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Abstract
The variance-gamma (VG) distributions form a four-parameter family that includes
as special and limiting cases the normal, gamma and Laplace distributions. Some of
the numerous applications include financial modelling and approximation on Wiener
space. Recently, Stein’s method has been extended to the VG distribution. However,
technical difficulties have meant that bounds for distributional approximations have
only been given for smooth test functions (typically requiring at least two deriva-
tives for the test function). In this paper, which deals with symmetric variance-gamma
(SVG) distributions, and a companion paper (Gaunt 2018), which deals with the whole
family of VG distributions, we address this issue. In this paper, we obtain new bounds
for the derivatives of the solution of the SVG Stein equation, which allow for approx-
imations to be made in the Kolmogorov and Wasserstein metrics, and also introduce a
distributional transformation that is natural in the context of SVG approximation. We
apply this theory to obtainWasserstein or Kolmogorov error bounds for SVG approxi-
mation in four settings: comparison of VG and SVGdistributions, SVG approximation
of functionals of isonormal Gaussian processes, SVG approximation of a statistic for
binary sequence comparison, and Laplace approximation of a random sum of inde-
pendent mean zero random variables.
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1 Introduction

1.1 Overview of Stein’s Method for Variance-Gamma Approximation

The variance-gamma (VG) distribution with parameters r > 0, θ ∈ R, σ > 0, μ ∈ R

has probability density function

p(x) = 1

σ
√

π�( r2 )
e

θ

σ2
(x−μ)

( |x − μ|
2
√

θ2 + σ 2

) r−1
2

K r−1
2

(√
θ2 + σ 2

σ 2 |x − μ|
)

, (1.1)

where x ∈ R and the modified Bessel function of the second kind Kν(x) is
defined in “Appendix A”. If the random variable Z has density (1.1), we write
Z ∼ VG(r , θ, σ, μ). The support of the VG distributions is R when σ > 0, but
in the limit σ → 0 the support is the region (μ,∞) if θ > 0, and is (−∞, μ) if
θ < 0. Alternative parametrisations are given in [10] and [29] (in which they use the
name-generalised Laplace distribution). Distributional properties are given in [16] and
Chapter 4 of the book [29].

The VG distribution was introduced to the financial literature by [32]. Due to their
semi-heavy tails, VG distributions are useful for modelling financial data [33]; see the
book [29] and references therein for an overview of the many applications. The class
of VG distributions contains many classical distributions as special or limiting cases,
such as the normal, gamma, Laplace, product of zero mean normals and difference
of gammas (see Proposition 1.2 of [16] for a list of further cases). Consequently, the
VG distribution appears in many other settings beyond financial mathematics [29]; for
example, in alignment-free sequence comparison [31,45]. In particular, starting with
the works [15,16], Stein’s method [50] has been developed for VG approximation.
The theory of [15,16] and the Malliavin-Stein method (see [36]) was applied by [12]
to obtain “six moment” theorems for the VG approximation of double Wiener-Itô
integrals. Further VG approximations are given in [1] and [2], in which the limiting
distribution is the difference of two centred gamma random variables.

Introduced in 1972, Stein’s method [50] is a powerful tool for deriving distribu-
tional approximations with respect to a probability metric. The theory for normal
and Poisson approximation is particularly well established with numerous applica-
tion in probability and beyond; see the books [6] and [3]. There is active research
into the development of Stein’s method for other distributional limits (see [30] for
an overview), and Stein’s method for exponential and geometric approximation, for
example, is now also well developed; see the survey [48]. In particular, [39] have
developed a framework to obtain error bounds for the Kolmogorov and Wasserstein
distance metrics for exponential approximation, and [40] developed a framework for
total variation error bounds for geometric approximation.

This paper and its companion [23] focus on the development of Stein’s method for
VG approximation. At the heart of the method [16] is the Stein equation

σ 2(x − μ) f ′′(x) + (σ 2r + 2θ(x − μ)) f ′(x) + (rθ − (x − μ)) f (x) = h̃(x),

(1.2)
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where h̃(x) = h(x) − Eh(Z) for h : R → R and Z ∼ VG(r , θ, σ, μ). Together
with the Stein equations of [41] and [43], this was one of the first second-order Stein
equations to appear in the literature. We now set μ = 0; the general case follows from
the translation property that if Z ∼ VG(r , θ, σ, μ) then Z − μ ∼ VG(r , θ, σ, 0). The
solution to (1.2) is then

fh(x) = −e−θx/σ 2

σ 2|x |ν Kν

(√
θ2 + σ 2

σ 2 |x |
)∫ x

0
eθ t/σ 2 |t |ν Iν

(√
θ2 + σ 2

σ 2 |t |
)
h̃(t) dt

− e−θx/σ 2

σ 2|x |ν Iν

(√
θ2 + σ 2

σ 2 |x |
)∫ ∞

x
eθ t/σ 2 |t |νKν

(√
θ2 + σ 2

σ 2 |t |
)
h̃(t) dt,

(1.3)

where ν = r−1
2 and the modified Bessel function of the first kind Iν(x) is defined

in “Appendix A”. If h is bounded, then fh(x) and f ′
h(x) are bounded for all x ∈ R.

Moreover, this is the unique bounded solution when r ≥ 1.
To approximate a random variable of interest W by a VG random variable Z , one

may evaluate both sides of (1.2) atW , take expectations and finally take the supremum
of both sides over a class of functions H to obtain

sup
h∈H

|Eh(W ) − Eh(Z)| = sup
h∈H

∣∣E[σ 2W f ′′
h (W ) + (σ 2r + 2θW ) f ′

h(W )

−(rθ − W ) fh(W )
]∣∣. (1.4)

Many important probability metrics are of the form suph∈H |Eh(W ) − Eh(Z)|. In
particular, taking

HK = {1(· ≤ z) | z ∈ R},
HW = {h : R → R | h is Lipschitz,‖h′‖ ≤ 1},

HBW = {h : R → R | h is Lipschitz,‖h‖ ≤ 1 and ‖h′‖ ≤ 1}

gives the Kolmogorov, Wasserstein and bounded Wasserstein distances, which we
denote by dK, dW and dBW, respectively.

The problem of bounding suph∈H |Eh(W ) − Eh(Z)| is thus reduced to bounding
the solution (1.3) and some of its lower order derivatives and bounding the expecta-
tion on the right-hand side of (1.4). To date, the only techniques for bounding this
expectation for VG approximation are local couplings [15,16] and the integration by
parts technique used to prove Theorem 4.1 of [12]. Other coupling techniques that
are commonly found in the Stein’s method literature, such as exchangeable pairs [51]
and Stein couplings [7], have yet to be used in VG approximation, although one of
the contributions of this paper is a new coupling technique for SVG approximation by
Stein’s method.

The presence of modified Bessel functions in the solution (1.3) together with the
singularity at the origin in the Stein equation (1.2) makes bounding the solution and
its derivatives technically challenging. Indeed, in spite of the introduction of new
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inequalities for modified Bessel functions and their integrals [17,18] and extensive
calculations ( [15], Sect. 3.3 and Appendix D), the first bounds given in the literature
[16] were only given for the case θ = 0 and had a far from optimal dependence on the
parameter r . Substantial progress was made by [9], in which their iterative approach
reduced the problem of bounding the derivatives of any order to bounding just the
solution and its first derivative. However, the bounds obtained in [9] have a dependence
on the test function h which means that error bounds for VG approximation can only
be given for smooth test functions.

1.2 Summary of Results and Outline of the Paper

In this paper and its companion [23], we obtain new bounds for the solution of the
VG Stein equation that allow for Wasserstein and Kolmogorov error bounds for VG
approximation via Stein’s method. This paper focuses on the case θ = 0 (symmetric
variance-gamma (SVG) distributions), whilst [23] deals with the whole family of VG
distributions. This organisation is due to the additional complexity of the θ �= 0 case.
One of the difficulties is that when θ �= 0, the inequalities for expressions involving
integrals of modified Bessel functions that we use to bound the solution take a more
complicated form, meaning our main results need to be presented in parallel for the
two cases. It should be noted, though, that, once the inequalities for modified Bessel
functions have been established (which has now been done in [17,18,21]), the intrinsic
difficulty of bounding the derivatives of the solution of the Stein equation in the
two cases is similar. This organisation allows for a clear exposition with manageable
calculations.

In Sect. 3, we obtain new bounds for the solution of the SVG Stein equation (The-
orem 3.1 and Corollary 3.3) that have the correct dependence on the test function h to
allow for Wasserstein (‖h′‖) and Kolmogorov (‖h̃‖) error bounds for SVG approxi-
mation via Stein’s method. This task is arguably more technically demanding than for
any other distribution for which this ingredient of Stein’s method has been established.
Indeed, Theorem 3.1 builds on the bounds of [15,16], the iterative technique of [9],
and three papers on inequalities for integrals of modified Bessel functions [17,18,21]
whose primary motivation was Stein’s method for VG approximation. In Proposi-
tions 3.5 and 3.6, we note that higher-order derivatives of the solution cannot have a
dependence on h of the form ‖h̃‖ or ‖h′‖.

In Sect. 4, we introduce (Definition 4.3) a distributional transformation, which we
call the centred equilibrium transformation of order r that is natural in the context of
SVG approximation via Stein’s method. As our choice of name suggests, it generalises
the centred equilibrium transformation [43], which is itself the natural analogue for
Laplace approximation of the equilibrium transformation for exponential approxima-
tion [39]. In Theorem 4.10, we combine with the bounds of Sect. 3 to obtain general
Wasserstein and Kolmogorov error bounds for SVG approximation. Our bounds are
the SVG analogue of the general bounds of Theorem 3.1 of [39] that have been shown
to be a useful tool for obtaining bounds for exponential approximation.

It should be noted that even with the new bounds of Sect. 3, with other coupling
techniques, such as local couplings, more effort may be required to obtain Wasser-

123



Journal of Theoretical Probability (2020) 33:465–505 469

stein and Kolmogorov bounds than would be the case for normal approximation, for
example. This is due to the presence of the coefficient σ 2x in the leading derivative of
the SVG Stein equation (1.2). This therefore provides motivation for introducing this
distributional transformation.

In Sect. 5, we apply the results of Sects. 3 and 4 in four applications, these
being: approximation of a general VG distribution by a SVG distribution; quanti-
tative six moment theorems for SVG approximation of double Wiener-Itô integrals;
SVG approximation of a statistic for binary sequence comparison (a special case of the
D2 statistic for alignment-free sequence comparison [4,31]); and Laplace approxima-
tion of a random sum of independent mean zero random variables. Our error bounds
are given in the Wasserstein and Kolmogorov metrics, and in each case such bounds
would not have been attainable by appealing to the present literature.

The rest of this paper is organised as follows. In Sect. 2, we introduce the class of
SVG distributions and state some of their basic properties. Section 3 gives new bounds
for the solution of the SVGStein equation. In Sect. 4, we introduce a new distributional
transformation, which we apply to give general bounds for SVG approximation in the
Wasserstein and Kolmogorov metrics. In Sect. 5, we apply our results to obtain SVG
approximations in several applications. Proofs of technical results are postponed until
Sect. 6. Basic properties and inequalities for modified Bessel functions that are needed
in this paper are collected in “Appendix A”.

2 The Class of Symmetric Variance-GammaDistributions

In this section, we introduce the class of symmetric variance-gamma (SVG) distribu-
tions and present some of their basic properties.

Definition 2.1 If Z ∼ VG(r , 0, σ, μ), for r , σ and μ defined as in (1.1), then Z is said
to have a symmetric variance-gamma distribution. We write Z ∼ SVG(r , σ, μ).

Setting θ = 0 in (1.1) gives the p.d.f. of Z ∼ SVG(r , σ, μ):

p(x) = 1

σ
√

π�( r2 )

( |x − μ|
2σ

) r−1
2

K r−1
2

( |x − μ|
σ

)
, x ∈ R, (2.1)

where Kν(x) is a modified Bessel function of the second kind. The parameter r is
known as the scale parameter. As r increases, the distribution becomes more rounded
around its peak valueμ (as can be seen from (2.3) below). The parameter σ is called the
tail parameter. As σ decreases, the tails decay more quickly (see (2.2)). The parameter
μ is the location parameter. Calculations can often be simplified by using the basic
relation that if Z ∼ SVG(r , 1, 0), then σ Z + μ ∼ SVG(r , σ, μ). The SVG(r , 1, 0)
distribution is in a sense the standard symmetric variance-gamma distribution.

