structure
must be investigated on a case-by-case basis. A series representation is given in the
following theorem for an m-variate spatio-temporal random field on M

d × T.

Theorem 5 An m-variate random field

Z(x; t) =
∞∑

n=0

Vn(t)P(α,β)
n (cos ρ(x,U)), x ∈ M

d , t ∈ T, (13)

is isotropic and mean square continuous on M
d , stationary on T, and possesses mean

0 and covariance matrix function (12), where {Vn(t) : n ∈ N0 } is a sequence of
independent m-variate stationary stochastic processes on T with

E(Vn) = 0, cov(Vn(t1),Vn(t2)) = a2
nBn(t1 − t2), n ∈ N0,

the random vector U is uniformly distributed on M
d and is independent with {Vn(t) :

n ∈ N0 }, and
∑∞

n=0 Bn(0)P(α,β)
n (1) converges.

The distinct terms of (13) are uncorrelated each other,

cov
(
Vi (t)P(α,β)

i (cos ρ(x,U)), V j (t)P(α,β)
j (cos ρ(x,U))

)
= 0,

x ∈ M
d , t ∈ T, i 	= j,

due to Lemma 3 and the independent assumption among U,Vi (t),V j (t). The vector
stochastic process Vn(t) can be expressed as, in terms of Z(x; t) and U,

Vn(t) = a2
n

ωd P(α,β)
n (1)

∫

Md
Z(x; t)P(α,β)

n (cos ρ(x,U))dx, t ∈ T, n ∈ N0,

where the integral is understood as a Bochner integral of a function taking values in
the Hilbert space of random vectors Z ∈ R

m with E[‖Z‖2
Rm ] < ∞.

It is obtained after we multiply both sides of (13) by P(α,β)
n (cos ρ(x,U)), integrate

over Md , and apply Lemma 3,

∫

Md
Z(x; t)P(α,β)

n (cos ρ(x,U))dx

=
∞∑

k=0

Vn(t)
∫

Md
P(α,β)

k (cos ρ(x,U))P(α,β)
n (cos ρ(x,U))dx

= 1

a2
n

P(α,β)
n (1)Vn(t).
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A Proofs

Proof of Lemma 1 To calculate μ(Md), we use the result of [41]. If all the geodesics
on a d-dimensional Riemannian manifold M are closed and have length 2π L , then
the ratio

i(M) = μ(Md)

Lnμ(Sd)

is an integer. With our convention L = 1, we obtain μ(Md) = i(Md)μ(Sd). It is well
known that

μ(Sd) = 2π(d+1)/2

Γ ((d + 1)/2)
= 2πα+3/2

Γ (α + 3/2)
. (14)

The Weinstein’s integers i(Md) are shown in the last column of Table 2. Following
[36], consider all the geodesics from o to a point in A. Draw a tangent line to each of
them and denote by e the dimension of the linear space generated by these lines. We
have e = d for Sd , 1 for Pd(R), 2 for Pd(C), 4 for Pd(H), and 8 for P2(O). It is
proved in [36] that

i(Md) = 2d−1Γ ((d + 1)/2)Γ (e/2)√
πΓ ((d + e)/2)

We know that d = 2α + 2. It is easy to check that e = 2β + 2, then we obtain

i(Md) = 22α+1Γ (α + 3/2)Γ (β + 1)√
πΓ (α + β + 2)

,

and (4) easily follows. ��

Proof of Lemma 2 In Theorem 2.1 of [3], put K (x) = P(α,β)
i (x) and S(x) =

P(α,β)
j (cos(ρ(x2, x))). We obtain

∫

Md
P(α,β)

i (cos(ρ(x1, x)))P(α,β)
j (cos(ρ(x2, x))) dx

= ωd P(α,β)
j (cos(ρ(x1, x2)))

∫ 1

−1

P(α,β)
i (x)

P(α,β)
i (1)

