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Abstract
In this work we present different results concerning mixing properties of multivariate
infinitely divisible (ID) stationary random fields. First, we derive some necessary
and sufficient conditions for mixing of stationary ID multivariate random fields in
terms of their spectral representation. Second, we prove that (linear combinations
of independent) mixed moving average fields are mixing. Further, using a simple
modification of the proofs of our results, we are able to obtain weak mixing versions
of our results. Finally, we prove the equivalence of ergodicity and weak mixing for
multivariate ID stationary random fields.
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1 Introduction

In 1970 in his fundamental work [11],Maruyama provided pivotal results for infinitely
divisible (ID) processes. Among them, he proved that under certain conditions, known
afterwards as Maruyama conditions, these processes are mixing (see Theorem 6 of
[11]). After him various authors contributed on this line of research, see for example
Gross [7] and Kokoszka and Taqqu [9]. In 1996 Rosinski and Zak extendedMaruyama
results proving that the a stationary ID process (Xt )t∈R is mixing if and only if
limt→∞ E

[
ei(Xt−X0)

] = E
[
ei X0
]
E
[
e−i X0

]
, provided the Lévy measure of X0 has

no atoms in 2πZ. More recently, Fuchs and Stelzer [6] extended some of the main
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results of Rosinski and Zak to the multivariate case. Parallel to this line of research,
new developments have been obtained for ergodic and weak mixing properties of
infinitely divisible random fields. In particular, see Roy [15] and [16] for Poissonian
ID random fields and Roy [17], Roy and Samorodnitsky [18] and [22] for α-stable
univariate random fields.

In the present work we fill an important gap by extending the results of Maruyama
[11], Rosinski and Zak [13,14], and Fuchs and Stelzer [6] to the multivariate random
field case. First, this is crucial for applications since many of them consider a multidi-
mensional domain composed by both spatial and temporal components (and not just
temporal ones). This is typically the case for many physical systems, like turbulences
(e.g. [1,2]), and in econometrics (e.g. models based on panel data). Second, with the
present work, we also close the gap between the two lines of research presented above
by focusing on the more general case of multivariate stationary ID random fields.

On the modelling/application level, we prove that multivariate mixed moving aver-
age fields are mixing. This is a relevant result since Lévy driven moving average fields
are extensively used in many applications throughout different disciplines, like brain
imaging [8], tumour growth [3] and turbulences [2,3], among many.

Moreover, we discuss conditions which ensure that a multivariate random fields is
weakly mixing. In particular, we show that the proofs of the results obtained for the
mixing case can be slightly modified to obtain similar results for the weak mixing
case. Finally, we prove that a multivariate stationary ID random field is weak mixing
if and only if it is ergodic.

The present work is structured as follows. In Sect. 2, we discuss some preliminaries
on mixing and derive the mixing conditions for multivariate ID stationary random
fields. In addition, we study some extensions and other related results. In Sect. 3,
we prove that (sums of independent) mixed moving averages (MMA) are mixing,
including MMA with an extended subordinated basis. In Sect. 4 we obtain weak
mixing versions of the results obtained in Sect. 2 andwe prove the equivalence between
ergodicity and weak mixing for stationary ID random fields.

In order to simplify the exposition, we decided to put long proofs in the appendices.

2 Preliminaries and Results onMixing Conditions

In this section we analyse mixing conditions for stationary infinite divisible ran-
dom fields. We work with the probability space (�,F , P) and the measurable
space (Rd ,B(Rd)), where B(Rd) is the Borel σ -algebra on the vector field R

d .
We write L (Xt ) for the distribution, or law, of the random variable Xt . Now,
let (θt )t∈Rl be a measure preserving R

l action on (�,F , P). Consider the ran-
dom field Xt (ω) = X0 ◦ θt (ω), t ∈ R

l . The random field (Xt )t∈Rl defined in
this way is stationary and, conversely, any stationary measurable random field can
be expressed in this form. Further, we have, with a little bit of abuse of notation,
θv(B) := {θv(ω) ∈ � : ω ∈ B} = {ω′ ∈ � : X0(ω

′) = Xv(ω) for ω ∈ B}. We
denote by ‖ · ‖∞ the supremum norm.
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Then (Xt )t∈Rl is mixing if and only if (see Wang, Roy and Stoev [22] equation
(4.4)):

lim
n→∞P(A ∩ θtn (B)) = P(A)P(B), (1)

for all A, B ∈ σX and all (tn)n∈N ∈ T , where σX := σ({Xt : t ∈ R
l}) is the σ -algebra

generated by (Xt )t∈Rl and T := {(tn)n∈N ⊂ R
l : limn→∞ ‖tn‖∞ = ∞}.

The following definition is based on the characteristic function of (Xt )t∈Rl [see
[22] equation (A.6)]:

lim
n→∞E

⎡

⎣exp

⎛

⎝i
r∑

j=1
β j Xs j

⎞

⎠ exp

(

i
q∑

k=1
γk X pk+tn

)⎤

⎦

= E

⎡

⎣exp

⎛

⎝i
r∑

j=1
β j Xs j

⎞

⎠

⎤

⎦E

[

exp

(

i
q∑

k=1
γk X pk

)]

, (2)

for all r , q ∈ N, β j , γk ∈ R, p j , sk ∈ R
l and (tn)n∈N ∈ T . Further, for the multi-

variate (or R
d -valued) random field, we have the following definition based on the

characteristic function of (Xt )t∈Rl .

Definition 2.1 Let (Xt )t∈Rl be an R
d -valued stationary random field. Then (Xt )t∈Rl

is said to be mixing if for all λ = (s1, . . . , sm)′, μ = (p1, . . . , pm)′ ∈ R
ml and

θ1, θ2 ∈ R
md

lim
n→∞E

[
exp
(
i〈θ1, Xλ〉 + i〈θ2, Xμ̃n 〉

)] = E
[
exp (i〈θ1, Xλ〉)

]
E
[
exp
(
i〈θ2, Xμ〉

)]

(3)

where Xλ := (X ′s1 , . . . , X
′
sm )′ ∈ R

md and μ̃n = (p1 + tn, . . . , pm + tn)′, where
(tn)n∈N is any sequence in T .

Further, we recall the definition of an infinitely divisible random field.

Definition 2.2 An R
d valued random field (Xt )t∈Rl (or its distribution) is said to be

infinitely divisible if for every (Xt1 , . . . , Xtk ), where k ∈ N, and for every n ∈ N

there exist i.i.d random vectors Y (n,k)
i , i = 1, . . . , n, in R

d×k (possibly on a different

probability space) such that (Xt1 , . . . , Xtk )
d= Y (n,k)

1 + · · · + Y (n,k)
n .

It is straightforward to see that the above definition is equivalent to the follow-
ing definition. An R

d valued random field (Xt )t∈Rl (or its distribution) is said
to be infinitely divisible if for every finite dimensional distribution of (Xt )t∈Rl ,
namely Ft1,...,tk (x1, . . . , xk) := P

(
Xt1 < x1, . . . , Xtk < xk

)
where k ∈ N, and

for every n ∈ N there exists a probability measure μn,k on R
d×k such that

Ft1,...,tk (x1, . . . , xk) =
(n times)

μn,k ∗ · · · ∗ μn,k= μ∗nn,k .
We are now ready to state our first result.
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Theorem 2.3 Let (Xt )t∈Rl , with l ∈ N, be an R
d-valued strictly stationary infinite

divisible random field such that Q0, the Lévy measure of L (X0), satisfies Q0({x =
(x1, . . . , xd)′ ∈ R

d : ∃ j ∈ {1, . . . , d}, x j ∈ 2πZ}) = 0. Then (Xt )t∈Rl is mixing if
and only if

lim
n→∞E

[
ei(X

( j)
tn −X (k)

0 )
]
= E

[
ei X

( j)
0

]
· E
[
e−i X

(k)
0

]
, (4)

for any j, k = 1, . . . , d and for any sequence (tn)n∈N ∈ T .

The above theorem relies on the following result, which is the multivariate random
field extension of the Maruyama conditions (see Theorem 6 of [11]).

Theorem 2.4 Let (Xt )t∈Rl be anR
d -valued strictly stationary infinite divisible random

field. Then (Xt )t∈Rl is mixing if and only if

(MM1) the covariance matrix function �(tn) of the Gaussian part of (Xtn )tn∈Rl

tends to 0, as n →∞,
(MM2′) limn→∞ Q0tn (‖x‖ · ‖y‖ > δ) = 0 for any δ > 0, where Q0tn is the Lévy

measure of L (X0, Xtn ) on (Rd ,B(Rd)),

where (tn)n∈N is any sequence in T .

Notice that the above conditions are fewer than the Maruyama conditions. This is
because we used the following lemma, which is a multivariate random field extension
of Lemma 1 of [10] and Lemma 2.2 of [6].

Lemma 2.5 Assume that limn→∞ Q0tn (‖x‖ · ‖y‖ > δ) = 0 holds for any δ > 0,
where Q0tn is the Lévy measure of L (X0, Xtn ) on (Rd ,B(Rd)), and (tn)n∈N ∈ R

l .
Then one has

lim
n→∞

∫

0<‖x‖2+‖y‖2≤1
‖x‖ · ‖y‖Q0tn (dx, dy) = 0.

2.1 Related Results and Extensions

In this section, we present different results which follow from, are related to or extend
the theorems presented in the previous section.

The first result is a corollary which follows immediately from Theorem 2.3, and
states that a multivariate random field is mixing if and only if its components are
pairwise mixing.

Corollary 2.6 An R
d-valued strictly stationary i.d. random field X = (Xt )t∈Rl with

Q0({x = (x1, . . . , xd)′ ∈ R
d : ∃ j ∈ {1, . . . , d}, x j ∈ 2πZ}) = 0 is mixing if and

only if the bivariate random fields (X ( j), X (k)), j, k ∈ {1, . . . , d}, j < k, are all
mixing.

Proof It follows immediately from Theorem 2.3. ��
The following corollary is a generalisation of Corollary 2.5 of [6].
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Corollary 2.7 Let (Xt )t∈Rl be an R
d -valued strictly stationary ID random field. Then

with the previous notation, (Xt )t∈Rl is mixing if and only if

lim
n→∞

{
‖�(tn)‖ +

∫

R2d
min(1, ‖x‖ · ‖y‖)Q0tn (dx, dy)

}
= 0, (5)

for any (tn)n∈N ∈ T .

Proof We can follow the argument by [6]. To this end, note that if we assume that (5)
holds, then conditions (MM1) and (MM2′) hold and, thus, Theorem 2.4 implies that
(Xt )t∈Rl is mixing.

For the other direction assume that (Xt )t∈Rl is mixing then by Theorem 2.4 con-
dition (MM1) holds. Furthermore, for every δ > 0 with Q jk(∂Kδ) = 0 and any
j, k = 1, . . . , d, (c f . (21)),

Q( jk)
0tn

∣∣∣
Kc

δ

⇀Q jk

∣∣∣
Kc

δ

as n →∞. (6)

for any (tn)n∈N ∈ T , where the symbol “⇀”means convergence in theweak topology.
In addition, we know that the Lévy measures Q jk are concentrated on the axes of R

2.
Now consider a δ > 0 such that conditions (22) and (6) hold. Then we have

lim sup
n→∞

∫
R2 min(1, |xy|)Q( jk)

0tn
(dx, dy) ≤ ε

+ lim sup
n→∞

∫
Bc

δ
min(1, |xy|)Q( jk)

0tn
(dx, dy) = ε.