The presence of the modified Bessel function makes (2.1) difficult to parse at first
inspection. The following asymptotic formulas help in this regard. Applying (A.6) to
(2.1) gives that, for all r > 0, σ > 0 and μ ∈ R,
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p(x) ∼ 1

(2σ)
r
2 �( r2 )

|x | r2−1e−|x−μ|/σ , |x | → ∞. (2.2)

Similarly, applying (A.4) to (2.1) (see [15]) gives that

p(x) ∼

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1

σ
√

π

�
( r−1

2

)
�
( r
2

) , x → μ, r > 1,

− 1

πσ
log |x − μ|, x → μ, r = 1,

1

(2σ)r
√

π

�
( 1−r

2

)
�
( r
2

) |x − μ|r−1, x → μ, 0 < r < 1.

(2.3)

The density thus has a singularity at x = μ if r ≤ 1. In fact, for any parameter, the
SVG(r , σ, μ) distribution is unimodal with mode μ. This can be seen from the fact
that the function xνKν(x) is a decreasing function of x in the interval (0,∞) for all
ν ∈ R (see (A.8)).

The SVG distribution has a fundamental representation in terms of independent
normal and gamma random variables ( [29], Proposition 4.1.2). Let X ∼ �( r2 ,

1
2 )

(with p.d.f. 1
2r/2�(r/2)

xr/2−1e−x/2, x > 0) and Y ∼ N (0, 1) be independent. Then

μ + σ
√
XY ∼ SVG(r , σ, μ).

The SVG distribution has moment generating function M(t) = (1 + σ 2t2)−r/2,
t ∈ R, and therefore has moments of arbitrary order. In particular, the mean and
variance of Z ∼ SVG(r , σ, μ) are given by

EZ = μ, Var(Z) = rσ 2. (2.4)

Perhaps surprisingly, this author could not find a formula for the absolute centred
moments of the SVG(r , σ, μ) distribution in the literature. The result and its simple
proof are given here.

Proposition 2.2 Let Z ∼ SVG(r , σ, μ). Then, for k > 0,

E|Z − μ|k = 2
k
2 σ k

√
π

�
( r+k

2

)
�
( k+1

2

)
�
( r
2

) . (2.5)

Proof We follow the approach given in Proposition 4.1.6 of [29] to obtain themoments
of the SVG(r , σ, 0) distribution. Recall that Z − μ =d σ

√
XY , where X ∼ �( r2 ,

1
2 )

and Y ∼ N (0, 1) are independent. Therefore

E|Z − μ|k = σ k
E[X k

2 ]E|Y |k,

whence the result follows on using the standard formulas EXs = �( r2 + s)/�( r2 ) and

E|Y |k = 1√
π
2

k
2 �
( k+1

2

)
. �
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In interpreting Corollary 5.4, it will be useful to note the following formulas for the
moments and cumulants of Y ∼ SVG(r , σ, 0) ( [12], Lemma 3.6):

EY 2 = rσ 2, EY 4 = 3σ 4r(r + 2), EY 6 = 15σ 6r(r + 2)(r + 4),

κ2(Y ) = rσ 2, κ4(Y ) = 6rσ 4, κ6(Y ) = 120rσ 6,

with the odd order moments and cumulants all being equal to zero.
Lastly, we note that the class of SVG distributions contains several classical distri-

butions as special or limiting cases ( [16], Proposition 1.2).

1. Let Xr have the SVG(r , σ√
r
, μ) distribution. Then Xr converges in distribution to

a N (μ, σ 2) random variable in the limit r → ∞.
2. A SVG(2, σ, μ) random variable has the Laplace(μ, σ ) distribution with p.d.f.

p(x) = 1
2σ e

−|x−μ|/σ , x ∈ R.
3. Let X1, . . . , Xr and Y1, . . . ,Yr be independent standard normal random variables.

Then σ
∑r

k=1 XkYk has the SVG(r , σ, 0) distribution.
4. Suppose that X ∼ �(r , λ) and Y ∼ �(r , λ) are independent. Then the random

variable X − Y has the SVG(2r , λ−1, 0) distribution.

3 Bounds for the Solution of the Stein Equation

In this section, we obtain bounds for the solution of the SVG Stein equation (that is
(1.2) with θ = 0) which have the correct dependence on the test function h to allow
for Wasserstein and Kolmogorov distance bounds for SVG approximation via Stein’s
method.

For ease of exposition, in our proofs, we shall analyse the solution of the
SVG(r , 1, 0)Stein equation. The general case follows from that fact that SVG(r , σ, μ)

=d μ + σSVG(r , 1, 0) and a simple rescaling and translation. The solution of the
SVG(r , 1, 0) Stein equation is then

f (x) = −Kν(|x |)
|x |ν

∫ x

0
|t |ν Iν(|t |)h̃(t) dt − Iν(|x |)

|x |ν
∫ ∞

x
|t |νKν(|t |)h̃(t) dt (3.1)

= −Kν(|x |)
|x |ν

∫ x

0
|t |ν Iν(|t |)h̃(t) dt + Iν(|x |)

|x |ν
∫ x

−∞
|t |νKν(|t |)h̃(t) dt, (3.2)

where ν = r−1
2 and h̃(x) = h(x) − Eh(Z) for Z ∼ SVG(r , 1, 0). The equality

between (3.1) and (3.2) follows because |t |νKν(|t |) is proportional to the SVG(r , 1, 0)
density. The equality is very useful, because it means that we will be able to restrict
our attention to bounding the solution in the region x ≥ 0, from which a bound for all
x ∈ R is immediate.

Wenownote twouseful boundsdue to [16] for the solutionof theSVG(r , σ, μ)Stein
equation that will be used in the proof of Theorem 3.1 and some of the applications
of Sect. 5. For bounded and measurable h : R → R,
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‖ f ‖ ≤ 1

σ

(
1

r
+ π�( r2 )

2�( r+1
2 )

)
‖h̃‖, (3.3)

‖ f ′‖ ≤ 2

σ 2r
‖h̃‖. (3.4)

Let us now state the main result of this section.

Theorem 3.1 Suppose that h : R → R is bounded and measurable. Let f be the
solution of the SVG(r , σ, μ) Stein equation. Then

‖(x − μ) f (x)‖ ≤
(
3

2
+ 1

2r

)
‖h̃‖, (3.5)

‖(x − μ) f ′(x)‖ ≤ 1

σ

(
1 + 1

2r

)
‖h̃‖, (3.6)

‖(x − μ) f ′′(x)‖ ≤ 1

2σ 2

(
9 + 1

r

)
‖h̃‖. (3.7)

Now suppose that h : R → R is Lipschitz. Then

‖ f ‖ ≤ 7

2
‖h′‖, (3.8)

‖ f ′‖ ≤ 9

2σ

(
1

r + 1
+ π�

( r+1
2

)
2�
( r
2 + 1

)
)

‖h′‖, (3.9)

‖ f ′′‖ ≤ 9

σ 2(r + 1)
‖h′‖, (3.10)

and also

‖(x − μ) f ′(x)‖ ≤ 9

2

(
3

2
+ 1

2(r + 1)

)
‖h′‖, (3.11)

‖(x − μ) f ′′(x)‖ ≤ 9

2σ

(
1 + 1

2(r + 1)

)
‖h′‖, (3.12)

‖(x − μ) f (3)(x)‖ ≤ 9

4σ 2

(
9 + 1

r + 1

)
‖h′‖. (3.13)

Proof As noted above, for ease of notation, we set σ = 1 and μ = 0. The bounds for
the general case, as stated in the theorem, follow from a simple change in variables;
see the proof of Theorem 3.6 of [16]. We also recall that it suffices to obtain bounds
in the region x ≥ 0.

Let us first establish the bound for ‖ f ‖, which we will need to obtain several of
the other bounds. By the mean value theorem, |h̃(x)| ≤ ‖h′‖(|x | + E|Z |), where
Z ∼ SVG(r , 1, 0). From (2.5) we have E|Z | = 2√

π
�( r+1

2 )/�( r2 ). Now, on using
inequalities (A.16), (A.18), (A.17) and (A.19) to obtain the second inequality we
have, for x ≥ 0,
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| f (x)| ≤ ‖h′‖
{
Kν(x)

xν

∫ x

0
(t + E|Z |)tν Iν(t) dt + Iν(x)

xν

∫ ∞

x
(t + E|Z |)tνKν(t) dt

}

≤ ‖h′‖
{
1

2
+ E|Z | · 1

2ν + 1
+ 1 + E|Z | ·

√
π�(ν + 1

2 )

2�(ν + 1)

}

= ‖h′‖
{
3

2
+ 2√

π

�(ν + 1)

�(ν + 1
2 )

(
1

2ν + 1
+

√
π�(ν + 1

2 )

2�(ν + 1)

)}

= ‖h′‖
{
5

2
+ �(ν + 1)√

π�(ν + 3
2 )

}
,

where we used the standard formula u�(u) = �(u + 1) to obtain the final equality.
Now, �(ν+1)

�(ν+ 3
2 )

is a decreasing function of ν for ν > − 1
2 (see [26]), and so is bounded

above by �( 12 ) = √
π for all ν > − 1

2 . Hence, | f (x)| ≤ 7
2‖h′‖ for all x ≥ 0, which is

sufficient to prove (3.8).
Thebounds for‖ f ′‖ and‖ f ′′‖ canbeobtained through an applicationof the iterative

technique of [9]. Differentiating both sides of the SVG(r , 1, 0) Stein equation (1.2)
gives

x f (3)(x) + (r + 1) f ′′(x) − x f ′(x) = h′(x) + f (x). (3.14)

We recognise (3.14) as the SVG(r + 1, 1, 0) Stein equation, applied to f ′, with test
function h′(x)+ f (x). We note that the test function h′(x)+ f (x) has mean zero with
respect to the randomvariableY ∼ SVG(r+1, 1, 0). This fact will be required in order
to later apply inequalities (3.3) and (3.4). Since h is Lipschitz, by inequality (3.8), we
have thatE|h′(Y )+ f (Y )| < ∞, and in particular as (3.14) is the SVG(r+1, 1, 0)Stein
equation applied to f ′, we have that E[Y f (3)(Y ) + (r + 1) f ′′(Y ) − Y f ′(Y )] = 0,
and thus E[h′(Y ) + f (Y )] = 0. Therefore, applying inequalities (3.3) and (3.4),
respectively, with r replaced by r + 1 and test function h′(x) + f (x) gives

‖ f ′‖ =
(

1

r + 1
+ π�

( r+1
2

)
2�
( r
2 + 1

)
)

‖h′(x) + f (x)‖

≤
(

1

r + 1
+ π�

( r+1
2

)
2�
( r
2 + 1

)
)(‖h′‖ + ‖ f ‖) ≤ 9

2

(
1

r + 1
+ π�

( r+1
2

)
2�
( r
2 + 1

)
)

‖h′‖,

‖ f ′′‖ ≤ 2

r + 1

(‖h′‖ + ‖ f ‖) ≤ 9

r + 1
‖h′‖,

where we used (3.8) to bound ‖ f ‖.
Let us now establish the bounds (3.5), (3.6) and (3.7). On using inequalities (A.20)

and (A.21) to obtain the second inequality, we obtain, for x ≥ 0,
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|x f (x)| =
∣∣∣∣Kν(x)

xν−1

∫ x

0
tν Iν(t)h̃(t) dt − Iν(x)

xν−1

∫ ∞

x
tνKν(t)h̃(t) dt

∣∣∣∣
≤ ‖h̃‖

{
Kν(x)

xν−1

∫ x

0
tν Iν(t) dt + Iν(x)

xν−1

∫ ∞

x
tνKν(t) dt

}

≤ ‖h̃‖
(

ν + 1

2ν + 1
+ 1

)
= 3ν + 2

2ν + 1
‖h̃‖ = 3r + 1

2r
‖h̃‖ =

(
3

2
+ 1

2r

)
‖h̃‖.

On using the differentiation formulas (A.9) and (A.10) and inequalities (A.22) and
(A.23), we obtain, for x ≥ 0,

|x f ′(x)| =
∣∣∣∣Kν+1(x)

xν−1

∫ x

0
tν Iν(t)h̃(t) dt + Iν+1(x)

xν−1

∫ ∞

x
tνKν(t)h̃(t) dt

∣∣∣∣
≤ ‖h̃‖

{
Kν+1(x)

xν−1

∫ x

0
tν Iν(t) dt + Iν+1(x)

xν−1

∫ ∞

x
tνKν(t) dt

}

≤ ‖h̃‖
(

ν + 1

2ν + 1
+ 1

2

)
= 4ν + 3

2(2ν + 1)
‖h̃‖ = 2r + 1

2r
‖h̃‖ =

(
1 + 1

2r

)
‖h̃‖.