P(α,β)
j (x)dνα,β(x)
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= ωd
δi j

a2
i

P(α,β)
i (cos(ρ(x1, x2))),

where the last equality follows from (3) , (5), and the following well-known result:
the probabilistic measure να,β on [− 1, 1], proportional to (1 − x)α(1 + x)β dx , is

dνα,β(x) = Γ (α + β + 2)

2α+β+1Γ (α + 1)Γ (β + 1)
(1 − x)α(1 + x)β dx . (15)

��
Proof of Lemma 3 The mean function of { Zn(x) : x ∈ M

d } is obtained by applying of
[3, Theorem 2.1] to K (x) = 1 and S(x) = P(α,β)

n (cos(ρ(x, y))),

E[Zn(x)] = anωd

∫

Md
P(α,β)

n (cos(ρ(x, y))) dy = an · 0 = 0.

The covariance function is

cov(Zn(x1), Zn(x2)) = ω−1
d a2

n

∫

Md
P(α,β)

n (cos(ρ(x1, z))P(α,β)
n (cos(ρ(x2, z))) dz

= P(α,β)
n (cos(ρ(x1, x2)),

by Lemma 2. Equation (7) easily follows from the same lemma. ��
Proof of Theorem 1 The series at the right-hand side of (8) converges in mean square
for every x ∈ M

d since

E

⎡
⎢⎣
⎛
⎝

n1+n2∑
i=n1

B
1
2
i Vi P(α,β)

i (cos ρ(x,U))

⎞
⎠
⎛
⎝

n1+n2∑
j=n1

B
1
2
j V j P(α,β)

j (cos ρ(x,U))

⎞
⎠

�⎤
⎥⎦

=
n1+n2∑
i=n1

n1+n2∑
j=n1

B
1
2
i B

1
2
j E[(ViV�

j )]E
[(

P(α,β)
i (cos ρ(x,U))P(α,β)

j (cos ρ(x,U))
)]

=
n1+n2∑
i=n1

Biσ
2
i E
[(

P(α,β)
i (cos ρ(x,U))P(α,β)

i (ρ(x,U))
)]

=
n1+n2∑
i=n1

Bi P(α,β)
i (1)

→ 0, as n1, n2 → ∞,

where the second equality follows from the independent assumption between
{Vn : n ∈ N0 } and U, and the third from Lemma 3. Thus, (8) is an m-variate second-
order randomfield. Itsmean function is clearly identical to 0, and it covariance function
is
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cov

⎛
⎝

∞∑
i=0

B
1
2
i Vi P(α,β)

i (cos ρ(x1,U)),

∞∑
j=0

B
1
2
j V j P(α,β)

j (cos ρ(x2,U))

⎞
⎠

=
∞∑

i=0

∞∑
j=0

B
1
2
i B

1
2
j E
[
(ViV�

j )]E[
(

P(α,β)
i (cos ρ(x,U))P(α,β)

j (cos ρ(x,U))
)]

=
∞∑

i=0

Biσ
2
i E
[(

P(α,β)
i (cos ρ(x1,U))P(α,β)

i (cos ρ(x2,U))
)]

=
∞∑

i=0

Bi P(α,β)
i (cos ρ(x1, x2)), x1, x2 ∈ M

d .

Two distinct terms of (8) are obviously uncorrelated each other. ��
Proof of Theorem 2 It suffices to verify (10) to be a general form, since in Theorem 1
we already construct an m-variate isotropic random field on M

d whose covariance
matrix function is (10). To this end, suppose that {Z(x) : x ∈ M

d } is an m-variate
isotropic and mean square continuous random field. Then, for an arbitrary a ∈ R

m ,
{ a�Z(x) : x ∈ M

d } is a scalar isotropic and mean square continuous random field,
so that its covariance function has to be of the form (1),

cov
(
a�Z(x1), a�Z(x2)

)
=

∞∑
n=0

bn(a)P(α,β)
n (cos ρ(x1, x2)), x1, x2 ∈ M

d , (16)

where { bn(a) : n ∈ N0 } is a sequence of nonnegative constants and∑∞
n=0 bn(a)P(α,β)

n
(1) converges. Similarly, for b ∈ R

m , we obtain

1

4
cov((a + b)�Z(x1), (a + b)�Z(x2))

=
∞∑

n=0

bn(a + b)P(α,β)
n (cos ρ(x1, x2)),

1

4
cov((a − b)�Z(x1), (a − b)�Z(x2))

=
∞∑

n=0

bn(a − b)P(α,β)
n (cos ρ(x1, x2)), x1, x2 ∈ M

d .

