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Abstract
In this paper, we are concerned with convergence rate of Euler–Maruyama scheme for
stochastic differential equationswithHölder–Dini continuous drifts. The key contribu-
tions are as follows: (i) bymeans of regularity of non-degenerate Kolmogrov equation,
we investigate convergence rate of Euler–Maruyama scheme for a class of stochastic
differential equations which allow the drifts to be Dini continuous and unbounded; (ii)
by the aid of regularization properties of degenerate Kolmogrov equation, we discuss
convergence rate of Euler–Maruyama scheme for a range of degenerate stochastic
differential equations where the drifts are Hölder–Dini continuous of order 2

3 with
respect to the first component and are merely Dini-continuous concerning the second
component.

Keywords Euler–Maruyama scheme · Convergence rate · Hölder–Dini continuity ·
Degenerate stochastic differential equation · Kolmogorov equation
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1 Introduction andMain Results

In their paper [23], Wang and Zhang studied existence and uniqueness for a class of
stochastic differential equations (SDEs) with Hölder–Dini continuous drifts; Wang
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[22] also investigated the strong Feller property, log-Harnack inequality and gradient
estimates for SDEs with Dini-continuous drifts. So far there are no numerical schemes
available for SDEs with Hölder–Dini continuous drifts. So the aim of this paper is
to prove the convergence of Euler–Maruyama (EM) scheme and obtain the rate of
convergence for these equations under reasonable conditions.

It is well-known that convergence rate of EM for SDEs with regular coefficients is
one-half, see, e.g., [11]. With regard to convergence rate of EM scheme under various
settings, we refer to, e.g., [1] for stochastic differential delay equations (SDDEs)
with polynomial growth with respect to (w.r.t.) the delay variables, [4] for SDDEs
under local Lipschitz and monotonicity condition, [14] for SDEs with discontinuous
coefficients, and [25] for SDEs under log-Lipschitz condition, whereas for SDEs with
non-globally Lipschitz continuous coefficients; see, e.g., [2,6–8], to name a few.On the
other hand, Hairer et al. [5] have established the first result in the literature that Euler’s
method converges to the solution of an SDEwith smooth coefficients in the strong and
numerical weak sense without any arbitrarily small polynomial rate of convergence,
and Jentzen et al. [9] have further given a counterexample that no approximation
method converges to the true solution in the mean square sense with polynomial rate.

The rate of convergence of EM scheme for SDEs with irregular coefficients has
also gained much attention. For instance, adopting the Yamada–Watanabe approx-
imation approach, [3] discussed strong convergence rate in L p-norm sense; using
the Yamada–Watanabe approximation trick and heat kernel estimate, [16] studied
strong convergence rate in L1-norm sense for a class of non-degenerate SDEs, where
the bounded drift term satisfies a weak monotonicity and is of bounded variation
w.r.t. a Gaussian measure and the diffusion term is Hölder continuous; applying the
Zvonkin transformation, [18] discussed strong convergence rate in L p-norm sense for
SDEs with additive noises, where the drift coefficient is bounded and Hölder contin-
uous.

It is worth pointing out that [16,18] focused on convergence rate of EM for SDEs
with Hölder continuous and bounded drifts, which rules out Hölder–Dini continuous
and unbounded drifts. On the other hand,most of the existing literature on convergence
rate of EM scheme is concerned with non-degenerate SDEs. Yet the correspond-
ing issue for degenerate SDEs is scarce, to the best of our knowledge. So, in this
work, we will not only investigate the convergence of the EM scheme for SDEs with
Hölder–Dini continuous drifts, but will also study the degenerate setup. For well-
posedness of SDEs with singular coefficients, we refer to, e.g., [13,22,23,27] for more
details.

Throughout the paper, the following notation will be used. Let n,m be positive
integers, (Rn, 〈·, ·〉 , |·|) the n-dimensional Euclidean space, andRn⊗R

m the family of
all n×mmatrices. Let ‖·‖ and ‖·‖HS stand for the usual operator norm and theHilbert–
Schmidt norm, respectively. Fix T > 0 and set ‖ f ‖T ,∞ := supt∈[0,T ],x∈Rm ‖ f (t, x)‖
for an operator-valued map f on [0, T ] × R

m . C(Rm;Rn) means the continuous
functions f : Rm → R

n . Let C2(Rn;Rn ⊗ R
n) be the family of all continuously

twice differentiable functions f : Rn → R
n ⊗ R

n . Denote Mn
non by the collection of

all nonsingular n×n-matrices. LetS0 be the collection of all slowly varying functions
φ : R+ → R+ at zero in Karamata’s sense (i.e., limt→0

φ(λt)
φ(t) = 1 for any λ > 0),
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which are bounded from 0 and ∞ on [ε,∞) for any ε > 0. Let D0 be the family of
Dini functions, i.e.,

D0 : =
{
φ

∣∣∣φ : R+ → R+ is increasing and
∫ 1

0

φ(s)

s
ds < ∞

}
.

A function f : Rm → R
n is called Dini continuity if there exists φ ∈ D0 such that

| f (x)− f (y)| ≤ φ(|x− y|) for any x, y ∈ R
m .We remark that every Dini-continuous

function is continuous and every Lipschitz continuous function is Dini continuous;
Moreover, if f is Hölder continuous, then f is Dini continuous. Nevertheless, there
are numerous Dini-continuous functions, which are not Hölder continuous at all, see,
e.g.,

φ(x) =
{

1
(log(c+x−1))(1+δ) , x > 0

0, x = 0

for some constants δ > 0 and c ≥ e3+2δ . Set

D := {φ ∈ D0|φ2 is concave} and Dε := {φ ∈ D |φ2(1+ε) is concave}

for some ε ∈ (0, 1) sufficiently small. Clearly, φ constructed above belongs to Dε. A
function f : Rm → R

n is called Hölder–Dini continuity of order α ∈ [0, 1) if

| f (x) − f (y)| ≤ |x − y|αφ(|x − y|), |x − y| ≤ 1

for some φ ∈ D0; see, for instance,

f (x) =
{

1
(1+x)α(log(c+x−1))(1+δ) , x > 0

0, x = 0

for some constants c, δ > 0 and α ∈ (0, 1).
Before proceeding further, a few words about the notation are in order. Generic

constants will be denoted by c; we use the shorthand notation a � b to mean a ≤ c b.
If the constant c depends on a parameter p, we shall also write cp and a �p b.
Throughout the paper, for fixed T > 0, CT > 0, dependent on the quantity T , is a
generic constant which may change from line to line.