Since it suffices to consider x ≥ 0, we have proved (3.5) and (3.6). Now, from the
SVG(r , 1, 0) Stein equation we have that, for x ∈ R,

|x f ′′(x)| = |h̃(x) − r f ′(x) + x f (x)| ≤ ‖h̃‖ + r‖ f ′‖ + ‖x f (x)‖.

Applying (3.4) to bound ‖ f ′‖ and (3.5) to bound ‖x f (x)‖ yields the bound

‖x f ′′(x)‖ ≤
(
1 + r · 2

r
+
(
3

2
+ 1

2r

))
‖h̃‖ = 1

2

(
9 + 1

r

)
‖h̃‖.

We now bound ‖x f ′(x)‖, ‖x f ′′(x)‖ and ‖x f (3)(x)‖ for Lipschitz h using the iter-
ative technique of [9] similarly to how we obtained inequalities (3.9) and (3.10). We
recall that (3.14) is the SVG(r+1, 1, 0)Stein equation, applied to f ′, with test function
h′(x)+ f (x), which we also recall has mean zero with respect to the SVG(r +1, 1, 0)
measure. Therefore, applying inequalities (3.5), (3.6) and (3.7), respectively, with r
replaced by r + 1 and test function h′(x) + f (x) gives

‖x f ′(x)‖ ≤
(
3

2
+ 1

2(r + 1)

)
‖h′(x) + f (x)‖

≤
(
3

2
+ 1

2(r + 1)

)(‖h′‖ + ‖ f ‖) ≤ 9

2

(
3

2
+ 1

2(r + 1)

)
‖h′‖,

‖x f ′′(x)‖ ≤
(
1 + 1

2(r + 1)

)(‖h′‖ + ‖ f ‖) ≤ 9

2

(
1 + 1

2(r + 1)

)
‖h′‖,

‖x f (3)(x)‖ ≤ 1

2

(
9 + 1

r + 1

)(‖h′‖ + ‖ f ‖) ≤ 9

4

(
9 + 1

r + 1

)
‖h′‖,

where we used inequality (3.8) to bound ‖ f ‖. The proof is complete. �
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In the following corollary, we apply some of the estimates of Theorem 3.1 to
bound some useful quantities. We shall make use of these bounds in Sect. 4. It will be
convenient to define the operator Tr by Tr f (x) = x f ′(x) + r f (x).

Corollary 3.2 Let f be the solution of the SVG(r , σ, 0) Stein equation. Then for h :
R → R bounded and measurable, and Lipschitz, respectively,

σ 2‖Tr f ′‖ ≤
(
5

2
+ 1

2r

)
‖h̃‖, (3.15)

σ 2‖(Tr f ′)′‖ ≤ 9

4

(
5 + 1

r + 1

)
‖h′‖. (3.16)

Proof As f satisfies σ 2Tr f ′(x) = h̃(x) + x f (x), we have σ 2(Tr f ′)′(x) = h′(x) +
x f ′(x) + f (x). From the triangle inequality and the estimates of Theorem 3.1,

σ 2‖Tr f ′‖ ≤ ‖h̃‖ + ‖x f (x)‖ ≤
(
5

2
+ 1

2r

)
‖h̃‖,

σ 2‖(Tr f ′)′‖ ≤ ‖h′‖ + ‖x f ′(x)‖ + ‖ f ‖ ≤
{
1 + 9

2

(
3

2
+ 1

2(r + 1)

)
+ 7

2

}
‖h′‖,

which proves the result. �

Corollary 3.3 Let fz denote the solution of the SVG(r , σ, μ) Stein equation with test
function hz(x) = 1(x ≤ z). Then

‖ fz‖ ≤ 1

σ

(
1

r
+ π�( r2 )

2�( r+1
2 )

)
, ‖ f ′

z‖ ≤ 2

σ 2r
, σ 2‖Tr f ′

z‖ ≤ 5

2
+ 1

2r
,

‖(x − μ) fz(x)‖ ≤ 3

2
+ 1

2r
, ‖(x − μ) f ′

z (x)‖ ≤ 1

σ

(
1 + 1

2r

)
,

‖(x − μ) f ′′
z (x)‖ ≤ 1

2σ 2

(
9 + 1

r

)
.

Proof Apply the inequality ‖h̃z‖ ≤ 1 to the bounds (3.3), (3.4), (3.15), (3.5), (3.6)
and (3.7), respectively. �

Remark 3.4 For the normal [6] and exponential [5] Stein equations, because the solu-
tion of the Stein equation with test function hz(x) = 1(x ≤ z) can be expressed in
terms of elementary functions, a detailed analysis of the solution yields bounds with
smaller constants that would be obtained by first working with a general bounded test
function h and then bounding ‖h̃z‖ ≤ 1. However, because of the presence ofmodified
Bessel functions in the solution, such improvements would be more difficult to obtain
here.

It is natural to ask whether, for all z ∈ R, a bound of the form ‖ f ′′
z ‖ ≤ Cr ,σ could

be obtained for the solution fz . The following proposition, which is proved in Sect. 6,
shows that this is not possible.
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Proposition 3.5 f ′
μ(x) has a discontinuity at x = μ.

Similarly, one may ask whether a bound of the form ‖ f (3)‖ ≤ Cr ,σ ‖h′‖ could be
obtained for all Lipschitz h : R → R. The following proposition, which is proved
in Sect. 6, again shows this is not possible (see [11] for similar results that apply to
solutions of Stein equations for a wide class of distributions). Our approach differs
from that of Proposition 3.5 in that we do not find a Lipschitz test function h for which
f ′′ has a discontinuity. This would be more tedious to establish for f ′′ than for f ′
and instead we consider a highly oscillating test function and perform an asymptotic
analysis.

Proposition 3.6 Let f be the solution of the SVG(r , σ, μ) Stein equation. Then, there
does not exist a constant Mr ,σ > 0 such that ‖ f (3)‖ ≤ Mr ,σ ‖h′‖ for all Lipschitz
h : R → R.

Remark 3.7 (i) Throughout this remark, we set μ = 0. The bounds (3.4) and (3.10)
are of order r−1 as r → ∞. This is indeed the optimal order, which can be seen by the
following argument, which is similar to the one given in Remark 2.2 of [24] to show
that the rate in their bound for solution of the gamma Stein equation was optimal.

Evaluating both sides of the SVG(r , σ, 0) Stein equation at x = 0 gives f ′(0) =
1

σ 2r
h̃(0). Also, evaluating both sides of (3.14) (with general σ ) at x = 0 gives that

f ′′(0) = 1
σ 2(r+1)

(
h′(0) + f (0)

)
, from which we conclude that the O(r−1) rate in

(3.10) is also optimal.

(ii) The bound (3.3) for ‖ f ‖ is of order r− 1
2 as r → ∞. Indeed, for r > 1,

√
2

r
<

�( r2 )

�( r+1
2 )

<

√
2

r − 1
2

, (3.17)

which follows from the inequalities
�(x+ 1

2 )

�(x+1) > (x + 1
2 )

− 1
2 for x > 0 (see [25]) and

�(x+ 1
2 )

�(x+1) < (x + 1
4 )

− 1
2 for x > − 1

4 (see [13]). The O(r− 1
2 ) rate is optimal, which can

be seen as follows. Take h to be h(x) = 1 if x ≥ 0 and h(x) = −1 if x < 0, so that
h̃(x) = h(x). Then

f (0+) = − lim
x↓0

{
1

σ 2xν
Kν

(
x

σ

)∫ x

0
tν Iν

(
t

σ

)
dt

}

− lim
x↓0

{
1

σ 2xν
Iν

(
x

σ

)∫ ∞

x
tνKν

(
t

σ

)
dt

}

=
√

π�(ν + 1
2 )

2σ 2�(ν + 1)
=

√
π�( r2 )

2σ 2�( r+1
2 )

.

Here, we used that the first limit is equal to zero by the asymptotic formulas (A.3)
and (A.4). We computed the second limit using the asymptotic formula (A.3) and
that the integrand is proportional to the density of the SVG(2ν + 1, σ, 0) distribution.

Therefore, by (3.17), we conclude that the optimal rate is order r− 1
2 as r → ∞.
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(iii) Arguing as we did in part (i), we have that f (0) = σ 2(r + 1) f ′′(0) − h′(0),
which for a general Lipschitz test function h is O(1) (see bound (3.10)), and so the
bound (3.8) is of optimal order.

(iv) In the light of inequalities (3.8)–(3.10), one might expect inequalities (3.6) and
(3.7) to be of lower than (3.5) as r → ∞. However, this is not the case. A calculation
involving L’Hôpital’s rule (which is given in Sect. 6) shows that, for any bounded
h : R → R,

lim
x→∞ x f (x) = −h̃(∞), lim

x→−∞ x f (x) = h̃(−∞), (3.18)

and from the SVG(r , σ, 0) Stein equation and inequality (3.9) we obtain

lim
x→−∞ x f ′′(x) = 1

σ 2

[
h̃(−∞) + lim

x→−∞ x f (x)
] = 2

σ 2 h̃(−∞).

Thus, inequalities (3.5) and (3.7) are of optimal order in r . We expect this to also be
the case for inequalities (3.11)–(3.13), although verifying this would involve a more
detailed analysis, which we omit for space reasons.

4 The Centred Equilibrium Transformation of Order r

In this section, we introduce a new distributional transformation and apply it to obtain
general Wasserstein and Kolmogorov error bounds for SVG approximation.

We beginwith the following propositionwhich relates theKolmogorov andWasser-
stein distances between a general distribution and a SVG distribution. This proposition
is of interest, because Wasserstein distance bounds are often easier to obtain than Kol-
mogorov distance bounds through Stein’s method. The proof is deferred until Sect. 6.

Proposition 4.1 Let Z ∼ SVG(r , σ, μ). Then, for any random variable W:
(i) If r > 1,

dK(W , Z) ≤
√

1

σ
√

π

�
( r−1

2

)
�
( r
2

) dW(W , Z). (4.1)

(ii) Suppose that σ−1dW(W , Z) < 0.676. Then, if r = 1,

dK(W , Z) ≤
{
2 + log

(
2√
π

)
+ 1

2
log

(
σ

dW(W , Z)

)}√
dW(W , Z)

πσ
. (4.2)

(iii) If 0 < r < 1,

dK(W , Z) ≤ 2

(
�
( 1−r

2

)
√

π2r−1�
( r
2

)
) 1

r+1 (
σ−1dW(W , Z)

) r
r+1 . (4.3)
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Remark 4.2 (i) If σ−1dW(W , Z) = 0.676, then the upper bound in part (ii) is equal to
1.075, and is therefore uninformative.

(ii) Recall that N (μ, σ 2) =d limr→∞ SVG(r , σ√
r
, μ). Therefore from (4.1) and

the limit limx→∞
√
x�(x− 1

2 )

�(x) = 1 (see (3.17)), we recover the inequality (with obvious
abuse of notation)

dK(W , N (μ, σ 2)) ≤
( 2

πσ 2

) 1
4
√
dW(W , N (μ, σ 2)),

which is a special case of part 2 of Proposition 1.2 of [48]. It is known (see [6], p. 48)
that this bound gives the optimal rate under some conditions, but in other applications
the rate is suboptimal. Proposition 5.1 gives an application in which the inequalities
(4.1), (4.2) and (4.3) are not of optimal rate in δ = dW(W , Z); see Remark 5.2.

As in Sect. 3, we define the operator Tr by Tr f (x) = x f ′(x) + r f (x). We also
denote D = d

dx . From now until the end of this section, we set μ = 0.

Definition 4.3 Let W be a random variable with mean zero and variance 0 < rσ 2 <

∞. We say that WVr has the W -centred equilibrium distribution of order r if

EW f (W ) = σ 2
ETr f

′(WVr ) (4.4)

for all twice-differentiable f : R → R such that the expectations in (4.4) exist.

Aswe shall see later, it is convenient towriteVar(W ) = rσ 2, because the variance of
a SVG(r , σ, 0) random variable is rσ 2. As the name suggests, the centred equilibrium
distribution of order r generalises the centred equilibrium distribution of W , denoted
by WL , that was introduced by [43]. Its characterising equation is

E f (W ) − f (0) = 1

2
EW 2

E f ′′(WL). (4.5)

We also refer the reader to [8] for a generalisation of (4.5) to all random variables W
with finite second moment. The centred equilibrium distribution is itself the Laplace
analogue of the equilibrium distribution that has been shown to be a useful tool in
Stein’s method for exponential approximation by [39]. We can see thatWV2 = WL by
setting f (x) = xg(x) in (4.5). For r �= 2, a characterising equation of the form (4.5) is
not useful. To see this, recall that the Stein operator for the SVG(r , σ, 0) distribution
is A f (x) = σ 2x f ′′(x) + σ 2r f ′(x) − x f (x). Setting f (x) = g(x)/x then gives

Ag(x) = σ 2g′′(x) + (r − 2)σ 2
(
g′(x)
x

− g(x)

x2

)
− g(x),

which has a singularity at x = 0 if r �= 2.
We also note that WV1 = W ∗(2), where W ∗(2) has the W -zero bias distribution of

order 2 (see [19]). This distributional transformation is a natural generalisation of the
zero bias transformation (defined below) to the setting of Stein’s method for products
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of independent standard normal random variables. We shall make use of this fact in
Sect. 5.3.