Taking the difference between the last two equations yields

1

2

(
a� cov(Z(x1),Z(x2))b + b� cov(Z(x1),Z(x2))a

)

= 1

2

(
cov(a�Z(x1),b�Z(x2)) + cov(b�Z(x1), a�Z(x2))

)

=
∞∑

n=0

(bn(a + b) − bn(a − b)) P(α,β)
n (cos ρ(x1, x2)), x1, x2 ∈ M

d ,
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or

a� cov(Z(x1),Z(x2))b=
∞∑

n=0

(bn(a+b)−bn(a−b))P(α,β)
n (cos ρ(x1, x2)),x1, x2∈M

d ,

(17)
noticing that cov(Z(x1),Z(x2)) is a symmetric matrix. The form (10) of cov(Z(x1),
Z(x2)) is now confirmed by letting the i th entry of a and the j th entry of b be 1 and
the rest vanish in (17). It remains to verify the nonnegative definiteness of each Bn in
(10). To do so, we multiply its both sides by a� from the left and a from the right, and
obtain

a�C(x1, x2)a =
∞∑

n=0

a�BnaP(α,β)
n (cos ρ(x1, x2)) , x1, x2 ∈ M

d ,

comparing which with (16) results in that a�Bna ≥ 0 or the nonnegative definiteness
of Bn , n ∈ N0, and the convergence of

∑∞
n=0 a

�BnaP(α,β)
n (1) or that of each entry of

the matrix
∑∞

n=0 Bn P(α,β)
n (1). ��

Proof of Theorem 3 For a fixed t ∈ T, consider a random field {Z(x; 0) + Z(x; t) :
x ∈ M

d
}
. It is isotropic and mean square continuous onMd , with covariance matrix

function

cov (Z(x1; 0) + Z(x1; t), Z(x2; 0) + Z(x2; t))

= 2C(ρ(x1, x2); 0) + C(ρ(x1, x2); t) + C(ρ(x1, x2);−t)

=
∞∑

n=0

Bn+(t)P(α,β)
n (cos ρ(x1, x2)), x1, x2 ∈ M

d ,

where the last equality follows from Theorem 2, { Bn+(t) : n ∈ N0 } is a sequence
of nonnegative definite matrices, and

∑∞
n=0 Bn+(t)P(α,β)

n (1) converges. Similarly, we
have

cov (Z(x1; 0) − Z(x1; t), Z(x2; 0) − Z(x2; t))

= 2C(ρ(x1, x2); 0) − C(ρ(x1, x2); t) − C(ρ(x1, x2);−t)

=
∞∑

n=0

Bn−(t)P(α,β)
n (cos ρ(x1, x2)),

and thus,

C(ρ(x1, x2); t) + C(ρ(x1, x2);−t)

2

= 1

4
[2C(ρ(x1, x2); 0) + C(ρ(x1, x2); t) + C(ρ(x1, x2);−t)]
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−1

4
[2C(ρ(x1, x2); 0) − C(ρ(x1, x2); t) − C(ρ(x1, x2);−t)]

=
∞∑

n=0

Bn(t)P(α,β)
n (cos ρ(x1, x2)), x1, x2 ∈ M

d ,

which confirms the format (11) for C(ρ(x1,x2);t)+C(ρ(x1,x2);−t)
2 , with Bn(t) =

Bn+(t)−Bn−(t)
4 , n ∈ N0. Obviously, Bn(t) is symmetric, and

∑∞
n=0 Bn(t)P(α,β)

n (1) con-
verges. Moreover, (11) is the covariance matrix function of an m-variate isotropic

random field
{

Z(x;t)+Z̃(x;−t)√
2

: x ∈ M
d , t ∈ T

}
, where { Z̃(x; t) : x ∈ M

d , t ∈ T } is
an independent copy of {Z(x; t) : x ∈ M

d , t ∈ T }. In fact,

cov

(
Z(x1; t1) + Z̃(x1;−t1)√

2
,
Z(x2; t2) + Z̃(x2;−t2)√

2

)