Letting ε ↘ 0 we obtain that lim supn→∞
∫
R2 min(1, |xy|)Q( jk)

0tn
(dx, dy) = 0 for

any j, k = 1, . . . , d. Finally,

∫

R2d
min

⎛

⎝1,
d∑

k=1
|xk | ·

d∑

j=1
|y j |
⎞

⎠ Q0tn (dx, dy)

≤
d∑

j,k=1

∫

R2d
min(1, |xk y j |)Q0tn (dx, dy)

=
d∑

j,k=1

∫

R2
min(1, |xy|)Q( jk)

0tn
(dx, dy) → 0, as n → 0.

Therefore, this implies that

lim
n→∞

∫

R2d
min(1, ‖x‖ · ‖y‖)Q0tn (dx, dy),

for any (tn)n∈N ∈ T , hence we obtain that condition (5) is satisfied. ��
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The next two results are a reformulation of Theorem 2.3. However, the first requires
a short preliminary introduction, which will be useful for Sect. 4 as well. Recall that
a codifference τ(X1, X2) of an ID real bivariate random vector (X1, X2) is defined as
follows

τ(X1, X2) := logE

[
ei(X1−X2)

]
− logE

[
ei X1
]
− logE

[
e−i X2

]
,

where log is the distinguished logarithm as defined in [19] p. 33. Following [6] we
recall that the autocodifference function for anR

d -valued strictly stationary ID process

(Xt )t∈R is defined as τ(t) = (τ ( jk)(t)
)
j,k=1,...,d with τ ( jk)(t) := τ

(
X (k)
0 , X ( j)

t

)
. For

an R
d -valued strictly stationary ID random field (Xt )t∈Rl the autocodifference field

τ(t) is defined as τ(t) = (τ ( jk)(t)
)
j,k=1,...,d with τ ( jk)(t) := τ

(
X (k)
0 , X ( j)

t

)
, where

t ∈ R
l .

Corollary 2.8 Let (Xt )t∈Rl , with l ∈ N, be an R
d -valued strictly stationary infinite

divisible random field such that Q0, the Lévy measure of L (X0), satisfies Q0({x =
(x1, . . . , xd)′ ∈ R

d : ∃ j ∈ {1, . . . , d}, x j ∈ 2πZ}) = 0. Then (Xt )t∈Rl is mixing if
and only if τ(tn) → 0 as n →∞ for any sequence (tn)n∈N ∈ T .

Proof It follows immediately from Theorem 2.3. ��
Corollary 2.9 Let (Xt )t∈Rl , with l ∈ N, be an R

d -valued strictly stationary infinite
divisible random field such that Q0, the Lévy measure of L (X0), satisfies Q0({x =
(x1, . . . , xd)′ ∈ R

d : ∃ j ∈ {1, . . . , d}, x j ∈ 2πZ}) = 0. Then (Xt )t∈Rl is mixing if
and only if

lim‖t‖→∞E

[
ei(X

( j)
t −X (k)

0 )
]
= E

[
ei X

( j)
0

]
· E
[
e−i X

(k)
0

]
, (7)

for any j, k = 1, . . . , d, where ‖ · ‖ is any norm on R
l (e.g. the sup or the Euclidean

norm) and t ∈ R
l .

Proof “⇒”: Assume that (Xt )t∈Rl is mixing. Then by Theorem 2.3 we know that

lim
n→∞E

[
ei(X

( j)
tn −X (k)

0 )
]
= E

[
ei X

( j)
0

]
· E
[
e−i X

(k)
0

]
(8)

holds for any j, k = 1, . . . , d and for any sequence (tn)n∈N ∈ T . Now consider the
following simple result.

Let M1 = (A1, d1) and M2 = (A2, d2) be two metric spaces. Let S ⊆ A1 be an
open set of M1. Let f be a mapping defined on S. Then limx→c f (x) = l iff for any
sequence (xn)n∈N of points in S such that ∀n ∈ N : xn �=c and limn→∞ xn = c we have
limn→∞ f (xn) = l.

From this result and from the fact that we are considering any sequence such that
limn→∞ ‖tn‖∞ = ∞, we obtain Eq. (7).

“⇐”: Assume that (7) holds. Then we have that (8) holds by the result stated above.
Then by Theorem 2.3 we obtain that (Xt )t∈Rl is mixing.
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Now consider the set E := {(tn)n∈N ⊂ R
l : limn→∞ ‖tn‖ = ∞,where ‖ · ‖ is any

norm on R
l
}
. Notice that any sequence (tn)n∈N ∈ T belongs to E and vice versa,

because on the finite dimensional vector space R
l any norm ‖ · ‖a is equivalent to any

other norm ‖ · ‖b. Hence, we obtain that Eq. (8) holds for any (tn)n∈N ∈ E , and by
applying the argument above we obtain our result. ��
Remark 2.10 It is possible to see that the extension that we have done in the above
corollary, can be applied to all our results that holds for “any sequence (tn)n∈N ∈ T ”.

The next result is a multivariate and random field extension of Theorem 2 of Rosinski
and Zak [13] and it will help us to generalise Theorem 2.3.

Theorem 2.11 Let (Xt )t∈Rl be anR
d -valued stationary ID random field such that Q0,

the Lévymeasure of X0, satisfies Q0({x = (x1, . . . , xd)′ ∈ R
d : ∃ j ∈ {1, . . . , d}, x j ∈

2πZ}) �= 0. In other words, Q0 has atoms in this set. Let

Z = {z = (z1, . . . , z j ) ∈ R
d : z j

= 2πk/y j ∀ j ∈ {1, . . . , d}, where k ∈ Z and y = (y1, . . . , y j ) is an atom of Q0}.

Then (Xt )t∈Rl is mixing if and only if for some a = (a1, . . . , ad) ∈ R
d\Z, with ap �= 0

for p = 1, . . . , d,

lim
n→∞E

[
ei(a j X

( j)
tn −ak X (k)

0 )
]
= E

[
eia j X

( j)
0

]
· E
[
e−iak X

(k)
0

]
,

for any j, k = 1, . . . , d and for any sequence (tn)n∈N ∈ T .

Proof Consider an element a ∈ R
d\Z with ap �= 0 for p = 1, . . . , d. We know that

the set of atoms of any σ -finite measure is a countable set (the proof is straightforward)
and that any Lévy measure is σ -finite. Hence, the set of atoms of Q0 is countable,
which implies that Z is countable. This implies that our a exists. Now, let

Ma :=

⎛

⎜⎜⎜
⎝

a1 0 · · · 0
0 a2 · · · 0
...

...
. . .

...

0 0 . . . ad

⎞

⎟⎟⎟
⎠

.

Notice that Ma is an invertible d×d matrix and Xt is a d-dimensional column vector.
We have that (Xt )t∈Rl is mixing if and only if (MaXt )t∈Rl is mixing. This is because
by looking at the Definition 2.1 it is enough to show that for every m ∈ N, λ =
(s1, . . . , sm)′ ∈ R

ml and θ = (θ1, . . . , θm)′ ∈ R
md we have 〈θ, Ma�Xλ〉 = 〈θ̃ , Xλ〉,

whereMa�Xλ := (MaXs1 , . . . , MaXsm )′ and θ̃ ∈ R
md . Notice that form = 1we have

Ma�Xt := MaXt , t ∈ R
l . Indeed, we have 〈θ, Ma�Xλ〉 =∑d

j=1
∑m

k=1 a j X
( j)
sk θ jk =

〈Ma�θ, Xλ〉 = 〈θ̃ , Xλ〉, where Ma�θ := (Maθ1, . . . , Maθm)′ ∈ R
md .

Now, the Lévy measure Qa
0 of MaX0 is given by Qa

0(·) = Q0(M−1
a (·)) (see Propo-

sition 11.10 of [19]). Since a /∈ Z , Qa
0 has no atoms in the set {x = (x1, . . . , xd)′ ∈

R
d : ∃ j ∈ {1, . . . , d}, x j ∈ 2πZ}. This is because
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Qa
0({x = (x1, . . . , xd)

′ ∈ R
d : ∃ j ∈ {1, . . . , d}, x j ∈ 2πZ})

= Q0({x = (x1, . . . , xd)
′ ∈ R

d : ∃ j ∈ {1, . . . , d}, x j ∈ 2πZ/a j }),

since a /∈ Z then ∃ j ∈ {1, . . . , d} : a j �= 2πk/y j for any k ∈ Z and any atom y of
Q0, hence

= Q0({x = (x1, . . . , xd)
′ ∈ R

d : ∃ j ∈ {1, . . . , d}
such that x j �= y j , where y is any atom of Q0}) = 0.

The equality to zero comes from the fact that the set considered has no intersection
with the set of atoms of the measure Q0. Finally, by using Theorem 2.3 the proof is
complete. ��
From this result we have the following generalisation of Theorem 2.3.

Corollary 2.12 Let (Xt )t∈Rl be an R
q-valued stationary ID random field. Then

(Xt )t∈Rl is mixing if and only if L (Xtn − X0)
n→∞→ L (X0 − X ′0) for any j, k =

1, . . . , d and for any sequence (tn)n∈N ∈ T , where X ′0 is an independent copy of X0.

Proof This result is an immediate consequence of Theorem 2.3, Corollary 2.6 and
Theorem 2.11. ��
We end this section with a simple general result which will also be useful for the next
section.

Proposition 2.13 Let (Xt )t∈Rl be a linear combination of independent, stationary, ID

andmixing randomfields. In otherwords, let r ∈ Nand let (Xt )t∈Rl
d= (
∑r

k=1 Y k
t )t∈Rl ,

where (Y k
t )t∈Rl , k = 1, . . . , r , are independent R

q-valued stationary, ID and mixing
random fields. Then (Xt )t∈Rl is stationary, ID and mixing.

3 MixedMoving Average Field

In this section we will focus on a specific random field: the mixed moving average
(MMA) random field. Before introducing this random field we need to recall the
definition of an R

d -valued Lévy basis and the related integration theory. Lévy basis
are also called infinitely divisible independently scattered random measures in the
literature. In the following let S be a non-empty topological space, B(S) be the
Borel-σ -field on S and π be some probability measure on (S,B(S)). We denote
by B0(S × R

l) the collection of all Borel sets in S × R
l with finite π ⊗ λl -measure,

where λl denotes the l-dimensional Lebesgue measure.

Definition 3.1 Ad-dimensional Lévy basis on S×R
l is anR

d -valued randommeasure
� = {�(B) : B ∈ B0(S × R

l)} satisfying:
(i) the distribution of �(B) is infinitely divisible for all B ∈ B0(S × R

l),
(ii) for an arbitrary n ∈ N and pairwise disjoint sets B1, . . . , Bn ∈ B0(S × R

l) the
random variables �(B1), . . . , �(Bn) are independent,
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(iii) for any pairwise disjoint sets B1, B2, . . . ∈ B0(S×R
l)with

⋃
n∈N Bn ∈ B0(S×

R
l) we have, almost surely, �(

⋃
n∈N Bn) =∑n∈N �(Bn).