1.1 Non-degenerate SDEs with Bounded Coefficients

In this subsection, we consider an SDE on (Rn, 〈·, ·〉 , | · |)

dXt = bt (Xt )dt + σt (Xt )dWt , t > 0, X0 = x, (1.1)

where b : R+×R
n → R

n , σ : R+×R
n → R

n⊗R
n , and (Wt )t≥0 is an n-dimensional

Brownianmotion defined on a complete filtered probability space (�,F , (Ft )t≥0,P).
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With regard to (1.1), we suppose that there exists φ ∈ D such that, for any s, t ∈
[0, T ] and x, y ∈ R

n,

(A1) σt ∈ C2(Rn;Rn ⊗ R
n), σt (x) ∈ M

n
non, and

‖b‖T ,∞ +
2∑

i=0

‖∇ iσ‖T ,∞ + ‖∇σ−1‖T ,∞ + ‖σ−1‖T ,∞ < ∞, (1.2)

where ∇ i means the i th order gradient operator;
(A2) (Regularity of b w.r.t. spatial variables)

|bt (x) − bt (y)| ≤ φ(|x − y|);

(A3) (Regularity of b and σ w.r.t. time variables)

|bs(x) − bt (x)| + ‖σs(x) − σt (x)‖HS ≤ φ(|s − t |).

Without loss of generality, we take an integer N > 0 sufficiently large such that the
stepsize δ := T /N ∈ (0, 1). The continuous-time EM scheme corresponding to (1.1)
is

dYt = btδ (Ytδ )dt + σtδ (Ytδ )dWt , t > 0, Y0 = X0 = x . (1.3)

Herein, tδ := �t/δ
δ with �t/δ
 the integer part of t/δ.
The first contribution in this paper is stated as follows.

Theorem 1.1 Let (A1)–(A3) hold. Then

(
E

(
sup

0≤t≤T
|Xt − Yt |2

))1/2

�T φ(CT
√

δ)

for some constant CT ≥ 1.

Under (A1) and (A2), (1.1) admits a unique non-explosive strong solution
(Xt )t∈[0,T ]; see, e.g., [22, Theorem 1.1]. In Theorem 1.1, by taking φ(x) = xβ for
x ≥ 0 andβ ∈ (0, 1], and inspecting closely the argument of Theorem1.1, the concave
property of φ2 can be dropped. Moreover, we have

E

(
sup

0≤t≤T
|Xt − Yt |2

)
�T δβ.

So, our present result covers [18, Theorem 2.13], where the drift is Hölder continuous.
In particular, for the setting β = 1, it reduces to the classical result on strong con-
vergence of EM scheme for SDEs with regular coefficients; see, e.g., [11] for more
details.
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1.2 Non-degenerate SDEs with Unbounded Coefficients

As we see, in Theorem 1.1, the coefficients are uniformly bounded, and that the drift
term b satisfies the global Dini-continuous condition [see (A2) above], which seems
to be a little bit stringent. Therefore, concerning the coefficients, it is quite natural
to replace uniform boundedness by local boundedness and global Dini continuity by
local Dini continuity, respectively.

In lieu of (A1)–(A3), as for (1.1) we assume that, for any s, t ∈ [0, T ] and k ≥ 1,

(A1’) σt ∈ C2(Rn;Rn ⊗ R
n), for every x ∈ R

n, σt (x) ∈ M
n
non, and

|bt (x)| +
2∑

i=0

‖∇ iσt (x)‖HS + ‖∇σ−1
t (x)‖HS

+ ‖σ−1
t (x)‖HS ≤ KT (1 + |x |), x ∈ R

n

for some constant KT > 0;
(A2’) (Regularity of b w.r.t. spatial variables) There exists φk ∈ D such that

|bt (x) − bt (y)| ≤ φk(|x − y|), |x | ∨ |y| ≤ k;

(A3’) (Regularity of b and σ w.r.t. time variables) For φk ∈ D such that (A2’),

|bs(x) − bt (x)| + ‖σs(x) − σt (x)‖HS ≤ φk(|s − t |), |x | ≤ k.

By employing the cutoff approach, Theorem 1.1 can be extended to include SDEs
with local Dini-continuous coefficients, which is presented as below.

Theorem 1.2 Assume (A1’)–(A3’) hold. Then it holds that

lim
δ→0

E

(
sup

0≤t≤T
|Xt − Yt |2

)
= 0. (1.4)

In particular, if φk(s) = ee
c0k

4

sα, s ≥ 0, for some α ∈ (0, 1] and c0 > 0, then

E

(
sup

0≤t≤T
|Xt − Yt |2

)
� inf

ε∈(0,1)

{
(log log(δ−αε))−

1
4 + δα(1−ε)

}
. (1.5)

Moreover, if σ·(·) is uniformly bounded (i.e., ‖σ‖T ,∞ < ∞), then

E

(
sup

0≤t≤T
|Xt − Yt |2

)
� inf

ε∈(0,1)

{
exp

(
− 1

CT ‖σ‖2T ,∞
(log log(δ−αε))

1
2

)
+ δα(1−ε)

}

(1.6)
for some constant CT > 0, where ‖σ‖T ,∞ := sup0≤t≤T ,x∈Rn ‖σt (x)‖HS.
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Under (A1’) and (A2’), (1.1) enjoys a unique strong solution (Xt )t∈[0,T ]; see, for
instance, [22, Theorem 1.1]. Theorem 1.2 has improved the result in [17] since the
drift involved is allowed to be unbounded and local Dini continuous, while the drift in
[17] is bounded and Hölder continuous. Furthermore, by comparing (1.5) with (1.6),
we infer that the convergence rate of EM scheme is better whenever σ·(·) is uniformly
bounded.

Remark 1.3 In fact, in terms of [10, Theorem D], (1.4) holds under (A1’)–(A3’) as
well as the pathwise uniqueness of (1.1), whereas in Sect. 4 we provide an alternative
proof of (1.4) in order to reveal the convergence rate of the EM scheme.

1.3 Degenerate SDEs

So far, most of the existing literature on convergence of EM scheme for SDEs with
irregular coefficients is concerned with non-degenerate SDEs; see, e.g., [16–18] for
SDEs driven by Brownian motions, and [18] for SDEs driven by jump processes. The
issue for the setup of degenerate SDEs has not yet been considered to date to the best
of our knowledge. Nevertheless, in this subsection, we make an attempt to discuss the
topic for degenerate SDEs with Hölder–Dini continuous drift.

For notation simplicity, we shall write R2n instead of Rn × R
n . Consider the fol-

lowing degenerate SDE on R
2n

{
dX (1)

t = b(1)
t (X (1)

t , X (2)
t )dt, X (1)

0 = x (1) ∈ R
n,

dX (2)
t = b(2)

t (X (1)
t , X (2)

t )dt + σt (X
(1)
t , X (2)

t )dWt , X (2)
0 = x (2) ∈ R

n,
(1.7)

where b(1)
t , b(2)

t : R
2n → R

n , σt : R
2n → R

n ⊗ R
n , and (Wt )t≥0 is an n-

dimensional Brownian motion defined on the complete filtered probability space
(�,F , (Ft )t≥0,P). (1.7) is also called the stochastic Hamiltonian system, which
has been investigated extensively in [24,26] on Bismut formulae, in [15] on ergodic-
ity, in [21] on hypercontractivity, and in [23] on wellposedness, to name a few. For
applications of the model (1.7), we refer to, e.g., Soize [20].

Write the gradient operator onR2n as ∇ = (∇(1),∇(2)), where ∇(1) and ∇(2) stand
for the gradient operators w.r.t. the first and the second components, respectively.