= C(ρ(x1, x2); t1 − t2) + C(ρ(x1, x2); t2 − t1)

2

=
∞∑

k=0

Bk(t1 − t2)P(α,β)
k (cos ρ(x1, x2))

with x1, x2 ∈ M
d , t1, t2 ∈ T.

For each fixed n ∈ N0, in order to verify that Bn(t) is a stationary covariance matrix
function on T, we consider an m-variate stochastic process

Wn(t) =
∫

Md

Z(x; t) + Z̃(x;−t)√
2

P(α,β)
n (cos ρ(x,U))dx, t ∈ T,

where { Z̃(x; t) : x ∈ M
d , t ∈ T } is an independent copyof {Z(x; t) : x ∈ M

d , t ∈ T },
U is a random vector uniformly distributed onMd , and U, {Z(x; t) : x ∈ M

d , t ∈ T }
and { Z̃(x; t) : x ∈ S

d , t ∈ T } are independent. By Lemma 2, the mean function of
{Wn(t) : t ∈ T } is

E[Wn(t)] =
{√

2P(α,β)
0 (1)ωdE[Z(x; t)], n = 0,

0, n ∈ N,

and its covariance matrix function is by Lemmas 2 and 3

cov(Wn(t1), Wn(t2))

= 1

ωd
cov

(∫

Md

Z(x; t1) + Z̃(x;−t1)√
2

P(α,β)
n (cos ρ(x,U))dx,

∫

Md

Z(y; t2) + Z̃(y;−t2)√
2

P(α,β)
n (cos ρ(y,U))dy

)
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= 1

ωd

∫

Md
cov

(∫

Md

Z(x; t1) + Z̃(x;−t1)√
2

P(α,β)
n (cos ρ(x,U))dx,

∫

Md

Z(y; t2) + Z̃(y;−t2)√
2

P(α,β)
n (cos ρ(y,u))dy

)
du

= 1

ωd

∫

Md

∫

Md

∫

Md
cov

(
Z(x; t1) + Z̃(x;−t1)√

2
,
Z(y; t2) + Z̃(y;−t2)√

2

)

×P(α,β)
n (cos ρ(x,u))P(α,β)

n (cos ρ(y,u))dxdydu

=
∫

Md

∫

Md

∫

Md

C(ρ(x, y); t1 − t2) + C(ρ(x, y); t2 − t1)

2ωd

×P(α,β)
n (cos ρ(x,u))P(α,β)

n (cos ρ(y,u))dxdydu

= 1

ωd

∫

Md

∫

Md

∫

Md

∞∑
k=0

Bk(t1 − t2)P(α,β)
k (cos ρ(x, y))

×P(α,β)
n (cos ρ(x,u))P(α,β)

n (cos ρ(y,u))dxdydu

= 1

ωd

∞∑
k=0

Bk(t1 − t2)
∫

Md

∫

Md

∫

Md
P(α,β)

k (cos ρ(x, y))

×P(α,β)
n (cos ρ(x,u))dxP(α,β)

n (cos ρ(y,u))dydu

= 1

ωd
Bn(t1 − t2)

∫

Md

1

a2
n

∫

Md
P(α,β)

n (cos ρ(y,u))P(α,β)
n (cos ρ(y,u))dydu

= 1

ωd
Bn(t1 − t2)

∫

Md

(
ωd

a2
n

)2

P(α,β)
n (1)du

= Bn(t1 − t2)

(
ωd

a2
n

)2

P(α,β)
n (1), t1, t2 ∈ T,

which implies that Bn(t) is a stationary covariance matrix function on T. ��
Proof of Theorem 4 The convergent assumption of