Throughout this section, we shall restrict ourselves to time-homogeneous and factoris-
able Lévy bases, i.e. Lévy bases with characteristic function given by

E

[
ei〈θ,�(B)〉

]
= eψ(θ)�(B), (9)

for all θ ∈ R
d and B ∈ B0(S×R

l), where � = π ⊗ λl is the product measure of the
probability measure π on S and the Lebesgue measure λl on R

l and

ψ(θ) = i〈γ, θ〉 − 1

2
〈θ,�θ〉 +

∫

Rd

(
ei〈θ,x〉 − 1− i〈θ, x〉1[0,1](‖x‖)

)
Q(dx)

is the cumulant transform of an ID distribution with characteristic triplet (γ,�, Q).
We note that the quadruple (γ,�, Q, π) determines the distribution of the Lévy basis
completely and therefore it is called the generating quadruple. Now, we provide an
extension of Theorem 3.2 of [6], which does not need a proof since it is a combination
of Theorem 3.2 of [6] and Theorem 2.7 of [12]. It concerns the existence of integrals
with respect to a Lévy basis.

Remark 3.2 In this section we are considering a q-valued random field, since the d is
used for the R

d -valued Lévy basis, and we denote by Mq×d(R) the collection of q×d
matrices over the field R.

Theorem 3.3 Let � be an R
d-valued Lévy basis with characteristic function of the

form (9) and let f : S × R
l → Mq×d(R) be a measurable function. Then f is �-

integrable as a limit in probability in the sense of Rajput and Rosinski [12], if and only
if

∫

S

∫

Rl

∥∥∥ f (A, s)γ +
∫

Rd
f (A, s)x(1[0,1](‖ f (a, s)x‖)

−1[0,1](‖x‖))Q(dx)
∥∥
∥dsπ(dA) < ∞,

∫

S

∫

Rl
‖ f (A, s)� f (A, s)′‖dsπ(dA) < ∞, and

∫

S

∫

Rl

∫

Rd
min(1, ‖ f (A, s)x‖2)Q(dx)dsπ(dA) < ∞.

If f is �-integrable, the distribution of
∫
S

∫
Rl f (A, s)�(dA, ds) is infinitely divisible

with characteristic triplet (γint, �int, vint) given by

γint =
∫

S

∫

Rl
f (A, s)γ +

∫

Rd
f (A, s)x(1[0,1](‖ f (a, s)x‖)

−1[0,1](‖x‖))v(dx)dsπ(dA),
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�int =
∫

S

∫

Rl
f (A, s)� f (A, s)′dsπ(dA), and

vint(B) =
∫

S

∫

Rl

∫

Rd
1B( f (A, s)x)Q(dx)dsπ(dA)

for all Borel sets B ⊆ R
q\{0}.

Proof This theorem is a specific representation of Theorem 3.2 of [6] and Theorem
2.7 of [12]. ��
Let us now introduce the main object of interest of this section: the mixed moving
average random field.

Definition 3.4 (Mixed Moving Average Random Field) Let � be an R
d -valued Lévy

basis on S × R
l and let f : S × R

l → Mq×d(R) be a measurable function. If the
random field

Xt :=
∫

S

∫

Rl
f (A, t − s)�(dA, ds)

exists in the sense of Theorem 3.3 for all t ∈ R
l , it is called an n-dimensional mixed

moving average random field (MMA random field for short). The function f is said to
be its kernel function.

MMA random field have been discussed in Surgailis et al. [20] and Veraart [21]. Note
that an MMA random field is an ID and strictly stationary random field.

The following lemma is a direct application of Corollary 2.7 to our MMA random
field case.

Lemma 3.5 Let (Xt )t∈Rl
d= (
∫
S

∫
Rl f (A, t − s)�(dA, ds))t∈Rl be an MMA random

field where � is an R
d-valued Lévy basis on S × R

l with generating quadruple
(γ,�, Q, π) and f : S × R

l → Mq×d(R) is a measurable function. Then (Xt )t∈Rl

is mixing if and only if

lim
n→∞

{∥∥∥∥

∫

S

∫

Rl
f (A,−s)� f (A, tn − s)′dsπ(dA)

∥∥∥∥

+
∫

S

∫

Rl

∫

Rd
min(1, ‖ f (A,−s)x‖ · ‖ f (A, tn − s)x‖)Q(dx)dsπ(dA)

}
= 0,

for any (tn)n∈N ∈ T .

The following theorem is the main result of this section, while the next corollary is an
extension of it.

Theorem 3.6 Let (Xt )t∈Rl
d= (
∫
S

∫
Rl f (A, t − s)�(dA, ds))t∈Rl be an MMA random

field where � is an R
d valued Lévy basis on S × R

l with generating quadruple
(γ,�, Q, π) and f : S × R

l → Mq×d(R) is a measurable function. Then (Xt )t∈Rl

is mixing.
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From the above result and Proposition 2.13, we have this corollary.

Corollary 3.7 Sums of independent MMA random fields are stationary, ID and mixing
random fields.

Proof This corollary is an immediate consequence of Theorem 3.6 and Proposi-
tion 2.13. ��

Remark 3.8 The above corollary holds for any linear combination of independent
MMA, including MMA with different Lévy basis and different parameter space S.

3.1 Meta-Times and Subordination

In this section we give a brief introduction of the concepts of meta-times and subor-
dination, and present a result which is a corollary of Theorem 3.6.

First, we recall the definition of an homogeneous Lévy sheet (see [4] definition
2.1). Let �b

a F indicate the increments of a function F over an interval (a, b] ⊂ R
k+

and let a ≤ b indicate ai ≤ bi for i = 1, . . . , k (see [4]), where R
m+ = {x ∈ R

m :
xi ≥ 0, i = 1, . . . ,m} and m ∈ N. Let k, l ∈ N.

Definition 3.9 Let X = {Xt : t ∈ R
k+} be a family of random vectors in R

d . We
say that X is an homogeneous Lévy sheet on R

k+ if Xt = 0 for all t ∈ {t ∈ R
k+ :

t j = 0 for some j ∈ {1, . . . , k}} a.s., �b1
a1X , . . . ,�bn

an X are independent whenever
n ≥ 2 and (a1, b1], . . . , (an, bn] ⊂ R

k+ are disjoint, X is continuous in probability,

�b+t
a+t X

d= �b
a X for all a, b, t ∈ R

k with a ≤ b, and all sample paths of X are lamp.

The concept of lamp (i.e. limits along monotone paths) is the analogue of càdlàg, but
in the multiparameter setting. If X = {Xt : t ∈ R

k+} is a homogeneous Lévy sheet
then L (�b

a X) ∈ I D(Rd).
Now let X = {Xt : t ∈ R

k+} be an R
d -valued homogeneous Lévy sheet on R

k+
and �X = {�X (A) : A ∈ B(Rk+)} be the homogeneous Lévy basis induced by X ,
namely �X ([0, t]) = Xt a.s. for all t ∈ R

k+. Let T = {Tt : t ∈ R
k+} be an R+-valued

homogeneous Lévy sheet and �T = {�T (A) : A ∈ B(Rk+)} be the non-negative
homogeneous Lévy basis induced by T . Define F T = σ(�T (A) : A ∈ Bb(R

k+)) to
be theσ -field generated by�T . Then there exists a (F T ,B(Rk+),B(Rk))-measurable
mapping φT : � × R

k+ → R
k such that for all ω ∈ � and A ∈ Bb(R

k+), the set
T(A)(ω), given by T(A)(ω) = {x ∈ R

k+ : φT (ω, x) ∈ A} is bounded and

�T (A)(ω) = Leb(T(A)(ω)).

For eachω,T(·)(ω) is called ameta-time associated with�T (·)(ω). LetM = {M(A) :
A ∈ Bb(R

k+)} be defined as

M(A)(ω) = �X (T(A))(ω)
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for all A ∈ B(Rk+). We say that M appears by extended subordination of �X by �T

(or of X by T ). Then by Theorem 5.1 of [4] we have that M ia a homogeneous Lévy
basis.

Therefore, we have the following corollary of Theorem 3.6.

Corollary 3.10 Let X = {Xt : t ∈ R
k} be an R

d-valued homogeneous Lévy sheet on
R
k and �X = {�X (A) : A ∈ B(Rk)} be the homogeneous Lévy basis induced by

X. Let T = {Tt : t ∈ R
k} be an R+-valued homogeneous Lévy sheet and �T =

{�T (A) : A ∈ B(Rk)} be the non-negative homogeneous Lévy basis induced by T .
Let M = {M(A) : A ∈ Bb(R

k+)} be an extended subordination of �X by �T . Let

(Yt )t∈Rl
d= (
∫
Rk−l
∫
Rl f (B, t− s)M(dB, ds))t∈Rl , where f : R

k−l×R
l → Mq×d(R)

is a measurable function. Then (Yt )t∈Rl is mixing.

Proof It is sufficient to notice that the framework introduced above holds for the case
R
k and not just for R

k+ (see [4]) and that M is an R
d -valued homogeneous Lévy basis

on R
k . Then by using Theorem 3.6 we obtain the result. ��

4 WeakMixing and Ergodicity

In this section, we will first show how to modify our results to obtain weak mixing
version of the results presented before and then prove that for stationary ID random
fields ergodicity andweakmixing are equivalent.We start with a definition of a density
one set and of weak mixing for stationary random fields.

Definition 4.1 A set E ⊂ R
l is said to have density zero in R

l with respect to the
Lebesgue measure λ if

lim
T→∞

1

(2T )l

∫

(−T ,T ]l
1E (x)λ(dx) = 0.

A set D ⊂ R
l is said to have density one in R

l if R
l\D has density zero in R

l .

The class of all sequences on D that converge to infinity will be denoted by

TD :=
{
(tn)n∈N ⊂ R

l ∩ D : lim
n→∞‖tn‖∞ = ∞

}
.

Definition 4.2 Consider the random field Xt (ω) = X0 ◦ θt (ω), t ∈ R
l , where {θt }t∈Rl

is a measure preserving R
l -action. Let σX be the σ -algebra generated by the field

(Xt )t∈Rl . We say that (Xt )t∈Rl is weakly mixing if there exists a density one set D
such that

lim
n→∞P(A ∩ θtn (B)) = P(A)P(B),

for all A, B ∈ σX and all (tn)n∈N ∈ TD .

We are now ready to state the weak mixing version of Theorem 2.3.
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Theorem 4.3 Let (Xt )t∈Rl , with l ∈ N, be an R
d-valued strictly stationary infinite

divisible random field such that Q0, the Lévy measure of L (X0), satisfies Q0({x =
(x1, . . . , xd)′ ∈ R

d : ∃ j ∈ {1, . . . , d}, x j ∈ 2πZ}) = 0. Then (Xt )t∈Rl is mixing if
and only if there exists a density one set D ⊂ R

l such that

lim
n→∞E

[
ei(X

( j)
tn −X (k)

0 )
]
= E

[
ei X

( j)
0

]
· E
[
e−i X

(k)
0

]
,

for any j, k = 1, . . . , d and for any sequence (tn)n∈N ∈ TD.

Proof It is possible to see that the argument used in the first part of the proof of
Theorem 2.3 applies and holds also for the case (tn)n∈N ∈ TD . Moreover, using
Theorem 4.4 the proof is complete. ��
Theorem 4.4 Let (Xt )t∈Rl be anR

d -valued strictly stationary infinite divisible random
field. Then (Xt )t∈Rl is mixing if and only if there exists a density one set D ⊂ R

l such
that

(MM1) the covariance matrix function �(tn) of the Gaussian part of (Xtn )tn∈Rl

tends to 0, as n →∞,
(MM2′) limn→∞ Q0tn (‖x‖ · ‖y‖ > δ) = 0 for any δ > 0, where Q0tn is the Lévy

measure of L (X0, Xtn ) on (Rd ,B(Rd)),
where (tn)n∈N is any sequence in TD.