We assume that there exists φ ∈ Dε ∩ S0 such that for any x = (x (1), x (2)), y =
(y(1), y(2)) ∈ R

2n and s, t ∈ [0, T ],
(C1) (Hypoellipticity) (∇(2)b(1)

t )(x), σt (x) ∈ M
n
non, and

‖b(1)‖T ,∞ + ‖b(2)‖T ,∞ + ‖∇(2)b(1)‖T ,∞ +
∥∥∥(∇(2)b(1))−1

∥∥∥
T ,∞

+ ‖σ‖T ,∞ + ‖∇σ‖T ,∞ + ‖σ−1‖T ,∞ < ∞;

(C2) (Regularity of b(1) w.r.t. spatial variables)

|b(1)
t (x) − b(1)

t (y)| ≤ |x (1) − y(1)| 23 φ(|x (1) − y(1)|) if x (2) = y(2),
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‖(∇(2)b(1)
t )(x) − (∇(2)b(1)

t )(y)‖HS ≤ φ(|x (2) − y(2)|) if x (1) = y(1);

(C3) (Regularity of b(2) w.r.t. spatial variables)

|b(2)
t (x) − b(2)

t (y)| ≤ |x (1) − y(1)| 23 φ(|x (1) − y(1)|) + φ
7
2 (|x (2) − y(2)|);

(C4) (Regularity of b(1), b(2) and σ w.r.t. time variables)

|b(1)
t (x) − b(1)

s (x)| + |b(2)
t (x) − b(2)

s (x)| + ‖σt (x) − σs(x)‖HS ≤ φ(|t − s|).

Observe from (C2) and (C3) that b(1)(·, x (2)) and b(2)(·, x (2)) with fixed x (2) are
locally Hölder–Dini continuous of order 2

3 , and (∇(2)b(1))(x (1), ·) and b(2)(x (1), ·)
with fixed x (1) are merely Dini-continuous.

The continuous-time EM scheme associated with (1.7) is as follows:

{
dY (1)

t = b(1)
tδ (Y (1)

tδ ,Y (2)
tδ )dt, X (1)

0 = x (1) ∈ R
n,

dY (2)
t = b(2)

tδ (Y (1)
tδ ,Y (2)

tδ )dt + σtδ (Y
(1)
tδ ,Y (2)

tδ )dWt , X (2)
0 = x (2) ∈ R

n .
(1.8)

Another contribution in this paper reads as below.

Theorem 1.4 Let (C1)–(C4) hold. Then

(
E

(
sup

0≤t≤T
|Xt − Yt |2

))1/2

�T φ(CT
√

δ)

for some constant CT ≥ 1, in which

Xt :=
(
X (1)
t

X (2)
t

)
and Yt :=

(
Y (1)
t

Y (2)
t

)
.

According to [23, Theorem 1.2], (1.7) admits a unique strong solution under the
assumptions (C1)–(C3). In fact, (1.7) is wellposed under (C1)–(C3)withφ ∈ D0∩S0
in lieu of φ ∈ Dε ∩ S0. Nevertheless, the requirement φ ∈ Dε ∩ S0 is imposed in
order to reveal the order of convergence for the EM scheme above. By applying the
cutoff approach and refining the argument of [23, Theorem 2.3] (see also Lemma 5.1
below), the boundedness of coefficients can be removed. We herein do not go into
details since the corresponding trick is quite similar to the proof of Theorem 1.2.

The outline of this paper is organized as follows: In Sect. 2, we elaborate regularity
of non-degenerate Kolmogorov equation, which plays an important role in dealing
with convergence rate of EM scheme for non-degenerate SDEs with Hölder–Dini
continuous and unbounded drifts; In Sects. 3, 4 and 5, we complete the proofs of
Theorems 1.1, 1.2 and 1.4, respectively.
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2 Regularity of Non-degenerate Kolmogorov Equation

Let (ei )i≥1 be an orthogonal basis of Rn . For any λ > 0, consider the following
R
n-valued parabolic equation:

∂t u
λ
t + Ltu

λ
t + bt + ∇bt u

λ
t = λuλ

t , uλ
T = 0n, (2.1)

where ∇bt u
λ
t means the directional derivative along the direction bt , 0n is the zero

vector in Rn and

Lt := 1

2

∑
i, j

〈
(σtσ

∗
t )(·)ei , e j

〉∇ei ∇e j

with σ ∗
t standing for the transpose of σt . Let (P0

s,t )0≤s≤t be the semigroup generated
by (Zs,x

t )0≤s≤t which solves an SDE below

dZs,x
t = σt (Z

s,x
t )dWt , t > s, Zs,x

s = x . (2.2)

By the chain rule, it follows from (2.1) that

∂t

(
e−λ(t−s)P0

s,t u
λ
t

)
= e−λ(t−s)

{
−λP0

s,t u
λ
t + P0

s,t Ltu
λ
t + P0

s,t∂t u
λ
t

}

= −e−λ(t−s)P0
s,t

{
bt + ∇bt u

λ
t

}
.

Thus, integrating from s to T and taking advantage of uλ
T = 0n, we arrive at

uλ
s =

∫ T

s
e−λ(t−s)P0

s,t

{
bt + ∇bt u

λ
t

}
dt . (2.3)

For notation simplicity, let

�T ,σ = e
T
2 ‖∇σ‖2T ,∞‖σ−1‖T ,∞ (2.4)

and

�̃T ,σ = 48e288 T
2‖∇σ‖4T ,∞

{
6
√
2eT ‖∇σ‖2T ,∞‖σ−1‖4T ,∞ + T ‖∇σ−1‖2T ,∞

+ 2T 2‖∇2σ‖2T ,∞‖σ−1‖2T ,∞e2T ‖∇σ‖2T ,∞
}

.
(2.5)

Moreover, set

ϒT ,σ :=
√

�̃T ,σ

{
3 + 2‖b‖T ,∞ + 28

(
�T ,σ +

√
�̃T ,σ

)
‖b‖2T ,∞

}
. (2.6)

The lemma below plays a crucial role in investigating error analysis.

Lemma 2.1 Under (A1) and (A2), for anyλ ≥ 9π�2
T ,σ ‖b‖2T ,∞+4(‖b‖T ,∞+�T ,σ )2,
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(i) (2.1) (i.e., (2.3)) enjoys a unique strong solution uλ ∈ C([0, T ];C1
b(R

n;Rn));
(ii) ‖∇uλ‖T ,∞ ≤ 1

2 ;

(iii) ‖∇2uλ‖T ,∞ ≤ ϒT ,σ

∫ T
0

e−λt

t φ̃(‖σ‖T ,∞
√
t)dt, where φ̃(s) := √

φ2(s) + s,
s ≥ 0.

Proof To show (i)–(iii), it boils down to refine the argument of [22, Lemma 2.1]. (i)
holds for any λ ≥ 4(‖b‖T ,∞ + �T ,σ )2 via the Banach fixed-point theorem.