We now obtain an inverse of the operator Tr D. This inverse operator will be used
later in this section to establish properties of the centred equilibrium distribution of
order r . Recall that the Beta(r , 1) distribution has p.d.f. p(x) = r xr−1, 0 < x < 1.

Lemma 4.4 Let Br ∼ Beta(r , 1) and U ∼ U (0, 1) be independent, and define the
operator Gr by Gr f (x) = x

r E f (xU Br ). Then, Gr is the right inverse of the operator
Tr D in the sense that

Tr DGr f (x) = f (x). (4.6)

Suppose now that f is twice differentiable. Then, for any r ≥ 1,

Gr Tr D f (x) = f (x) − f (0). (4.7)

Therefore, Gr is the inverse of Tr D when the domain of Tr D is the space of all
twice-differentiable functions f on R with f (0) = 0.

Proof We begin by obtaining a useful formula for Gr f (x) = x
r E f (xU Br ):

Gr f (x) = x

r

∫ 1

0

∫ 1

0
f (xub)rbr−1 db du =

∫ x

0

∫ t

0
f (s)sr−1t−r ds dt . (4.8)

We now use (4.8) to verify (4.6):

Tr DGr f (x) = Tr

(
x−r

∫ x

0
f (s)sr−1 ds

)

= x

(
− r xr−1

∫ x

0
f (s)sr−1 ds + x−r · f (x)xr−1

)

+ r x−r
∫ x

0
f (s)sr−1 ds

= f (x).

Finally, we verify relation (4.7). We have

GrTr D f (x) =
∫ x

0

∫ t

0

(
s f ′′(s) + r f ′(s)

)
sr−1t−r ds dt

=
∫ x

0
t−r
∫ t

0

(
sr f ′(s)

)′ ds dt =
∫ x

0
f ′(t) dt = f (x) − f (0),

as required. �

Before presenting some properties of the centred equilibrium distribution of order

r , we recall two distributional transformations that are standard in the Stein’s method
literature. If W is a mean zero random variable with finite, nonzero variance σ 2, we
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say thatW ∗ has theW -zero biased distribution [27] if for all differentiable f for which
EW f (W ) exists,

EW f (W ) = σ 2
E f ′(W ∗).

For any random variable W with finite second moment, we say that W� has the
W -square bias distribution ( [6], pp. 34–35) if for all f such that EW 2 f (W ) exists,

EW 2 f (W ) = EW 2
E f (W�).

When EW = 0, there is neat relationship between these distribution transformations:
W ∗ =d UW�, where U ∼ U (0, 1) is independent of W� (this is a slight variant of
Proposition 2.3 [6]; see [19], Proposition 3.2).

The following construction of WVr generalises Theorem 3.2 of [43]. Similar con-
structions for distributional transformations that are natural in the context in gamma
and generalised gamma approximation can be found in [44] and [42].

Proposition 4.5 Let W be a random variable with zero mean and finite, nonzero vari-
ance rσ 2, and let W ∗ have the W-zero bias distribution. Let Br ∼ Beta(r , 1) be
independent of W ∗. Then, the random variable

WVr =d BrW
∗

has the centred equilibrium distribution of order r .

Proof Let f ∈ Cc, the collection of continuous functions with compact support.
In Lemma 4.4 we defined the operator Grg(x) = x

r Eg(xU Br ) and showed that
Tr DGr g(x) = g(x) for any g. We therefore have

σ 2
E f (WVr ) = σ 2

ETr DGr f (W
Vr ) = EWGr f (W ) = 1

r
EW 2 f (UBrW )

= 1

r
EW 2

E f (UBrW
�) = σ 2

E f (UBrW
�) = σ 2

E f (BrW
∗).

Since the expectation of f (WVr ) and f (BrW ∗) is equal for all f ∈ Cc, the random
variables WVr and BrW ∗ must be equal in distribution. �


In the following proposition, we collect some useful properties of the centred equi-
librium distribution of order r . As might be expected in the light of Proposition 4.5,
some of these properties are quite similar to those given for the zero bias distribution
in Lemma 2.1 of [27].

Proposition 4.6 Let W be a mean zero variable with finite, nonzero variance rσ 2, and
let WVr have the W-centred equilibrium distribution of order r in accordance with
Definition 4.3.

(i) The SVG(r , σ, 0) distribution is the unique fixed point of the centred equilibrium
transformation of order r .
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(ii) The distribution of WVr is unimodal about zero and absolutely continuous with
density

fWVr (w) = 1

σ 2

∫ 1

0
tr−2

E[W1(W > w/t)] dt . (4.9)

It follows that the support of WVr is the closed convex hull of the support of W and
that WVr is bounded whenever W is bounded.

(iii) The centred equilibrium transformation of order r preserves symmetry.
(iv) For p ≥ 0,

E[(WVr )p] = EW p+2

rσ 2(p + 1)(p + r)
and E|WVr |p = E|W |p+2

rσ 2(p + 1)(p + r)
.

(v) For c ∈ R, cWVr has the cW-centred equilibrium distribution of order r .

Proof (i) This is immediate from Definition 4.3 and the Stein characterisation for the
SVG(r , σ, 0) distribution given in Lemma 3.1 of [16].

(ii) Firstly, we note that, for fixed t ∈ (0, 1), the expectation E[W1(W > w/t)] is
increasing for w < 0 and decreasing for w > 0. We therefore deduce that p(w) is
increasing for w < 0 and decreasing for w > 0. Now, from Proposition 4.5, we have
that WVr =d BrW ∗. Formula (4.9) then follows from the fact that X∗ is absolutely
continuous with density fW ∗(w) = E[W1(W > w)]/Var(W ) (part (ii) of Lemma 2.1
of [27]) and the standard formula for computing the density of a product.

(iii)We follow the argument of part (iii) of Lemma 2.1 of [27]. Letw be a continuity
point of a symmetric random variable W . Then, for fixed t ∈ (0, 1), E[W1(W >

w/t)] = E[−W1(−W > w/t)] = −E[W1(W < −w/t)] = E[W1(W > −w/t)],
using EW = 0. It is now evident from (4.9) that fWVr (w) = fWVr (−w) for almost
all w. Therefore, there is a version of the dw density of WVr which is the same at w

and −w for almost all w[dw], and so WVr is symmetric.
(iv) Substitute w p+1 and |w|p+1 for f (w) in the characterising equation (4.4).
(v) Let g be a function such that EWg(W ) exists, and define g̃(x) = cg(cx). Then

g̃(k)(x) = ck+1g(k)(cx). As WVr has the W -centred equilibrium distribution of order
r ,

EcWg(cW ) = EWg̃(W ) = σ 2
ETr Dg̃(WVr ) = (cσ)2ETr Dg(cWVr ).

Hence, cWVr has the cW -centred equilibrium distribution of order r . �

We end this section by proving Theorem 4.10 below, which formalises the notion

that ifL(W ) andL(WVr ) are approximately equal thenW has an approximation SVG
distribution. This theorem is the SVG analogue of Theorem 2.1 of [39], in which
the Wasserstein and Kolmogorov error bounds are given in terms of the difference in
absolute expectation between the random variable of interestW and itsW -equilibrium
transformation. We follow the approach of [39] and begin by stating three lemmas.
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Lemma 4.7 Let Z ∼ SVG(r , σ, 0). Then, for any random variable W,

P(a ≤ W ≤ b) ≤ Cr ,σ,b−a + 2dK(W , Z), (4.10)

where

Cr ,σ,α =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

α

2σ
√

π

�
( r−1

2

)
�
( r
2

) , r > 1,

α

πσ

[
1 + log

(
2σ

α

)]
, r = 1,

�
( 1−r

2

)
√

π2r�
( r
2 + 1

)
(

α

σ

)r
, 0 < r < 1.

Proof Clearly,

P(a ≤ W ≤ b) ≤ P(a ≤ Z ≤ b) + 2dK(W , Z).

Since, for all r > 0 and σ > 0, the SVG(r , σ, 0) density p(x) is an increasing function
of x for x < 0 and a decreasing function of x for x > 0, we have that

P(a ≤ Z ≤ b) ≤
∫ (b−a)/2

−(b−a)/2
p(x) dx = 2

∫ (b−a)/2

0
p(x) dx . (4.11)

To obtain (4.10), we bound the integral on the right-hand side of (4.11), treating the
cases r > 1, r = 1 and 0 < r < 1 separately. For r > 1 we bound the density p(x)
by 1

2σ
√

π
�( r−1

2 )/�( r2 ) using (2.3) and then compute the trivial integral; for r = 1 we
use inequality (6.7); and for 0 < r < 1 we use inequality (6.8). This yields (4.10), as
required. �


The next lemma follows immediately from the estimates of Theorem 3.1 and Corol-
lary 3.2, and the subsequent lemma is straightforward and we hence omit the proof.

Lemma 4.8 For any a ∈ R and any ε > 0, let

ha,ε(x) := ε−1
∫ ε

0
1(x + s ≤ a) ds. (4.12)

Let fa,ε be the solution of the SVG(r , σ, 0) Stein equation with test function ha,ε .
Define ha,0(x) = 1(x ≤ a) and fa,0 accordingly. Then
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‖ fa,ε‖ ≤ 1

σ

(
1

r
+ π�( r2 )

2�( r+1
2 )

)
, (4.13)

‖x fa,ε(x)‖ ≤ 3

2
+ 1

2r
, (4.14)

‖x f ′
a,ε(x)‖ ≤ 1

σ

(
1 + 1

2r

)
, (4.15)

σ 2‖Tr f ′
a,ε‖ ≤ 5

2
+ 1

2r
. (4.16)

Lemma 4.9 Let Z ∼ SVG(r , σ, 0) and W be a real-valued random variable. Then,
for any ε > 0,

dK(W , Z) ≤ Cr ,σ,ε + sup
a∈R

|Eha,ε(W ) − Eha,ε(Z)|,

where Cr ,σ,ε is defined as in Lemma 4.7 and ha,ε is defined as in Lemma 4.8.

Theorem 4.10 Let W be a mean zero random variable with variance 0 < rσ 2 < ∞.
Suppose that (W ,WVr ) is given on a joint probability space so that WVr has the
W-centred equilibrium distribution of order r . Then

dK(W , Z) ≤
(
2 + 3

r
+ π�

( r
2

)
�
( r+1

2

)
)

β

σ
+ 5

2
Cr ,σ,4β +

(
10 + 2

r

)
P(|W − WVr | > β),

(4.17)

where Cr ,σ,4β is defined as in Lemma 4.7. Also,

dK(WVr , Z) ≤
(
1 + 3

2r
+ π�

( r
2

)
2�
( r+1

2

)
)

β

σ
+
(
3 + 1

r

)
P(|W − WVr | > β).

(4.18)

Suppose in addition that E|W |3 < ∞. Then

dW(W , Z) ≤ 9

4

(
5 + 1

r + 1

)
E|W − WVr |, (4.19)

dW(WVr , Z) ≤ 1

4

(
41 + 9

r + 1

)
E|W − WVr |, (4.20)

dK(WVr , Z) ≤ 1

σ

(
1 + 3

2r
+ π�

( r
2

)
2�
( r+1

2

)
)
E|W − WVr |. (4.21)

Proof For this proof, we shall write κ = dK(W , Z). Let 
 := W − WVr . Define
I1 := 1(|
| ≤ β); note that WVr may not have finite second moment. Let f be the
solution of the SVG(r , σ, 0) Stein equationwith test function ha,ε , as defined in (4.12).
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Then ETr f ′(WVr ) is well defined, because ‖Tr f ′‖ < ∞ (see Lemma 4.8), and we
have

E[σ 2Tr f
′(W ) − W f (W )] = σ 2

E[I1(Tr f ′(W ) − Tr f
′(WVr ))]

+ σ 2
E[(1 − I1)(Tr f

′(W ) − Tr f
′(WVr ))]

=: J1 + J2.