Proof It is possible to see that the arguments used in the proof of Theorem 2.4 go
through for the case (tn)n∈N ∈ TD . ��
Remark 4.5 It is possible to obtain weak mixing version also for the following results
previously stated: Corollaries 2.6, 2.7, 2.8, 2.9, Theorem 2.11, Corollary 2.12 and
Proposition 2.13. The proofs of these results are omitted because they follow exactly
the same arguments used in the proofs of their respective results. The only difference
is that we have (tn)n∈N ∈ TD and not (tn)n∈N ∈ T but this does not trigger any
change in the arguments used in the proofs of these results.

Among these results,wehave the following corollary,which is theweakmixingversion
of Corollary 2.7 and it will be useful for our next result: the equivalence between weak
mixing and ergodicity for stationary ID random fields.

Corollary 4.6 Let (Xt )t∈Rl be an R
d -valued strictly stationary ID random field. Then

with the previous notation, (Xt )t∈Rl is mixing if and only if there exists a density one
set D ⊂ R

l such that

lim
n→∞

{
‖�(tn)‖ +

∫

R2d
min(1, ‖x‖ · ‖y‖)Q0tn (dx, dy)

}
= 0

for any (tn)n∈N ∈ TD.

Proof See discussion in Remark 4.5. ��
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In order to prove the equivalence between ergodicity andweakmixing for ID stationary
random fields we will need various preliminary results, some of which have already
been proven in the literature. We start with two known results.

Lemma 4.7 (Lemma 4.3 of the ArXiv last version (i.e. v3) of [22]) Let f : R
l → R

be non-negative and bounded. A necessary and sufficient condition for

lim
T→∞

1

(2T )l

∫

(−T ,T ]l
f (t)dt = 0

is that there exists a subset D of density one in R
l such that

lim
n→∞ f (tn) = 0, for any (tn)n∈N ∈ TD.

Lemma 4.8 (Theorem 2.3.2 of [5]) Let μ be a finite measure on R
l . Then

lim
T→∞

1

(2T )l

∫

(−T ,T ]l
μ̂(t)dt = μ({0}),

where μ̂ denotes the Fourier transform of μ.

The following lemma is an adaptation to our framework of Lemma 3 of [14].

Lemma 4.9 Let (Xt )t∈Rl be an R
d -valued stationary ID random field and Q jk

0t be the

Lévy measure ofL (X ( j)
0 , X (k)

t ). Then for every δ > 0 and j, k = 1, . . . , d, the family

of finite measures of (Q jk
0t |Kc

δ
)t∈Rl is weakly relatively compact and

lim
δ→0

sup
t∈Rl

∫

Kδ

|xy|Q jk
0t (dx, dy) = 0, (10)

where Kδ = {(x, y) : x2 + y2 ≤ δ2}.
Proof This result comes directly from the proof of Lemma 3 of [14]. ��
Now we will investigate the auto-codifference matrix of the R

d -valued stationary ID
random field (Xt )t∈Rl , which was already introduced in Section 2.1. Consider

τ(tn) =
(
τ ( jk)(tn)

)

j,k=1,...,d ,

with

τ ( jk)(tn) := τ
(
X (k)
0 , X ( j)

tn

)
= logE

[
ei(X

(k)
0 −X ( j)

tn )
]
− logE

[
ei X

(k)
0

]
− logE

[
e−i X

( j)
tn

]

= σ
jk
tn +

∫

R2
(eix − 1)(eiy − 1)Q jk

0tn
(dx, dy), (11)
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where �
jk
tn is the covariance function of the Gaussian part of (X (k)

0 , X ( j)
tn ) and it is

given by

�
jk
tn =

(
σ

jk
0 σ

jk
tn

σ
jk
tn σ

jk
0

)

.

Proposition 4.10 Let (Xt )t∈Rl be an R
d -valued ID random field (not necessarily sta-

tionary). Then for any j, k = 1, . . . , d the function

R
l × R

l � (s, t) → τ ( jk)(X ( j)
s , X (k)

t ) ∈ C

is non-negative definite.

Proof We argue as in Proposition 2 of [14]. Without loss of generality let t ≥ s with
t, s ∈ R

l . As seen above, we have

τ
(
X (k)
s , X ( j)

t

)
= σ

jk
t−s +

∫

R2
(eix − 1)(eiy − 1)Q jk

st (dx, dy). (12)

Since (s, t) → σ
jk
t−s is non-negative definite because it is a covariance function, it just

remains to show that the second element on the RHS of (12) is non-negative definite.
However, this is a consequence of Lemma 4 in [14]. ��
We can now state and later prove (see “Appendix C”) the second main theorem of
this section, which states the equivalence between ergodicity and weak mixing for ID
stationary random fields.

Theorem 4.11 Let l, d ∈ N. Let (Xt )t∈Rl be anR
d-valued stationary ID random field.

Then (Xt )t∈Rl is ergodic if and only if it is weakly mixing.

5 Conclusion

In thisworkwederived different results concerning ergodicity andmixing properties of
multivariate stationary infinitely divisible random fields. A possible future direction
consists of the investigation of statistical properties of the results presented in this
paper. For example for multivariate stochastic processes, showing that mixed moving
average (MMA) processes are mixing implies that the corresponding moment based
estimator (like the generalised method of moments (GMM)) are consistent (see [6]).
However, it is not clear that a similar result holds for the random fields case. Other
possible directions would be to extend the present results to the case of random fields
on manifolds or on infinite dimensional vector spaces. However, the literature is not
as developed as for the R

l -case and requires further work.
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Appendix A: Proofs of Sect. 2

Proof of Theorem 2.3

This proof is an extension to the random field case of the proof of Theorem 2.1 of [6].
“⇒”: Assume (Xt )t∈Rl to be mixing. This implies

lim
n→∞E

[
exp
(
i〈θ1, X0〉 + i〈θ2, Xtn 〉

)] = E
[
exp (i〈θ1, X0〉)

]
E
[
exp (i〈θ2, X0〉)

]
,

for any θ1, θ2 ∈ R
d . Now, setting (θ1, θ2) = (−ek, e j ), j, k = 1, . . . , d with e j the

unit j-th vector in R
d , Eq. (4) is satisfied.

“⇐”: Assume that Eq. (4) holds for every j, k = 1, . . . , d, and then we have

lim
n→∞E

[
e
i
(
X ( j)
tn +X (k)

0

)]
= E

[
ei X

( j)
0

]
E

[
ei X

(k)
0

]
, (13)

for every j, k = 1, . . . , d. This is true because of the following reasoning. In particular,
we extend the proof of Rosinski and Zak [13], Theorem 1, to the multivariate random
field case. Assume that Eq. (4) holds. We will initially prove the following. For every
Y ∈ L2(�,F , P) (complex valued)

lim
n→∞E

[
ei X

( j)
tn Ȳ
]
= E

[
ei X

( j)
0

]
E
[
Ȳ
]
, (14)

for j = 1, . . . , d. It is possible to see that Eq. (14) holds for Y ∈ H0 :=
lin{1, ei X ( j)

t , t ∈ R
l} := {Z ∈ L2(�,F , P) : Z = a01 + ∑n

i=1 ai e
i X ( j)

ti , ti ∈
R
l , n ∈ N}. Consider now the L2-closure of H0 and call it H . Then by standard den-

sity argument Eq. (14) is true for any Y ∈ H . Now, consider any Y ∈ L2(�,F , P)

(complex valued). We can write Y = Y1 + Y2, where Y1 ∈ H and Y2 ∈ H⊥ := {W ∈
L2(�,F , P) : E[ZW̄ ] = 0 ∀Z ∈ H}, whereE[· ·̄] denotes the inner product (usually
written as < ·, · >) from L2(�,F , P)× L2(�,F , P) to R. Notice that we are using
the conjugate (i.e. in symbol “ ¯ ”) because this is how the inner product space over
a complex space is defined. Further, notice that we can write Y = Y1 + Y2 since the
L2-space endowed with that inner product is a Hilbert space.

Since E[ei Xtn Ȳ2] = 0 for every tn ∈ R
l and E[Ȳ2] = 0 by definition of H⊥, we get

that

lim
n→∞E

[
ei Xtn Ȳ

]
= lim

n→∞E

[
ei Xtn Ȳ1

]
= E

[
ei X0
]

E
[
Ȳ1
] = E

[
ei X0
]

E
[
Ȳ
]
.

Hence we have equation (14). Putting now Y = e−i X
(k)
0 in (14), for k = 1, . . . , d, we

obtain
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lim
n→∞E

[
ei(X

( j)
tn +X (k)

0 )
]
= E

[
ei X

( j)
0

]
E

[
ei X

(k)
0

]
, (15)

which isEq. (13).Wenowprove that equations (4) and (13) imply themultidimensional
Maruyama conditions:

(MM1) the covariance matrix function �(tn) of the Gaussian part of (Xtn )tn∈Rl

tends to 0, as n →∞, where (tn)n∈N is any sequence in T .
(MM2) limn→∞ Q0tn (‖x‖ · ‖y‖ > δ) = 0 and limn→∞

∫
0<‖x‖2+‖y‖2≤1 ‖x‖ ·‖y‖Q0tn (dx, dy) = 0 for any δ > 0, where Q0tn is the Lévy measure ofL (X0, Xtn )

on (Rd ,B(Rd)).
Actually, we will not prove (MM2) but we will prove instead the following condi-

tion:
(MM2′) limn→∞ Q0tn (‖x‖ · ‖y‖ > δ) = 0 for any δ > 0, where Q0tn is the Lévy

measure of L (X0, Xtn ) on (Rd ,B(Rd)).
This is because in Lemma 2.5 we will prove that (MM2′) implies (MM2).
Regarding (MM1), we have the following. Since (X0, Xtn ) has a 2d-dimensional

ID distribution, its characteristic function can be written, using the Lévy–Khintchine
formulation for every θ = (θ1, θ2)

′ ∈ R
d × R

d , as (see Theorem 8.1 of [19] and the
proof of Theorem 2.1 of [6])

E

[
ei〈θ1,X0〉+i〈θ2,Xtn 〉

]
= exp

{
i

〈(
θ1

θ2

)
,

(
α1

α2

)〉
− 1

2

〈(
θ1

θ2

)
, �(tn)

(
θ1

θ2

)〉

+
∫

R2d

(
ei<θ1,x>+i<θ2,y> − 1− i < θ1, x>1[0,1](‖x‖)− i

< θ2, y > 1[0,1](‖y‖)
)
Q0tn (dx, dy)

}
. (16)

By substituting (−ek, e j ), (0, e j ) and (−ek, 0), j, k = 1, . . . , d for (θ1, θ2) in (16)
we get the description of equation (4) in terms of the covariance matrix function of
the Gaussian part of (X ( j)

tn , X (k)
0 ) and the Lévy measure Q0tn , namely

lim
n→∞E

[
e
i
(
X ( j)
tn −X (k)

0

)] (
E

[
ei X

( j)
0

]
E

[
e−i X

(k)
0

])−1

= lim
n→∞ exp

{
σ jk(tn)+

∫

R2d

(
ei
(
y( j)−x (k)

)
−eiy

( j) − e−i x (k) + 1
)
Q0tn (dx, dy)