In what follows, we aim to show (ii) and (iii) hold true, one-by-one. Observe from
[12, Theorem 3.1, p.218] that

d∇ηZ
s,x
t =

(
∇∇ηZ

s,x
t

σt

) (
Zs,x
t
)
dWt , t ≥ s, ∇ηZ

s,x
s = η ∈ R

n . (2.7)

Using Itô’s isometry and Gronwall’s inequality, one has

E|∇ηZ
s,x
t |2 ≤ |η|2eT ‖∇σ‖2T ,∞ . (2.8)

Utilizing the BDG inequality, we deduce that

E|∇ηZ
s,x
t |4 ≤ 8

{
|η|4 + 36(t − s)‖∇σ‖4T ,∞

∫ t

s
E|∇ηZ

s,x
u |4du

}
,

which, combining with Gronwall’s inequality, yields that

E|∇ηZ
s,x
t |4 ≤ 8|η|4e288 T 2‖∇σ‖4T ,∞ . (2.9)

Recall from [22, (2.8)] that the following Bismut formula

∇ηP
0
s,t f (x) = E

(
f
(
Zs,x
t
)

t − s

∫ t

s

〈
σ−1
r

(
Zs,x
r

)∇ηZ
s,x
r , dWr

〉)
, f ∈ Bb(R

n)

(2.10)
holds. By the Cauchy–Schwartz inequality, the Itô isometry and (2.8), we obtain that

|∇ηP
0
s,t f |2(x) ≤ �2

T ,σ |η|2P0
s,t f

2(x)

t − s
, f ∈ Bb(R

n), (2.11)

where �T ,σ > 0 is defined in (2.4). So, one infers from (2.3) and (2.11) that

‖∇uλ
s ‖ ≤

∫ T

s
e−λ(t−s)‖∇P0

s,t {bt + ∇bt u
λ
t }‖dt

≤ �T ,σ

(
1 + ‖∇uλ‖T ,∞

) ‖b‖T ,∞
∫ T

0

e−λt

√
t
dt

≤ λ− 1
2
√

π�T ,σ ‖b‖T ,∞(1 + ‖∇uλ‖T ,∞).

Thus, (ii) follows by taking λ ≥ 9π�2
T ,σ ‖b‖2T ,∞.
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In the sequel, we intend to verify (iii). Set γs,t := ∇η∇η′ Zs,x
t for any η, η′ ∈ R

n .
Notice from (2.7) that

dγs,t =
{(∇γs,tσt

) (
Zs,x
t
)+

(
∇∇ηZ

s,x
t

∇∇η′ Zs,x
t

σt

) (
Zs,x
t
)}

dWt , t ≥ s, γs,s = 0n.

By the Doob submartingale inequality and the Itô isometry, besides the Gronwall
inequality and (2.8), we derive that

sup
s≤t≤T

E|γs,t |2 ≤ 16T ‖∇2σ‖2T ,∞e288T
2‖∇σ‖4T ,∞+2T ‖∇σ‖2T ,∞|η|2|η′|2. (2.12)

From (2.10) and the Markov property, we have

∇ηP
0
s,t f (x) = E

⎛
⎜⎝
(
P0

t+s
2 ,t

f
) (

Zs,x
t+s
2

)
(t − s)/2

∫ t+s
2

s

〈
σ−1
r

(
Zs,x
r

)∇ηZ
s,x
r , dWr

〉⎞⎟⎠ .

This further gives that

1

2

(
∇η′∇ηP

0
s,t f

)
(x)

= E

⎛
⎜⎜⎝

(
∇∇η′ Zs,x

t+s
2

P0
t+s
2 ,t

f

)(
Zs,x

t+s
2

)

t − s

∫ t+s
2

s

〈
σ−1
r

(
Zs,x
r

)∇ηZ
s,x
r , dWr

〉
⎞
⎟⎟⎠

+ E

⎛
⎜⎝
(
P0

t+s
2 ,t

f
) (

Zs,x
t+s
2

)
t − s

∫ t+s
2

s

〈(
∇∇η′ Zs,x

r
σ−1
r

) (
Zs,x
r

)∇ηZ
s,x
r , dWr

〉⎞⎟⎠

+ E

⎛
⎜⎝
(
P0

t+s
2 ,t

f
) (

Zs,x
t+s
2

)
t − s

∫ t+s
2

s

〈
σ−1
r

(
Zs,x
r

)∇η′∇ηZ
s,x
r , dWr

〉⎞⎟⎠ .

Thus, applying Cauchy–Schwartz’s inequality and Itô’s isometry and taking (2.9),
(2.11) and (2.12) into consideration, we derive that

|∇η′∇ηP
0
s,t f |2(x)

≤ 12

⎧⎪⎨
⎪⎩6‖σ

−1‖2T ,∞
E

∣∣∣∇P0
t+s
2 ,t

f
∣∣∣2 (Zs,x

t+s
2

)
(t − s)5/2

×
(
E

∣∣∣∇η′ Zs,x
t+s
2

∣∣∣4
)1/2

(∫ t+s
2

s
E
∣∣∇ηZ

s,x
r

∣∣4 dr
)1/2
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+ P0
s,t f

2(x)

(t − s)2
‖∇σ−1‖2T ,∞

∫ t+s
2

s

(
E|∇η′ Zs,x

r |4
)1/2 (

E|∇ηZ
s,x
r |4

)1/2
dr

+ P0
s,t f

2(x)

(t − s)2
‖σ−1‖2T ,∞

∫ t+s
2

s
E
∣∣∇η′∇ηZ

s,x
r

∣∣2 dr
}

≤ �̃T ,σ |η|2|η′|2 P
0
s,t f

2(x)

(t − s)2
, (2.13)

where �̃T ,σ > 0 is defined as in (2.5).
Set f̃ (·) := f (·) − f (x) for fixed x ∈ R

n and f ∈ Bb(R
n) which verifies

| f (x) − f (y)| ≤ φ(|x − y|), x, y ∈ R
n (2.14)

for some φ ∈ D . For f ∈ Bb(R
n) such that (2.14), (2.13) implies that

|∇η′∇ηP
0
s,t f |2(x) = |∇η′∇ηP

0
s,t f̃ |2(x) ≤ �̃T ,σ |η|2|η′|2

(t − s)2
E| f (Zs,x

t ) − f (x)|2

≤ �̃T ,σ |η|2|η′|2
(t − s)2

φ2(‖σ‖T ,∞(t − s)1/2),

(2.15)
where in the second display we have used that

Zs,x
t − x =

∫ t

s
σr (Z

s,x
r )dWr ,

and utilized Jensen’s inequality as well as Itô’s isometry.
Let ft = bt + ∇bt u

λ
t . For any λ ≥ 9π�2

T ,σ ‖b‖2T ,∞ + 4(‖b‖T ,∞ + �T ,σ )2, note
from (ii), (2.11) and (2.13) that

| ft (x) − ft (y)| ≤ (1 + ‖∇uλ‖T ,∞)φ(|x − y|)
+‖b‖T ,∞‖∇uλ

t (x) − ∇ut (y)‖1{|x−y|≥1}
+‖b‖T ,∞‖∇uλ

t (x) − ∇ut (y)‖1{|x−y|≤1}

≤ 3

2
φ(|x − y|) + ‖b‖T ,∞

√|x − y|1{|x−y|≥1}

+10

(
�T ,σ +

√
�̃T ,σ

)
‖b‖2T ,∞

√|x − y|√|x − y|

× log

(
e + 1

|x − y|
)
1{|x−y|≤1}

≤
{
3 + 2‖b‖T ,∞ + 28

(
�T ,σ +

√
�̃T ,σ

)
‖b‖2T ,∞

}
φ̃(|x − y|)

with φ̃(s) := √
φ2(s) + s, s ≥ 0, where in the second inequality we have used

[22, Lemma 2.2 (1)], and the fact that the function [0, 1] � x �→ √
x log(e + 1

x ) is
non-decreasing. As a result, (iii) follows from (2.15). ��
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3 Proof of Theorem 1.1