Using (4.16) gives |J2| ≤ 2 × ( 52 + 1
2r

)
P(|
| > β). Arguing as we did at the start of

the proof of Corollary 3.2 to obtain the second equality, and then using inequalities
(4.13) and (4.15) and Lemma 4.7 in the last step gives

J1 = σ 2
E

[
I1

∫ 


0
(Tr f

′)′(W + t) dt

]

= E

[
I1

∫ 


0

{
(W + t) f ′(W + t) + f (W + t) − ε−11(a − ε ≤ W + t ≤ a)

}
dt

]

≤ (‖x f ′(x)‖ + ‖ f ‖)E|I1
| + ε−1
∫ 0

−β

P(a − ε ≤ W + t ≤ a) dt

≤
(
1 + 3

2r
+ π�

( r
2

)
2�
( r+1

2

)
)

β

σ
+ βε−1Cr ,σ,ε + 2βε−1κ.

Similarly,

J1 ≥ −(‖x f ′(x)‖ + ‖ f ‖)E|I1
| − ε−1
∫ 0

−β

P(a − ε ≤ W + t ≤ a) dt

≥ −
(
1 + 3

2r
+ π�

( r
2

)
2�
( r+1

2

)
)

β

σ
− βε−1Cr ,σ,ε − 2βε−1κ,

and so we conclude that

|J1| ≤
(
1 + 3

2r
+ π�

( r
2

)
2�
( r+1

2

)
)

β

σ
+ βε−1Cr ,σ,ε + 2βε−1κ.

Using Lemma 4.9 and taking ε = 4β now gives

κ ≤
(
5 + 1

r

)
P(|
| > β) +

(
1 + 3

2r
+ π�

( r
2

)
2�
( r+1

2

)
)

β

σ
+ (1 + βε−1)Cr ,σ,ε

+ 2βε−1κ

≤
(
5 + 1

r

)
P(|
| > β) +

(
1 + 3

2r
+ π�

( r
2

)
2�
( r+1

2

)
)

β

σ
+ 5

4
Cr ,σ,4β + 1

2
κ,

whence on solving for κ yields (4.17).
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Now let us prove (4.18). We can write

E[σ 2Tr f
′(WVr ) − WVr f (WVr )] = E[W f (W ) − WVr f (WVr )]

= E[I1(W f (W ) − WVr f (WVr ))] + E[(1 − I1)(W f (W ) − WVr f (WVr ))].

Taylor expanding, applying the triangle inequality to ‖x f ′(x) + f (x)‖, and using the
estimates (4.13), (4.14) and (4.15) then gives that

E[σ 2Tr f
′(WVr ) − WVr f (WVr )]

≤ ‖x f ′(x) + f (x)‖E|I1
| + 2‖x f (x)‖P(|
| > β)

≤ 1

σ

(
1 + 3

2r
+ π�

( r
2

)
2�
( r+1

2

)
)

β +
(
3 + 1

r

)
P(|
| > β),

which gives (4.18).
Suppose now that E|W |3 < ∞, which, by part (iv) of Proposition 4.6, ensures that

E|WVr | < ∞. Let h ∈ HW. Then

Eh(W ) − Eh(Z) = E[σ 2Tr f
′(W ) − W f (W )] = σ 2

E[Tr f ′(W ) − Tr f
′(WVr )],

and by Taylor expansion, we have

|Eh(W ) − Eh(Z)| ≤ σ 2‖(Tr f ′)′‖E|W − WVr |.

On using the estimate (3.16) we obtain (4.19), as required. Also,

∣∣σ 2
E
[
(Tr f

′)(WVr ) − WVr f (WVr )
]∣∣ = ∣∣EW f (W ) − EWVr f (WVr )

∣∣
≤ ‖x f ′(x) + f (x)‖E|W − WVr |. (4.22)

Applying the estimates (3.11) and (3.8) to (4.22) yields (4.20), whilst applying the
estimates (3.6) and (3.3) yields (4.21). �


5 Applications

5.1 Comparison of Variance-Gamma Distributions

The following proposition quantifies the error in approximating a general VG distribu-
tion by a SVG distribution. We refer the reader to [30] for a number of similar bounds
for comparison of univariate distributions. The proof provides an example underwhich
the bounds on ‖(x − μ) f (k)(x)‖, k = 0, 1, 2, 3, for the solution of the SVG Stein
equation that were given in Theorem 3.1 prove useful. This application also serves as
a simple example in which the inequalities of Proposition 4.1 are suboptimal.
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Proposition 5.1 Let X ∼ VG(r1, θ1, σ1, μ1) and Y ∼ SVG(r2, σ2, μ2). Then

dW(X ,Y ) ≤ 9

2

(
1 + 1

2(r2 + 1)

) |σ 2
1 − σ 2

2 |
σ2

+ 9

2σ2

(
1

r2 + 1
+ π�

( r2+1
2

)
2�
( r2
2 + 1

)
)(|σ 2

1 r1 − σ 2
2 r2| + 2|θ1(μ1 − μ2)|

)

+
(
7

2
+ 9σ 2

1

σ 2
2 (r2 + 1)

)
|μ1 − μ2| +

(
7r1
2

+ 27

2
+ 9

2(r2 + 1)

)
|θ1|.

(5.1)

Suppose now that μ1 = μ2. Then

dK(X ,Y ) ≤ 1

2

(
9 + 1

r2

)∣∣∣∣1 − σ 2
1

σ 2
2

∣∣∣∣+ 2

∣∣∣∣1 − σ 2
1 r1

σ 2
2 r2

∣∣∣∣+ |θ1|
σ2

(
2 + r1 + 1

r2
+ πr1�

( r2
2

)
2�
( r2+1

2

)
)

.

(5.2)

Remark 5.2 The function h(x) = x is in the class HW. Therefore

dW(X ,Y ) ≥ |EX − EY | = |r1θ1 + μ1 − μ2|.

When μ1 = μ2, this lower bound is equal to r1|θ1|, and so there exist constants c > 0
and C > 0 independent of θ1 such that c|θ1| ≤ dW(X ,Y ) ≤ C |θ1|, if in addition
r1 = r2 and σ1 = σ2. Comparing with the Kolmogorov bound (5.2), we see that the
inequalities of Proposition 4.1 are suboptimal in this application.

Proof Let Ar ,θ,σ,μ denote the differential operator on the left-hand side of the VG
Stein equation (1.2). Suppose that h : R → R is either bounded or Lipschitz. Let f
be the solution of the SVG(r2, σ2, μ2) Stein equation. Then

Eh(X) − Eh(Y ) = E[Ar2,0,σ2,μ2 f (X)]
= E[Ar2,0,σ2,μ2 f (X) − Ar1,θ1,σ1,μ1 f (X)]. (5.3)

That E[Ar1,θ1,σ1,μ1 f (X)] = 0 follows from the assumptions on h, the estimates of
Theorem 3.1, and Lemma 3.1 of [16]. Firstly, we prove (5.1). Suppose h ∈ HW. Then,
from (5.3),

|Eh(X) − Eh(Y )|
= ∣∣E[σ 2

1 (X − μ1) f
′′(X) + (σ 2

1 r1 + 2θ1(X − μ1) f
′(X) + (r1θ1 − (X − μ1)) f (X)

− σ 2
2 (X − μ2) f

′′(X) − σ 2
2 r2 f

′(X) + (X − μ2) f (X)]∣∣
= ∣∣E[(σ 2

1 − σ 2
2 )(X − μ2) f

′′(X) + σ 2
1 (μ2 − μ1) f

′′(X) + (σ 2
1 r1 − σ 2

2 r2) f
′(X)

+ 2θ1(X − μ2) f
′(X) + 2θ1(μ2 − μ1) f

′(X) + r1θ1 f (X) + (μ1 − μ2) f (X)
]∣∣

≤ |σ 2
1 − σ 2

2 |‖(x − μ2) f
′′(x)‖ + σ 2

1 |μ1 − μ2|‖ f ′′‖

123



Journal of Theoretical Probability (2020) 33:465–505 487

+ (|σ 2
1 r1 − σ 2

2 r2| + 2|θ1(μ1 − μ2)|
)‖ f ′‖

+ 2|θ1|‖(x − μ2) f
′(x)‖ + (r1|θ1| + |μ1 − μ2|)‖ f ‖. (5.4)

Using the estimates of Theorem 3.1 (with ‖h′‖ ≤ 1) to bound (5.4) yields (5.1).
Now suppose that μ1 = μ2. Take hz(x) = 1(x ≤ z). On using the estimates of

Corollary 3.3 to bound (5.4), we obtain (5.2), as required. �


5.2 Malliavin-Stein Method for Symmetric Variance-Gamma Approximation

In recent years, one of the most significant applications of Stein’s method has been
to Gaussian analysis on Wiener space. This body of research was initiated by [34],
in which Stein’s method and Malliavin calculus are combined to derive a quantitative
“fourth moment” theorem for the normal approximation of a sequence of random
variables living in a fixed Wiener chaos.

In a recent work [12], the Malliavin-Stein method was extended to the VG distri-
bution. Here, we obtain explicit constants in some of the main results (in the SVG
case) of [12], these being six moment theorems for the SVG approximation of double
Wiener-Itô integrals. Our results also fix a technical issue in that the Wasserstein dis-
tance bounds stated in [12] had only been proven in the weaker bounded Wasserstein
distance (at the time of [12] the bounds for the solution of the Stein equation in the
literature [15,16] had a dependence on the test function h such that this was the best
that could be achieved).

Let us first introduce somenotation; see the book [36] for amore detailed discussion.
Let Dp,q be the Banach space of all functions in Lq(γ ), where γ is the standard
Gaussian measure, whose Malliavin derivatives up to order p also belong to Lq(γ ).
LetD∞ be the class of infinitelymany timesMalliavin differentiable randomvariables.
We introduce the so-called �-operators � j [35]. For a random variable F ∈ D

∞, we
define �1(F) = F and, for every j ≥ 2,

� j (F) = 〈DF,−DL−1� j−1(F)〉H.

Here D is the Malliavin derivative, L−1 is the pseudo-inverse of the infinitesimal
generator of the Ornstein-Uhlenbeck semi-group, and H is a real separable Hilbert
space. Finally, for f ∈ H�2, we write I2( f ) for the double Wiener-Itô integral of f .

Theorem 5.3 Let F ∈ D
2,4 be such that EF = 0 and let Z ∼ SVG(r , σ, 0). Then

dW(F, Z) ≤ 9

σ 2(r + 1)
E|σ 2F − �3(F)|

+ 9

2σ

(
1

r + 1
+ π�

( r+1
2

)
2�
( r
2 + 1

)
)

|rσ 2 − E[�2(F)]|. (5.5)

If in addition F ∈ D
3,8, then �3(F) is square-integrable and

E|σ 2F − �3(F)| ≤ (E[(σ 2F − �3(F))2]) 12 . (5.6)
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Proof Let f : R → R be twice differentiablewith bounded first and second derivative.
Then it was shown in the proof of Theorem 4.1 of [12] that

∣∣E[σ 2F f ′′(F) + σ 2r f ′(F) − F f (F)
]∣∣

= ∣∣E[ f ′′(F)(σ 2F − �3(F)) + f ′(F)(rσ 2 − E[�2(F)])]∣∣ (5.7)

≤ ‖ f ′′‖E|σ 2F − �3(F)| + ‖ f ′‖E|rσ 2 − E[�2(F)]|.

If h ∈ HW, then the solution f of the SVG(r , σ, 0) Stein equation is twice differen-
tiable with bounded first and second derivatives. Using the estimates (3.10) and (3.9)
of Theorem 3.1 to bound ‖ f ′′‖ and ‖ f ′‖ then yields (5.5). Inequality (5.6) is justified
in [12]. �

Corollary 5.4 Let Fn = I2( fn) with fn ∈ H�2, n ≥ 1. Also, let Z ∼ SVG(r , σ, 0)
and assume that E[F2

n ] = rσ 2. Then

dW(Fn, Z) ≤ 9

σ 2(r + 1)

(
1

120
κ6(Fn) − σ 2

3
κ4(Fn) + 1

4
(κ3(Fn))

2 + σ 4κ2(Fn)

) 1
2

.

(5.8)

Proof It is a standard result that E[�2(Fn)] = κ2(Fn) (see Lemma 4.2 and Theorem
4.3 of [35]), and it was shown in the proof of Theorem 5.8 of [12] that

E[(σ 2Fn − �3(Fn))
2] = 1

120
κ6(Fn) − σ 2

3
κ4(Fn) + 1

4
(κ3(Fn))

2 + σ 4κ2(Fn).