}
=1

for arbitrary j, k = 1, . . . , d, where σ jk(tn) is the (k, j)-th element of�(tn). By using
the identity Real(ei(−x+y) − e−i x − eiy + 1) = (cos x − 1)(cos y − 1) + sin x sin y
and taking the logarithm on both sides, we get

lim
n→∞

[
σ jk(tn)+

∫

R2d

(
(cos x (k)−1)(cos y( j)−1)+sin x (k) sin y( j)

)
Q0tn (dx, dy)

]

= 0, (17)
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for any j, k = 1, . . . , d.Applying the same argument toE

[
e
i
(
X ( j)
tn +X (k)

0

)] (
E

[
ei X

( j)
0

]

E

[
ei X

(k)
0

])−1
we obtain

lim
n→∞

[
− σ jk(tn)+

∫

R2d

(
(cos x (k) − 1)(cos y( j)−1)−sin x (k) sin y( j)

)
Q0tn (dx, dy)

]
=0,

(18)

for any j, k = 1, . . . , d. Putting together equations (17) and (18), due to the consis-
tency of the Lévy measures (see Proposition 11.10 of [19] and the proof of Theorem
2.1 of [6]),

lim
n→∞

∫

R2d

(
cos x (k) − 1)(cos y( j) − 1

)
Q0tn (dx, dy)

= lim
n→∞

∫

R2
(cos x − 1)(cos y − 1)Q( jk)

0tn
(dx, dy) = 0, (19)

for any j, k = 1, . . . , d, where Q( jk)
0tn

denotes the Lévy measure ofL (X (k)
0 , X ( j)

tn ) on

(R2,B(R2)).
Now, for fixed j, k ∈ {1, . . . , d} the family of measures {L (X (k)

0 , X ( j)
tn )}n∈N is

tight. To see this, note that by letting Kr = {(x, y) ∈ R
2 : x2 + y2 ≤ r2} and using

the stationarity of (Xt )t∈Rl we have

P((X0, Xtn ) /∈ Kr ) ≤ P(‖X0‖ > 2−
1
2 r)+ P(‖Xtn‖ > 2−

1
2 r) = 2P(‖X0‖ > 2−

1
2 r),

hence limr→∞ suptn∈Rl P((X0, Xtn ) /∈ Kr ) = 0. Since {L (X0, Xtn )}n∈N is tight, then

{L (X (k)
0 , X ( j)

tn )}n∈N is tight. Notice that we are proving more than necessary because
it is sufficient to prove the above limit for supn∈N. Thus, by Prokhorov’s theorem we

have that the family {L (X (k)
0 , X ( j)

tn )}n∈N is sequentially compact (in the topology of
weak convergence). Choose any sequence (τn)n∈N ∈ T and let Fjk be a cluster (or

accumulation) point of the family {L (X (k)
0 , X ( j)

τn )}n∈N. Then, using Lemma 7.8 of
page 34 of Sato’s book [19], we have that Fjk is an ID distribution on R

2 with some
Lévy measure Q jk . Moreover, let (tm)m∈N be a subsequence of (τn)n∈N such that

L (X (k)
0 , X ( j)

tm )⇀Fjk, as m →∞. (20)

Notice that (tm)m∈N ∈ T as well. We know that Fjk exists by Prokhorov theorem on
Euclidean spaces. Then, for every δ > 0 with Q jk(∂Kδ) = 0,

Q( jk)
0tm

∣
∣∣
Kc

δ

⇀Q jk

∣
∣∣
Kc

δ

, as m →∞. (21)
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Since (cos x − 1)(cos y − 1) ≥ 0 and using equations (19) and (21), we deduce that

0 ≤
∫

Kc
δ

(cos x − 1)(cos y − 1)Q jk(dx, dy)

= lim
n→∞

∫

Kc
δ

(cos x − 1)(cos y − 1)Q( jk)
0tm

(dx, dy)

≤ lim
n→∞

∫

R2
(cos x − 1)(cos y − 1)Q( jk)

0tn
(dx, dy) = 0.

Every Lévy measure Q jk is concentrated on the set of straight lines {(x, y) ∈ R
2 :

x ∈ 2πZ or y ∈ 2πZ}. This is because only on these lines the integrand (cos x −
1)(cos y − 1) is zero, otherwise it is positive, and because δ can be taken arbitrarily
small.

By the stationarity of the process and (20), the projection of Q jk onto the first and

second axis coincides with Q(k)
0 and Q( j)

0 , respectively, on the complement of every
neighbourhood of zero (because (21) holds on any complement of every neighbour-
hood of zero). Recall the assumption on Q0, i.e. Q0({x = (x1, . . . , xd)′ ∈ R

d : ∃ j ∈
{1, . . . , d}, x j ∈ 2πZ}) = 0. Hence, we have for every a ∈ Z, a �= 0,

Q jk({2πa} × R) = Q(k)
0 ({2πa}) = Q0(R× . . .× R× {2πa} × R× . . .× R)

≤ Q0({x ∈ R
d : ∃l ∈ {1, . . . , d}, xl ∈ 2πZ}) = 0

and similarly Q jk(R× {2πa}) = 0. Therefore, Q jk , j, k = 1, . . . , d is concentrated

on the axes of R
2 and on each of them coincides with Q(k)

0 and Q( j)
0 . It is important to

stress the main ideas of the above argument. First, we showed that Q jk is concentrated
only on {(x, y) : x ∈ 2πZ or y ∈ 2πZ} and then using the assumption of our theorem
we showed that only when x = 0 or y = 0 the measure Q jk is nonzero. Further, the
stationarity of the process allows the fact that when we project Q jk on the axes the

projections coincide with Q(k)
0 and Q( j)

0 , avoiding the case of having Q(k)
0 on one axis

and Q( j)
tm on the other.

Now observe that, for every t ∈ R
l , using the consistency of the Lévy measure

∫

Kδ

|xy|Q( jk)
0t (dx, dy) ≤ 1

2

∫

Kδ

(x2 + y2)Q( jk)
0t (dx, dy) ≤ 1

2

∫

|x |≤δ

x2Q( jk)
0t (dx, dy)

+1

2

∫

|y|≤δ

y2Q( jk)
0t (dx, dy)

= 1

2

∫

|x |≤δ

x2Q(k)
0 (dx)+ 1

2

∫

|y|≤δ

y2Q( j)
0 (dy)

=
∫

|x |≤δ

x2Q0(dx) < ε, (22)
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for any positive ε and any j, k = 1, . . . , d, if only δ is small enough. This implies
that, by (22) for every j, k = 1, . . . , d we have for all m ∈ N

∫

Kδ

| sin x sin y|Q( jk)
0tm

(dx, dy) ≤
∫

Kδ

|xy|Q( jk)
0tm

(dx, dy) < ε,

for sufficiently small δ > 0. Since Q jk is concentrated on the axes of R
2 then

∫
Kc

δ
sin x sin yQ jk(dx, dy) = 0 and using (21) we get limm→∞

∫
Kc

δ
sin x sin yQ( jk)

0tm
(dx, dy) = 0. Thus,

lim
m→∞

∫

R2
sin x sin yQ( jk)

0tm
(dx, dy) = 0, (23)

for every j, k = 1, . . . , d. Combining equations (17), (19) and (23) we obtain that
σ jk(tm) → 0 as m → ∞ for all j, k = 1, . . . , d. Since (tm)m∈N is a subsequence
of an arbitrary sequence τn ∈ T , it follows that σ jk(tn) → 0 as n → ∞ and thus
�(tn) → 0 as n → ∞, for any (tn)n∈N ∈ T . This is because we have used the fact
that if a sequence has the property that any subsequence has a further subsequence
that converges to the same limit, then the sequence converges to that limit. Hence,
condition (MM1) follows.

To prove (MM2′), observe that, for any m ∈ N,

Q0tm

(
‖x‖2 · ‖y‖2 > δ2

)
= Q0tm

⎛

⎝
d∑

j,k=1

(
x (k)y( j)

)2
> δ2

⎞

⎠

≤
d∑

j,k=1
Q( jk)

0tm

(∣∣∣x (k)y( j)
∣∣∣ ≥ δ

d

)
.

In view of (21) we also get

lim sup
m→∞

Q( jk)
0tm

(∣∣∣x (k)y( j)
∣∣∣ ≥ δ

d

)
≤ Q jk

(∣∣∣x (k)y( j)
∣∣∣ ≥ δ

d

)
= 0,

for any δ > 0 and j, k = 1, . . . , d. Hence, limm→∞ Q0tm (‖x‖ · ‖y‖ > δ) = 0 for any
δ > 0 and together with the fact that (tk)k∈N is a subsequence of an arbitrary sequence
τn ∈ T we obtain condition (MM2′).

Now, by Theorem 2.4 the proof is complete.

Proof of Theorem 2.4

This proof is an extension to the random field case of the proof of Theorem 2.3 of [6].
“⇒”: We have shown in the proof of Theorem 2.3 that mixing implies conditions

(MM1) and (MM2′). In particular,mixing implies formula (4),which implies (MM1)
and (MM2′).
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“⇐”: For the other direction we have the following. Assume that (MM1) and
(MM2′) hold. Then by Lemma 2.5 condition (MM2) holds. We need to prove that
the process is mixing, i.e. for allm ∈ N, λ = (s1, . . . , sm)′, μ = (p1, . . . , pm)′ ∈ R

ml

and θ1, θ2 ∈ R
md

lim
n→∞E

[
exp
(
i〈θ1, Xλ〉 + i〈θ2, Xμ̃n 〉

)] = E
[
exp (i〈θ1, Xλ〉)

]
E
[
exp
(
i〈θ2, Xμ〉

)]
,

(24)

where Xλ := (X ′s1 , . . . , X
′
sm )′ ∈ R

md and μ̃n = (p1 + tn, . . . , pm + tn)′, where
(tn)n∈N is any sequence in T .

The family ofR2md -valued distributions of the ID randomfields (Xλ, Xμ̃n ), denoted{L (Xλ, Xμ̃n )}n∈N is tight. Indeed, let K be the 2md-dimensional ball around the
origin with radius of length

√
2ma, then by stationarity of the process (Xt )t∈Rl we

have

P((Xλ, Xμ̃n ) /∈ K ) ≤
m∑

j=1
P(‖Xs j ‖a)+

m∑

j=1
P(‖X pj+tn‖ ≥

≥ a) = 2m
m∑

j=1
P(‖X0‖ ≥ a),

hence lima→∞ supλ,μ,tn P((Xλ, Xμ̃n ) /∈ K ) = 0. Again notice that we are proving
more than necessary because it is sufficient to prove the above limit for supλ,μ,n . Let
(α1, �1, Q1) and (α2, �2, Q2) be the characteristic triplets of L (Xλ) and L (Xμ)

respectively.
Suppose F with characteristic triplet (α, R, Q) is a cluster point of the distributions

of (Xλ, Xμ̃n ). As in the proof of the previous theorem, we have that F is the limit as
r →∞ of the distributions of (Xλ, Xμ̃r ), where μ̃r = (p1 + tr , . . . , pm + tr )′ with
tr is a subsequence of tn . Let (αr , �r , Qr ) be the characteristic triplets of (Xλ, Xμ̃r ).
By Lemma 7.8 of [19] F is an ID distribution on R

2md . We denote by �r (θ1, θ2)

the characteristic function of L (Xλ, Xμ̃r ) at the point (θ1, θ2) ∈ R
md × R

md . The
logarithm of �r (θ1, θ2) can be written (see proof of Theorem 2.3 and Theorem 2.3.of
[6]) as

log�r (θ1, θ2) = i

〈(
θ1

θ2

)
,

(
α1
r

α2
r

)〉
− 1

2

〈(
θ1

θ2

)
, �r

(
θ1

θ2

)〉

+
∫

{‖x‖<δ,‖y‖<δ}

(
ei〈θ1,x〉+i〈θ2,y〉 − 1− i〈θ1, x〉1[0,1](‖x‖)

−i〈θ2, y〉1[0,1](‖y‖)
)
Qr (dx, dy)

+
∫

{‖x‖≥δ or ‖y‖≥δ}

(
ei〈θ1,x〉+i〈θ2,y〉 − 1− i〈θ1, x〉1[0,1](‖x‖)

−i〈θ2, y〉1[0,1](‖y‖)
)
Qr (dx, dy)

:= I1 + I2 + I3 + I4.
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We need to prove that log�r (θ1, θ2) → log�1(θ1) + log�2(θ2) as r → ∞ for
all θ1, θ2 ∈ R

md where �1 and �2 are the characteristic functions of Xλ and Xμ,
respectively.