With Lemma 2.1 in hand, we now in the position to complete the

Proof of Theorem 1.1 Throughout the whole proof, we assume λ ≥ 9π�2
T ,σ ‖b‖2T ,∞ +

4(‖b‖T ,∞ + �T ,σ )2 so that (i)–(iii) in Lemma 2.1 hold. For any t ∈ [0, T ], applying
Itô’s formula to x + uλ

t (x), x ∈ R
n , we deduce from (2.1) that

Xt + uλ
t (Xt )= x + uλ

0(x)+λ

∫ t

0
uλ
s (Xs)ds+

∫ t

0
{In×n + (∇uλ

s )(·)}(Xs)σs(Xs)dWs,

(3.1)
where In×n is an n × n identity matrix, and that

Yt + uλ
t (Yt ) = x + uλ

0(x)+λ

∫ t

0
uλ
s (Ys)ds+

∫ t

0
{In×n + (∇uλ

s )(·)}(Ys)σsδ (Ysδ )dWs

+
∫ t

0
{In×n + (∇uλ

s )(·)}(Ys){bsδ (Ysδ ) − bs(Ys)}ds

+ 1

2

∫ t

0

∑
k, j

〈{(σsδ σ ∗
sδ )(Ysδ ) − (σsσ

∗
s )(Ys)}ek, e j

〉
(∇ek∇e j u

λ
s )(Ys)ds.

(3.2)
For notation simplicity, set

Mλ
t := Xt − Yt + uλ

t (Xt ) − uλ
t (Yt ). (3.3)

Using the elementary inequality: (a+b)2 ≤ (1+ε)(a2+ε−1b2) for arbitrary ε, a, b >

0, we derive from (ii) that

|Xt − Yt |2 ≤ (1 + ε)(|Mλ
t |2 + ε−1|uλ

t (Xt ) − uλ
t (Yt )|2)

≤ (1 + ε)

(
|Mλ

t |2 + ε−1

4
|Xt − Yt |2

)
.

In particular, taking ε = 1 leads to

|Xt − Yt |2 ≤ 1

2
|Xt − Yt |2 + 2|Mλ

t |2.

As a consequence,

E

(
sup

0≤s≤t
|Xs − Ys |2

)
≤ 4E

(
sup

0≤s≤t
|Mλ

s |2
)

. (3.4)

Inwhat follows, our goal is to estimate the termon the right-hand side of (3.4). Observe
from the definition of the Hilbert–Schmidt norm that
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∫ t

0
E

∣∣∣∣∣∣
∑
k, j

〈{(σsδ σ ∗
sδ )(Ysδ ) − (σsσ

∗
s )(Ys)}ek, e j 〉(∇ek∇e j u

λ
s )(Ys)

∣∣∣∣∣∣
2

ds

�T ‖∇2uλ‖2T ,∞
∫ t

0
E‖(σsδ σ ∗

sδ )(Ysδ ) − (σsσ
∗
s )(Ys)‖2HSds. (3.5)

Thus, by Hölder’s inequality, Doob’s submartingale inequality and Itô’s isometry, it
follows from (3.1), (3.2) and (3.5) that

E

(
sup

0≤s≤t
|Mλ

s |2
)

≤ CT

{
λ2
∫ t

0
E|uλ

s (Xs) − uλ
s (Ys)|2ds

+ (1 + ‖∇u‖2T ,∞)

∫ t

0
E|bsδ (Ys) − bsδ (Ysδ )|2ds

+ (1 + ‖∇u‖2T ,∞)

∫ t

0
E|bs(Ys) − bsδ (Ys)|2ds

+
∫ t

0
E‖{(∇uλ

s )(Xs) − (∇uλ
s )(Ys)}σs(Xs)‖2HSds

+ (1 + ‖∇u‖2T ,∞)

∫ t

0
E‖σsδ (Xs) − σsδ (Ysδ )‖2HSds

+ ‖∇2uλ‖2T ,∞
∫ t

0
E‖{σsδ (Ys) − σsδ (Ysδ )}σ ∗

sδ (Ysδ )‖2HSds

+ ‖∇2uλ‖2T ,∞
∫ t

0
E‖σs(Ys){σ ∗

sδ (Ys) − σ ∗
sδ (Ysδ )}‖2HSds

+ (1 + ‖∇u‖2T ,∞)

∫ t

0
E‖σs(Xs) − σsδ (Xs)‖2HSds

+ ‖∇2uλ‖2T ,∞
∫ t

0
E‖σs(Ys){σ ∗

s (Ys) − σ ∗
sδ (Ys)}‖2HSds

+‖∇2uλ‖2T ,∞
∫ t

0
E‖{σs(Ys) − σsδ (Ys)}σ ∗

sδ (Ysδ )‖2HSds
}

=: CT

(
10∑
i=1

Ii (t)

)

for some constant CT > 0. Also, applying Hölder’s inequality and Itô’s isometry, we
deduce from (A1) that

E|Yt − Ytδ |2 ≤ βT δ (3.6)

for some constant βT ≥ 1. By Taylor’s expansion, it is obvious to see that

I1(t) + I4(t) � {λ2‖∇uλ‖2T ,∞ + ‖∇2uλ‖2T ,∞‖σ‖2T ,∞}
∫ t

0
E|Xs − Ys |2ds. (3.7)
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From (A3) and due to the fact that φ(·) is increasing and δ ∈ (0, 1), one has

I3(t) +
10∑
i=8

Ii (t) �T {1 + ‖∇uλ‖2T ,∞ + ‖∇2uλ‖2T ,∞‖σ‖2T ,∞}φ2(
√

δ). (3.8)

In view of (A2), we derive that

I2(t) +
7∑

i=5

Ii (t)

� {1 + ‖∇uλ‖2T ,∞}
∫ t

0
Eφ(|Ys − Ysδ |)2ds

+ {1 + ‖∇uλ‖2T ,∞}‖∇σ‖2T ,∞
∫ t

0
E|Xs − Ys |2ds

+ {1 + ‖∇uλ‖2T ,∞ + ‖∇2uλ‖2T ,∞‖σ‖2T ,∞}‖∇σ‖2T ,∞
∫ t

0
E|Ys − Ysδ |2ds.

(3.9)

Thus, taking (3.6)–(3.9) into account and applying Jensen’s inequality gives that