Inserting these formulas into (5.5) yields (5.8), as required. �

Remark 5.5 One can obtain Kolmogorov distance bounds by applying Proposition 4.1
to the bound (5.8). However, these bounds are unlikely to be of optimal order. Unlike
for normal approximation, for which an optimal rate of convergence in Kolmogorov
distance has been obtained [37], there is a technical difficulty for SVG approximation
because the first derivative of the solution fz of the SVG(r , σ, 0) Stein equation with
test function hz(x) = 1(x ≤ z) has a discontinuity at the origin when z = 0 (see
Proposition 3.5). We can, however, bound the expression using the inequalities (3.7)
for ‖x f ′′(x)‖ and (3.4) for ‖ f ′‖ to obtain the bound

dK(F, Z) ≤ 1

2σ 2

(
9 + 1

r

)
E

∣∣∣∣σ 2 − �3(F)

F

∣∣∣∣+ 2

σ 2r
|rσ 2 − E[�2(F)]|

≤ 1

2σ 2

(
9 + 1

r

){
E

[(
σ 2 − �3(F)

F

)2]} 1
2 + 2

σ 2r
|rσ 2 − E[�2(F)]|,

provided the expectations exist. However, there are no formulas in the literature for the
expectations E[�3(F)/F] and E[(�3(F))2/F2] (when they exist), and it is unlikely
they could be expressed solely in terms of lower order cumulants of F .
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5.3 Binary Sequence Comparison

Herewe consider an application of Theorem 4.10 to binary sequence comparison. This
a special case of a more general problem of word sequence comparison, which is of
importance to biological sequence comparison. Oneway of comparing sequences uses
k-tuples (a sequence of letters of length k). If two sequences are closely related, we
would expect their k-tuple content to be similar. A statistic for sequence comparison
based on k-tuple content, known as the D2 statistic, was suggested by [4] (see [45]
for further statistics based on k-tuple content). LettingA denote an alphabet of size d,
and Xw and Yw the number of occurrences of the word w ∈ Ak in the first and second
sequences, respectively, then the D2 statistic is defined by

D2 =
∑
w∈Ak

XwYw.

Due to the complicated dependence structure (for a detailed account see [46]),
approximating the asymptotic distribution of D2 is a difficult problem. However, for
certain parameter regimes D2 has been shown to be asymptotically normal and Poisson
[31].

We now consider the case of an alphabet of size 2 with comparison based on the
content of 1-tuple. We suppose that the sequences are of length m and n, the alphabet
is {0, 1}, and P(0 appears) = P(1 appears) = 1

2 . Denoting the number of occurrences
of 0 in the two sequences by X and Y , then

D2 = XY + (m − X)(n − Y ).

Clearly, X and Y are independent binomial variables with expectations m
2 and n

2 .
Straightforward calculations (see [31]) show that ED2 = mn

2 and Var(D2) = mn
4 and

the standardised D2 statistic can be written as

W = D2 − ED2√
Var(D2)

=
(
X − m

2√
m
4

)(
Y − n

2√
n
4

)
. (5.9)

By the central limit theorem, (X − m
2 )/
√

m
4 and (Y − n

2 )/
√

n
4 are approximately

N (0, 1) distributed, and soW has an approximate SVG(1, 1, 0) distribution. In [16], a
O(m−1 + n−1) bound for the rate of convergence was given in a smooth test function
metric (which requires the test function to be three times differentiable). In Theorem
5.8 below, we use Theorem 4.10 to obtain bounds in the more usual Wasserstein
and Kolmogorov metrics. Our rate of convergence is slower, but we do quantify the
approximation in stronger metrics. We will first need to prove the following theorem.

Theorem 5.6 Suppose X1, . . . , Xm are i.i.d. and Y1, . . . ,Yn are i.i.d., with EX1 =
EY1 = 0, EX2

1 = EY 2
1 and E|X1|3 < ∞ and E|Y1|3 < ∞. Let W1 = 1√

m

∑m
i=1 Xi

and W2 = 1√
n

∑n
i=1 Yi and set W = W1W2. Let Z ∼ SVG(1, 1, 0). Then
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dW(W , Z) ≤ 20.11

(
1√
m

+ 1√
n

)
E|X1|3E|Y1|3. (5.10)

If in addition EX3
1 = EY 3

1 = 0 and EX4
1 < ∞ and EY 4

1 < ∞, then

dK(W , Z) ≤
{
44.33 + 2.02

[
log

(
1

EX4
1EY

4
1

)
+ log

(
mn

m + n

)]}(
1

m
+ 1

n

) 1
3

(
EX4

1EY
4
1

) 1
3 . (5.11)

Remark 5.7 The rate of convergence in Kolmogorov distance bound (5.11) is unlikely

to be of optimal order, but is better than the O
(
m− 1

4 log(m) + n− 1
4 log(n)

)
rate that

would result from simply applying Proposition 4.1 to (5.10). A reasonable conjecture

is that the optimal rate is O(m− 1
2 + n− 1

2 ).

Proof Since Z ∼ SVG(1, 1, 0), we will apply Theorem 4.10 with r = 1, for which
WV1 = W ∗(2), the W -zero bias transformation of order 2. We begin by collecting
some useful properties of this distributional transformation. In [19], the following
construction is given:W ∗(2) = 1√

mn
W ∗

1W
∗
2 . SinceW1 andW2 are sums of independent

random variables, we have by part (v) of Lemma 2.1 of [27] thatW ∗
1 = W1− XI√

m
+ X∗

I√
m

andW ∗
2 = W2 − YJ√

n
+ Y ∗

J√
n
, where I and J are chosen uniformly from {1, . . . ,m} and

{1, . . . , n}, respectively. It was shown in the proofs of Corollaries 4.1 and 4.2 of [19]
that

E|W − W ∗(2)| ≤ 13

8

(
1√
m

+ 1√
n

)
E|X1|3E|Y1|3 (5.12)

and, if EX3
1 = EY 3

1 = 0,

E[(W − W ∗(2))2] ≤ 20

3

(
1

m
+ 1

n

)
EX4

1EY
4
1 . (5.13)

The assumptionEX3
1 = EY 3

1 = 0 impliesEX∗
1 = EY ∗

1 = 0 ( [27], part (iv) of Lemma
2.1), which allowed [19] to obtain the O(m−1 + n−1) rate in (5.13).

The bound (5.10) is immediate from (5.12) and (4.19):

dW(W , Z) ≤ 99

8
E|W − W ∗(2)| ≤ 1287

64

(
1√
m

+ 1√
n

)
E|X1|3E|Y1|3,

and 1287
64 = 20.11.
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Now we prove (5.11). We begin by setting r = σ = 1 in (4.17), using that �( 12 ) =√
π , and applying Markov’s inequality to obtain

dK(W , Z)

≤
{
5 + π3/2 + 10

π

[
1 + log

(
1

2

)]}
β + 10

π
log

(
1

β

)
+ 12P(|W − W ∗(2)| > β)

≤
{
11.55 + 3.19 log

(
1

β

)}
β + 12

E[(W − W ∗(2))2]
β2 .

Setting β = (E[(W − W ∗(2))2]) 13 gives

dK(W , Z) ≤
{
23.55 + 1.07 log

(
1

E[(W − W ∗(2))2]
)}(

E[(W − W ∗(2))2]) 13 .
(5.14)

Substituting (5.13) into (5.14) and simplifying then yields (5.11). �

Theorem 5.8 Let W be the standardised D2 statistic, as defined in (5.9), based on
1-tuple content, for uniform i.i.d. binary sequences of lengths m and n. Let Z ∼
SVG(1, 1, 0). Then

dW(W , Z) ≤ 20.11

(
1√
m

+ 1√
n

)
,

dK(W , Z) ≤
{
44.33 + 2.02 log

(
mn

m + n

)}(
1

m
+ 1

n

) 1
3

.

Proof Let Ii and Ji be the indicator random variables that letter 0 occurs at position i
in the first and second sequences, respectively. Then X =∑m

i=1 Ii and Y =∑n
j=1 J j .

We may then write

W =
(
X − m

2√
m
4

)(
Y − n

2√
n
4

)
=
(

1√
m

m∑
i=1

Xi

)(
1√
n

n∑
j=1

Y j

)
,

where Xi = 2(Ii − 1
2 ) and Y j = 2(J j − 1

2 ). The Xi and Y j are all independent with
zero mean and unit variance. Also, EX3

1 = EY 3
1 = 0, E|X1|3 = E|Y1|3 = 1 and

EX4
1 = EY 4

1 = 1, and the result now follows from Theorem 5.6. �


5.4 Random Sums

Let X1, X2, . . . be i.i.d., positive, non-degenerate random variables with unit mean.
Let Np be a Geo(p) random variable with P(Np = k) = p(1 − p)k−1, k ≥ 1, that

is independent of the Xi . Then, a well-known result of [47] states that p
∑Np

i=1 Xi
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converges in distribution to an exponential distribution with parameter 1 as p → 0.
Geometric summation does indeed arise in a variety of settings; see [28]. Stein’s
method was used by [39] to obtain a quantitative generalisation of the result of [47].
If we alter the assumptions so that the Xi have mean zero and finite nonzero variance,

then p
1
2
∑Np

i=1 Xi converges to a Laplace distribution as p → 0; see [52] and [43].
Recently, [43], through the use of the centred equilibrium transformation, mirrored the
approach of [39] to obtain an explicit error bound in the bounded Wasserstein metric.

In this section, we use Theorem 4.10 to obtain Wasserstein and Kolmogorov error
bounds for the theoremsof [43]. Indeed, Theorems5.9 and5.10 belowgiveWasserstein
and Kolmogorov distance bounds for the approximations of Theorems 1.3 and 4.4 of
[43], respectively. The results of [39] are also given in these metrics, and we follow
their approach to obtain our Kolmogorov bounds. For a random variable X , we denote
by distribution function by FX and its generalised inverse by F−1

X .

Theorem 5.9 Let N be a positive, integer-valued random variable withμ = EN < ∞
and let X1, X2, . . . be a sequence of independent random variables, independent
of N , with EXi = 0 and EX2

i = σ 2
i ∈ (0,∞). Set σ 2 = 1

μ
E
[(∑N

i=1 Xi
)2] =

1
μ
E
[∑N

i=1 σ 2
i

]
. Also, let M be any positive, integer-valued random variable, inde-

pendent of the Xi , satisfying

P(M = m) = σ 2
m

μσ 2P(N ≥ m), m = 1, 2, . . . .

Let Z ∼ Laplace(0, σ√
2
). Then, with W = 1√

μ

∑N
i=1 Xi , we have

dW(W , Z) ≤ 12μ− 1
2
{
E|XM − XL

M | + sup
i≥1

σiE
[|N − M | 12 ]}. (5.15)

Suppose further that |Xi | ≤ C for all i and |N − M | ≤ K. Then

dK(W , Z) ≤ 17.04

σ
√

μ

{
sup
i≥1

‖F−1
Xi

− F−1
XL
i
‖ + CK

}
; (5.16)

if K = 0, the same bound also holds for unbounded Xi .

Proof Since Z ∼ Laplace(0, σ√
2
) =d SVG(2, σ√

2
, 0), we will apply Theorem 4.10

with r = 2, for which WV1 = WL , the W -centred equilibrium distribution. For W as
defined in the statement of the theorem, it was shown in the proof of Theorem 4.4 of

[43] that WL = μ− 1
2
(∑M−1

i=1 +XL
M

)
. Then

WL − W = μ− 1
2

{
(XL

M − XM ) + sgn(M − N )

N∨M∑
i=(M∧N )+1

Xi

}
.
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Plugging this into (4.19) (with r = 2) and bounding E
∣∣∑N∨M

i=(M∧N )+1 Xi
∣∣ ≤

supi≥1 σiE
[|N − M | 12 ] (see the proof of Theorem 4.4 of [43]) yields (5.15). Now,

using (4.17) and the formulas �( 12 ) = √
π and �( 32 ) =

√
π

2 gives that

dK(W , Z) ≤
(
7

2
+ 2

√
π

)
β
√
2

σ
+ 5

2
· 2

√
2β

σ
+ 11P(|W − WL | > β)

= 17.04
β

σ
+ 11P(|W − WL | > β). (5.17)

Letting β = μ− 1
2
{
supi≥1 ‖F−1

Xi
− F−1

XL
i
‖ + CK

}
, and using Strassen’s theorem we

obtain (5.16) from (5.17), and the remark after (5.16) follows similarly. �

Theorem 5.10 Let X1, X2, . . . be a sequence of independent random variables with
EXi = 0, EX2

i = σ 2, and let N ∼ Geo(p) be independent of the Xi . Let W =
p

1
2
∑N

i=1 Xi and let Z ∼ Laplace(0, σ√
2
). Then

dK(W , Z) ≤ 17.04
p

1
2

σ
sup
i≥1

‖F−1
Xi

− F−1
XL
i
‖. (5.18)

If in addition ρ = supi≥1 E|Xi |3 < ∞, then

dW(W , Z) ≤ 12p
1
2

(
σ + ρ

3σ 2

)
. (5.19)

The O(p
1
2 ) rate in (5.19) is optimal.