It is possible to see immediately that I1 = i〈α1, θ1〉+ i〈α2, θ2〉, just by setting αr =
(α1

r , α
2
r )
′ = (α1, α2)′. Further, by condition (MM1) I2 converges to− 1

2 〈�1θ1, θ1〉−
1
2 〈�2θ2, θ2〉 as r →∞, where �1 and�2 are themd-dimensional covariance matrix
of (Xλ) and (Xμ) respectively.

For I4, we have

lim
r→∞ I4 =

∫

{‖x‖≥δ or ‖y‖≥δ}

(
ei〈θ1,x〉+i〈θ2,y〉 − 1− i〈θ1, x〉1[0,1](‖x‖)

−i〈θ2, y〉1[0,1](‖y‖)
)
Q(dx, dy)

=
∫

{‖x‖≥δ}

(
ei〈θ1,x〉 − 1− i〈θ1, x〉1[0,1](‖x‖)

)
Q1(dx)

+
∫

{‖y‖≥δ}

(
ei<θ2,y> − 1− i < θ2, y > 1[0,1](‖y‖)

)
Q2(dy).

This is because of the identity

exp

(
m∑

i=1
ai +

m∑

i=1
bi

)

− 1 = exp

(
m∑

i=1
ai

)

− 1+ exp

(
m∑

i=1
bi

)

− 1,

which is valid when aib j = 0 for any 1 ≤ i, j ≤ m, and because, letting x =(
x (1)′ , . . . , x (m)′

)
∈ (Rd)m and y =

(
y(1)′ , . . . , y(m)′

)
∈ (Rd)m , we have

Q(‖x‖ · ‖y‖ > δ) ≤ lim inf
r→∞ Qr (‖x‖ · ‖y‖ > δ)

≤ lim inf
r→∞

m∑

j,i=1
Q0,tr+pi−s j

(
|‖x ( j)‖ · ‖y(i)‖ >

δ

m

)
(MM2′)= 0,

for any δ > 0, which shows in particular that Q(‖x‖ · ‖y‖ > 0) = 0.
Analogously to x and y we denote by θ

( j)
1 and θ

( j)
2 the j-th R

d -component of θ1
and θ2, respectively. Concerning I3, consider the multivariate Taylor expansion of

ei〈θ1,x〉+i〈θ2,y〉 − 1− i〈θ1, x〉1[0,1](‖x‖)− i〈θ2, y〉1[0,1](‖y‖) =: g(x, y)

with respect to the variable (x, y)′ at the point (x0, y0)′ ≡ 0. For any δ > 0 small
enough, we obtain
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I3 = −1

2

[ ∫

{‖x‖<δ,‖y‖<δ}

⎛

⎝
m∑

j=1

〈
θ

( j)
1 , x ( j)

〉
⎞

⎠

2

+
⎛

⎝
m∑

j=1

〈
θ

( j)
2 , y( j)

〉
⎞

⎠

2

Qr (dx, dy)

+2
∫

{‖x‖<δ,‖y‖<δ}

⎛

⎝
m∑

j,k=1

〈
θ

( j)
1 , x ( j)

〉 〈
θ

(k)
2 , y(k)

〉
⎞

⎠ Qr (dx, dy)

]
+ R,

where R is the reminder and in the integral form it is given by

R =
∫

{‖x‖<δ,‖y‖<δ}
1

6

∫ 1

0
(1− t)2D3

x,y(g(t x, t y))dtQk(du),

and so

6|R| ≤
∫

{‖x‖<δ,‖y‖<δ}

∫ 1

0
|〈θ1, t x〉 + 〈θ2, t y〉|3

∣∣∣ei〈θ1,t x〉+i〈θ2,t y〉
∣∣∣dtQr (dx, dy)

=
∫

{‖x‖<δ,‖y‖<δ}
|〈θ1, x〉 + 〈θ2, y〉|3Qr (dx, dy)

∫ 1

0
t3dt

= 1

4

∫

{‖x‖<δ,‖y‖<δ}
|〈θ1, x〉 + 〈θ2, y〉|3Qr (dx, dy)

≤ 1

4

∥∥∥
∥

(
θ1

θ2

)∥∥∥
∥

3 ∫

{‖x‖<δ,‖y‖<δ}

∥∥∥
∥

(
x

y

)∥∥∥
∥

3

Qr (dx, dy)

≤ 1

4

∥∥
∥∥

(
θ1

θ2

)∥∥
∥∥

3

2δ

(∫

{0<‖x‖<δ}
‖x‖2Q1(dx)+

∫

{0<‖y‖<δ}
‖y‖2Q2(dx)

)

and thus 6|R| < ε for any positive ε if only δ is sufficiently small. Notice that our
estimates are sharper than the ones of [6] because we work with the explicit integral
form of the remainder. Moreover, we obtain for every j, k = 1, . . . ,m and any δ small
enough that

∫

{‖x‖<δ,‖y‖<δ}

∣
∣
∣
〈
θ
( j)
1 , x( j)

〉 〈
θ
(k)
2 , y(k)

〉 ∣∣
∣Qr (dx, dy)

≤
∥
∥∥θ( j)

1

∥
∥∥ ·
∥
∥∥θ(k)

2

∥
∥∥
∫

{‖x‖<δ,‖y‖<δ}

∥
∥∥x( j)

∥
∥∥ ·
∥
∥∥y(k)

∥
∥∥Qr (dx, dy)

≤
∥
∥
∥θ( j)

1

∥
∥
∥ ·
∥
∥
∥θ(k)

2

∥
∥
∥
∫

{0<‖x ( j)‖2+‖y(k)‖2≤2δ2}

∥
∥
∥x( j)

∥
∥
∥ ·
∥
∥
∥y(k)

∥
∥
∥Q0,tr+pk−s j

(
dx( j), dy(k)

)

≤
∥
∥∥θ( j)

1

∥
∥∥ ·
∥
∥∥θ(k)

2

∥
∥∥
∫

{0<‖x ( j)‖2+‖y(k)‖2≤1}

∥
∥∥x( j)

∥
∥∥

·
∥
∥
∥y(k)

∥
∥
∥Q0,tr+pk−s j

(
dx( j), dy(k)

)
r→∞→ 0,
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by using condition (MM2). Finally, we have

∣∣
∣∣
1

2

∫

{‖x‖<δ,‖y‖<δ}
〈θ1, x〉2Qr (dx, dy)

+
∫

{0<‖x‖<δ}
ei〈θ1,x〉 − 1− i〈θ1, x〉1[0,1](‖x‖)Q1(dx)

∣
∣∣∣ ≤ J1 + J2.

For J1, we have

J1 =
∣
∣∣∣
1

2

∫

{0<‖x‖<δ,‖y‖<δ}
〈θ1, x〉2Qr (dx, dy)− 1

2

∫

{0<‖x‖<δ}
〈θ1, x〉2Qr (dx, dy)

∣
∣∣∣

≤
∫

{0<‖x‖<δ}
〈θ1, x〉2Qr (dx, dy) ≤ ‖θ1‖2

∫

{0<‖x‖<δ}
‖x‖2Q1(dx).

For J2, we have

J2 =
∣∣∣
∣

∫

{0<‖x‖<δ}
1

2
〈θ1, x〉2 + ei〈θ1,x〉 − 1− i〈θ1, x〉1[0,1](‖x‖)Q1(dx)

∣∣∣
∣,

and, by using the multivariate Taylor expansion and noticing that in this case the
expansion is only for the variable x , we obtain

J2 ≤ ‖θ1‖3δ
∫

{0<‖x‖<δ}
‖x‖2Q1(dx).

Similar arguments apply to the second addend of the first term of I3.
Combining all the different results, we get

lim
r→∞ log�r (θ1, θ2) = log�1(θ1)+ log�2(θ2), ∀θ1, θ2 ∈ R

md ,

and consequently we obtain the desired result in (24), which concludes the proof.

Proof of Lemma 2.5

Fix ε > 0, put Bδ = {(x, y) ∈ R
d × R

d : ‖x‖2 + ‖y‖2 ≤ δ2} and Rδ = {(x, y) ∈
R
d × R

d : δ2 < ‖x‖2 + ‖y‖2 ≤ 1}. Then, we get
∫

{0<‖x‖2+‖y‖2≤1}
‖x‖ · ‖y‖Q0tn (dx, dy) =

∫

Bδ

‖x‖ · ‖y‖Q0tn (dx, dy)

+
∫

Rδ

‖x‖ · ‖y‖Q0tn (dx, dy) := P1 + P2.
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We will estimate the terms P1 and P2 separately. Using the stationarity of Q0tn (due
to the stationarity of (Xtn )tn∈Rl ) and the consistency of the Lévy measure, we get

|P1| ≤ 1

2

∫

Bδ

‖x‖2Q0tn (dx, dy)+
1

2

∫

Bδ

‖y‖2Q0tn (dx, dy)

≤ 1

2

∫

{‖x‖2≤δ2,y∈Rd }
‖x‖2Q0tn (dx, dy)+

1

2

∫

{‖y‖2≤δ2,x∈Rd }
‖y‖2Q0tn (dx, dy)

=
∫

‖x‖≤δ

‖x‖2Q0(dx).

Here Q0 is the Lévy measure of X0. Thus, for some appropriately small δ0 we have

|P1| =
∫

Bδ0

‖x‖ · ‖y‖Q0tn (dx, dy) ≤
ε

2
. (25)

For the second term, set c0 = min
{
δ0,

ε
8q

}
with q = Q0

(
‖x‖2 >

δ20
2

)
< ∞. Then,

for C = Rδ0 ∩ {‖x‖ · ‖y‖ > c0} we obtain

|P2| =
∫

C
‖x‖ · ‖y‖Q0tn (dx, dy)+

∫

Rδ0\C
‖x‖ · ‖y‖Q0tn (dx, dy)

≤ 1

2
Q0tn (C)+

∫

Rδ0\C
ε

8q
Q0tn (dx, dy)

≤ 1

2
Q0tn (‖x‖ · ‖y‖ > c0)+ ε

8q
Q0tn (Rδ0\C)

≤ 1

2
Q0tn (‖x‖ · ‖y‖ > c0)+ ε

8q
Q0tn

({

(x, y) : ‖x‖2 >
δ20
2

}

∪
{

(x, y) : ‖y‖2>
δ20
2

})

≤ 1

2
Q0tn (‖x‖ · ‖y‖ > c0)+ ε

4q
Q0tn

(

‖x‖2 >
δ20
2

)

= 1

2
Q0tn (‖x‖ · ‖y‖ > c0)+ ε

4
.