E

(
sup

0≤s≤t
|Mλ

s |2
)

�T CT ,σ,λ{δ + φ2(βT
√

δ)} + CT ,σ,λ

∫ t

0
E|Xs − Ys |2ds,

where

CT ,σ,λ := {1 + ‖∇σ‖2T ,∞}
{
5

4
+ (1 + λ2)‖∇2uλ‖2T ,∞‖σ‖2T ,∞

}
. (3.10)

Owing to φ ∈ D, we conclude that φ(0) = 0, φ′ > 0 and φ′′ < 0 so that, for any
c > 0 and δ ∈ (0, 1),

φ(cδ) = φ(0) + φ′(ξ)cδ ≥ φ′(c)cδ,

where ξ ∈ (0, cδ). This further implies that

E

(
sup

0≤s≤t
|Mλ

s |2
)

�T CT ,σ,λφ
2(βT

√
δ) + CT ,σ,λ

∫ t

0
E|Xs − Ys |2ds.

Substituting this into (3.4) gives that

E

(
sup

0≤s≤t
|Xs − Ys |2

)
�T CT ,σ,λφ

2(βT
√

δ) + CT ,σ,λ

∫ t

0
E|Xs − Ys |2ds.

123



862 Journal of Theoretical Probability (2019) 32:848–871

Thus, Gronwall’s inequality implies that there exists C̃T > 0 such that

E

(
sup

0≤s≤t
|Xs − Ys |2

)
≤ C̃T CT ,σ,λe

C̃T CT ,σ,λφ2(βT
√

δ). (3.11)

So the desired assertion holds immediately. ��

4 Proof of Theorem 1.2

We shall adopt the cutoff approach to finish the

Proof of Theorem 1.2 Take ψ ∈ C∞
b (R+) such that 0 ≤ ψ ≤ 1, ψ(r) = 1 for r ∈

[0, 1] and ψ(r) = 0 for r ≥ 2. For any t ∈ [0, T ] and k ≥ 1, define the cutoff
functions

b(k)
t (x) = bt (x)ψ(|x |/k) and σ

(k)
t (x) = σt (ψ(|x |/k)x), x ∈ R

n .

It is easy to see that b(k) and σ (k) satisfy (A1). For fixed k ≥ 1, consider the following
SDE

dX (k)
t = b(k)

t (X (k)
t )dt + σ

(k)
t (X (k)

t )dWt , t > 0, X (k)
0 = X0 = x . (4.1)

The corresponding continuous-time EM of (4.1) is defined by

dY (k)
t = b(k)

tδ (Y (k)
tδ )dt + σ

(k)
tδ (Y (k)

tδ )dWt , t > 0, Y (k)
0 = X0 = x . (4.2)

Applying BDG’s inequality, Hölder’s inequality andGronwall’s inequality, we deduce
from (A1’) that

E

(
sup

0≤t≤T
|Xt |4

)
+E

(
sup

0≤t≤T
|Yt |4

)
+E

(
sup

0≤t≤T
|X (k)

t |4
)

+E

(
sup

0≤t≤T
|Y (k)

t |4
)

≤ CT

(4.3)
for some constant CT > 0. Note that

E

(
sup

0≤t≤T
|Xt − Yt |2

)
≤ 3E

(
sup

0≤t≤T
|Xt − X (k)

t |2
)

+ 3E

(
sup

0≤t≤T
|X (k)

t − Y (k)
t |2

)

+ 3E

(
sup

0≤t≤T
|Yt − Y (k)

t |2
)

=: I1 + I2 + I3.
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For the terms I1 and I3, in terms of the Chebyshev inequality we find from (4.3) that

I1 + I3 � E

(
sup

0≤t≤T
|Xt − X (k)

t |21{sup0≤t≤T |Xt |≥k}

)

+ E

(
sup

0≤t≤T
|Yt − Y (k)

t |21{sup0≤t≤T |Yt |≥k}

)

�

√√√√
E

(
sup

0≤t≤T
|Xt |4

)
+ E

(
sup

0≤t≤T
|X (k)

t |4
)√

E
(
sup0≤t≤T |Xt |2

)
k

+
√√√√
E

(
sup

0≤t≤T
|Yt |4

)
+ E

(
sup

0≤t≤T
|Y (k)

t |4
)√

E
(
sup0≤t≤T |Yt |2

)
k

�T
1

k
,

(4.4)

where in the first display we have used the facts that {Xt �= X (k)
t } ⊂ {sup0≤s≤t |Xs | ≥

k} and {Yt �= Y (k)
t } ⊂ {sup0≤s≤t |Ys | ≥ k}. Observe from (A1’) that 9π�2

T ,σ (k)

‖b(k)‖2T ,∞ + 4(‖b(k)‖T ,∞ + �T ,σ (k) )2 ≤ ec k
2
for some c > 0. Next, according to

(3.11), by taking λ = ec k
2
there exits CT > 0 such that

I2 ≤ eCTCT ,σ (k),λφ2
k (βT

√
δ). (4.5)

Herein, CT ,σ (k),λ > 0 is defined as in (3.10) with σ and uλ replaced by σ (k) and uλ,k ,
respectively, where uλ,k solves (2.3) by writing b(k) instead of b. Consequently, we
conclude that

E

(
sup

0≤t≤T
|Xt − Yt |2

)
≤ c̄0

k
+ c̄0e

CTCT ,σ (k),λφ2
k (βT

√
δ) (4.6)

for some c̄0 > 0. For any ε > 0, taking k = �2c̄0/ε
 and letting δ go to zero implies
that

lim
δ→0

E

(
sup

0≤t≤T
|Xt − Yt |2

)
≤ ε.

Thus, (1.4) follows due to the arbitrariness of ε.

For φk(s) = ee
c0k

4

sα, s ≥ 0, with α ∈ (0, 1], we deduce from Lemma 2.1 (iii) that

‖∇2uλ,k‖T ,∞ ≤ 1

2
(4.7)
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whenever

λ ≥
{
2ϒT ,σ (k)

(
ee

c0k
4 ‖σ (k)‖α

T ,∞�(α/2) + ‖σ (k)‖1/2T ,∞�(1/4)

)}2/α

+ 9π(�T ,σ (k) )
2‖b(k)‖2T ,∞ + 4(‖b(k)‖T ,∞ + �T ,σ (k) )

2.

(4.8)

Since the right-hand side of (4.8) can be bounded by ee
C̄T k4

for some constant C̄T > 0

due to (A1’), we can take λ = ee
C̄T k4

so that (4.7) holds. Thus, (4.6), together with
(4.7) and (A1’), yields that

E

(
sup

0≤t≤T
|Xt − Yt |2

)
≤ ĈT

k
+ ĈT e

eC̃T k4

δα

for some constants ĈT , C̃T > 0. Thus, (1.5) follows immediately by taking

k =
⌊(

1

C̃T
log log δ−αε

) 1
4
⌋

. (4.9)

Next, we aim to show that (1.6) holds true. In view of (4.3) and (4.4), it follows
from Hölder’s inequality that

I1 + I3 �

√√√√
E

(
sup

0≤t≤T
|Xt − X (k)

t |4
)√√√√

P

(
sup

0≤t≤T
|Xt | ≥ k

)

+
√√√√
E

(
sup

0≤t≤T
|Yt − Y (k)

t |4
)√√√√

P

(
sup

0≤t≤T
|Yt | ≥ k

)

�T

√√√√
P

(
sup

0≤t≤T
|Xt | ≥ k

)
+
√√√√
P

(
sup

0≤t≤T
|Yt | ≥ k

)
.