Remark 5.11 (i) Theorem 1.3 of [43] gives the bound

dBW(W , Z) ≤ p
1
2 (2

√
2 + σ)

(
σ + ρ

3σ 2

)
. (5.20)

which holds under the same conditions as (5.19). Aside from being given in a stronger
metric, the bound (5.19) has a theoretical advantage of having amultiplicative constant,
12, which is independent of σ , whereas (5.20) has a multiplicative constant 2

√
2+ σ .

The bound (5.20) has a smaller constant than (5.19) when σ < 12 − 2
√
2, whilst the

constant is larger when σ > 12 − 2
√
2.

(ii) The argument used to prove the final assertion of Theorem 5.10 also shows that

the O(p
1
2 ) rate in (5.20) is optimal.

(iii) Suppose now that τ = supi≥1 EX
4
i < ∞. Then arguing as we did in the proof

of Theorem 5.6 would result in the alternative bound

dK(W , Z) ≤ Cp
1
3 (1 + τ), (5.21)
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where C > 0 does not depend on p. Thus, the dependence on p is worse than in
(5.18), but (5.21) may be preferable if supi≥1 ‖F−1

Xi
− F−1

XL
i
‖ is difficult to compute or

large. The same remark applies to Theorem 5.9.
The quantity supi≥1 ‖F−1

Xi
− F−1

XL
i
‖ can be easily bounded if the Xi have finite

support. To see this, suppose that X1, X2, . . . are supported on a subset of the finite
interval [a, b] ⊂ R. Theorem 3.2 of [43] (see also Proposition 4.5) gives that XL =d

B2X∗, where B2 ∼ Beta(2, 1) and X∗, the X -zero bias distribution, are independent.
But part (ii) of Lemma 2.1 of [27] tells us that the support of X∗ is the closed convex
hull of the support of X , and since Br is supported on [0, 1] it follows that XL is
supported on [a, b]. We therefore have the bound supi≥1 ‖F−1

Xi
− F−1

XL
i
‖ ≤ b − a.

Proof As noted by [43], the assumptions on N and the Xi imply that L(M) = L(N ),
so we can take M = N . Inequality (5.18) is now immediate from (5.16). To obtain
(5.19), we note the inequality (see [43])

E|XN − XL
N | ≤ E|X1| + sup

i≥1
E|XL

i | = E|X1| + sup
i≥1

E|Xi |3
3σ 2 ≤ σ + ρ

3σ 2 ,

where we used the Cauchy-Schwarz inequality. Inequality (5.19) now follows from
(5.15).

Finally,we prove that the O(p
1
2 ) rate in (5.19) is optimal. Suppose, in addition to the

assumptions in the statement of the theorem, that X1, X2, . . . are i.i.d. with moments
of all order and EX3

1 �= 0. Consider the test function h(x) = sin(t x), |t | ≤ 1, which is
in the classHW. We have E sin(t Z) = 0. We now consider the characteristic function
ϕW (t) = E[eitW ], and note the relation E sin(tW ) = Im[ϕW (t)]. From the above, we
have that dW(W , Z) ≥ |Im[ϕW (t)]|. Recall that the probability generating function
of N ∼ Geo(p) is given by GN (s) = ps

1−(1−p)s , s < − log(1 − p). Then

ϕW (t) = GN
(
ϕX1(p

1
2 t)
) = pϕX1(p

1
2 t)

1 − (1 − p)ϕX1(p
1
2 t)

. (5.22)

Now, since EX1 = 0 and EX2
1 = σ 2, as p → 0,

ϕX1(p
1
2 t) = 1 − 1

2
pt2σ 2 − 1

6
ip

3
2 t3EX3

1 + O(p2). (5.23)

Plugging (5.23) into (5.22) and performing a simple asymptotic analysis using the

formula 1
1+z = 1−z+O(|z|2), |z| → 0, gives that Im[ϕW (t)] = − 1

6 p
1/2t3EX3

1
1+σ 2t2/2

+O(p),

and so the O(p
1
2 ) rate cannot be improved. �
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6 Further Proofs

Proof of Proposition 3.5. As usual, we set σ = 1 and μ = 0. The solution of the
SVG(r , 1, 0) Stein equation with test function hz(x) = 1(x ≤ z) is then

fz(x) = −Kν(|x |)
|x |ν

∫ x

0
|t |ν Iν(|t |)[1(t ≤ z) − P(Z ≤ z)] dt

− Iν(|x |)
|x |ν

∫ ∞

x
|t |νKν(|t |)[1(t ≤ z) − P(Z ≤ z)] dt . (6.1)

Setting z = 0 and differentiating (6.1) using (A.9) and (A.10) gives that

f ′
0(x) = Kν+1(|x |)

|x |ν sgn(x)
∫ x

0
|t |ν Iν(|t |)[1(t ≤ 0) − 1

2 ] dt

− Iν+1(|x |)
|x |ν sgn(x)

∫ ∞

x
|t |νKν(|t |)[1(t ≤ 0) − 1

2 ] dt .

We now note that, for all ν > − 1
2 ,

lim
x→0

[
Iν+1(|x |)

|x |ν
∫ ∞

x
|t |νKν(|t |)[1(t ≤ 0) − 1

2 ] dt
]

= 0,

due to the asymptotic formula (A.3) and the fact that |t |νKν(|t |) is a constant multiple
of the SVG(r , 1, 0) density meaning that the integral is bounded for all x ∈ R. Then

f ′
0(0+) = − lim

x↓0

[
Kν+1(x)

2xν

∫ x

0
tν Iν(t) dt

]
,

f ′
0(0−) = − lim

x↑0

[
Kν+1(−x)

2(−x)ν

∫ x

0
(−t)ν Iν(−t) dt

]

= lim
x↑0

[
Kν+1(−x)

2(−x)ν

∫ −x

0
uν Iν(u) du

]
.

On using the asymptotic formulas (A.3) and (A.4), we obtain f ′
0(0+) = − 1

2(2ν+1) and

f ′
0(0−) = 1

2(2ν+1) , which proves the assertion.
�


Proof of Proposition 3.6. As usual, we set σ = 1 andμ = 0. Consider the test function
h(x) = sin(ax)

a , which is in the class HW. Therefore, if there was a general bound
of the form ‖ f (3)‖ ≤ Mr‖h′‖, then we would be able to find a constant Nr > 0,
independent of a, such that ‖ f (3)‖ ≤ Nr . We shall show that f (3)(x) blows up as
x → 0 for a such that ax � 1 � a2x , meaning that such a bound cannot be
obtained for ‖ f (3)‖ which proves the proposition. Before performing this analysis,
we note that the second derivative h′′(x) = −a sin(ax) blows up if ax � 1 �
a2x (consider the expansion sin(t) = t + O(t3), t → 0). A bound of the form
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‖ f (3)‖ ≤ Mr ,0‖h̃‖ + Mr ,1‖h′‖ + Mr ,2‖h′′‖ is therefore still possible, and we know
from Sect. 3.1.7 of [9] that this is indeed the case.

Let x > 0. We first obtain a formula for f (3)(x). To this end, we note that twice
differentiating the representation (3.1) of the solution and then simplifying using
the differentiation formulas (A.9) and (A.10) followed by the Wronskian formula
Iν(x)Kν+1(x) + Iν+1(x)Kν(x) = 1

x [38] gives that

f ′′(x) = h̃(x)

x
−
[
d2

dx2

(
Kν(x)

xν

)]∫ x

0
tν Iν(t)h̃(t) dt −

[
d2

dx2

(
Iν(x)

xν

)]

×
∫ ∞

x
tνKν(t)h̃(t) dt .

Differentiating this formulas then gives

f (3)(x) = h′(x)
x

− h̃(x)

x2
−
[
d3

dx3

(
Kν(x)

xν

)]∫ x

0
tν Iν(t)h̃(t) dt + R1

+ h̃(x)

{
− xν Iν(x)

d2

dx2

(
Kν(x)

xν

)
+ xνKν(x)

d2

dx2

(
Iν(x)

xν

)}

= h′(x)
x

− (2ν + 2)h̃(x)

x2
−
[
d3

dx3

(
Kν(x)

xν

)]∫ x

0
tν Iν(t)h̃(t) dt + R1,

(6.2)

where

R1 = −
[
d3

dx3

(
Iν(x)

xν

)]∫ ∞

x
tνKν(t)h̃(t) dt .

Here, to obtain equality (6.2) we used differentiation formulas (A.9) and (A.10) fol-
lowed again by the Wronskian formula. For all ν > − 1

2 and x > 0, we can use
inequalities (A.14) and (A.19) to bound R1:

|R1| ≤ ‖h̃‖
[
d3

dx3

(
Iν(x)

xν

)]∫ ∞

x
tνKν(t) dt ≤ ‖h̃‖ Iν(x)

xν

×
∫ ∞

x
tνKν(t) dt ≤ ‖h̃‖

√
π�(ν + 1

2 )

2�(ν + 1)
.

As ‖h̃‖ ≤ 2‖h‖ = 2
a , the term R1 does not explode when a → ∞.

Applying integration by parts to (6.2) we obtain

f (3)(x) = h′(x)
x

+
[
d3

dx3

(
Kν(x)

xν

)]∫ x

0
h′(u)

∫ u

0
tν Iν(t) dt du + R1 + R2,
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where

R2 = −h̃(x)

{
2ν + 2

x2
+
[
d3

dx3

(
Kν(x)

xν

)]∫ x

0
tν Iν(t) dt

}
=: −h̃(x)Aν(x). (6.3)

For all ν > − 1
2 , we show that there exists a constant Cν > 0 independent of x such

that Aν(x) ≤ Cν for all x > 0. To see this, it suffices to consider the behaviour in the
limits x ↓ 0 and x → ∞. We first note that Aν(x) → 0 as x → ∞, which follows
from using the differentiation formula (A.13) followed by (A.6) and the following
limiting form (see [22]):

∫ x

0
tν Iν(t) dt ∼ 1√

2π
xν−1/2ex , x → ∞, ν > − 1

2 .

Also, using the differentiation formula (A.13) followed by the limiting forms (A.3)
and (A.4) gives that, for ν > − 1

2 , as x ↓ 0,

[
d3

dx3

(
Kν(x)

xν

)]∫ x

0
tν Iν(t) dt

= −
(

(2ν + 1)Kν(x)

xν
+
(
1 + (2ν + 1)(2ν + 2)

x2

)
Kν+1(x)

xν

)∫ x

0
tν Iν(t) dt

= −
(

(2ν + 1)(2ν + 2) · 2ν�(ν + 1)

x2ν+3 + O(x−2ν−1)

)∫ x

0

t2ν

2ν�(ν + 1)
dt

= −2ν + 2

x2
+ O(1),

and therefore Aν(x) is bounded as x ↓ 0, as required. We conclude that R2 does not
explode when a → ∞.

Now, we use the differentiation formula (A.13) to obtain

f (3)(x) = h′(x)
x

− (2ν + 1)(2ν + 2)Kν+1(x)

xν+2

∫ x

0
h′(u)

∫ u

0
tν Iν(t) dt du

+ R1 + R2 + R3,

where

|R3| =
∣∣∣∣
(

(2ν + 1)Kν(x)

xν
+ Kν+1(x)

xν

)∫ x

0
h′(u)

∫ u

0
tν Iν(t) dt du

∣∣∣∣
≤
(

(2ν + 1)Kν(x)

xν
+ Kν+1(x)

xν

)
· 2(ν + 2)

2ν + 1
xν Iν+2(x), (6.4)

where we used (A.15) and that ‖h′‖ = 1 to obtain the second inequality. For ν > − 1
2 ,

the expression involving modified Bessel functions in (6.4) is uniformly bounded for
all x ≥ 0, which can be seen from a straightforward analysis involving the asymptotic
formulas (A.3) – (A.6). Therefore, the term R3 does not explode when a → ∞.
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We now analyse the behaviour of f (3)(x) in a neighbourhood of x = 0 when
a → ∞. For all x ≥ 0, the terms R1, R2 and R3 are O(1) as a → ∞. Therefore using
the asymptotic formulas (A.3) and (A.4), we obtain

f (3)(x) = −cos(ax)

x
+ (2ν + 1)(2ν + 2)

xν+2 · 2
ν�(ν + 1)

xν+1

×
∫ x

0
cos(au)

∫ u

0

t2ν

2ν�(ν + 1)
dt du + O(1)

= −cos(ax)

x
+ (2ν + 1)(2ν + 2)

x2ν+3

∫ x

0
u2ν+1 cos(au) du + O(1), x ↓ 0.