For n large enough we have Q0tn (‖x‖ · ‖y‖ > c0) < ε
2 and therefore

|P2| =
∫

Rδ

‖x‖ · ‖y‖Q0tn (dx, dy) <
ε

2
. (26)

Finally, combining (25) and (26), and letting ε → 0, we obtain the result of the lemma.

Proof of Proposition 2.13

By independence of the random fields (Y k
t )t∈Rl , k = 1, . . . , r , we have that the

Lévy–Khintchine representation of (Xt )t∈Rl can bewritten as the product of the Lévy–
Khintchine representation of the (Y k

t )t∈Rl , k = 1, . . . , r . In other words, for any n ∈ N
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and θ j ∈ R
d , j = 1, . . . , n, we have

E

⎡

⎣exp

⎛

⎝i
n∑

j=1
〈θ j , Xt j 〉

⎞

⎠

⎤

⎦

= E

⎡

⎣exp

⎛

⎝i
n∑

j=1
〈θ j ,

r∑

k=1
Y k
t j 〉
⎞

⎠

⎤

⎦ =
r∏

k=1
E

⎡

⎣exp

⎛

⎝i
n∑

j=1
〈θ j ,Y

k
t j 〉
⎞

⎠

⎤

⎦ .

Now (Xt )t∈Rl is stationary since for any h ∈ R
l

E

⎡

⎣exp

⎛

⎝i
n∑

j=1
〈θ j ,Y

k
t j 〉
⎞

⎠

⎤

⎦ = E

⎡

⎣exp

⎛

⎝i
n∑

j=1
〈θ j ,Y

k
t j+h〉
⎞

⎠

⎤

⎦

because (Y k
t )t∈Rl is stationary, for any k = 1, . . . , r . Moreover, (Xt )t∈Rl is ID since

it is a sum of independent ID random fields.
To show that (Xt )t∈Rl is mixing we proceed as follows. Consider any sequence

(tn)n∈N ∈ T and consider the joint random field (X0, Xtn ). First, notice that the
covariance function of the Gaussian part of (Xtn )tn∈Rl , call it �X (tn), is given by the
sum of the covariance functions of the (Y k

t )t∈Rl , call them �Y k (tn), k = 1, . . . , r .
Moreover, notice also that the Lévy measure of the Lévy–Khintchine formula of the
lawL (Xtn , X0), call it QX ,0tn , is given by the sum of the Lévy measures of the Lévy–
Khintchine formula of the laws L (Y k

tn ,Y
k
0 ), call them QYk ,0tn , k = 1, . . . , r . It is

possible to see this in formulae.

E
[
exp
(
i〈θ1, Xtn 〉 + i〈θ2, X0〉

)]

= E

[

exp

(

i〈θ1,
r∑

k=1
Y k
tn 〉 + i〈θ2,

r∑

k=1
Y k
0 〉
)]

=
r∏

k=1
E

[
exp
(
i〈θ1,Y k

tn 〉 + i〈θ2,Y k
0 〉
)]

=
r∏

k=1
exp

{
i

〈(
θ1

θ2

)
,

(
αk
1

αk
2

)〉

− 1

2

〈(
θ1

θ2

)
, �k(tn)

(
θ1

θ2

)〉

+
∫

R2d

(
ei<θ1,x>+i<θ2,y> − 1− i < θ1, x > 1[0,1](‖x‖)

−i < θ2, y > 1[0,1](‖y‖)
)
QYk ,0tn (dx, dy)

}

= exp

{
i

〈(
θ1

θ2

)
,

(∑r
k=1 αk

1∑r
k=1 αk

2

)〉

− 1

2

〈(
θ1

θ2

)
,

r∑

k=1
�k(tn)

(
θ1

θ2

)〉
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+
∫

R2d

(
ei<θ1,x>+i<θ2,y> − 1− i < θ1, x > 1[0,1](‖x‖)

−i < θ2, y > 1[0,1](‖y‖)
) r∑

k=1
QYk ,0tn (dx, dy)

}

= exp

{
i

〈(
θ1

θ2

)
,

(
α1
X

α2
X

)〉

− 1

2

〈(
θ1

θ2

)
, �X (tn)

(
θ1

θ2

)〉

+
∫

R2d

(
ei<θ1,x>+i<θ2,y> − 1− i < θ1, x > 1[0,1](‖x‖)

−i < θ2, y > 1[0,1](‖y‖)
)
QX ,0tn (dx, dy)

}

where

�k(tn) =
(

�(0) �Y k (tn)
�Y k (tn) �(0)

)
.

In order to prove that (Xt )t∈Rl is mixing we need to show that conditions (MM1)
and (MM2′) hold. However, these conditions hold for each �Y k (tn) and QYk ,0tn ,
where k = 1, . . . , r . Moreover, since both the covariance matrix function �X (tn) of
the Gaussian part of (Xt )t∈Rl and its Lévy measure QX ,0tn are sums of �Y k (tn) and
QYk ,0tn respectively, for k = 1, . . . , r , then we have that these conditions hold also
for them. Hence, (Xt )t∈Rl is mixing.

Appendix B: Proofs of Sect. 3

Proof of Lemma 3.5

The argument of the proof of Lemma 3.4 of [6] can be extended to our setting. To this
end, notice that we can write

(
X0
Xtn

)
=
∫

S

∫

Rl

(
f (A,−s)

f (A, tn − s)

)
�(dA, ds), tn ∈ R

l .

From this and from Theorem 3.3 it is possible to compute the covariance matrix
function of the Gaussian part of (Xt )t∈Rl by

�(tn) =
(

�(0) �(tn)
�(tn) �(0)

)
,

where

�(tn) =
∫

S

∫

Rl
f (A,−s)� f (A, tn − s)′dsπ(dA), tn ∈ R

l .
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The Lévy measure Q0tn ofL (X0, Xtn ) is given by

Q0tn (B) =
∫

S

∫

Rl

∫

Rd
1B( f (A,−s)x, f (A, tn − s)x)Q(dx)dsπ(dA),

for all Borel sets B ⊆ R
2q\{0}, using again Theorem 3.3. Therefore, given this explicit

representation of Q0tn we have that

∫

R2q
min(1, ‖x‖ · ‖y‖)Q0tn (dx, dy)

=
∫

S

∫

Rl

∫

Rd
min(1, ‖ f (A,−s)x‖ · ‖ f (A, tn − s)x‖)Q(dx)dsπ(dA).

Now by using Corollary 2.7 we complete the proof.

Proof of Theorem 3.6

We generalise the arguments given in the proof of Theorem 3.5 of [6]. Following
Lemma 3.5, in order to prove this theorem it is sufficient to show that

‖�(tn)‖ =
∥
∥∥∥

∫

S

∫

Rl
f (A,−s)� f (A, tn − s)′dsπ(dA)

∥
∥∥∥

n→∞→ 0

and

∫

R2d
min(1, ‖x‖ · ‖y‖)Q0tn (dx, dy)

=
∫

S

∫

Rl

∫

Rd
min(1, ‖ f (A,−s)x‖ · ‖ f (A, tn − s)x‖)Q(dx)dsπ(dA)

n→∞→ 0,

for any (tn)n∈N ∈ T .

First,we concentrate onproving that‖�(tn)‖ n→∞→ 0.Consider that by the existence
of the MMA field we have (see Theorem 3.3)

∫

S

∫

Rl

∥∥∥ f (A, t − s)�
1
2

∥∥∥
2
dsπ(dA) < ∞,

for any t ∈ R
l , where �

1
2 denotes the unique square root of �. Therefore for any

t ∈ R
l , the function gt : S × R

l → R, (A, s) !→ ‖ f (A, t − s)�
1
2 ‖ is an element

of L2(S × R
l ,B(S × R

l), π ⊗ λl;R). The fact that the measure π ⊗ λl is σ -finite
implies that every L2-function can be approximated (in the L2-norm) by an elementary
function in
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E :=
{
f ∈ L2(S × R

l ,B(S × R
l), π ⊗ λl;R) : f =

k∑

i=1
ci1Di×Ri , k ∈ N,

ci ∈ R, Di ∈ B(S), Ri ∈ B(Rl), i = 1, . . . , k

}
.

Let us now fix an arbitrary ε > 0 and choose an elementary function g̃ ∈ E such that

‖g0 − g̃‖L2 =
(∫

S

∫

Rl
|g0(A, s)− g̃(A, s)|2dsπ(dA)

) 1
2

< ε.

Now we have that for any tn ∈ R
l

‖�(tn)‖ =
∥∥∥∥

∫

S

∫

Rl
f (A,−s)� 1

2

(
f (A, tn − s)�

1
2

)′
dsπ(dA)

∥∥∥∥

≤
∫

S

∫

Rl
g0(A, s) · gt (A, s)dsπ(dA)

=
∫

S

∫

Rl
(g0(A, s)− g̃(A, s)) · gt (A, s)+ g̃(A, s)(gt (A, s)− g̃(A, s − tn))

+g̃(A, s)g̃(A, s − tn)dsπ(dA).

By the Cauchy–Schwarz inequality we obtain

‖�(tn)‖ ≤ ε · ‖gtn‖L2 + ‖g̃‖L2 ·
(∫

S

∫

Rl
|gtn (A, s)− g̃(A, s − tn)|2dsπ(dA)

) 1
2

+
∫

S

∫

Rl
|g̃(A, s)g̃(A, s − tn)|2dsπ(dA).

Now notice that

(∫

S

∫

Rl
|gtn (A, s)− g̃(A, s − tn)|2dsπ(dA)

) 1
2

=
(∫

S

∫

Rl
|g0(A, s − tn)− g̃(A, s − tn)|2dsπ(dA)

) 1
2

< ε

and that ‖gtn‖L2 = ‖g0‖L2 , by a simple change of variables. In addition, ‖g̃‖L2 ≤
‖g0‖L2 + ‖g̃ − g0‖L2 < ‖g0‖L2 + ε.

Finally, it is possible to see that

∫

S

∫

Rl
|g̃(A, s)g̃(A, s − tn)|2dsπ(dA) = 0,

for sufficiently large tn (or equivalently for sufficiently large n, where tn is an element
of (tn)n∈N ∈ T ). This is because g̃ ∈ E . In particular, given g̃ ∈ E then g̃(A, s) =
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∑k
i=1 ci1Di×Ri (A, s), k ∈ N, hence g̃(A, s− tn) = 0 for tn sufficiently large using the

fact that the rectangles Ri cannot cover the wholeR
l since

∫
S

∫
Rl ‖g̃‖2dsπ(dA) < ∞,

for any i = 1, . . . , k. Therefore, we have

‖�(tn)‖ < ε · ‖g0‖L2 + (ε + ‖g0‖L2) · ε,

for sufficiently large n. This yields ‖�(tn)‖ → 0 as n →∞, for any (tn)n∈N ∈ T .
We now move to the second objective of the proof. Indeed, we now prove that

∫

R2q
min(1, ‖x‖ · ‖y‖)Q0tn (dx, dy)

n→∞→ 0,

for any (tn)n∈N ∈ T .
Consider an arbitrary ε > 0 and set Br := {(x, y) ∈ R

q×R
q : ‖x‖2+‖y‖2 ≤ r2}.