(4.10)

By (A1’), we infer that

sup
0≤s≤t

|Ys | ≤ |x | + KT T + sup
0≤s≤t

|Nt | + KT

∫ t

0
|Ysδ |ds

≤ |x | + KT T + sup
0≤s≤t

|Nt | + KT

∫ t

0
sup

0≤r≤s
|Yr |ds

(4.11)

where

Nt :=
∫ t

0
σsδ (Ysδ )dWs .
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Thus, Gronwall’s inequality enables us to get that

sup
0≤s≤t

|Ys | ≤ (|x | + KT T )eKT T + eKT T sup
0≤s≤t

|Ns |.

For any integer k ≥ 1 such that

ρ := ke−KT T − |x | − KT T > 0,

we derive from (4.11) that

P

(
sup

0≤t≤T
|Yt | ≥ k

)
= P

(
sup

0≤t≤T
|Nt | ≥ ρ

)
.

This, by taking advantage of [19, Proposition 6.8], yields that

P

(
sup

0≤t≤T
|Yt | ≥ k

)
= P

(
〈N 〉T ≤ ‖σ‖2∞T , sup

0≤t≤T
|Nt | ≥ ρ

)

≤ 2n exp

(
− ρ2

2n‖σ‖2T ,∞T

)
,

(4.12)

where 〈N 〉t stands for the quadratic variation process of Nt . Next, by using the inequal-
ity: (a − b)2 ≥ 1

2a
2 − b2, a, b ∈ R, we deduce from (4.12) that

P

(
sup

0≤t≤T
|Yt | ≥ k

)
≤ 2n exp

(
(|x | + KT T )2

2n‖σ‖2T ,∞T

)
exp

(
− k2

4n‖σ‖2T ,∞T e2KT T

)
.

(4.13)
Similarly, one can obtain that

P

(
sup

0≤t≤T
|Xt | ≥ k

)
≤ 2n exp

(
(|x | + KT T )2

2n‖σ‖2T ,∞T

)
exp

(
− k2

4n‖σ‖2T ,∞T e2KT T

)
.

(4.14)
Inserting (4.13) and (4.14) back into (4.10) leads to

I1 + I3 �T exp

(
− k2

2n‖σ‖2T ,∞T e2KT T

)
.

This, together with (4.5), (4.7) and (A1’), gives that

E

(
sup

0≤t≤T
|Xt − Yt |2

)
≤ ĈT exp

(
− k2

2n‖σ‖2T ,∞T e2KT T

)
+ ĈT e

eC̃T k4

δα
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for some constants ĈT , C̃T > 0. As a consequence, (1.6) follows by taking k given in
(4.9). ��

5 Proof of Theorem 1.4

For simplicity, for any f : Rm1 → R
m2 , let

[ f ]L = sup
x �=y

| f (x) − f (y)|
|x − y| , ‖ f ‖∞ = sup

x∈Rm1

| f (x)|.

The proof of Theorem 1.4 relies on regularization properties of the following R
2n-

valued degenerate parabolic equation

∂t u
λ
t + L b,σ

t uλ
t + bt = λuλ

t , uλ
T = 02n, t ∈ [0, T ], λ > 0, (5.1)

where 02n is the zero vector in R2n ,

bt :=
(
b(1)
t

b(2)
t

)
and L b,σ

t uλ := 1

2

n∑
i, j=1

〈(σtσ ∗
t )(·)ei , e j 〉∇(2)

ei ∇(2)
e j u

λ +∇(1)

b(1)
t
uλ +∇(2)

b(2)
t
uλ.

The following lemma on regularity estimate of solution to (5.1) is taken from [23,
Theorem 3.10, (4.4)] and is an essential ingredient in analyzing numerical approxi-
mation.

Lemma 5.1 Under (C1)–(C3), (5.1) has a unique solution uλ ∈ C([0, T ];C1
b

(R2n;R2n)) such that for all t ∈ [0, T ],

‖∇uλ
t ‖∞ + ‖∇(2)∇(2)uλ

t ‖∞ + [∇(2)ut ]L ≤ C
∫ T

0
e−λt φ(t

1
2 )

t
dt, (5.2)

where C > 0 is a constant.

From now on, we move forward to complete the

Proof of Theorem 1.4 For notation simplicity, set

Xt :=
(
X (1)
t

X (2)
t

)
, Yt :=

(
Y (1)
t

Y (2)
t

)
and bt (x) :=

(
b(1)
t (x)

b(2)
t (x)

)
, x ∈ R

2n .

Then (1.7) and (1.8) can be reformulated, respectively, as

dXt = bt (Xt )dt +
(
0n×n
σt

)
(Xt )dWt , t > 0, X0 = x =

(
x1
x2

)
∈ R

2n,
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where 0n×n is an n × n zero matrix, and

dYt = btδ (Ytδ )dt +
(
0n×n
σtδ

)
(Ytδ )dWt , t > 0, Y0 = x ∈ R

2n .

Note from (5.2) that there exists λ0 > 0 sufficiently large such that for any t ∈ [0, T ],

‖∇uλ
t ‖∞ + ‖∇(2)∇(2)uλ

t ‖∞ + [∇(2)uλ
t ]L ≤ 1

2
, λ ≥ λ0. (5.3)

Applying Itô’s formula to x + uλ
t (x) for any x ∈ R

2n , we deduce that

Xt + uλ
t (Xt ) = x + uλ

0(x) + λ

∫ t

0
uλ
s (Xs)ds +

∫ t

0

(
0n×n
σs

)
(Xs)dWs

+
∫ t

0

(
∇(2)

σsdWs
uλ
s

)
(Xs), (5.4)

and that

Yt + uλ
t (Yt ) = x + uλ

0(x) + λ

∫ t

0
uλ
s (Ys)ds

+
∫ t

0
{I2n×2n + (∇us)(·)}(Ys){bsδ (Ysδ ) − bs(Ys)}ds

+
∫ t

0

(
0n×n
σsδ

)
(Ysδ )dWs +

∫ t

0

(
∇(2)

σsδ (Ysδ )dWs
uλ
s

)
(Ys)

+ 1

2

∫ t

0

n∑
k, j=1

〈{(σsδ σ ∗
sδ )(Ysδ

)− (σsσ ∗
s

)
(Ys)

}
ek , e j 〉

(
∇(2)
ek ∇(2)

e j u
λ
s

)
(Ys)ds,

(5.5)
where I2n×2n is an 2n × 2n identity matrix. Thus, using Hölder’s inequality, Doob’s
submartingale inequality and Itô’s isometry and taking (3.5) into consideration gives
that