∑∞
n=0 Bn(0)P(α,β)

n (1) ensures the
uniform and absolute convergence of the series at the right-hand side of (12). If
{ Bn(t) : n ∈ N0 } is a sequence of stationary covariancematrix function onT, then each
term of the series at the right-hand side of (12) is the product of a stationary covariance
matrix function Bn(t) on T and an isotropic covariance function P(α,β)

n (cos ρ(x1, x2)
on M

d , and thus, (12) can be treated [21] as the covariance matrix function of an
m-variate random field on M

d × T.
On the other hand, assume that (12) is the covariancematrix function of anm-variate

random field {Z(x; t) : x ∈ M
d , t ∈ T }. The convergence of

∑∞
n=0 Bn(0)P(α,β)

n (1)
results from the existence of C(0; 0) = Var[Z(x; t)]. In order to show that Bn(t) is
a stationary covariance matrix function on T for each fixed n ∈ N0, consider an
m-variate stochastic process
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Wn(t) =
∫

Md
Z(x; t)P(α,β)

n (cos ρ(x,U))dx, t ∈ T,

where U is a random vector uniformly distributed on M
d and is independent with

{Z(x; t) : x ∈ M
d , t ∈ T }. Similar to that in the proof of Theorem 3, applying

Lemmas 2 and 3 we obtain that the covariance matrix function of {Wn(t) : t ∈ T } is
positively propositional to Bn(t); more precisely,

cov(Wn(t1),Wn(t2)) = Bn(t1 − t2)

(
ωd

a2
n

)2

P(α,β)
n (1), t1, t2 ∈ T,

which implies that Bn(t) is a stationary covariance matrix function on T. ��
Proof of Theorem 5 The convergent assumption of

∑∞
n=0 Bn(0)P(α,β)

n (1) ensures the
mean square convergence of the series at the right-hand side of (13), since

E

⎡
⎢⎣
⎛
⎝

n1+n2∑
i=n1

Vi (t)P(α,β)
i (cos ρ(x,U))

⎞
⎠
⎛
⎝

n1+n2∑
j=n1

V j (t)P(α,β)
j (cos ρ(x,U))

⎞
⎠

�⎤
⎥⎦

= E

⎡
⎣

n1+n2∑
i=n1

n1+n2∑
j=n1

Vi (t)V�
j (t)P(α,β)

i (cos ρ(x,U))P(α,β)
j (cos ρ(x,U))

⎤
⎦

=
n1+n2∑
i=n1

n1+n2∑
j=n1

E[Vi (t)V�
j (t)]E

[
P(α,β)

i (cos ρ(x,U))P(α,β)
j (cos ρ(x,U))

]

= ωd

n1+n2∑
i=n1

Bi (0)P(α,β)
i (1)

→ 0, as n1, n2 → ∞,

where the second equality follows from the independent assumption between U and
{Vn(t) : n ∈ N0 }, and the third one from Lemma 3. Applying Lemma 3 we obtain
the mean and covariance matrix functions of {Z(x; t) : x ∈ M

d , t ∈ T }, under the
independent assumption among U and {Vn(t) : n ∈ N0 },

E[Z(x; t)] =
∞∑

n=0

E[Vn(t)]E
[

P(α,β)
n (cos ρ(x,U))

]
= 0, x ∈ M

d , t ∈ T,

and

cov(Z(x1; t1),Z(x2; t2))

= cov

⎛
⎝

∞∑
i=0

Vi (t1)P(α,β)
i (cos ρ(x1,U)),

∞∑
j=0

V j (t2)P(α,β)
j (cos ρ(x2,U))

⎞
⎠
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=
∞∑

i=0

∞∑
j=0

E[Vi (t1)V�
j (t2)]E

[
P(α,β)

i (cos ρ(x1,U))P(α,β)
j (cos ρ(x2,U))

]

=
∞∑

n=0

Bn(t1 − t2)
1

a2
n

P(α,β)
n (cos ρ(x1, x2)), x1, x2 ∈ M

d , t1, t2 ∈ T.

The latter is obviously isotropic and continuous on M
d and stationary on T. ��
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