In addition to x ↓ 0 and a → ∞ we let ax ↓ 0. Therefore on using that cos(t) =
1 − 1

2 t
2 + O(t4) as t ↓ 0, we have that, in this regime,

f (3)(x) = −1

x

(
1 − a2x2

2

)
+ 2ν + 2

x2ν+3

∫ x

0
u2ν+1

(
1 − a2u2

2

)
du + O(1)

= a2x

2
− (ν + 1)a2x

2ν + 4
+ O(1) = a2x

2(ν + 2)
+ O(1).

If we take choose a such that ax � 1 � a2x , then f (3)(x) blows up in a neighbour-
hood of the origin, which proves the assertion. �


Proof of (3.18). As usual, we set σ = 1. From the formula (3.1) for the solution of the
SVG(r , 1, 0) Stein equation we have

lim
x→∞ x f (x) = − lim

x→∞

{
Kν(x)

xν

∫ x

0
tν Iν(t)h̃(t) dt − Iν(x)

xν

∫ ∞

x
tνKν(t)h̃(t) dt

}

=: I1 + I2.

We shall use L’Hôpital’s rule to calculate I1 and I2. In anticipation of this we note
that

d

dx

(
xν−1

Kν(x)

)
= d

dx

(
1

x

/
Kν(x)

xν

)
= − xν−2

Kν(x)
+ xν−1Kν+1(x)

Kν(x)2
,

where we used the quotient rule and (A.10) in the final step. Similarly, on using (A.9)
we obtain

d

dx

(
xν−1

Iν(x)

)
= − xν−2

Iν(x)
− xν−1 Iν+1(x)

Iν(x)2
.
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Therefore, by L’Hôpital’s rule,

I1 = − lim
x→∞

⎧⎪⎪⎨
⎪⎪⎩

xν Iν(x)h̃(x)

− xν−2

Kν(x)
+ xν−1Kν+1(x)

Kν(x)2

⎫⎪⎪⎬
⎪⎪⎭

= −1

2
h̃(∞),

I2 = − lim
x→∞

⎧⎪⎪⎨
⎪⎪⎩

−xνKν(x)h̃(x)

− xν−2

Iν(x)
− xν−1 Iν+1(x)

Iν(x)2

⎫⎪⎪⎬
⎪⎪⎭

= −1

2
h̃(∞),

where we used the asymptotic formulas (A.5) and (A.6) to compute the limits. Thus,
limx→∞ x f (x) = −h̃(∞). Similarly, by considering (3.2) instead of (3.1), we obtain
limx→−∞ x f (x) = h̃(−∞). �


The following lemma will be used in the proof of Proposition 4.1.

Lemma 6.1 (i) Let ν > 0. Then xνKν(x) ≤ 2ν−1�(ν) for all x > 0.
(ii) Suppose 0 < x < 0.729. Then K0(x) < −2 log(x).

Proof (i) We have that d
dx

(
xνKν(x)

) = −xνKν−1(x) < 0 (see (A.8)), which implies
that xνKν(x) is a decreasing function of x . From (A.4) we have limx↓0 xνKν(x) =
2ν−1�(ν), and we thus deduce the inequality.

(ii) From the differentiation formula (A.7), for all x > 0, d
dx

(−2 log(x)−K0(x)
) =

− 2
x + K1(x) < 0, where the inequality follows from part (i). Therefore −2 log(x) −

K0(x) is a decreasing function of x . But one can check numerically usingMathematica
that −2 log(0.729) − K0(0.729) = 0.00121, and the conclusion follows. �


Proof of Proposition 4.1. For ease of notation, we shall set μ = 0; the extension to
general μ ∈ R is obvious. Throughout this proof, Z will denote a SVG(r , σ, 0)
random variable.

(i) Let r > 1. Proposition 1.2 of [48] states that if a random variable Y has Lebesgue
density bounded by C , then for any random variable W ,

dK(W ,Y ) ≤ √2CdW(W ,Y ). (6.5)

Since the SVG(r , σ, 0) distribution is unimodal about 0, it follows from (2.3) that the
density is bounded above by C = 1

2σ
√

π
�( r−1

2 )/�( r2 ), which on substituting into

(6.5) yields the desired bound.
(ii) Here we consider the case r = 1. We begin by following the approach used

in the proof of Proposition 1.2 of [48], but we need to alter the argument because
the SVG(1, σ, 0) density p(x) = 1

πσ
K0
( |x |

σ

)
is unbounded as x → 0. Consider

the functions hz(x) = 1(x ≤ z), and the ‘smoothed’ hz,α(x) defined to be one for
x ≤ z + 2α, zero for x > z, and linear between. Then
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P(W ≤ z) − P(Z ≤ z) = Ehz(W ) − Ehz,α(Z) + Ehz,α(Z) − Ehz(Z)

≤ Ehz,α(W ) − Ehz,α(Z) + 1

2
P(z ≤ Z ≤ z + 2α)

≤ 1

2α
dW(W , Z) + 1

2
P(z ≤ Z ≤ z + 2α)

≤ 1

2α
dW(W , Z) + P(0 ≤ Z ≤ α), (6.6)

where the last inequality follows because the SVG(1, σ, 0) density is a decreasing
function of x for x > 0 and an increasing function for x < 0, and soP(z ≤ Z ≤ z+2α)

is maximised for z = −α. Suppose that α
σ

< 0.729. Then we can use Lemma 6.1 to
obtain

P(0 ≤ Z < α) =
∫ α

0

1

πσ
K0

(
t

σ

)
dt = 1

π

∫ α
σ

0
K0(y) dy

≤ 1

π

∫ α
σ

0
−2 log(y) dy = 2α

πσ

[
1 + log

(
σ

α

)]
. (6.7)

Substituting into (6.6) gives that, for any z ∈ R and α > 0,

P(W ≤ z) − P(Z ≤ z) ≤ 1

2α
dW(W , Z) + 1

2α

πσ

[
1 + log

(
σ

α

)]
.

We take α = 1
2

√
πσdW(W , Z), which, as we assumed that σ−1dW(W , Z) < 0.676,

ensures that α
σ

< 0.729. This leads to the upper bound

P(W ≤ z) − P(Z ≤ z) ≤
{
2 + log

(
2√
π

)
+ 1

2
log

(
σ

dW(W , Z)

)}√
dW(W , Z)

πσ
.

Similarly, we can show that

P(W ≤ z) − P(Z ≤ z) ≥ −
{
2 + log

(
2√
π

)
+ 1

2
log

(
σ

dW(W , Z)

)}√
dW(W , Z)

πσ
.

Combining these bounds proves (4.2).
(iii) Let 0 < r < 1. Then the SVG(r , σ, 0) density is unbounded as x → 0 and is

a decreasing function of x for x > 0 and an increasing function for x < 0. Therefore,
we argue as we did in part (ii) and bound P(0 ≤ Z ≤ α) and then substitute into (6.6).
Let ν = r−1

2 , so that − 1
2 < ν < 0. We have
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P(0 ≤ Z ≤ α) = 1

σ
√

π2ν�(ν + 1
2 )

∫ α

0

(
t

σ

)ν

Kν

(
t

σ

)
dt

= 1√
π2ν�(ν + 1

2 )

∫ α
σ

0
y2ν · y−νK−ν(y) dy

≤ 1√
π2ν�(ν + 1

2 )

∫ α
σ

0
2−ν−1�(−ν)y2ν dy

= �(−ν)√
π22ν+1�(ν + 1

2 )

1

2ν + 1

(
α

σ

)2ν+1

= Cν,σ α2ν+1, (6.8)

where we used a change in variables and (A.2) in the second step and Lemma 6.1 in
the third. We therefore have that, for any z ∈ R and α > 0,

P(W ≤ z) − P(Z ≤ z) ≤ 1

2α
dW(W , Z) + Cν,σ α2ν+1.

To optimise, we take α = ( dW(W ,Z)
2(2ν+1)Cν,σ

) 1
2(ν+1) , which results in the bound

P(W ≤ z) − P(Z ≤ z) ≤ 2
(
2(2ν + 1)Cν,σ

) 1
2(ν+1)

(
dW(W , Z)

) 2ν+1
2(ν+1)

= 2

(
2�(−ν)√

π(2σ)2ν+1�(ν + 1
2 )

) 1
2(ν+1) (

dW(W , Z)
) 2ν+1
2(ν+1) .

As in part (ii), we can similarly obtain a lower bound, and on substituting ν = r−1
2

we obtain (4.3), which completes the proof. �
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Appendix A: Properties of Modified Bessel Functions

Here, we list standard properties and inequalities for modified Bessel functions that
are used throughout this paper. All formulas can be found in [38], except for the
differentiation formulas (A.12)–(A.13), which can be found in [15] and [20], and the
inequalities.
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The modified Bessel function of the first kind of order ν ∈ R is defined, for x ∈ R,
by

Iν(x) =
∞∑
k=0

1

�(ν + k + 1)k!
( x
2

)ν+2k
.

The modified Bessel function of the second kind of order ν ∈ R is defined, for x > 0,
by

Kν(x) =
∫ ∞

0
e−x cosh(t) cosh(νt) dt . (A.1)

It is clear from (A.1) that

K−ν(x) = Kν(x). (A.2)

The modified Bessel functions have the following asymptotic behaviour:

Iν(x) ∼ 1

�(ν + 1)

( x
2

)ν (
1 + O(x2)

)
, x ↓ 0, (A.3)

Kν(x) ∼
{
2|ν|−1�(|ν|)x−|ν|(1 + O(x2)

)
, x ↓ 0, ν �= 0,

− log x, x ↓ 0, ν = 0,
(A.4)

Iν(x) ∼ ex√
2πx

, x → ∞, (A.5)

Kν(x) ∼
√

π

2x
e−x , x → ∞. (A.6)

The following differentiation formulas hold:

d

dx

(
K0(x)

) = −K1(x), (A.7)

d

dx

(
xνKν(x)

) = −xνKν−1(x), (A.8)

d

dx

(
Iν(x)

xν

)
= Iν+1(x)

xν
, (A.9)

d

dx

(
Kν(x)

xν

)
= −Kν+1(x)

xν
, (A.10)

d2

dx2

(
Iν(x)

xν

)
= Iν(x)

xν
− (2ν + 1)Iν+1(x)

xν+1 , (A.11)

d2

dx2

(
Kν(x)

xν

)
= Kν(x)

xν
+ (2ν + 1)Kν+1(x)

xν+1 , (A.12)

d3

dx3

(
Kν(x)

xν

)
= − (2ν + 1)Kν(x)

xν
−
(
1 + (2ν + 1)(2ν + 2)

x2

)
Kν+1(x)

xν
.

(A.13)
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Applying the inequality Iμ+1(x) < Iμ(x), x > 0, μ > − 1
2 [49] to the sixth differen-

tiation formula of Corollary 1 of [20] gives the inequality

d3

dx3

(
Iν(x)

xν

)
<

Iν(x)

xν
, x > 0, ν > − 1

2 . (A.14)

The next inequality follows from two applications of inequality (2.6) of [17]. For
x ≥ 0,

∫ x

0

∫ u

0
tν Iν(t) dt du ≤ 2(ν + 2)

2ν + 1
xν Iν+2(x), ν > − 1

2 . (A.15)

The following bounds, which can be found in [18,21], are used to bound the solution
to the SVG Stein equation. Let ν > − 1

2 . Then, for all x ≥ 0,

Kν(x)

xν

∫ x

0
tν+1 Iν(t) dt <

1

2
, (A.16)

Iν(x)

xν

∫ ∞

x
tν+1Kν(t) dt < 1, (A.17)

Kν(x)

xν

∫ x

0
tν Iν(t) dt ≤ 1

2ν + 1
, (A.18)

Iν(x)

xν

∫ ∞

x
tνKν(t) dt ≤

√
π�(ν + 1

2 )

2�(ν + 1)
, (A.19)

Kν(x)

xν−1

∫ x

0
tν Iν(t) dt <

ν + 1

2ν + 1
, (A.20)

Iν(x)

xν−1

∫ ∞

x
tνKν(t) dt < 1, (A.21)

Kν+1(x)

xν−1

∫ x

0
tν Iν(t) dt <

ν + 1

2ν + 1
, (A.22)

Iν+1(x)

xν−1

∫ ∞

x
tνKν(t) dt <

1

2
. (A.23)
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