E

(
sup

0≤s≤t
|Mλ

s |2
)

≤ C0,T

{∫ t

0
E|uλ

s (Xs) − uλ
s (Ys)|2ds

+
(
1 + ‖∇uλ‖2T ,∞

) ∫ t

0
E|bsδ (Ys) − bsδ (Ysδ )|2ds

+
(
1 + ‖∇uλ‖2T ,∞

) ∫ t

0
E|bs(Ys) − bsδ (Ys)|2ds

+
∫ t

0
E‖{(∇(2)uλ

s )(Xs) − ∇(2)uλ
s (Ys)}σs(Xs)‖2HSds

+
(
1 + ‖∇(2)uλ‖2T ,∞

) ∫ t

0
E‖σsδ (Xs) − σsδ (Ysδ )‖2HSds

+ (1 + ‖∇(2)uλ‖2T ,∞)

∫ t

0
E‖σs(Xs) − σsδ (Xs)‖2HSds
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+ ‖∇(2)∇(2)uλ‖2T ,∞
∫ t

0
E‖{σsδ (Ys) − σsδ (Ysδ )}σ ∗

sδ (Ysδ )‖2HSds

+ ‖∇(2)∇(2)uλ‖2T ,∞
∫ t

0
E‖σs(Ys){σ ∗

sδ (Ys) − σ ∗
sδ (Ysδ )}‖2HSds

+ ‖∇(2)∇(2)uλ‖2T ,∞
∫ t

0
E‖σs(Ys){σ ∗

s (Ys) − σ ∗
sδ (Ys)}‖2HSds

+‖∇(2)∇(2)uλ‖2T ,∞
∫ t

0
E‖{σs(Ys) − σsδ (Ys)}σ ∗

sδ (Ysδ )‖2HSds
}

=: C0,T

(
10∑
i=1

Ji (t)

)

for some constant C0,T > 0, where Mλ
t is defined as in (3.3). By using Hölder’s

inequality and the BDG inequality, (C1) implies that

E|Yt − Ytδ |p � δ
p
2 , p ≥ 1. (5.6)

Utilizing Taylor’s expansion, one gets from (3.6), (5.3) and (5.6) that

J1(t) + J4(t) + J5(t) �
{
1 + ‖∇uλ‖2T ,∞ + ‖∇∇(2)uλ‖2T ,∞‖σ‖2T ,∞

} ∫ t

0
E|Xs − Ys |2ds

+ {1 + ‖∇(2)uλ‖2T ,∞}
∫ t

0
E|Ys − Ysδ |2ds

� δ +
∫ t

0
E|Xs − Ys |2ds.

Next, (C1), (C5) and (5.3) yield that

J3(t) + J6(t) + J9(t) + J10(t) � φ2(
√

δ),

where we have also used that φ(·) is increasing and δ ∈ (0, 1). Additionally, by virtue
of (C1), (C2), and (5.3), we infer from (C3) that

J2(t) + J7(t) + J8(t) � δ +
∫ t

0
E|bsδ

(
Y (1)
s ,Y (2)

s

)
− bsδ

(
Y (1)
sδ ,Y (2)

s

)
|2ds

+
∫ t

0
E

∣∣∣bsδ
(
Y (1)
sδ ,Y (2)

s

)
− bsδ

(
Y (1)
sδ ,Y (2)

sδ

)∣∣∣2 ds
≤ C1,T

{
δ +

∫ t

0
E

∣∣∣b(1)
sδ (Y (1)

s ,Y (2)
s ) − b(1)

sδ (Y (1)
sδ ,Y (2)

s )

∣∣∣2 ds
+
∫ t

0
E

∣∣∣b(2)
sδ (Y (1)

s ,Y (2)
s ) − b(2)

sδ (Y (1)
sδ ,Y (2)

s )

∣∣∣2 ds
+
∫ t

0
E

∣∣∣b(1)
sδ (Y (1)

sδ ,Y (2)
s ) − b(1)

sδ (Y (1)
sδ ,Y (2)

sδ )

∣∣∣2 ds
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+
∫ t

0
E

∣∣∣b(2)
sδ (Y (1)

sδ ,Y (2)
s ) − b(2)

sδ (Y (1)
sδ ,Y (2)

sδ )

∣∣∣2 ds
}

=: C1,T

(
δ +

4∑
i=1

�i (t)

)

for some constant C1,T > 0. From (C2), (C3), (5.6) and φ ∈ Dε, we derive from
Hölder’s inequality and Jensen’s inequality that

�1(t) + �2(t) �
2∑

i=1

∫ t

0
E

⎛
⎜⎜⎝
∣∣∣b(i)

sδ (Y (1)
s ,Y (2)

s ) − b(i)
sδ (Y (1)

sδ ,Y (2)
s )

∣∣∣
∣∣∣Y (1)

s − Y (1)
sδ

∣∣∣
2
3
φ
(∣∣∣Y (1)

s − Y (1)
sδ

∣∣∣)
1{Y(1)

s �=Y(1)
s }

×
∣∣∣Y (1)

s − Y (1)
sδ

∣∣∣
2
3
φ
(∣∣∣Y (1)

s − Y (1)
sδ

∣∣∣)
⎞
⎟⎟⎠

2

ds

�
∫ t

0
E

(∣∣∣Y (1)
s − Y (1)

sδ

∣∣∣
2
3
φ
(∣∣∣Y (1)

s − Y (1)
sδ

∣∣∣)
)2

ds

�
∫ t

0

(
Eφ
(∣∣∣Y (1)

s − Y (1)
sδ

∣∣∣)2(1+ε)
) 1

1+ε

(
E

∣∣∣Y (1)
s −Y (1)

sδ

∣∣∣
4(1+ε)

3ε

) ε
1+ε

ds

� δ
2
3 φ2(C2,T

√
δ)

(5.7)
for some constant C2,T > 0. With regard to the term �3(t), (C1) and (5.6) lead to

�3(t) � ‖∇(2)b(1)‖2T ,∞
∫ t

0
E

∣∣∣Y (1)
s − Y (1)

sδ

∣∣∣2 ds � δ. (5.8)

Due to (C3), observe from Jensen’s inequality and (5.6) that

�4(t) �
∫ t

0
E

(
|b(2)

sδ (Y (1)
sδ , Y (2)

s ) − b(2)
sδ (Y (1)

sδ , Y (2)
sδ )|

φ(|Y (2)
s − Y (2)

sδ |)
1{Y (2)

s �=Y (2)
sδ } × φ(|Y (2)

s − Y (2)
sδ |)

)2

ds

�
∫ t

0
Eφ(|Y (2)

s − Y (2)
sδ |)2ds

� φ2(C3,T
√

δ)

for some constant C3,T > 0. Consequently, we arrive at

E

(
sup

0≤s≤t
|Xs − Ys |2

)
�T φ2(C4,T

√
δ) +

∫ t

0
E sup

0≤r≤s
|Xr − Yr |2ds

for some constant C4,T ≥ 1. Thus, the desired assertion follows from the Gronwall
inequality. ��
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