Recall now the argument used to prove (21). In that argument we did not assume that
the random field was mixing, but only that was stationary and ID. Thus, we have that
for any (tn)n∈N ∈ T the following holds

sup
n≥n0

Q0tn (R
2q\BR) ≤ ε,

for some R > 1 and some n0 > 0. Therefore, for all n ≥ n0, we obtain that

∫

R2q
min(1, ‖x‖ · ‖y‖)Q0tn (dx, dy) ≤

∫

BR

min(1, ‖x‖ · ‖y‖)Q0tn (dx, dy)+ ε.

Now notice that when max{‖u‖, ‖v‖} ≤ R we have

min{‖u‖ · ‖v‖, 1} ≤ R ·min{‖u‖, 1} ·min{‖v‖, 1}.

Hence, we have

∫

BR

min(1, ‖x‖ · ‖y‖)Q0tn (dx, dy)≤ R ·
∫

BR

min(1, ‖x‖) ·min(1, ‖y‖)Q0tn (dx, dy)

≤ R ·
∫

S

∫

Rl

∫

Rd
min(1, ‖ f (A,−s)x‖) ·min(1, ‖ f (A, tn − s)x‖)Q(dx)dsπ(dA).

By the existence of the MMA random field, we have that for any tn ∈ R
l the function

htn : S × R
l × R

d → R, htn (A, s, x) := min(1, ‖ f (A, tn − s)x‖) is an element of
L2(S × R

l × R
d ,B(S × R

l × R
d), π ⊗ λl ⊗ Q;R). Also, the fact that every Lévy

measure is σ -finite implies that the product measure π ⊗ λl ⊗ Q is σ -finite as well
and therefore it is possible to use the same approximation argument used above in the
first part of this proof to show that

∫

S

∫

Rl

∫

Rd
min(1, ‖ f (A,−s)x‖) ·min(1, ‖ f (A, tn − s)x‖)Q(dx)dsπ(dA)

n→∞→ 0,
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for any (tn)n∈N ∈ T , which completes the proof.

Appendix C: Proofs of Sect. 4

Proof of Theorem 4.11

This proof is a multivariate and a random field extension of the proof of Theorem 1
of [14].

“⇒”: It is well known that any weakly mixing random field is ergodic.
“⇐”: For the other direction we argue as follows. Let (Xt )t∈Rl be an ergodic R

d -
valued stationary ID random field. In this proof we will work with j, k = 1, . . . , d
and we will not repeat it every time. We showed before that

τ(t) =
(
τ ( jk)(t)

)

j,k=1,...,d

with

τ ( jk)(t) := τ
(
X (k)
0 , X ( j)

t

)
= σ

jk
t +

∫

R2
(eix − 1)(eiy − 1)Q jk

0t (dx, dy) (27)

is the autocodifference field of (Xt )t∈Rl . Since (Xt )t∈Rl is an R
d -valued ID and sta-

tionary random field, we have that

τ
(
X (k)
s , X ( j)

t

)
= τ
(
X (k)
0 , X ( j)

t−s
)

.

Hence, as shown before in Proposition 4.10, the function

τ ( jk)(t) = τ
(
X (k)
0 , X ( j)

t

)

is non-negative definite and τ ( jk)(0) = − log
(
E[ei X ( j)

0 ] · E[ei X (k)
0 ]
)
which is a con-

stant. Hence, we can use Bochner’s theorem, which implies that there exists a finite
Borel measure v on R

l such that

τ ( jk)(t) =
∫

Rl
ei〈t,λ〉v(dλ).

Thus,

E[ei(X ( j)
0 −X (k)

t )]
(
E[ei X ( j)

0 ] · E[ei X (k)
0 ]
)−1

= eτ ( jk)(t) = ev̂(t) = êxp(v)(t),

where exp(v) = ∑∞
n=o(v∗n/n!), v∗0 = δ0 and the symbol “ ˆ ” denotes the Fourier

transform. Notice that the last equality comes from the convolution theorem. Hence,
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τ ( jk) = v̂. Moreover, since both terms on the RHS of (27) are non-negative defi-
nite thanks to Proposition 4.10, again by Bochner’s theorem there exists finite Borel
measures vG and vP on R

l such that

τ ( jk)(t) = v̂G(t)+ v̂P (t). (28)

Thus v = vG + vP . The ergodicity of the process implies that

1

(2T )l

∫

(−T ,T ]l
E

[
ei(X

( j)
0 −X (k)

t )
]
dt

T→∞→ E

[
ei X

( j)
0

]
E

[
e−i X

(k)
0

]
.

Hence, combining this result with Lemma 4.8, we obtain

1

(2T )l

∫

(−T ,T ]l
êxp(v)(t)dt

T→∞−→ exp(vG + vP )({0}) = 1,

which implies that

vG({0})+ vP ({0}) = 0 and (vG + vP ) ∗ (vG + vP )({0}) = 0, (29)

and so vG ∗ vG({0}) = 0. Therefore, we have that

1

(2T )l

∫

(−T ,T ]l
(σ

jk
t )2dt = 1

(2T )l

∫

(−T ,T ]l
(v̂G(t))2dt

T→∞−→ vG ∗ vG({0}) = 0.

Since σ
jk
t is real, we deduce from Lemma 4.7 that there exists a set D of density one

in R
l , such that

lim
n→∞ σ

jk
tn = 0, for any (tn)n∈N ∈ TD. (30)

Now we would like to prove a similar result for the Lévy measure of L (X ( j)
0 , X (k)

tn ),
so that we can then apply Corollary 4.6, which will give us weakmixing of our random
field (Xt )t∈Rl . By equations (27), (28), (29) and Lemma 4.8 we have that

1

(2T )l

∫

(−T ,T ]l

∫

R2
(eix − 1)(eiy − 1)Q jk

0t (dx, dy)dt

= 1

(2T )l

∫

(−T ,T ]l
v̂P (t)dt

T→∞−→ vP ({0})
= 0.

When taking the real part of 1
(2T )l

∫
(−T ,T ]l

∫
R2(eix − 1)(eiy − 1)Q jk

0t (dx, dy)dt we
get that

1

(2T )l

∫

(−T ,T ]l

∫

R2
[(cos x − 1)(cos y − 1)+ sin x sin y]Q jk

0t (dx, dy)dt
T→∞−→ 0. (31)
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Now consider the two integrands of Eq. (31). By stationarity and Proposition 4.10, the
functions

t →
∫

R2
(cos x − 1)(cos y − 1)Q jk

0t (dx, dy), and t →
∫

R2
sin x sin yQ jk

0t (dx, dy)

are non-negative definite. By Bochner’s theorem, this implies that there exist finite
Borel measures λ1 and λ2 such that equation (31) can be written as

1

(2T )l

∫

(−T ,T ]l
λ̂1dt + 1

(2T )l

∫

(−T ,T ]l
λ̂2dt

T→∞−→ 0,

and using Lemma 4.8 we obtain λ1({0}) = λ2({0}) = 0. Focusing on the first one, we
conclude that

1

(2T )l

∫

(−T ,T ]l

∫

R2
(cos x − 1)(cos y − 1)Q jk

0t (dx, dy)dt
T→∞−→ λ1({0}) = 0. (32)

Define RT (dx, dy) = 1
(2T )l

∫
(−T ,T ]l Q

jk
0t (dx, dy)dt . Then we have

∫

R2
(cos x − 1)(cos y − 1)RT (dx, dy)

T→∞−→ 0. (33)

It is possible to notice that the family of finite measures (RT |Kc
δ
)T>0 is weakly rela-

tively compact for every δ > 0. This is because by Lemma 4.9 (Q jk
0t |Kc

δ
)t∈Rl is weakly

relatively compact for every δ > 0. The goal is now to show that

∫

R2
min(|xy|, 1)RT (dx, dy)

T→∞−→ 0. (34)

So, let Tn → ∞, Tn ∈ R. Using the diagonalization procedure we can find a
subsequence (T ′n) of (Tn) and a measure R on R

2\{0} such that RT ′n |Kc
δ
⇒ R|Kc

δ

as n → ∞ for every δ > 0. Now, notice that (cos x − 1)(cos y − 1) ≥ 0 and
(cos x − 1)(cos y− 1) = 0 if x = 2πk or y = 2πk, for k ∈ N. Moreover, by Eq. (33)
we have that

∫

Kc
δ

(cos x − 1)(cos y − 1)R(dx, dy) = 0,

for every δ > 0. Therefore, the measure R is concentrated on the set of lines {(x, y) :
x ∈ 2πZ or y ∈ 2πZ}. Since the random field is stationary, the projections of Q0t

(and of Q jk
0t ) onto the first and second axis (excluding zero) are equal to Q0 (and to

Q j
0 for the first axis and to Qk

0 for the second). The same holds for RT and for R.
Suppose for now that Q0({x = (x1, . . . , xd)′ ∈ R

d : ∃ j ∈ {1, . . . , d}, x j ∈
2πZ}) = 0, which implies that for α ∈ Z\{0} we have Q jk

0 (2πα × R) = Q jk
0 (R ×
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2πα) = 0. Then R must be concentrated on the axes of R
2. Hence, for every δ > 0

such that R({(x, y) : x2 + y2 = δ2}) = 0,

lim sup
n→∞

∫

R2
min(|xy|, 1)RT ′n (dx, dy)

≤ lim sup
n→∞

∫

Kc
δ

min(|xy|, 1)RT ′n (dx, dy)

+ sup
T>0

1

(2T )l

∫

(−T ,T ]l

∫

Kδ

|xy|Q jk
0t (dx, dy)dt .

Equation (10) implies that the last quantity can be made arbitrarily small. Hence, (34)
follows. From Eq. (34) and Lemma 4.7 we obtain that there exists a set D′ of density
one in R

l such that

lim
n→∞

∫

R2
min(|xy|, 1)Q jk

0tn
(dx, dy) = 0, for any (tn)n∈N ∈ TD′ . (35)

In case D of Eq. (30) and D′ of Eq. (35) are different this is not a problem because the
intersection of two (or a finite number) of density one sets is again a density one set.

Hence, following the proof of Corollary 2.7 (and using its weak mixing version,
namely Corollary 4.6) we obtain that (Xt )t∈Rl is weakly mixing with the additional
assumption that Q0({x = (x1, . . . , xd)′ ∈ R

d : ∃ j ∈ {1, . . . , d}, x j ∈ 2πZ}) = 0.
However, this assumption can be eliminated by first using the fact that if (Xt )t∈Rl is
ergodic then (MaXt )t∈Rl is ergodic too, and then by following the arguments of The-
orem 2.11. In particular, let Z = {z = (z1, . . . , z j ) ∈ R

d : z j = 2πk/y j ∀ j ∈
{1, . . . , d}, where k ∈ Z and y = (y1, . . . , y j ) is an atom of Q0}. The set Z is
countable and hence there exists a nonzero a ∈ R

d\Z . Consider the random field
(MaXt )t∈Rl and let Qa

0 be the Lévy measure of MaX0. Then Qa
0 has no atoms in the

set ({x = (x1, . . . , xd)′ ∈ R
d : ∃ j ∈ {1, . . . , d}, x j ∈ 2πZ}); since (MaXt )t∈Rl is

also ergodic, it is weakly mixing by the arguments of this proof. Therefore, (Xt )t∈Rl

is weakly mixing and the proof is complete.
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